SETL NHewsletter 129 | J. Schwartz
May 20, 1974

 More on SETL inL& uitahﬁaséfénﬁiibnment

3. Intreduction.

Thigs newsletter
i. takes up the discussion initiated in newsletter 80:
ii. tries to put the discussion on a more reasoned
semantic basis; '
iii. arrivés at a proposal differing substantially from
that of NL. 90. '

The discussion which follows is much influenced by the
proposals made by George Weinberger in his thesis-in-progress.

The basic issues which must be faced in adapting SETL
t¢ a data base snvironment arg as follows:

(a) The data collections with which one will deal
exa very big. 1Im large part, they reside on secondary
memory, which can only he addresszed on terms very different
from, and much less favorable than, the terms of central memory
accegs. This makes it guite essential to be able to search a data-iase
for particular items without examing moz% than a fraction
of the total data present. :

(b) The data base may be thought of as storing vectors,
whose components are either cbject attributes (numeric,
character set, etc) or further vectors .of attributes.

Tha family of attributes associated with an object will

often be quite large and miscellaneous, and will inevitably
evolve if a data base is kept in use over substantial periods
of time. For thisg reason it ls inappropriate to access
attyibutes by explicit position; a cons;derably moré-poweiful
and flexible scheme of attribute accessing is required.

SETT,-122

8uch a scheme will aim to stabilise the access process
#is—é;vis varistions in vector lsyout. The essential notion
in acheme of this type is that of vector structure defined by
imposing a pattern of named selectors on the vector; this
notion is used explicitly in almost every known data
menagement schems (some schemss inherit their structure
notion from the host language in which they are intended
to operate.) TIn the present newsletter, we shall suppose
such a structuring concept tc be available, and will only
refer te detalls of the agsumed structuring scheme as this
becomes necessary. |

{c) The data-bearing ‘vectors' dsscribed under (b)
gsnerally behave like physical objects, or like ‘index cards’
oz ‘dossiers' representing physical ocbjects, in that thay
have a continuing identity independent of the changing values
of their attributes. Por this reasdfi, we shall assume that
each such vector containe 2 unique, system—-issued serial
number defining its continuing identiﬁy; and shall call such
vectors reoords. ' v

(¢) Unlike the data environments of individual programs,
which are transient and exist only as long as their associated
programs, a dats base continues to exist and evolve through
the execution and termination of many pregrams. However, &
program working on & data bage may create large ’*scratch’
data cbjects, which should live no longer than the program.
This makes necessary z2ome xeasonably efficient mechanizm
for dividing a data base into subparts of definably differant
persiztanae. '

{e} & large data hase will often be more valuable
than any of the programs which manipulate it. For this
- reason, data baze integrity will often be =2 very‘imgcrtant
izsue. To gquard data base integrity, one must

(21} aim ¢o prevent inadvextent errcors;

3

L7y

SETL~129

{
{ii) alm to make the villful deatzuction of parts of

o Aats bage Gifficults

- q@idl) provide backup gng mcmxy procedures which
chm be used in case of disaster. This last may involve
syetsmatic checkpointing and journaling. To detect error
situations, utility routines which examine a data—baae for
consistency may be nacessary.

(£} Some parts of a data bame may be confidential, so
that certain acceas operations may xequlre security locks.
Cf. also point (edi) above.

{g) In an on-iine envirunment, & data base will often
be addressed by nitny query and updates processes at the same
‘time. PFor this reason, mechanisms for coordinating the
vae of the data base by processes ‘acting in paraliel may be
reguired. ’ :
| (i) In the pfeaent newslettsr, wa shall be interested
in expiicitiy procedural use of a data base. However, a
non~procedursl ssi~theoretic query language can be a
considerably more natural user tool for much data base usage.
For this rsason, it iz important in designing a family of
procedural data-base primitives to ensure that typical queries
can be translated into efficient procedural sequences. |

zu'naaign considerations

To design mechaniams which adequately reflect all the
desiderata that have just been noted.is a formidable task.
This full task will by no mesns be attempted in the present
nawsletter, in which wa will only attempt to discuss jissues
(a), (b), (c). (4) and (ei), ignoxring the others.

Were the sets implicit in typlcal data-base manipulations
aot large, and were not the operations to be applied potentially
very costly, it might be best net to introduce any SETL
dictions specifically for data base manipulaticn, since the

@rﬂiﬁizﬁwéﬁihraiétiénu {éupplenanted by appropriate ‘structure’
dictions, cf. (b} tbove) are appropriate and would be adeguats.
this remark Gserves to vemind us that in adding data-base
primitives to S8ETL we aim specifically to optimise the
handling of large sets. The issus of centinuous identity
raised in (c)\abcit could bs handled by the SETL newat
mechaniss, i.e. by azaociatinq with each ‘record' a blank

atom gensrat@d to identify it.

In datarbauc‘snth ('"DBSETL') we uiil want a 'recorxd'
notion. A re;ord is a vector (to bes accessed through a
fbrn detining its layout) for which a unique serial number
{oxr resord identifier) is iseued when the record is created.
Juch of the data contained in a data base will be reaident
in its records. We assume that the physical starting point
of a vecord can be reached effigiently if the record identifier
is xnown. From this starting nection; all other parts of
the .record can ba reached easily; however, for reasons which
‘will) be explained later, wa shall not agsume that all parts
Gf a record avre physically contiguous. One possible implementation
taehniqué ig to use a master hash tsbie which is keyed
by record identifiers and which atores the physical position
of every record. An advantage of this acheme is that it
allows racord accesses to be counted individually, ané thus
makes possible soms form of autcmatic residence level control.

