
0

I

sr.rr.. Nenletter 129

1. Introduction.

This newsletter

J. Schwai.~z
llay 20, 1974

i. takes up the discussion initiated in newsletter 901

ii. tries to put the discussion on a more reasoned . .
semantl:c basie,

iii. arrives at a proposal differing substantially from

that of NL. 90 ..

'.l'he discussion which follows is much influenced by the
proposals made by George Weinberger in his thesis-in-progress.

The buic issues which must be faced in adapting SETL
tc a data base environment are as follows:

(a) 'l'he dat~ collections with which one will deal

U'A very b~g. In large part, they reside on secondary

M!IOry, which can only be addressed. on terms very different
f:r:ua, and much lese favorable than, the terms of central memory
access. This makes it quite essential to be able to search a data--·iase

• for particular items without exuing more than a fraction
of the total data present.

(b) The dat.a base may be thot1ght of as storing vectors,
whose components are ~ither object attributes (numaric,

charaeter aet, etc) or furt.her vectors .of attributes.
Th.a fmni.ly of attributes associated with an object will

often be quite large and miBcell.meous 1 a.nd w.ill inevitably
e,..,."lv-a if a data base ia kept in use over substantial pe~iods

of timea For thi•.r~ason it is inap~~priate to access

attributes by expli.cit position, a considerably more powerful

&nd flexible scheme of attribut.e aecessi.~g is required ..

Such. a ~chlmle will aim to st«bili~e ·the ·&ccess procesB
. -~ ' ' ,.:
vis-a-vis variation~ in vector layout. The essential notion
in acheme of this type is th.at. of v•otcl" ~tructu.:re defined by

imposing a pattern of named selectors on the. vector; this
notion is used explicitly in al.most every kn,own data
management scheme (some schemas inherit their structure
notion from the host language in which they are intended
to operate.) In the present newsletter. we shall suppose
such a structuring concept t.c be available, and will only

Nf4iir to data:l:_la of the assumed st.ructuri.ng scheme as this
biec02Mis neceasary.

{c) The data-bearing 'vectors' described under {b)
g•nerally behave like physical objec·ts 6 or like 'index cards'

c~ 1dossiera' representing physical objects, in that they
have a continuing identity independent of the changing values
of their attributes. Por this rea.a6i1'~ we sba.11 assume that

each. such vector contains a unique, system-iss11ed serial

number defini~g_ita continuing identity; and shall call such
vectors z,saoPds.

(d) Unlike the data environments of individ1..1al programs.
wich are tranaient and exist only as long as their associatad
programs, a dat~ base continues to exist and evolve through
the execution and tarminetion of many pregrams. However,~

proc;ram ~"O:tking on a data base uy create large 'scratch'
d.at.{-! objects, which abould live no longer than the program.
'?h!.l!I makes necessary 11.ome rea!to1ulbly efficient: mechanism

for d,ividing (it dat:a base into i:;uhpartc of clefi.nahly different

pttrei,1 te?u:t.1.

(e) A laut"g& dftta base will often be more valuable
tlta.n any of the pxog'rams whi(;lt l'lanipulate it. For t..1'1ia

rea6onr data ba~e intng~ity will often be a. vel"y important
isst'le ~ To gu~zd data ba.se :tntegri ty, one must

(ei) aim to prevent inadvertent errors1

0

/

0

t

(eii) aill to mks the villfnl destruction of parts of
~ thu bue · 'difflcultr

'
(.Ui) ··provt'Ch back\lp mu! ~oowixy procedures which

en he und in can o~ cliaar#t:er. !'Ilia last may inv,~lve
. .

eyRaatJ.c checkpointin9 and joum&l.i.ng. To detect error
eitua~ions, utility routine• which examine a data-base for
consistency may be necessary.

(f) · Sollie puta of a data baM may be confidential, ao .
that certain acoeae operations may req1tlre zeeuri ty locks.
Cf. also point (eii) above.

(9) · In an on-line environment, a data base will often
be addressee! by any query u.cl update processes at the SUi&

·t!M. !or thi• raaaon, Mchanimu for coordinating the
u.a-. Of t:he 4at:a bue by procuau ·act~9 in parallel may be

nquired.
(h) In th• pncrent newsletter, wa ■hall be interested ·

in axp~icitly p::ocedural use of a data baae. However, a
non-procedural net-th.,aoret.ic query language can·be a
conai4erably more natural user tool for nmch data base usage.
For tbia r•a■on, it is import.ant in designing a fam.ily of
procedural 4ata-bue prJ.mit;ivea to enaure that typical queries
can be translata4 into efficient procedural sequences~

•

To deeiCJD Nchanimaa which adequately reflect all the
desiderata that·uve just. been n~ted.io a formidable task~
'fhia full task will by no mean.a be ntt~~pted in the present
l'!.$Valetter, in which wa will only attempt to discuss issues
(a), (b), (o), (d) aind (et;, ~gnoring the others.

3

'Mere th<1 n@te iaplic:it i.n typical data-base manipulations
not large, ai.nd 11-1are not the operatione to be applied potentially

very costly, it &night be best net. to introduce any SETL

(_ dictions speci.:fically for dat& bnee manipulation, since the

r.. .. , • .,.-1 J·,.,, .-,.•~.J, , :... ~)

~rdin.-ry Sftie dJ.ctiawt (aupple.nted by appropriate •structure'
dia-tJ.on11, cf. (b) libow)" are appropriate and would be ac!equat~ ..

flu• remuft se~a . to remind us that in adding data-base

P~tiwll to SB'1'L we a.tra apscifically to optimise the
!umdl.~CJ. of_l~• aiau. fte iosue of continuous identity
raised in (c) above could ba handled by the SBTL newat
ucbniflB, ie_e .. by usociatin.9 with each 'record' a blank

. .

&tOJi\ generated to ic!entify it.

In 4ata1aae · SBTL (• DBSBTL-,) vo will want a 8 record'
...

ncti~. A HOoPd ia a ftctor (u, be accessed through a
foNB defining ita layout) for which a unique serial number

'
(or r•aoPd -£d•n~tf-l.•Jt) i• issued when the record is created.
Rueb of the data contained in a data baa~ will be resident ·

in it~ recorda. We USUllle ~•t: the physical starting point
...

of a record can be reached efficiently if the record idQntifier
is mown e h:0a this atarting Net.ion, all other parts of

ths-recor4_can be reached easily, however, for reasons which
-~ill be explained lat.i.r,. VG tshall not usume that. all parts
~fa record are physically contiguous. One possible implementatian
t.aehniqao ia to uaa a master h&mh table which is keyed
by record identifiora and wh.ich atoree the physical poaition
of every record. An adv&.ntage of this f\Ch~me is that lt
Allows neon! accesses to b~ counted individuallyv mid thus
IMlkea possible acna foni of cute1Nttic Nsidence level control~

Nothing provonu us from 1tdding •racoi"'d; as a new ohj~~

t:ype in SftL, and frca. allowing reeord11 to·be set memb~rs
and vector c:caponents, u long a\l ow: sets and vectors remain

~«mall' J..o~, =ntr.al~ry $1.:0rable. This makes available
l'llaps . from records to records ~ tllO-p&.TamMter inter-reco~ maps .If

ate. , as lo~g as everthL'flg nw.a.in$ 'amll , .

n lbw probleu of & specifically 'data base' character arise
in dealing with sets and ma.pa which are large. Map& M of
this character will typically have some large collection

C

l

of record:a·eitber as their domain or as their range. In
preparing to deal with such map~ we aim to define rAechanisms

which possess reaaonably ~fficient implementations and which . .

allow aet-theorei:ic semantics, which ia our guiding ideal, · . . .
'to he aimiclted reasonably well.

'1'he four following c••• typify the ways in which va
expect to use ··-maps having large set■ of records either u
their danain or as their rango • . . •' ...

(a_)_ Single valued record · •► record maps, u for
example map• aerving to associate aublliidJ.ary information
with a record without. making it. necessary to duplicate the
record in which this subsidiary information is found.

(b) .-Ultiple-valued .record > record maps. Theaa
Bight either aerve t:he purpome just noted in (a), or m.i.ght
be ued to optimiae searches by aapping a given record r
into the set o~ all records r • which need to be examined
when ve seek record• standing in some particular relationship
tor.

(c) bltiple-valuaa value ➔ record maps, which
Hrve as 'aecondary indices' uaed to opt!imise searches by

upping a value v into the Mt of all records having
·eaaa attribute equal to v.