Nothing provents us from adding 'record’ as a new obiect
type in SBTL, and from allowing recordg to be set members
and vector componants, zs long as our sets and vectors remain
‘emall® l.e., central-memory storable. This makes available
maps Irom vecords to recoxrds, two-pavamater Lnter-recnra mapa,

atﬁ., as 1onq as averthing x&m&ins ‘amall®.,

w
%
s
&
H
foed
5%
3
¥

Kaw problemz of a specifically 'Gata base' character arise
in dealing with sats and maps which are large. Maps M of
this character will typically have some large collection

of records either as their domain or &s their range. In
preparing to deal with such maps we aim to define mechanisms
which possess reasonably efficient implementations and which
allow set-theoratic semantics, which is our guiding ideal,
to be mimicked roasonably well.

The four following cases typify the ways in which we
axpect to use maps having large sets of records either as
their domain or as their :anqe. N

(a) 8ingle valued record ——p» record maps, as for
example maps serving to associate subsidiary information
with a record without making it necessary to duplicate the
record in which this subsidiary information is found.

(b) Multiple-valued record —» record maps. These
night either gerve the purpose just noted in (a), or might
be used to optimise searches by mapping a given record r
into the set of all records r' which need to be examined
. when we seak racords standing in some partiéular relationship
to r. | | |
‘ (c) Muleiple-values value ——>» record maps, which
sarve as 'secondary indicaes’ used to optimise searches by
mepping a valus v into the set of all records having
‘ecme attribute equal to v. '

(38) (As a rarer case} Single - or multiple values
RBADS £(r,x,y,;..) of several parzmeters. These parameters can
be records or values, but at least one must be a record. Aan
example might be & map récording certain *joint' activities of two
persons, each of whom is separately represented by a record.

‘&

#e may toka 1t that, for given z, £{z,%,¥,...) is definad
oniy for & mmall sat of <x,y,.¢.>3 indeed, the contrary
assvEption would make ‘the objm £ ‘'gquadratically' large;
ué&iah should be a rave cape.

hcozds havc nmd fielda. and in what follows wa ahall
taks it that (nndar coxtain mtrictiona to be descussed later)
adéitional ﬂielﬁs ean be added in a dynamic and efficisent
way. If n names a field and . ‘¥ 4ie a recoxrd, let r(n)
_msemfieldnintbemmx@x. Then a map £ of type
)(&% can be han&lad by treat:l.ng £(x) 28 a synonym for xr{n);
“s0 that Raps - of ‘thias kind m xelatively unproblematical.

- - A gimdler mmk wlﬁos to ups 2({r,%,¥ss..) in the

’tfpiul‘ dage note& above vndexr (4); we can treat these _
by associating £ with a field n, and treating f(r,x,y,...)
ag a synonym fo: x(n) {X4¥s.0+), whave wa take it that the
value of r(n) is & ('mll) set. Much the same remark
applies to the cm (b) ebove.

mfferent problm arice in the treatment of value~to-
record maps, case (b) above. Here we can no longer assuns -
* that tha collection of records having some common attribute
is necessarily small. For example, if records are grouped
by aome coarse notion of type, large sete will certainly
result. This suggests developing soms implementation level
mechanian supporting something close te the semantics of
the SETL 'set of o¥dered pairs ‘{in tha'léxge set case).
Such a set, which for emphazis we call an imdazr, should be
capable of ssxving as the basie for sn lterstion, and should
azlgo serve for the efégicient location of a record if one is
- given & suitable, i.e. irdex-associated, attribute of the
record. Nota that we may well wish to avoid atoring recoxd
attribute values within an indsx, since the attribute values
which would be stored are available anyhow in the indexed
recoxds, and double storage night be unnecessarily wastefnl
of memoxy.

0

a8

EETIr-229 , ¥

Kote also that in storing values in seacondary memory we will
often prefer 'axplicit copy® to 'peinter' techniques, since
secondary memory gerbege collection may not be feasible,

and it may be important to limit the proliferation of pointers.

e techniqudsxfor the storazge of indices suggest them-
selves. The firat involves ordering, the second employs
a hashing technique. In both techniques, indices consist
of collsctions of pointers to records. In the first technique,
the pointers are kept in a logically sorted orxder, possibly

‘&g the nodes of a'balanced multi-way tree, and recoxds with

a desired attribute value are located by a binary search
process. In the second technique, the pointers are kept

 in a hash tzble, and records with a given attribute value

are locsted by hashing. 'We shall call these two possible

‘@pproaches the ordering tachnéquo- -and the hashing technique

regpectively. The hashing technique can pe:mit a record of
known key to be accesssed vis an index in a number of probes
inﬁépendent of the siﬁc of the index. It has in addition
the advantage of bainq strongly eonscnant with other aspacts
of the BBTL apptoach. If the ordexing technique is used,

then to access & record of known key k within a collection

of n records ons will genexzlly need to pake log n probes.