(d) (Aa a rarftr case) Single~ ~r multiple values
maps f (r, x, y_, ~ o ..) of several par,mieters. -;rhe se parameters can
be records or values, but at least one must be a record. An

example might be a map recording certein 'joint' activities of two

persons, each of whom is separately represented by a record.

* •1· t.aJui lt t:hati for givon 1:·, f {:r ,z,y,) iu defined
only :or a -11 ~ti of. ~,'!'~·.,:.:.-.,,,. 1.ndesd, the ·contrary

U8'Wllption would mate ·the -~jocit f 'quadraticallyt l~go,

¥Moh ahould 1,e· a rani c
-.COZ'&r haW··Ulll84 fi•J.4a~'. and in what follow11 we ahall .

tau it that (un4ei-cartain natricticms to be deacusisad later)

a&Ut.ional fial.4a o~-bsi &4484. in a 4ynamia and e:fficient.

ny.- If n 'a_..:, ... ~1•14 im4,. r 1• a record, let r(n)
• a.·

&aae•e tha fi•~ a in the rocroi4 r. Then a map f of type

. (~» can be handled by. t.re•~·:-:f (r_) · •• a synonym for r (n) 1

.·· ·Vao t:hat: Rapa of -t:la1a ·kind are· "relatively unproblematical.
. . . . t . .. ·. ' ..

,A tiild.lar :&m1m~ •lies to ups f(r,x,y,) in the
.. ~ . - . . l"-l . . .• ·. , . . . " .

8ti;p:l.~l • oue -~ above under (4) 1 we can treat these
by UflOciating f with a field ,n, an4 treating f(r,x,y, •••)

. ~ -· .

ae a synonym for r(~_) {x,y, •• ;.) , where_ we. take it that the

value of r (n) ~• • ('smalfv) nt. Huch the s~ remark

applies to the cue (h) abow •.

Different p~l.u aric• in the treatment of value-t~
ncord maps, cue (b) abo·o'fJ. . Ben ve omi no longer assWM ·
that tha collectio~·of records having same common attribute
i.~ necessarily small • . J'or exU2ple, if ~cords are_ grouped
by aaea eoane notion of ~, large aet,i will certainly

result. This augge1ta devslopifti soma :b1plementat.ion lewl
meehuism aupporting aomatbing close.to the ~emantics 0£

the SETL •set. of o1!4ered palra wu.J\l the la:rge set case) ..

Such a aat, which £0~ empha~is -~ call &1 i11da:z:1 should_be
capable of serving u the ba1111.1,.e for &n ite.!rra.ti.on" and should

a.loo aerw. for th;a efficient location of a record if one i.11

given a 11uitable, i.e .. iti1dex-an60ciated, attribute of the
record.. Nota that \M may well wiah to avoid storing record

at:t.ributt, valuea within mi indem, since the· attribute values

which would be stored are available anyhow in the inaexet\
ncorqls,, and double otorag~ raight be 1.lllA,ccessarily wasteful

of aell\Oey ..

0

C

l

mote alaa that in ato:rin9 valwaa' in NOOnd.a.ry memory we will
o!ta:& prefer 'cmpliait CGl?Y' to 'pointer• techniques, ninca
•~ --,zy 9~98 collect.ion aaf not be feasible,
u4 it uy hd!t iaportaat to 11Jdt: tha ·proliferation of pointers.,

1'lfO tocbniqueafor tbe •1:o~gtt of in41ces suggest them
Mlv.11. !'he fir•t involwa order~9, the second employs
a hu~ng technique. In both t.eclmiquaa, indices consist
of col:l,ecj:ions of pointera to records. In .the first technique;
the pointers are kept in a l~ically sorted order. possibly

_aa the nodes of a balanced multi-way txee, and records with
• cleeired attribute value are located by a binary search
prooe••• In. the ucon4 techniqv.e, tbe pointers are kept
in a_baah table, and ncorc!e with a_9iwn attr~ute value
are located by hu~9. ·w. shall call these two possible

· appzoaches the · oNlcring t•ohn~· -~. the __ hasni.r,g tBchniqu•
nspectively. The huhing technique can perm! t a record of . . .

bown key to be accesasd via an index in a number of probes
independent of the aise of the ·1n4ex. It·has in addition
the a4vatags of be!Jlq-•t.ro~gly oouonant with other aspecta . '•

of·the 8BTL appr.-oach. If the o~ing teahniqua is used,
_then to access a record of known key k within a collection
of n recoms.ona will_gener&l.ly need to IJl&ke log n plhObes ..

_Bowawr, a rather ab:ong argument an be made, even at &n

. abr,traet level, in favor of the ordering technique .. Thls
.--.· . : .

IU'glment re11ta on the observation t.bet ooot"dinatsd pr(la11oelr1g
i11 an blpo:rtut file procezsi.ng t~eJm1que. More specificallyt
whu two or aore files f 1 , f 2,.9. an to interact lo~ically
in order to produce comca rezult (e~9., another file) it vill
often be the case that each record of f 1 needs to inter&~t
only with sc::mae few reao%d111 of f'2 , • .,., r.n euch situat~ons,
it. is often possible. and. can ba quite ueful to a:!:ra_nga . .'
•ll_ tlw filtuli f 1, t 2 , ••• in an ordax chQstm so that if r

1
_ and E-

1

are ncorda Qf f 1, if ~l .preceeds r1~ and if rj and rj
a:rg roo_orda of fj with which r 1 ~ r1 napectively ns~

to int.eract, thsn. ~j pracae4n rj. When such an arran~t
bA\11 baen •~.,up, proceaain9 can move efficiently dOWtt tho
fileas f 1, f 2 , ••• in.their est:ablishac1 order. This general
obtJ8.n'ation,a~OU11t.a for the ~rtancc of sorting in thfi

~aso~g_of da~a-fil.ea: soJ:tin9 can be regarded as a
pmassa of ccnceDtrated (mn4 optimiiic4) ordering which bring•

large da.ta ~lleatiom.sJ-~t:o_an or4er pendtting the
coo%dinated . proc.ese~9 01·· several files. If only '.& hashing
tealmique an4·• . ., ot:duinq teclmique isuaed within a data-base

ay11Pt;ea,, UN o~ :•~-lik~ uclmiquea will become cluaay ~
Appropriately:,.,~ value-t.o-record aaps can aubati tut.•
for or&Br~,-but-"aot alwaya eut.ly.,·especially when the
OJ!de~• apprcpriate_q, •·particulcr application are baaed
not on partioulu Attributes-but on subtler implicit record
properties. c·

11ote alao ~t:.:~ dcialing with large objects having
structural prop11itiot11 . s that & , progr-.ar may aim to exploit,
it in illportut to pror.ld.6 4iffenntial modification proceducel\t

whieh pre111erve the properties So For example a system in
i1hich ordered sets of record.a are supported must .allow recorcls

(

to Ml :l.nserted and delet.ti!d with pr11111ervation of order.
Pointer rnther than v~lue 3emantic~ will bs appropriate for
large objectst since object copying is bound to be a very
npe~siva operation.

·Relatttd. isauee enter if one aa~wnad that the secondary
a&Ta0ry on which truia bulk of a dnta-ba~e resides is a disc

or drum type of mmnory in whioh a subst&ntial inital penalty
attaches to each acceza. In using Dilh1t0ries oft.his type,
it ia natural to move data by ~pages, i"e~, to bring several

hundred adjacent words of da.ta frc11A secomiary memory each l
t.iMe !I. program c~lls for as much as one ,_-ord e

I~ f!Uch an environment, physical data cont.igui ty becomez
an important issue .. · Here ~gain seant;ic cor:cepts based
en @rd~~ are found to poseaa advant,age. since a principle·
of contiguity_ g~ naturally out of_ a notion of order, wt
~\e out of a haeh-oriented ·technique.· 1'he question of physical

' . contj.guit.y,has also an intra-record aspect. It is clear
tMt, if. all the •-•ec::tiona of · a record ue contiguous , th~

nl'Ulber of rocorc!a which are packed onto a physical page when

rcooma are 9roupe4 ~ther is invaraely propo+t,ional to
th1! size of ·a record.. ··ror "thia and other reasons it may

....
bi', 41:isirmlcia 1:1:> allow rarely oonwl-te4, relatively •·passive'

eectiou o~ a record to be placed remotely ~rom record &eo~ion~
w~ch AlM _,~ acUvaly connlted. A Jllechaniam of just tbia

hind will. be.4eacrtbed in- tho.pacJea which follow.

It_abou.14 be note4 tha~ queations of physical contiguity
bacome ~u le•• c~lling,;,if one uviaiona an ~vironment
in which hulk d.ata.J..11 stoftd ,on purely electronic rather

~ on electraHcbanical amaories. %n such an environment,

sa.. of the record-o:rder relate propcaals made in the
following pages uy .. beCGll8 ·superfluous.

3_.

The pr09rmrmar WJing & data••basa ~ystem will sometimes vish
t:o ereat.e large temporary files, an.4. if this is to be possible

th..~ system will have· ·to be able to recognise the temporary

chllracter of these filer,. Flle·atrtic:t,uea 'interconnected
in coapl&X -.rays by int.~r-file ~p~gs may be created ·
te-DpOr&rily and require erasure. Becau•e of the large size
of the d~ta sets wham a garbags collector would have to

~ea~ch,_garbage co~lection may not be a feasible storage
:recovery technique, anci one may h•ve to fall back on~

l · semantic mechanism involving explicit allocation and deallo~ation
calls.

n 1, tlt.i\1 ;problem tftat is ad~r.aaaed · by the 'area' mG.chaniam 0
f?\~~e,:'i be·lov. An u-sa 1~ a dyinuu.cally qrowi~g collection

of ~1cy paq.eus with.in ~oh the ·abstract objecta of a

~ta b~w.e WlY be stoncl~ We ·a1~~• dat~ba21e-SE'l'L \!&er
to cn1tate int!efinltely many areu. b area wiy be deleted1

whlJn tl-..:1.s ia dona, all tha ~jaat.8 st.ortid vi thin the area

ue ml$o 4••~•

'l!o ~in &QCU&.~ a 41£~ · ~~, a program must gai!A

bit.i~l ~ao .. ••·to ~·cbjc(;b ~f the·data base, which

~:: f\mction ... u 1-Ucn. -4 .. ~\~ put.t~g the reat of
ti. st.ond elate within ·~ao1a.··. '!be· conventions which make

~1-• pMmible··fom.·the mne ~ a data management
l1111gua9e &n4 the opt)ratiftfj ~ which this language

. .

p~poaea •. n.a. conventions can of course be set up in
~ ... ·_'

various ways. One poaaibili~y 1• the follcmring:

aiach of which rill be bownby·aoea 'catalog name• (a character
. atr~) to the operat!~g system (which IW!lintains extemally

· catal~~ objects bewaan p~a runs.) A p~gram desiring
to acmsa an ueg a will eval114te ~ function

(1)

were oatna••, a character string, is the catalog name of a.
'!'he val!/18 returned by (1) will be a pai-r, whose first
component is ae i\Dd whoBe liecond COffipOn~int is a (formed)

:-eccm l" called the pnmo ?so,021d of a. The record 1' haa

verioua star:ldardised att.ribut.es,wich are essentially indices
to the rel!l~in~g in~om~tion in a.

bj 'fo cat.1.log ·• Area ~, ane ·ufte,:i.t.ea;

(2)

L.

l

Bon 11 is a (forliled) record, which becomes the priiae record
ef the catal~ec! area, ana· vt'uirea ·oatnamo is ll character string·

vldch bedmles its oau.log nUIIIJ.

c) Areas created l>y a~- but not cat~l~
.. ~on its bmllinatlon a.n ·autoact:1c&lly deleted by the ·

~ . ._

atlt:a bus opsaratln9 ayatea •

...
i'be CCJ!ll)lioated queailon of data-base int~grity can

te appzoaahec!.&t aavaral levels. At an elementary level,
au ur note tm.illlportance·of preventing implausible

valuaa f:taa bei~g -•tored 1n the fi~lcls of a record.. 'l'hue
ermn wi11 4oubtleas tend tc be vexy common in practice1
by, proventing lit. one.can also. bri~ more subtle errors to
llghto Bnore of this type are easily handled by building
appropriate mechnil!llllUlS into the record access interpreter,
all that ia roquiflld is a suit.able gemaralisation of the

not.ion of record fo:a.

. .

When secondary indicea an uaed to speed up access to
. i:he recor4s of _sam1,'. primary .file_, any oneration which
modifies, inserts; or deletes a record may require a
c:onpenaating adj~•tmellt i.n an. ini!ex. It is annoying and

error in.duc:ing for a prog.r~r lnt.ending aoxne relatively
~traightfon1ard d•ta mooificfttion to have to remember and
explicitly insert all these ~ubsidiary operations. For
thi~ reason, 801l118 deta base systems designera (notably
thet DBTG design group) have tzied to specify declarati,::,n

baned record indexing schemes that remove the
maintainance of secondary indices from the ken of the system
uaer# maki~ this 11\aintainance largely au-tomatic.

· I.'!1 -~eh.., ·tJe~~, one c;an fo1· ex~ple declar.:i that .aill
~ : . ii<'" • .

T,&C@X'ds of a: gi~ t~~ ar~ to oo ·e!!lMd~tocyD membe:rH; of

9@M ·orda~ied file,· c.n.r& wre to ~i ·1ocat~ by sc.me pxe,~trta~~1~
·. ' : . . f . . .

sanrch •t.rat.Gff',; ~ or nr.odii!ioattoo cf. 4ltl.ta in· the .
J:'fldorlti ''au~tibally t#i~ta 'appi'opr!abl 'fu~"f~updatc ll~.tgn.
'ftl.d p:roblGIII with ·the ~ch~,.i (-,f tJ.-iisf"-'i;ype. that ba.,ie bean

~CJdl to 4nt.a it.; that. t.h©l" &~ not. foolproof, but i~e,~m

~t DAY ~_al calplcm. ~~m~t, .t:Pf ~}p?.~f<ttion Otl tll.tiiz,

'illlK'1r" who if bft. Id!!~ •~t;~_i,1.9" ce cause impcrtru'it
1 ,'!".ltatwtJ.ca.lly 11Aint&.!nc&11 ° indi.~·ms t.o pa11a lnto an

~ . . ··'. . .

VMDtJtcipaud and aduix-S)l® co~iilcm.. This problem will
h ~~ul.nrly.acate ln_q~t,.. uintaining numero~s. a.nd

F~ll&neoll • . c.;,olleactien11 of . fieoondary indices I ays tems

!.!'A ~oh lo~ti~ of tMJ right ~oondaxy index · wh~rein
... . . . -. -·

~~ ~d a &lad.red record becomes a matter that is at least
.,, ..

tJ5rtly.proc~dural.

!lot knowing how to solva t.hitil problem" we evade it,.
Oflit any automatic index maintainance features fro.~ the

pxopoaale which follow f an.d leave it to t:he programmer to

handle index updating procedurally. By this evasion we
in effect imply t.hat. it is impossibly difficult to provide
foolproof autcaatic index main.tadnance ~ an environment
allowing procedural file manipulation. In t.his view,
atitom!ltic index. maintainanca can only~ provided in a still
higher level, _non-procedwr:~1,'query•· or 'transaction' oriented
language, relative to which -~ procedural ~ata-basa lan{r~age

~. ar1 inlplementation underpinni.ng. llo~ever t we will
S!,lggest a number of syutLtctic forms which facilitate the
px·ogrml.l'Di~g of ind(!~J. u;pdating oper&tions ..

12 ·

0

c!

l.

In the muii,ulation of files, er~r 11itu.zrtions will
~fton aris&r 809• one ~•Y attempt to inmert a record into
'1D in&ppropriate index, try to read a nlOnelfiistent field in
=am record,·try to wite b&d dQt& into the fields of a
r~co:td, etc. A·data-baile ori.cmtod 1~9Uil99 should provide
~Olfe adequate mama for treating thG8ft arr.ors., It i~
iti:pOrtant. for the p:ogruaner to be· mlo t.o ce:ntralise whatow,r

••t of erX"Or .J.la.n.dl~g proffll!durea he 11uppliea, so that error
·to11t.m and error ro~tine calla . do not proliferatft ii, his eode.
A Nl!Santic pr.bd.t.ivegQOd ~or thiti purpose is tile PL/1-lika
•05• cout.ra.ct. SBfl, lacka 1;,hia feature, an.d for data butt
11.pplication ahould pzobably 1:ae· extended to include it, but
in a form netrict,a4 to avoi4.un&tsinble implications for
t.he analyaibility o'f ~!fBl'L. p~w.