However, a rather strong argument can be made, even at an

abstract level, in favor of the oxdering technique. This
argument rests on the obzervation that soordinated proagseing
iz an. impoxtant £ile procezsing technigue. More specifically:
vhen two or more files fl' 22,‘,. axe to interact logically
in order to produca some result (e.g., another file) it will
often be the case that each recoxd of £; needs to interact

. enly with some few recoxrds of fz”"" ¥n such situations,

it is often possible and can be guite useful to arrange .

all the files £, fz,... in an ordar chosen so that if x) and T

)
ire %y £
LW AU G RN AR 1

are recoxds of £,, 1f r, precseds ,§l’ and if zy and Ej
azg records °£vfj with which =, fnﬁ z, respsctively need

to interact, then rj preceads rj. Whan such an arrangemant
bas been set up, pxoceazing can move efficiently down the
£ilas fl' fz.... in their oa&nbliahod order. This general
wsoxvat_ioqxf accounts for the importance of sorting in the
pxe@asuipé_of data~files: sorting can be regarded as a
pﬁ@c@ss otwc@ncant:a&ad (and optimised) ordering which brings
laxge data gollections iatc an order permitting the
ccozdinated pxocessing of several files. If only ‘a hashing
technique and no ordaring technigue is used within a data-base
systam, use of core-liﬁé éechniiuas will becoms clunmsy.
A@px@pxiatcly choaea valne—to—zaecrd maps can substitute

for ozdc:ingn but pot alwvays ennily. ‘@specially when the
ordarings appropriate tp a particuler application are based
not on partiocular attributes but on subtier implicit record

properties.

Hote also that in dealing with large objects having
structural properties § that a-programmsr may aim to exploit,
it is important to provide diffarentizl modification proceduces
which preserve the properties S. For example a system in
which ordered sets of xacords are supported must allow records
%0 bz inserted and deleted with preservation of oxder.

Pointer rather than value semantics will be appropriate for
large objects, since ohject copying is bound to be a very
expensive operation.

‘Ralated issues enter if one assumed that the secondary
memoxry on which the bulk of a data~bage rxesides is a disc
. or drum type of mamory in which a substantial inital penalty
attsches to each access. In using memories of this type,
it is natural to move data by 'pages, i.e., to bring several
hundred adjacent words of data from secondary nemory each
time o program calls for as much as one woxd.

]

BREL-12¢

In such an anironmbnt, physical data contigquity becomses
e&p dmportant issue. Here again semantic concepts based

- on order are found to posess advantage, since a principle

of contiguity grows naturally cut of & notion of corder, but
not out of a hash-oriented technique. The guestion of physical
contiguity has also an intra-rscord aspect. It is clear

that, if all the -soctions of ‘a record are contiguous ,the
nuber of racords which are packed onto a physical page when
recordas are gzouped togsther is inversely proportional to

tha gize of a record. For this and other reasons it may

-‘bm desiroble to a;law ravely consuited, relatively 'passive'’

sections of & record to be placed remotely from record sections
vhich ave mora actively comsulted. A mechanism of just this
kind will be.described in the pages which follow.

It should be noted that queleions of physical contiguity
bacone far less coupelling if one envisions an environment
in which bulk data i3 stored on purely electronic rather
then om electromechsnical mmmories. In such an environment,
scma of the record-order relatsd propesals made in the
following pages may. become supsrfluocus. ’

3. ~Parsistence; the notiom éf"axca'. ¢

The programmer using & data-base system will scmetimes wish
to create large temporary files, and if this is to be possible
the system will have to be able tc recognise +the temporaxy
character of these files. rile structures interconnected
in complex ways by inter-file mappings méy be created
temporarily and reguire erasure. BRBecause of the large size
of the dsata sets which & garbage collactor would have to
gse2xch, garbage collection may not be a feasible storage
recovery technigue, and one may have to fall back on &

semantic mechanizm involving expilecit allocation and deallocation

calls.

It i3 this problem that is addrassed by the 'area' machanism
propoeed below., An srea is a dynamicelly growing collection
of mencry pages within which ths abgtract ebjects of a

~ date brge may be sﬁcrad, Ha allow the data~-base-SETL user

to craute indefinitely many areas. An area may be daleted);
vhen this ias dona, all ﬁha eﬁ&ecﬁs stored within the ares

are mluo ﬁastxcy@d

k<] b&gin ﬁncass&ng & data hasa, & program must gain
initial accass to eegtaiﬂ ﬁhjeots of the data base, which
than function® as indices and taaglataa putting the rest of
the stored date within xaach 3he conventions which make
tkls possible form the nexus hotunan a data management
_ X&nguaqe and the opérating ayntum vhich this language

pgeampposes. These conventions can of course be set up in
various ways. One possibility is tha following:

:a)' The objacta axtamnally cataloged will be areas,

* " esch of which will be known by soms ‘catalog name' (a character

| atring) to the operating system (which maintains externally
- cataloged objeeta bstween program ruas.) A program desiring
~ o access an area a will evaluste the function

(L) | ' ' open catname,

where ogtname, & charactex string, is the catalog name of g.

The value returned by {1) will be a pair, whose first

component is a, znd whose second component is a (formed)

Tecord » called the prime rsoord ¢f a. The record r has

verious stardardised attributes,mich are essentially indices
to the remaining information in 4.

B} To catalog an area a, onc executes

) - "close <a, », catmame>.

O

C

b
Exes

Haxra r ie a {formed) record; which becemes the prime record
of the cataloged area, and whare cginame is a character string
which becomes its catalog nams.