Gw.ded ray· th•'::~ ,~c 41.aw:tL~Hd.on wh.ich preceeds
. . . . ·. -} . .

tta nffi!f CCIHI ·to Jeeke a ntlllbezi :'.'"t,f opcci·fifi myntactic UAd

11-.umtic pn>poaaae~ . 1le p~ to. uu.rtd SM1L to DBSETL
- ' • . .• ;i;.,. •. • . . . •

br..f n4iling ta iollG/W1n,· eau.n~~c object 'classes: 1'11CO'Pd8~
. .

indt~••~ fiZ.e•~ aH«ie_. and foma,., Concerning the~e, we

uko the following introductory heuristic observations.

,_.. Rooottd• ua (.Hls:Etn.t.iall1~ tuples for which a systfift

of nMed 0 o&lectora~ ht.ve bean defiuod, iee., 'fal'."l?lf!d vectorsr
in the sense of O.Pa Ite1a 2@, t1ection B .. In addition,
each record h.ns a systcm-i~~ued unique serial number, which

. gi"'.,ea it 'continu~g identity@, and t.hrough which the body

ot the vector can be locattid .af ficiencly. In t.h.ts sense,
records have 0 point:.-r' semantics. The cemponei.~ts 0£ a

reeord are ac:cesslble only t..~rough t.he record itself.

ii e Inai.ocu,· behave ·rathtar li.ka 'large 9 SBTL sets of

r,.,~~~a~ palie" aeb of pairtt b w?1ic.h the second component

.,_::,:~·:?'-~cps ~11-'iu a ~Pt_-~ :fJ~"t component of each
· · · ptii· ·t;r~f. & qwmt!ty ca.lcu.l•'ted f%0.m spec:tf.ted fields of 21.

~1?~ .mffL · •b 'l.of , __ -"1r.c,. iDflicea an acoeased by a hash
·;,· _.· • ._: .• ·,.·.. • • ~~ ;; ·• • . _:,• I •. · •

. ~_.i.~,, ~ftr, :.a. hash· ~1• ·uad eont:aina only recoxd
~tifi~n, l.:~•~; only -~ a.d not first components of

'·'.•:~::~~t,,. •~ ~-.''~~~•&oaM& & zg·ad reaoz,d11 ze08

'~ ~inl'lci .~tt.rtbUt.. · 1a~ a ft«wt.ion ♦ which (no1:AU!illy)
,•;·..-, -~~-'- --~ ' .• ;;._ ~ -.4.._ :-,

~~--~~ record 'If'_ of ·ths range of imc into the quantity a
·7$c:QO i--~i•· ·i• P. ~ ~tion ♦ will be called the

tdfJN~flji.ng f,naotltm -of -tsiu:. · · Bach in4en -£,u: also posesa,u;

•· CQ'W",A!!R-ia•~4·.i••~flring.. number which identifies iM
. · · ~ly, 9ivh~~~<-~t1nuous identify and point.tir semantiCB,

&nti thJ:o~b vhictlt;;~ns ·.~ ~ · located physical-ly. Indices

irm ~~pport. t.M, ,,f(:)~lp.wing_ operations a

d~~ipat~s ~ce record ia into wich iW& ~pa a, if thi.a :rllc:ord
~1..its ane is unique • . Othervize, (1) bas the value Q.,

~ote th&t_:111. uain9 the diction (1) to rt'lt.rieve z-.sthe qusntity
4 huhed in t.he nomal SBTL mmm~r ud the resulti~g h&~h
in~ex ie uasecl u the ztart.ing.point of u senxch. In this . .

·-
ir.~ 11 amd. lor.'iks for orail er m.or* m~or.& 1~' ~uc.h t,.'"lat qi (zt ') · '5 a ..

t.t ~.J;m.ctly one such rec{'>rd i• found f thiY. record
ir;1 u-~ val,..16! of (l); if nQ Bueb. ,:eco~'d, ,n: mo.re than on®

O!Jeh. rlP!co:rd if! fcJvind e then tJ1a valuiA of {J.) it~ {L ?lot!e ·

·tn, .. rt 'il':e do not alill!Uffle th.,Jl'.t; indice~ uria au-tomatlcally

l~fl:ilf~tained by the DBSE'l'!i l!!ynt\lm. Th~~ i~, d}.anges in t.b,e

a,t.tr:l.but.e v&lu<aB ··of a reci0rd 'i.' do not m.1tom.s.tically t.rigg·er

C~t!lnsati~g chanc;eti in e\ftn:y one of the1 indices in whos•i!

::~nga ;/-l, OOC\l~.

()

(

Invocation of thu 1.-. .. ~indexing operations needed to comper,rnte

for changes in attrib\Jtt& values 1• left to the DBSETL userc.

Suppose then tJi.a,t i.'111f:(a.J initially evalnates to r, ancl

that an aa•ignaent ~(attP} • •,:pn changes the value of
aom attribute of· ~f but that no ooapenaating modification
of -£71a ia aa4e. 'fhsn -tnc may. 'lea~ track' of the reC".ord zr,

in the HUG tha,t in:c:(♦ (pJJ and p. loae the xelationship
. ' .

which they ahoul~f '1llvnys have in a well-formed index. In
81K1h C&N, z, wiU,'.41£fe: froa every value i.n:1:(a'J~ even

though,(.,,. will contain a point.er to-,.. Such situation• ...
are of cou.rH undersirable, b1,1t (because to do so woulc!
require u expenaive dpallic •chania) we do not furnish
Dl8n'L with aaantic 11acb&lli- which automatically and
aatveraally pnaellt sa0h ait.aauona uom arising.

(b) The diction im:(aJ can b9 used in sinister poaiti,.m,

i.e. in the context

(2)

where 1\ is a record-valued e.xpreasion., The assignment (2)
hu the effect of deleting, · from imt, all pointers to

.l5

records r' which vould ot.hex-.,ise belong to -£n~{a} (see below)<
ilter this 4aletion 1 n reference to~ i* inserted in
appropriate position .. Immediately aft.or (2) has been executed.,
(l) will evaluate to~. The special case

(2a) inx(a) • OJ

of (2) simply 4elatu form i,u, all pointers to all the mertJbt:.:~s

}f -ln={a} ..

(c) The cliction.

daai~at.e.a tb.a ·aet of redo~• ? wMit~h are the ~ge of a

under i.n: and (ll'll1lc:h u with." :•au et· 01.··cbu.:-ed palrs) is the
1mlt.i-valued 1 an~1~ of the ·•eingle-valuec!' diction (l}".
Wbereve:r-poasible, DBSETL will avoid explicit formation of
the set (3), and will treat {3l merely as a formal notation
uaeable in iterators like ·

{4) - v i! & 1nx{a>

Rote that (4) wil.l iterate o,rer all records zs for which
·• b•) · 5 a and ... which can be located by a hash chain whose

starting position ia calculated fran a in standard fashion.
The BUia reaar.k applies when in the usual SETL manner the
iterator (4) becomea part-of a co~und operator or other
iterator-baaed conatruction, u e.g. in

(d) !be diction

designates the aet of all reco.rds ~ into which in: maps
any element a of the set e .. DBSET'L will wherever possible
avoid explicit fonMation of the tiiet (6) also, and treat (6)
as a formal notation occuring i.n iterators .. The rel&tad
diction

(7) inx[l

cleiaignat,es t.he siat of all :t-ecc-.,rds ie rei~:::.reneed by pointers

in i.nz, and :t~: provined p:,:-1.:nolpaJ.ly for us~ in the i tera.to.r

(

·.-·. --.. ;-- .

-c·;-

and 1n related iterator.t»aiaed constructions.

Rote that if ♦ 1a·t:hti ·mapp:.l?9 aasociated with the

inc!ex -tma Cu in <•> above)" then
. ..

(91 · {- ·r c inx{'] ·r t !!. £ iax(4> (r)}}

u the a.t of reoc.m 'lost• or 'mdiled' within l11Z;
unleaa a DBSE'l'L u•er 111 at.riving for some very special •~fact,
he ·v111 normally wiah to PJ:'99%:lll'I ao u to keep all sets (9)
equal to· ·n.f. •. "· -

. ..
·• '(IO) ~ 1n.-ux<•> --

require• that a 5. t(x), an4. 9iV&n ,_t.hi• condition· ensures
that· an-immediately au!>se41Ufint evaluation of the set inz{a}
will include r. 'l'he diction

(11) rout inx{a} -
4rop r fxom the collection of recor4a to which ln% points.

• •
The diction

(12) 1nx<a1 - .• ,

1ny be regarded as a short.hand for

inx(a) - .n, (\frea) r !e. inx{a} J; •

ffie diction
·•

(14)

17 -

:~\
.. ':. :· ~ ...