@) Aveas created by a program but not cataloged

_.bafexa its termination are antaaatically delated by the

C data base epstating system.

tyr automstic maintaingncs of seconds

.i. .di- Py

The qqnpiicated question of data-base integrity can
bs approached at several lavels. At an elementary level,
oane may hote ths importance of pravanting implausible

- values from beinq stored in tha f£ields of a record. These

errors will doubtless tend to be very common in practice;
by praventing it one can 2180 bring more subtle errors to
light. Errors of this type are easily handled by building
appropriate mechanisms into the record access interpretersj
all that is required is a suitable ganeralisation of the
notion of racord form.

Hhen sevondary indices are used to gpeed up acceas to

" the records of some Primary File, any operation which

modifies, inserts, or deletes a record may require a
compensating adjustment in an index. It is annoying and
error inducing for a prograrmer intending some relatively
straightforvard data modification to have to remember and
explicitly insert all these subsidiary operations. For

this reason, some data bass systems designers (notably

the DBYG design group) have trised to specify declaration-
based record indexing schemes that remove the

maintainance of secondary indices from the ken of the sysztem
uger, making this maintainamce,iargely automatic,

-

-In anch sbhamm@, cne can fox examgtm davlar¢ that all
‘records of a givaa type are to ba ”mand&tcmy nenbers oFf
@omo ordared £11 e, and are Lo B «ocataﬁ by some pre-stated
senrch stratagy Then any m@ﬂiﬂivation of &ata in the .
resord mutoaati%ally tzfggers appzopr&at@ index-upaate action.
Tha prodlem with the zchemas af thig- type that have hesn
pruposcd to date i& that they are ot foolproof, but inpose
vwhat mey be & can@&ea xaqu&r&m@¢t of CoCperat ion on th&ir
uBAE, Who iz ke miseen somothing, cen cause impcrﬁan
'“ut@namically maintolined’ iladices to pass jnto an
unanﬁgcipsced and nmd@sivabla econdition. This problem will
ks @aztieularly acmta in ﬁ?ﬁﬁ@ﬂ& maintaining numerouz and
rlooeilanecus colleetien@ of s@canﬁary indices, Bystems

in which locaticn cf ths right 3@cﬂmdary index ‘wherein

& zgaa & &&sired record becomes a matter that is at least |
psrtly ptocedural. - ')

ﬁot knawing how to soliva this problem, we evade ita
omit any automatic index meintainance features from the
proposale which follow, and leave it to the programmer teo
handle index updating procedurally. By this evasion we
in effect imply that it is impossibly difficult to provide
feolproof automatic index meintsinance fn an environment
allowing procedural file manipulation, In this v‘ew,
sutomatic index maintainance can only be provided in a still
higher level, non-procedural,'query’ or ‘transaction’ oriented
language, rqlativa to which .= procedural data-base language
is an implementation underpinning. However, we will
suggest a numdber of syntactic forms which facilitate the
programeing of indew updating cperations.

¢, Errer handling

In the manipulation of files, erwor situations will
ofton arise: e.g. one may attempt to insert a record into
s inzppropriate indéx.'try to read a nonexistent field in
some record, try to write bad data into the fields of a
record, etc. A ddta-base oriented language should provide
gome sdequate means for treating thess sxroxrs. It is
igportant for the programmer to be able to centraliss whatever
#at of error handling procedures he supplies, so that error
tosts and error routine calls dc not proliferats im nis code.
A semantic pxinitiva good for this purpose is the PL/1-like
'ON' comstruct. SBTL lacks this feature, and for data base
spplication should probably be extende@ to include it, but
in & form rut.ricm to avoid nn&esimble implications fox
tha anmlynibility o! nasawm programe .

8. Proposals.

@uided‘hy‘th@f&éﬁcxak sﬁag@tic,diacussion which preceeds
we no¥ come ¢o wake & nnn%@rféf-spddifie syntactic and
sapantic proposeas. Ho proposs to mxtenﬁ SETL to DESETL
by adding the f@uaamg eamantic obiect ‘clssses: resords,
indicee, files, awrege, 2nd forme. Concerning these, we
#ake the following imtroductory heuristic observations.

i. Rccardojaze epzentially tuples for which a syetem
of nemed °‘pelectorz’ have beaen defined, i.e., 'formed vectorsf
in the sense of 0.P. Item 29, mection B, In addition,
each record has a systémﬂiasued unique serial number, which

. gives it ’continuig§~identity'f and through which the body

of tha vecter can be locatsd afficiently. In this sense,
records have °‘pointar' semantics. The components of z
¥ecord are accessible only through the xecord itself.