~1.lds the nwnber of record-pointers st:ored in the 1nde~ ir.a:.

iii. This tempo~uily cauplates ow: account of the
Mtitmilcs of in.41.CCl!i" anti we now tum to discuss t.ba

~•~t~cs of fiteac Pilu behave rather like 'larqe' SW'tL
~i;aa whose c~u are orde~d tw4 ~ccessiblii by

D'.-M\1,rical po&ition •. ~ file fll poa11eses a systcm-i1nniad
~'\lt.ifying nWl6er· ~ich identifieti f{, 1, uniquely, ~ l ving

fl l eirmtinuoua 14enti ty :. and pointer 11emantios. Filas f-t. t.

RP1•~rt the, -follwim9 operation•,·
....

(15' .Ul (n),

'
wt,at•, ~ iat an i~er, ratriawa the n-th reco:rt~ of flt.3

ftifj cliat.ion •Y also be uac4 in ainu:er.-pgeit!-on, i.e.. in
t: . · ·"'tl1cA® -~tmtext

fil (n) • _z. 1

wh<1re .:,~· ia a record-valued expression. Piles arei not allowad .
t.c hav,1: undefined components which preceed define•i components

of the same file. 'l'huc the integer (ls, must satlsfy

n ::, €< :f:ll + l.. Robt here th&t. the diction

t fil

.1 i awd.lable and gi·vea the number of (defined} con\ponents
.t ~ e/•

(),,: ""' ,.
(b) Insertion and removal operations ·are ·provided

f(>r :eilea. The removal operator has the form

18

TM ·,.>pe.ration (18) has a somewhat different 5emantics fol:

fll~e that fer SftL t:uples .. · IC'hmi fit is a fj le, (18) both

~1.Jiovea tl1.e n-th ·component of ft t and renumbers i ta remai:1:l.~g

,~nelits. The ·eorr.esponding · operation on a SETL tuple

• t Ja uprea#Md by

.(19) t qg·.t(lan-1) + t(n+l1);

1.'ba 14aertion operator corresponding to (l8) has the
aynuctic foJ:P,l·

(20) fil (n) •:. :PI

vhan Pi• a zecom-value4 expression. It inserts a new
COllpOlient int:o.flt,, which becomes flt'• n-th component.
The. ,on,,,r 41-th i:hru final ccmponents of -f£ l. are re'.'lumbered

c~ and-beccae ft1.'• ,a+ l~at thru final component·., The
· _corresponding operation Oil as sm, tuple t is expressed by

(21)

(c::) DBSBTL providee·a.n iterat:or over files, which

(22)

Here, Eis an integer-valued expression whose value n
. 0

determines the starting compone..~t rfn J of the iteration
.. 0

(22), c1 is a boolean expression which tenninates the
iteration as soon u it becomes false, and c~ is a boolean
expression which serve• in the uauai way to allow certain
cycles of iteration and bypass others when an iterator
(22) is invoked. Any of the •starting B' clause, the

'.while c1 •r and the'IC' clause of (22) may be omitted~

19

Iter~.f:.ors of the form (22) may in the uan,a.l SETL manner

beco1aa part of a compound operator or other itera.tor-bai.1!\d

construction.

J, file,· index, or record o1,J can be deleted by exeicurin,;;
the (!1)11ft.and

.(23)

:l.v.,

As a:.rea.dy _noted, areas &r6 provided because they make

post!l.hle c.•.ert.ain wholesale data manipulations (especially

eru ,zes) mcl because they provide a modified' allocate

de3J locate' action for use in mit~'\ations in which garbage
,:o)iection may be infewd.ble.. 'rhe following semantic rule,

1 J) .. ata to area.a :

(a) Bftry indftx end filft belongs to some area. An

,~:>la a may be deleted by executing the camnand

· d.eleta a,

tJ,·zr.. an area is deleted, every 0,;1,jact (index, file, or record

!!i;'i~·tion, see below) contained within it eis also erased.

(b) In a manner ~hose details will be explained below,

~very record known to the DBSETL system can be seperated
lnto st1ation1t. Every· record section belongs to some area.

(c) An area ia created by a call on th@ parameterless
ayatem function

(25)

0

(d) Pi- le lo·l"rr,e71 and tnde:r· former dictions are provided

:;.n the SETLB system. The ·index-former diction is

In .(26), area ... •mz,n denotes an area-valued expression, whose
value determine~ the area within which the index (26) will
be formed; fon-e:,:pn denotes a function-valued expression,
whose value dete~es the id~tifying function, associated
with the index (26) • Moreover, a till in (2 6) , i. ts 1!'atoz,

designates any iterator which could appear in a set-former;

this iterator controls the addition of records to the

index in:e which (26) forms .. Finally, l'eoozod-szpn denotes
a record-valued expression, whose sucesaive values become
the records which (26) references. Each record r referenced.
by i. m: is initially a member of i ,u: (~ (l" J J •

We al.low the fon-e=pn in (26) to be omitted, in which case
the 'trivial' function ♦ identica.lly equal to ·n.t is use4 as

21

the identif~tin9' function of lne. Thia ~lbreviated construction

can bf: used to form'degenerato' indices which serva to
represent 'large' collections of records. We also allow
this fen -expn to consist of the sign • - • followed by a

G

qualified name nm (or vector of qualified names "ltim 1; ••• .,nmk>J
in which case the identifying function of inz is understood

to return the valu& zt(nm) (re.sp. <r(n1111J, ••• ,P(nmk)> when

applied to a record ~.

The file-farmer diction ia

(27)

The ·syntactic parts aJ&ea-e:cpn. ?-sccrd-<azpn. and itsratoia

(appearing here have the same definition as they had in (26),
'-. __

note again that the value of ar•ci.-e::pn · determines the ai~ea

wit..~n which the file (27) will be formed.. An empty file

· may be formed within a given area by invoking the prei fix

operaV.Jr

(28)

A null inde1· with 11pecified identifying fuction can be
formed 'by wr:lting

{29)

and a null in~iex with trivial identifying function can be

fo::-!l by writing

······-·-···

(31) ts:· in inx and :e ·out ,; n: - ,-

are abbreviations for

(32)

respectively.

(e) An index (or file) i ~ay be·aele~ed by writing

{f) The operation of sorting pNducea a file f out
of an index or file i, the components of f will be arranged
1n increasing order of some programmer-specified binary
function oomp-fon whose arguments a.re records.

(

To produce auch a sorted f within a given area, we invoke
the ·prefix operator

.(34)

Here ind•e-o~-flt• is an expraasion whose value ia the
index or file whoso sorted form is the value of {34).

One will often wut sort records into an order depending
not only on the integersr character strings, etc. which
they contain,~but also on such quantities as record and file
identifiers. To make this possible ,we allow the operators
te,· ~,-.· 2!,, ~-i:o be used to coapare record, filev index,

anct area identifier11, and also bank atoms .. These operators
will return results which, although implementation-dependent,·

obey the axpectad t-.ransitivity rules •.

v,. Now ve turn to describe the 11emai1tics of fo'Y!Ms.

Poma aeXVG to make tbe attributes of a record., which will
often be numerous· mid miscellaneous, accessible through a

rational, structured family of quattfi•d names. The system
-of foxms which we propose to uae in DBSftL is essentially .
that described in O.P., Item 20.B, but extended. so as to
allow the specification of seperate areas of residence for

• aeperate s•otions of a record. '!'he basic semantic notions
of the_ scheme to be described are ~•cord, fozom,and fo~m•d

·1n1oor-d, t;he latter two of which are closely comp!lrable to

23

the notions for-m and fcr-med tupt.e of Item 20.B. A formed · record

t~ ie a SETL pair whose first component is-a record rand whose second
component f is a foz,m which serves to_ guide all access operations
which address 2'. The ·record 21> is called the body of f':i'1

in addition t.o the components which are gi'Y'en names by f,
r will also contain auxiliary components, not accessible
at· the DBSETL user level, which help in locating user-level
components off~.

However, thase issues 11.re of aysta and not of user concern,, . ('

since the DBSETL U$er ¥111 always &0~~• the components
of a record by at.tae:Mng .1 form to P /JI followi~g which ze '11

components will be addressed by noone .and not by position.

11hen reference ia made ·to a component of a formed
record fr, a system-level aoa4oa interpr~tB~ will be invoked.
The pumaeters paaaed to this interpreter are a.s follows:
the body.and the foDl of f-P, the name of the component to

be a.ccesaed, and, in case this component is to be JIOdified,

the nev val~·- to be established. The fom component o~ f

11eriies ae a kind of program during the action of the form

1-ntegpreter.