13

ii. Indicce beheve rathey 1ika 'large®’ SETL seta of . (T)
w&ﬂ&vma palre, setsy of palre in which the second component

.f;@f‘ﬁﬁﬁﬁ paix is a zecord »ry the £iz8% component of each
U iy h@ing & quantity oaleuxétaﬂ from specified fields of ».

luﬁh@ .BBTL pota oﬁ.yairn, indicau are accenaed by a hash

»,: %@@%&¢qnm Bowaver, ﬁha‘hash table used contains only recoxrd

R
Taie

- tdsmeiflave, i.ao only sacond and not first components of
'miaeﬁenﬁxgmirae Bach inﬁmx im@'gasmensaa a lead record, r,,
R ﬂiﬂgla @tt!ihﬁﬁ@ 1s''s t&aation ¢ which (noxmally)
'nmpé each rocord » of the range of inz into the quantity a
. whose irm-imdge is . The guaction. ¢ will be called the
id@ntifyiﬁq funetton of taa;f Backh index {nx also posezsas
& system-issuad i@&mgzﬂying pimber which identifies inz
- wedaquely, 9£V1£% Sonce -opntinuous identify and pointer semantics,
end through w&i@& Bus cma be located physically. Indices

ine ﬂmpgert the ﬁgglawiag operationaa

[

i e) e dmm | SRR ~ | C

W T ;’;;.jr,_f=‘ dnxts);

' _‘fﬁﬁaigaatms the record ¥ into which imx maps a, if this rscoxd
arists and is nni@ua. ,Otheruisa} (1} has the value Q.

¥iote that in using the diction (1) to rétrieve r,the quantity
a hashed in the noxmallsgrn mannsr &nd the resulting haszh
index is used as the gtarting peint of a search. ZIn this
saarch, one uses the ldentifylng function ¢ associated with
inz, end losks for ome or mora yecorde r' such that ¢i(»') eg a.
If exactly one such record is found, this record

in the value of (1}:; if no auch recoxd, or meore than one

such record iz fovnd, then %he walue of (1) is [. Nobte
that we do not assums thet indices are auntomatically
mainrtained by the DBRSETL system. That is, changes in the
attribute values of a recoxd » 4o not avtomstically triggey
compensating chenges in every one of the indices in whosa
TENGS ®. OCCNLE.

15

Invocation of the re-lindexing cperations needed to compexnite
for changes in attribute valnes is left to the DBSETL user.
Suppose than that fnefa) 4nitislly evalnates to r, and
that an assignment r(attr) » expn changes the value of
aonms attribute of », but that no compensating modification
of tnx iz made. Then ¢nz may 'icse track' of the record r,
in the sense that {nx(é(r)) and r lose the relationship
which they should always have in a well-formed index. In
such cace, r will diffex from every value inx(a’), even

| though ins will contain a pﬁintax to ». S8uch situations
are of eourtg'undorsirable, but (bacause to do so would
require an expensive dynamic mechanism) we do not furnish
DBSETL with semantic neqhﬁninun which aiutomatically and
universally preacnt such situnations from arising.

{b) The diction inxz(c) can be used in sinister position,
~{.e. in the context -

(2) _ _', inx(a) = »;

where n is a record-valued expfaasion. The assignment (2}
has the effect of delating, from inz, all pointexs to

records r' which would otherxwise belong to inxz{a)} (see below’.
After this deletion; a refexence to r i& inserted in

appropriate position. Immediately after (2) has been executed,
(i} will evaluate to r. The sgpecial case

(2a) : | inx(a) a}n;

of (2) simply deletas form imx all pointers to all the mambers
£ tnz{al.

(¢) The diction

{ inx{a}

'deaignates the set of records r which are the imags of a
- under inz and (much as with gets of ordered palrs) iz the
‘malti-valued* angl@q;of'tha;Qﬂingleévaluad' diction (1).
Wherever-poszible; DESETL will avoid explicit formation of
the set (3), and will treat (3) merely as a formal notation
usaabie in iterators likes

(4) | | ¥ £ ¢ ink{a}

Note that (4) will iterate over a2ll records r for which
'3fr}'gg_a'and‘which can be located by & hash chain whose
starting position is calculated from o in standard fashion.
The same remark apblies when in the usual SETL manner the

. dterator (4) becomes part of a compound cperator or Gther

iterator-based construction, as e.g. in
{5) f+: r ¢ inx{a}! x (attry) eq cy] r(attr,).

(d) The diction
(6} o 1nx{s]
dasigngtas the set of all recoxds r intae which <nz maps
any element ¢ of the set s. DBSETL will wherever possible
aveld explicit formation of the set (4) also, and treat (6)
as & formal notation vccuring in lteretors. The relstsd
diction ' ‘

() | inx{ }

dagignates the sat of all yecords »p referenced by pointers
In dnz, and iz provided privalpally for uss in the iterator

(8} ¥ = ¢ inx[]

pot]

and in related iterator-based constructions.

Hote that if ¢ iz the mapping asscciated with the
index inxz (as in (a) above) then

‘(51 _'{’r 3 inxi'jilvr é ¢ inx{¢(z)}}

is the set of mo@m "lost' or 'misfiled' within inx;

unless a DBSETL user is striving for some very special effect,

he will normally wish to program so as to keep all sets (9)
equal to n&. :

(a) The diction

ae - riniesla)

requires that a gg.t(x), and givea this condition ensures
that an immediately subsequent evaluation of the set 1nz{a}

~wiil include r. The dictien

(1) . r out inx{a)

dzop r from the collaction of records to which Znz points.
The diction :

{12) - ' inx{a} = 8
may be regardéd a$ a shorthand for

sy inx(a}) = Q7 (Yres) r in inx{al;; .
The diction |

(14) . § inx

17 .

AW

" ;u-‘:

"~“"_"f"""€16'f‘ | ‘ - | £1l(n) = »;

yi1lds the aumber of record-pointers stored in the index imz.

4ii. This tampogatiiy camplates our account of the
siuntics of indices; and we now turn to discuss thre

. semmtics of files. Piles bghave rather like 'larxrye' SETL

m»{.a@ whose emon,emw are ordered and accessibls by
amuricsl position. Rach £ile I possases a system—igsuasd
ideutifying number vhich identifies fil uniquely, ¢iving
2 continuous mwtity and pointez aamntit,s Filas fil
suport tche-following opsratﬁonz:

s
A

ta) The diction
(15 ‘ 281in),

whera = is‘an iteger, rstrisves the s-th recoxd of fii.
Thig diction may also be used in sinster position, L.e. in
e context

whore » is & recoxdovalued expression. PFiles are not allowaé
te have undefined componenta vhich preceed define:l components
of the same file. Thus the integer (15) must satisfy

B £§& fi1l + 1. Note here that the diction

(. $ £il

13 aveilable and gives the number of (definec’!) conponents
of 41,

{b) Insertion and te.mcval operationa are provided
for filea. fThe removal operator has the form

(13) £ili(n) = Q;

i8

1%

The opexsation (18} has & somewhat different semantics fox
£ilag that for SETL tuples. Whan f{7 ie a file, (18) both
waoves the n-th component of f{1 and renumbers its remaliing
vomponents. The corresponding opsration on a SETL tuple

¢ i3 expresssd by :

{19} © & e gl{iline-l) + tio+l:);

, The insertion operstor corxesponding to (18) has the
syntactic foxm

(20) 2il(n) =: »;

vhare » is a recerd-valued expression. It inserts a new

component into fil, which becomes f{l's n-~-th component .

The former #-th thru final components of £ are renumbered
and become fil's n + l'st thru final component. The

- eorresponding operation on a SETL tuple ¢t is expressed by

(21) &= t{lin=1) 4 <> + tarls).

{c) DBSETL grﬁvidesiunAit@taﬁoxvavurlfilesi which

'has the syntactic form | ¢

(22) | Vr(n) e ril sta#tingvx thlé €y | Cqe

Here, £ is an integer-valued zxpresgion whpse value n,
determines the starting component r(ﬁo) of the iteratiocn
{22), 01 is a boolean»expressien which texminates the
iteration as soon as it becomes falss, and Cz is a boolean
expression which serves in the usual way to allow certain
cypleé of iteration and bypass others when an iterator
(22) is invoked. Any of the ‘'starting E' clause, the

‘while Cl', and the'[c’ clause of (22) may be omitted.,

Iterztors of the form (22} may in the usval SETL mannex
becowa part of a compound operator or other iterator~basud
conglruction. '

i file, index, or record oBj can be deleted by execuriny
the ¢omeand

£23) ' - Galete obi;

lv. Now we come to discuss the gemantics of areas.
As a.ready noted, areas are provided because they make
possih:le certain wholesals Sata manipulations (especially
eraz;reg) and bescause they provide a modified'allocate~
desjiocate’ action for use in situations in which garbage
zcliection may be infeasibvle. The following semantic rule
rs.ate to arees: '

.

{a) Bvery index and file belongs to some area. An
£:28 g may be deleted by executing the command

£i4) ' - delete &g

vz an area is deleted, every chject (index, file, or record
taction, see below) contained within it s also erased.

(b) In a manner whose details will be explained below,
every record krnown to the DBSETIL system can be seperated
into secticns. Every record section belongs to some area.

(c) An area is created by a call on the parameterless
system function

(25)) newarea.

—~

2

(d) P{le former and indbx'forﬁer dictions are provided
in the SETLE system. The index-former diction is

(26) {: area-expn, }5n~axpn: rscord-expn, iterator}.

In .(26), area-ezpn denotes an area-valued expression, whose
value determines the area within which the index (26) will
be formed; fon-expn denotes = function-~valued expression,
vhose value determinas the identifying function ¢ associated
with the index {26). Moreover, still in (26), iterator
designates any iterator which could appear in a set-former;
this iterator controls the addition of records tc the

index inx which (26) forms. Finally, record-exzpn denotes

a record-valued axpression, whose sucesaive values become
the records which (26} references. Each record r referenced
by inx 1is initially a member of inz(¢(r)).

We allow the fon-ezpn in (26} to be omitted, in which case

the 'trivial® function ¢ identicalily egual to ni is used as

the identifying function of imz. 7This albreviated construction
can be used to form'degenerats' indices which serve to
represent ‘iargs' collections of recoxds. We also allow

this fcn -expn to consist of the sign *-! followed by a
qualified name nm (or vector of qualified names<hm1,...,nmk>)
in which case the identifying function of inz is understood

to return the value r(nm) (rasp. <r(nm1),...,r(nmk)> when
applied tc a record r, '

The file-former diction is
(27) <t area-ezpn, record-exzpn, iterator >.

The syntactic parts areaq-expn, rescord-sxpn, and iterator

- appearing here have the same definition as they had in (26):

note again that the value of area-expn determines the area

within which the files (27) will be formed. 2An empty file

‘may be formed within a given area by invoking the prefix
operatar -

(Z8) : rmlf arsa-expn.

A null inder with specified identifying fuction can be
formed by wrlting |

{(29) ~ ~null <greag-expn, fon-expn>,

and a null index with trivial identifying function can be
formel by writing

{30) ‘nuli areg-ezpn.
For indices {uz, the dictions
(31) .« in inx and z gut ine
are sbbreviations for
(32) | z in ¢nx(nl) and z out iAz(ng)
respectively.
(e} Ag index (oxr file) { may be deleted by writing
3) | - delate 1;

(£) The operation of gorting produces a file £ out

of an index or file i; the components of £ will be arranged

in increasing order of some programmer-specified binary
function comp-fon whose arguments are records.