It 'Ifill llaiie~.be nec.1aeery t.o Attach more than one
fo:m to a. gi'ftm body 1.t; for:~e, infomat-.J.en stored
within i- itoslf, mld &ceessible thro?9h some 'provisional'
fcxa, may signify·~ f~ t<i1h.'lali i- has. To make bodies

ae-cessible through more than one fora, one requires a
00111pati.b'l,Zlt1 ru.1.~ determlnin.g the cases in which a

oomponent of given name will be oought in a fixed position

v:ltthin a record z-, even if different forms / 1_ and fa are
uffd to govern two accesses to r-. Po% this purpose we

adopt the compatibility rule described in Item 20.B, which
is based on the fact that the component names supported
by a form f always constitute mi ordered sequence. For
convenience s~Jtep ~ restate the caapatibility rule

(c_f. Item 20 .B) : if two foxm.s f 1 and fa both support a
. given component nau n,, and if in the sequences of names

supported by t 1 and fa re3pective.ly all names prece~di?g
n are identical, then then COJll~nent of a record can pe
accessed using either t 1 or fa•

Much of the remaining semantics·of fonns and formed
.records is taken from Item 20.B with ·11ttle change, and

we shall ·not describe this semantic· scheme in detail;
prefering to refer to thst Item, we ·shall only_give

details where an extension to or modification of the scheme
outlined in 20.B is necessary •.

In brief, the semantic facilities outline:i in Item 20.B
may be enumerated a.a follows 1: Forms csn be created by
writing

...

(35)

where foztm,ur:pn denotes a form ,tmpr.e•elon. A form expression .
can be either

a.
b ..

c.

(36)

A SlffL ?HIiies which then nftml!la an attribute;
A list of names seperated by colons, which
then become synonymous attribute names,
A construct of tha eyntactie atructure

naelist (fonrszpn).

As explained in O.P. Item 20 .. A and 20.B, the use of such

constructs allows us to define ~ystem.s of st:r,1ctured

attribute names, which have the appearance n1 • n2 ••• "k"
where each n.d is a simple n·an,e.

d. The comma may be used ss form concatenation

25

operator,
operator.

a

and the operator 2.!. may be

The information necessary
used as a fo~m atternation

to indicate which of
two a1ternati",re forms t 1 ., t

2
actually applies to a recoX'd

r, of the form t 1 or t 2 is m.~intainced by the access
i~terpreter and stored in an auxiliary component of 'I'.

c. A form expression :may be a twpl~ •zp~ession of
the structure

(37)

As pre"riously, tuple ·expressions of this kind are used
to indicate that some particm.lar attribute of an object.

is a tuple from which subattr:f.butes may be retrieved by

indexingo

f. Aa in·Item 20 .. B, the construct.

(38) .

....
may be used both to include puts of previously def.ined
forms into a new form being const.rncted by~ call (JS),

and to allow the full collection of SETI. dictions to be
used in the construction of forms ..

g. 'Conditional' form expressions, having the i,yntax

(39) if boots:c1 then fo7'm•rpn 1 el~e " ... eloe if boo le~,.:

then formezpnk

and 9 caiculat®d' fom exp:ressi,:,ina b.AV~"'.\9' the syntax

(40)

ariet both provided, and have the semantic~ described in
Item 20.B.

h.. If r is ~ record. rurM! f a fo.nu, then

(41)

4e.notes the formed :r:·ecord whose oo~y iii r and whose form

is f. The diet.ion (41) · may alflo i:.•e U!:'H?c in case l' .is a

formed recordc in which case it {\eno'te3 the fo1i'iled record

whose body is the same as the body of r·and whose form is

26 '

s il~le ·records# rather than formed records, are written

to secondary memory {by being inserted i.nto indices

or files using the operations described in paragraphs ii and

iii above). If a formed record appears in a secondary
memory write operation which expects a simple record, the

form of the record ia stripped off and its body written.
This convention.avoids repeated recopying of forms.

'!'his completes our reprise of the form-related

aeaantic f~cilities which are available both for formed

tuplea in ordinary SBTL &nd for formed vectors in DBSBTL.

We shall now describe a few additional features which are
available only in connection with fo.rmed vectors. The
first of these is a construct

(42)

which reseinbles (36) in its ayntax and semantics. In (42),
&a in (36), name 7,,£.a t is a coloa-aeper.ated list of names,
which become synonymou.s references to the part p of a
formed record which (42) describes. However, the use of
(42} rather t.han (36) indicates that p, which is of course
part of a larger record l' $ constitutes a x-ar.,o~d section.

C

which muong other things implies tbat p may be stored in

& different a:-ea from the remaind~r of F.

As already stated, forms are creat.ed by invoking the
operator (35)~ and serve as specialised programs determining

the actions of a system-level access interpreter routine
which is used whenever a field of a stored record must be

either retrieved or modidied. To_ give addj.tional flexibility

and power to the ·access interpreter, ~"'e allow up to four

information records to be associated with a form f. These
records contain information deteriru.ning:

27

th.e pattern in wfu:ch ·sut,sections of a for.mad

record with fcrm ta.re assigned to s.re&s;

6) 'initial• fi.eld values, 'actually values to be ·

used when one accesses an attribute that has never been
e~licitly l!Jet either during the creation or since the

creation of the record possessing it;

6) any restrictions on. values which can ba stored
in particular fields of -z,7

of 'Z'o

(t3a)

(43b)
(43c)

(43d)

a) any locks restricting access to particular fields ... _

These records can be retrieved by writing

· ·ue-a:J.nf f

· •initinf- f

. erotinf f

· lockinf f

respectively. The latter three ,of these records have the

form f itself {but consist of a single record section).

'l'he record areainf f has a form f' derived from f by

deleting each subpart off which contains no oceurenc~ o~

the construct

(44)

~d then by replacing survivlng occurencerr of (44) in the

form. expression defining f by a corresponding occurence
either of

(45) namsliat (residencearea)

(if the fo~me:q,n of (44) contains no further suboccurence
of the construct (44)) or of

28

(46) name 'li•t· (residencearea., foztm•zpn 'J ~

(if the ·1o~m•zpn of. ~44) cont.aill\s further suboccurences
of {44), and where formezprf is devived froin formezpn by

recursive application of the rulo of replacement just statad~)
J:n both {45) a.nd (46), rae-ld,inooai-ea is a reserved
literal. Note,. as an examplo of the rule just stated that

if f is defined by the £orm expression

(47) pvtl, part.2 {outer [field], fiel~2, ...
inner [first [fieldl,. field2] ,aecond])

tben f' is defined by the form,expression

(48) part2 (outer(resldenceal"ea) i,

inner (residencearea,first(r~sidencearea)}).

Fields in the reco:rdi5 (43&-d) associated with f can be
aet by writing

{49a) ~a.in.!, f (qtuz'tnmn.•J -~ va?.;

(49b) · 2,rotinf f (quatnameJ • .11at.1

' etc. Here quatnams ia a quali_fied nam& appropriate to the

formed records are•ainf f, E·ro·ttnf· f, etc., and of course vai
represents a value to be assigned.

The seiu.ntic significance oft.he several records (43a-d)
is as followa. Let· qn deriignate a qualified· name specif}•!ng

mi . attribute of record~ having the ·form f. Then ·
p ~ _(protinf fJ(qnJ can be either n, a SETL type, a paix of
integers, a pair of reala,. a set, or m boolean-valued

function of one parmneter .. If p .is not equal to 0 1 then when
the field ~(qn) of a formed record r having the form f

...

is modified, one of the followi~g checks will be made, and
intlt&ble errox action taken if th.a check fail·s.;

i. if p is a SETL type, the· ·type of the new value

r(qn) must be p;

ii. if p 111 a pair. · ~ 1 JI ~~ >. o~ int.eg6rs or reals,

then ~(qnJ must satisfy ~(qn) ·!!,=,and r(qnJ" i!, ~1;

iii. if p ia a set, then r(qn) auat belong to it;

iv ... i.f p is a ftmct.ion 9 t.he:n p(Jt(qn)J must have the

If one creates· a formed record z, with form f, and
then,without ever setting the value ·of some particular
attribute ze(qn), accesses 1°(qn}, t-he value returned will

be · ("ini•tinf f) (qn J • Thus tha reco%d' tn"!t•inf f stores a
family of 'default values' that can be used .!~:th any other
record of form f.

Similarly, p • ·. (lockinf /) (qn) dstermines the system
of aecu~ity locks which will be applied when the field
~(qn) of a record with structure f is accessed or modified.
Since we do not wish to enter into an extended discussion
of protection-related issues, YG shall ~ot supply any details
concerning the internal structure or semantic treatment of
the quantity (lock"inf f)(an} - .