L7

23

To produce such a zorted £ within a given avea, we invoke
the prefix operator

{34) ' sorted'<indss~ormf%Ia; arca;cxpn;‘aomp-fbn>.

Bere indexz-or-file is an exprassion whose value is the
index or file whose sorted form is the value of (34).

One will often want sort records into an order depending
not only on the integers, character strings, etc. which '
they contain,.but also on such quantities as record and file
identifiers. To make this possidble,we allow the operators
te, t, ge, gt to be used to compare record, file, index,
and area identifiers, and also blank atoms. These operators
will return results which, although implementation-dependent,
obey the expected transitivity rules.. '

V. Row we turn to descrihe the semantics of forms.
Porms sexve to make the attributes of a zecord, which will
often be numercus and miscellanaous, accessible through a
rational, structured family of quatificd names. The system
-of foxrms which we propose to use in DBSETL is essentially
that described in O.P., Item 20.8, but extended so as to
allow the apeciticatzon of seperate areas of residence for
seperate sectione of 2 record. The basic semantic notions
of the scheme to be described are record, form, and formed
record, the latter two of which are closely comparable to
the notions form and formed tuple of Item 20.B. A formed record
fr is a SETL pair whose first component is a record r and whose second
component f is a form which serves to guide all access operations
which address =»r. The record »r is called the body of fr;
in a2ddition to the components which are given names by f,
r will also contain auxiliary componsnts, not accessible
at- the DBSETL user level, which help in locating user-level
components of fr.

- 24

Howaver, thege issues zye of systam and not of user concern,
since the DBSETL user will always access the components

of a record by attaching 2 foxm to », following which »‘s
components will be addressed by name and not by position.

Wien reference is made to a compoment of a foxmed
recerd fr, a system-level accses interprster will be invoked.
The parametexs pasged to this interpreter are as follows:
the body .and the form of fr, the name of the component to
be szccessed, and, in case this component is to be nodified,
the new value to he established. The form component of f
serves as a kind of program during the action of the form
intazpreter.

It vill zometimes be necsssary to attach more than one
form to a giver body »; for exsmple, informatisn stored
vithin » itself, and sccesaible through some 'provisional!
torm, may signify the form which » has. To make bodies
accessible through more than cme form, one requires a
compatibility ruls determining the cases in which a
component of given name will be sought in a fixed position
within a record », even if different forms f; and f, are
used to govern two accesses te¢ r. Fox this purpose we
adopt the compatibility rule Gescribed in Item 20.B, which
is based on the fact that the component names supported

by a form f always constitute an ordered sequence. For
convenience szke, we restste the compatibility rule

(cf. Item 20.B): if two forms fj and fg both support a
~given component naman, and if in the sequences of names
supported by fz and fé respectively all names preceeding
n are identical, then the = component of a record can ba
accessed using eitker fz oxr fg. - ‘

Much of the remaining semantics of forms and formed
racexrds is taken from Item 20.8% with 1ittle change, and
we shall not describe this semantic: scheme in detail;
prefering to refer to that Item, we shall only give
‘details where an extension to or modification of the scheme -
outlined in 20.B is necessary.

In brief, the semantic facilities outlinel in Item 20.B
may be enumerated as follows: Forms cen be created by
writing '

*l

(35) " nawf {formexpn),

where fbrmezpn.denotes a forﬁ ampraaeion; A form expression
can be either

&. A SZTL name, which then namess an attribute;

b. A list of names seperated by colons, which
then bascome synonymous attribute names;

¢. A comstruct of the eyntactic structure

(36) namelist (formazpn).

hs explained in Q.P. Item 20.A and 20.B, the use of such
constructs allows us to define systems of strmictured
attribute names, which have the appearance Mie Mgees Mya
vhere each nj is a simple nawme.

d. The comma may be used ss a form concatanmation
operator, and the operator or may be used as a form alternation
operator. The information necaessary to indicate which of
two alternative forms fz’ fz actually appiies to a recoxd
r of the form f1 or fz is maintained by the access
interpreter and stored in an auxiliaxry component of ».

c. A form expression may be a tuplc expressicn of
the structure

(37) . % (formexpn) .

Ae previously, tuple expressions of this kind are used
to indicate that some particular attribute of an object
is a tuple from which subattributes may be retrieved by
indexing.

£. A8 in- Ttem 20.B8, the construct
{38) - " like s=zpn

nay be used gcth to include paxts of previously defined
forme into a neu»form baing conatructed by a call (35),
and to allow the full collection of SETL dictions to be
used in the construction of forms.

9. 'chditiohal' form expressions, having the syntax

(38) irf boaleﬁi.théﬂ Sormezpn, else ... else if boolez,

then formezpn,

and 'calculated' form expressions baving the syntax
(40) Jorm-vsstor {(agf formezpn (qualname))

ars both provided, and have the semantics described in
Item 20.B.

h. If r i8 2 recvord and Ff & fomm, then
(41) r 5sf

denotes the formed record whosa bedy is r and whose form
is f. The diction (41) may also ke used in casze »r .is a
formed record, in which case it denotes the formed record
whose body is the same as the body of r and whose form iz ..