Next, let qn de$ignat~ a qualified name specifying
an attribut.a of records which have the forii f' derived
from f by transfoxm~g each oc:curence of (44) L"lto /Ill

occurence of (45) or (46) in th<i'i wumer described above. Then
qn addresses both a field of the formed record 1ireainf f

and a section of each record r having fas its forlll~ The
quantity p • ·care•ainf f) {qn) can be either O or an area.

11

Let i- be a formed record with form f. If p is o, then the . .
s~ction s of r addressed by the qualified name qn is placed within
the same area as the 'main' or 'initial' section a' of~ when a
is created(by a fi~at aasigmne.~t to one of the fields of s).

(The area in which a' is placsd i• d~termined, in a mann~r to be

deacribed shortly, when r itaelf is o:roated). If p is different
from n, then when sis created it is placed within the area p.

It woulcl be quit& easy to use mechanisms like those
described in the predesding paragraphs to associate encod
ing/decoding &ctions with modifications/retrievals of reco::d
attributes.. We de not provide auch a feature because r~l~t:1 vely
concrete &nd strictly efficiency-oriented considerations of
this sort are somewhat foreign to the SBTL spirit ..

To create a record with form/; one invokes the funct.i.on

(50)

E•ro a~ga ie an uea~valued expression: the ~ewly created
r~cord ia made resident in a~ea. Records? created by a

call (50) have all their attributes initially undefined.

(Consequantly, (initinf f)(qn) will be returned if~ is
creatGd by a call (SO) and ~(qn) ia accessed immediately
after P is created.) To allow creation 9£ a record r of
form f, some of whose fields are set to values different fro::~
•(initinf f) (qnJ, we provide a varimit of (50), having the

syntax

(51) newrecord (/ ,area. (i11i.tialieed-attribut•e- 1.ie t), initi.aZ~,:1a 1..uoe-tupt.e -

The quantities f and aPea have the eame significance in (51)
as in (SO)J initia'Liaod--att;z-{.butes-tiet ic a list of qualifiad
names validly addressing attributes of a record~ of form f,
ftnd initial-values-tupl.e is an expression evaluating to a t1i,ple

t. This tuple must have as many components as there are

qualified names in the initialiaed-vatues-iiet; the successive

fields named in this list are ird tialised to the successive

values occuring as components oft. Note (from D.P. III, ltem

20.A) that the construct

(52)

where quatnama-itat is a list of qualified names and r a record,
forms a tuple by extracting from the fields named in qualname-Ziete

Thus the construction

(53) newreco:rd (j.-; azr;ea& ·bit ti.at.l~isd-at-tnbutes-'Li.st. <\f quaZnc:mre-1.if¥t>::).
·•.

serves to form a new record-with certain of its fields initialised
with-values ta.ken from particular fields of the record -zo.

(54)

If a form I hae the structure

nama [fo:rmsqnJ •

ima if in &aclltion a•are·u.nf f(na11•J ia not o (so tb-at a specifies

an area) then ta&ie aNa parametar of (50) or {51) can be elided (.
and a record of form f created by a call

(55) newrecord (f)

or

•
7. Phyadcal eontigui ty 1 s Plle& reclamation.

We noted in Section 2 that the bulk of a data base may
very well reside on a d.isc or drum type of memory in which i.t is
natural to move data by 'pages' consisting. of several hundred
adjacent words, and that in s~ch an environment physical
contiguity become& an important issue. If this is the case

iterations extended over whole files will require relatively few
page accesses and run relatively rapidly if aZZ the data items

(

(

which must be accessed during the iteration are physically
placed in logically corresponding order. During such an

iteration, one will have to acce~s:
(a) the pointers which constitute the filei
(b) the records to which these elements point;

and, as an auxiliary
(c) the implementation-level master catalog which gives

position of every record.

This last data structure is nece11aa.ry since we a!lsume that
each record has a serial number giving it eontinufng identity,

and that a re~ord can be located efficiently if this identifier
ia known. Note that since the size of record attrlbut,es is
allowed to vary dynamically, records may have to bf! mo11ed in
physical storage 1 of course, the master catalog e:t:=ry tnat
locates a record should not movee

It i• ~la to. .. ~ that ..Tecnms .J:.raZ1!:ed w:~ thin
an ana A are issued serial numbers in their orde:~ of c::eation 1

this convention, which nm.kes delei:ion of whole arr.ias pa::ticularly

convenient, implies that a. record is fully ident:i:Eied by t.he
area to which it belongs and by its serial number wit.~ir. this
area. We may assume that the master catalog for {~ach ar·ua is
maintained in a physical order corresponding to ti:,e incrtvu.ting

order of record numbers. After e:xacuti~n of a de:.ete sta,:eroe.nt _,.,._
(23), or of the space-recovery operation describeo below, gap.s

can appear in the a;equence of record numbers reco1 1.ied in 01ch

& cat.alog. Note th&t areao will also have identif:ting ~er:a.1

numbers, recorded in an implament.ation-level' master~ cat,iloq of .

areas'.

A file, which is essentially a large tupler can be stored

in a balanced multiway tree, th~ record identifiers which

constitute the file being kept physically in the logical order
in which they occur within the file. Use of balanced multiway
trees makes element insertion and deletion efficient.

The records created within en area can initially be placed
in positions c~reaponding to their order of creation, and
each record can be left in its initial position unless it grows
so large that it must be moved. Por each physical page, in
formation diatinguiahing'sections in use'from'sections not in
uae'can be ma:tT,tained, and the page can be replaced when

appropriate. Moreover¥ account can be kept by separate areas of
the total size of'secticns not in use'. &~d areas for which
this total· has grown substantial can be compressed overall.

The conventions which have just been outlined imply that
for a newly created file consisting of newly .. created ,.records,
the physical order of reeord~H of record identifiers within
the file, and of record lccatox-a within the master catalog
locating the records will all cc:rreapond. Thus iterations
extended over such files will require particularly few page
accesses and will be particularly efficient. For this reason,
if it is anticipated that iteration will often be extended over

. f

a file, it may be advantageous to use the file former diction

(27) to create a new copy of bot.Ji the file and its records (or of
relevant record portiona), even though the copying operation
itself is expensive.

As already noted 8 garb3ge collection will probably not be

35

a practical technique for recovery of unused space in large

1/ - file systems. The al"aa construct and the dele.te statement

C

(24) provide an acceptable mean~ for recoving the space occupied
by substantial data sets ~enerat.ed for predictably
teapcrary use. However, this technique cannot be used to re
cover space occupied by records which are initially mad,a part
of aeveral file• and subsequently removed from some of them.
For use in such cases, it might be appropriate to provide an .
explicit puPg• statement of the form.

(57)

Bare we·take ~P•a-tiat to be a conmui-aeparated list of area

valued expresaiona, and tl,'L•-i•d•a:-1.i•t to be a list of We- or
in4ex-valu.acl expreeaio.na. Whe .• (57) is execu·te4, every reoozd

in any of the areu occurinq in aHa-7.ietwhich i• not refennoed
by a file or J..ndex in the fi.t.e-intU•-1,t•t will be deleted,
and the space occupied py these ~cords recov§lred. U a noom
ia ~eleted from· an area., . the muter catalog entry which locates
it 1till &lao be eliminated.

•

SETL-129

By Phillip Shaw

I. Characteristic Problems of "Data Base" systems

36

Phillip Shaw

Pollowi~g general usage, by •data base" we 1>.e~ systems in
vhieh e. diver8e collection of applications share a common
pool of infoxmation, as aistinguiahsd from si~gle-application
systems (even onlinQ syst.ems such as airline reservations)

·•.
and from systems in whicb the various applications maintain
private files (whether on tba amne or on different systema).
In_ general, the relative merits of data~baae versus
private-file ayat.emls re~lect the trade-offs involved in any
centralization-deoantraliaation problem,and the· disadvant~g•s

. --.. -Af .. .da.ta-::-b.ase qatem• .then form the .so-called "data base problem"., ,

The advantages of ctata-base aystOIU m:c evident: There i•
at least potentially a 101--e:r per-application cost for the
information, and the various· applications are consistent in
their "facts~ (e.g6reports f.roa epayro11• and from •personnel"
would agree as to hov many "E!lll)loync" there are).

t

'l'he drawbacks of data-base !13f'Sten2 nlata to three areas:
conflicting requirements, int&rfezance, and the need for
automatic recoveey Op&rationa.

The various applications sharing a data base generally differ
substantially in regard to what information i$ ne~ded, and
how it is to be accessed:. Private-file sy~tems have quite

thff advantage here, in that the fil,~s can be exactly tailored

C

to application requirememts.. l,)

SETL-129

In data base systems the stored information is more than
any one application needs, and the organization is ideal
for at most one of the applications. other applications
must make-do with supplementary link-fields and secondary

indexes, so that access is somewhat less efficient and
programm.i?g considerably more-complicated and error-prone.

%nterference

31

In abared-data systems, a "read" operation must be delayed if
·«

an •update• on·tbe same data item is in progress, and an
•update• operation must be delayed if either a "read" or an
•update• is in progress. Clearly such interference (and .

the'oomplexity involved in.detecting and coordinating such
conflicts) is not encountered in private-file systems.
Also, in order to achieve adequate levels of utilizati,on

and ~sponsiveneaa, data-bue ayatell8 generally ~ave to
coordinate requests~ the basis of aaller units of in

formation for shorter periods of access. than has been required
in batch or time-sharing systems: locking at the Arecord•
rather than "file• level, and assigning locks to "transactions•
rather than to "jobs" or to •eeaaiona". All of which tends
to increase .thff. complexity of both the •t1Plication programs

and of the underlying system, over what is requinad for
private-file systems.

Another, more severe 11 fo.Dll of int•rference is caused by

incorrect progrems and data. The data-base·can be (correctly)
updated with incorrect infoz:mation, or, it can be incorrectly
updated by an erroneous program, or, it can·be partially

• updated by a program which aborts in themiddle of updating
a file or record, leaving the info::mation in an inconsistent
and· incorrect state. In private-file systems these problems

1
~- of course affect only the aingla application, whereas in

data-base systems the effect can be considerably more widespread.

SETL-129

Automatic Reet>verx

11Recoveey• refers to the &ctions which restore a system to
good working·order after a failure has been detected.
This ia inherentiy more difficult in data-base systems
than in file'"1)t-lerit.ed systems. because of the complexity
of the data structures and the incremental nature of the
update operations.

Data-base ayst~ axe also generally operated "online•,
with transactions entered from remote terminal; and, they
tend· to be highly integrated into the operation of an
enterprise. ,:hi.a, coupled with the very fact that the
data-ba•e is shared by numerous applications, means that

•· .
the impact of failure is both more widespread and more

. snere .than. 1 a tile . .cue- .with prl vaile-£!~-e .e~. ~vary
operations must therefore proceed·at speeds which preclude
manual intervention, and so must_ be pre-planned and
programmed.

()

C

39

SETL-129

II. Functional Data Structures

It ie possible to completely define a data structure or
class of data structures by s~cifying a collection of procedures
which implement the operations which are defined for instances
of the data structure. 'l'ypically one would provide ,
procedures for operations of create,· ·sei·ect, update, perhaps

· !!!!_, etc. Languages which provide auch a capability
includ~ ~ANICBN, POP2, PPL, SIMDLA-67, BLl, and SETL.
The primary design variationa. nlate to

a) whether the number and meaning of the •entries•
or operation• is open-ended and

b)

amitruy <•• in SDGJLA-67) or fixed and
atandamiad (u in all of 1:he others); and

whether • representation, or basic data, of such·

data stnctures can be acce•.aed only .. ~Y the defined
procedures .{u in GEDAKUM and I believe SB'l'L) or_

al&o by other routines (&a in the other languages
above).

I feel that such an approach, wi 'th an open-ended number of
procedures and with only the defined procedures able to

access the data structure, ha• wry 9reai;·potential value
for data base systems., Thi• ia because such an approach
makes it possible to ·centrali'ze certain critical operations.

SE'IL-129

The operations which one would want to centralize (in the
access procedures) would be those which

a) are dependent on tl:l• particular organization of
the data, or

b) affect the consistency of the ~ta; or
c) require exclusive acceaa to the data.

Por example, one might program a ~ctional data structure
which would be accessed as if it contained the payroll file
eequenced by employee-name, interna.lly, however, the access
procedures of that. data structm:e might in fact obtain
the required data from several filea, perhaps following
supplementary link fields or uaing secondary indexes.
All of those details would, however, be known only to the
access procedures. 'l'hua, they an the only procedures
which would have to be changed if the •real• data structures •· were changed or re-organized.

Aa another example, if ell updates to the salary fields
an performed by calla to such an acceas procedure, then
that procedure can inspect the update value to ensure that
it is a positive number, not too big or too small, etc.
By validating that ace••• procedure, one can then ensure

f
that the validity (but not of course the correctness) of
the aal.ary fields will be maintained, no matter which program
actually may call forth~ updatinqo

Finally, if all MUtines which nquire •xclusive Access to
tbe date are coded as such acceaa procedures, then one can
ones and for all be asaured that no simultaneous updates will

. be 11ttempted, thereby relieving the refera._1.1cing programs of
reaponaibility for issuing locks, etc.

40

0

C

L

SETL-129

Functional data structures have two disadvantages:

i) every field reference requires a procedure call;
•

and
ii) the initial programming effort (when setting up

the data •~cturea) is greater.

I feel that the increase in fl.xibility (for re-organizing
tbe data) and in reliability are quite sufficient to justify
the increased execution coat, and that .1:he programming

. .
•implicity •fter the initial ••t:-~ of such data structures
would easily justify the higher initial p~granmdng cost.

III. 'ftle suitability of On-units for Data Base Brror Handling

P£/I On-conditions provide the facility for a program to
. · -·- .. eai-fy a ~1:ine--wld:eh-.bou¼d be~ ·contx:ol when error

or exc:eption conditions subsequently arise. My primary
concern is that the ON-u."'lit i• specified by, and located
within, the executing program, and not with details as to
whether the ON-units ai."8 static or dynaaic, or whether they
are invoked by a CALL or a GO'lO, etc.

OU-conditions can be clasaified into tho~e for exceptiona,
auch u BNDFILB, those for fixable errors, such as some
CONVBRSION conditiona, and those for ufixable error such
•• wild branch•• or bad data.

41

'!hero are a variety of acceptable ways of handline ENDFILE-type
conditions which do not involve OR-units. I tend to prefer

· b:aving READ return a null-valued record pointer, which I ·

would test with an explicit IP NULL statement:. If, howaver,
implicit branches·to endfila lab3ls are desired, I would
1111ch prefer to see them specified, as in· COBOL, as explicit:
label arguments in the I-0 statements, or, perhaps better,
as attributes in the file declaration.

Either such approach keeps the specification of endfile

actions closely associated with the specific file, which

seems desirable.

The main example affixing up bad. data is PL/1 character
input, where blanks are often found in places where zercs
are required. An On-unit can then translate the blanks
t.o zeroes, and retry the conversion. I would prefer to
aee such translations either built-in to the conversion,
or apecified aa an option on the decluation of the specific

field.
...

'rhua, I would argue that exception•cond.itiona and fixable
errors should be dealt with in the user program,
1111ch more rudimenta:cy mechanimu than On-units.
leaves unfixable errors.

but with
That

ftere are two possible ~1:~i~~ for unfixable errors. One
iii t!o abort the program, &n~ th@ other is to skip part of
1 t and carry on. The lat'Uir action is appropriate for
iterative type programa, whcaze, .for example, when one input
record ia found to have un~ixabl.e errors it is possible to

record that fact ancl go on to the next iqput recordo

In abort condition• there are two action~ which are required:
one is to provide a diagnostic dump of the program, and
that can always be implicit; two, is to determine what effect
on the data base the progrua fulur~ !Dlplies. For example,
the program· may have bean in the:: middle of updating a file
or record, thus leaving it in an inconsistent state.

In akippabla error-condition~ there tte s,lso two actions
required: one iz to detemins where in the program processing

should resume, and two is to signal some outside agent
(either a human or a recovery program)

42

to handle the skipped transaction. r"t would seem appropriate
to handle the first of these actions in exactly the same
way one elects to handle ENDFILE-type conditions --- either
a label-parameter on the I-0 operation, or a label attribute
on the file declaration.

'l'he remaining question then is how to handle the recovery
actions which are required for abort conditions an4 for
skipped errors. soma fopn of OH-unit specification may
indeed be appropriate for specifying auch actions. But
for reliability, it seems h~ghly deairable that such
apecificationa· ~ be DUlde by the various application
programs, but rather be centralised, perhaps associated
with scheduler programs and/or with portions or the
data-base itself.

f