L~

S limple records,rather than formed récnxda, are written

to secondary memory (by being inserted inte indices

or files using the operations described in paragraphs ii and
iii above). If a formed record appears in a secondary
memory write operation which expects a simple record, the
form of the record ie stripped off and its body written.
This convention aveids repeated recopying of forms.

This compietes our reprise of the form-related
gemantic facilities which are available both for formed
tuples in ordinary SETL and for formed vectors in DBSETL.
We shall now describe a few additional features which are
available only ir connection with formed vectors. The
first of these is a construct

nameliet [formexpn]

(42) .
which resembles (36} in its syntax and semantics. In (42),
as in (36), namelist is a coloa~-seperated list of names,
which become synonymous refexences to +the part p of a
formed record which (42} describes. However, the use of
(42} rather than (38) indicates that p, which is of couxse
part of a larger record », constitutes 2 racord section,
which among other things irmpliss that p may be stored in

a differant qreq from the remainder of r.

As already stated, forms ars cfeated by irnvcking the
opsrator (35), and serve as gpecialised programs determining
the actions of a systam—~level access interpreter routine
which is used whenever a field of a storsd record must be
either retrieved or modidied. To give additicnal flexibility
and power tc the access interpreter, we ailow up to four
information recoxds to be associated with a form f. These
records contain information determining:

28

a}) the pattern in which subsections of a formed
record with fcmm f are assigned to azress;

8) *initial’ field values, actually values to be
used when one accesszes an attribute that has never been
explicitly set either during the cresticn or since the
creatlion of the record possessing it;

§) any restrictions on values which can be stored
in particular fields of r;

8) any locks restricting access to particular f£ields
of r. T '

These records can be retrieved by writing

(43a) * aveainf f
(43b) | initing f
(43¢c) " protinf f
(434) and " lockinf f

respectively. The lattex three of these records have the
form f 4itself (but comsist of a2 single record section).

The record areainf f has a form f' gderived from f by
deleting each subpart of f which contajns no occurence of

- the construct
(44) ' . nameliast [formezpn]

and then by réplacing surviving occurencesn of (44)in the -
form expression defiring f by a corresponding eccurence
elther of

(45) nameliegt (residencearez)

(if the formexpn of (44) contains no further suboccursnce
of the construct (44)) or of

I \

(46) namelist (residencearss, fbimczpn’);

(if the formexzpn of (44) contains further suboccurences

of (44), and where formexpr is devived@ from formexpn by
recursive application of the rula of replacement just stated.)
In both (45} and (46), residencearea 18 a reservad

literal. Note,. as an example of the rule just stated that

if 7 is defined by the form expression "

{47) pnrtl, partz (outer [field}, fleld2,
" inner [first [fleldl, field2],second])

then f' ie defined by the form exprassion

. {48) part2 (outer(residencearea),

~ inner (residencearea,first(rqsidencearea))).

Flields in the records {43&«5) associated with f can be

set by writing

(432) | areainf £ (qualname) = pal;
{45b) “protinf 7 (quainame) = val;

. . . ¢
etc. Hers qualname is a gqualified nams appropriate to the

formed records avxeainf f, protinf f,etc., and of course val
represents a value to be assigned.

The semantic significance of the ssveral recordas (43a-d)
is as follows. Let ¢n designate a gualified name specifying
an attribute of records having the form f. Then
p = (proting fJ)(qn} can be either 2, a SETL type, a paix of
integers, a palr of reals, a zet, or & boolean~valued
fanction of one parazmeter. If p .is not equal to Q, then when
the field r(qn) of a formed record r» having the form f

[9%
&y

is modified, one of the following checks will be made, and
suiteble error action taken if the check fails,

i. 4if p is a BBTL type; the type of the mew value
rigqn) must be p; ‘ :

..

i1. if p iz a pairﬁ<z1; *2?»02 integers or resals,
then »(gn) must satisfy »(gqn) '19 28‘and riqnl) ge %4

iii, if p is get; then r(gr) must belong to 1t;

iv.. if p is a function, then p(r(gn)) must have the
value true.

If one creates a formed record r with form f, and
then,without ever setting the value of some particular
attribute r(qn), accesses »(gnj, +he value returned will
be {initinf f)(qn). Thus the raccrd initinf f stores a
family of 'default values' that can be used With any other
record of form f.

~ of security locks which will ba applied when the field

#(gn) of a record with structure 7 is accessed or modified.
Since we do not wish to enter intec an extended discussion

.of protection-~related issues, we shall pot supply any details
concerning the internal structure or semantic treatment of
the quantity (lockinf fJ)(gn/

Kext, let gn desiomate a qualified name specifying
an attribute of records which have the forn f'! derived
from f by transforming each occurence of (44) into an
occurence of (45} or {46} in the manner described above. Then
qn addresses both a field of the formed record areainf f
and a section of each record r having f as its form. The

quantity p = ‘(areainf f) (gn} can be either Q or an area.

Let r be a formed record with form f. If p ig N, then the

section s of r addressed by the qualified name gn is placed within
the same area as the 'main' or 'initial' section 8' of » when s

is created(by a fixst assignment to cne of the fields of s).

(The area in which 8' ig placed i determined, in a mannar to be
described shortly, whan}ﬁ iteelf ig created). If p is differxent
from @, then when s is created it is placed within the araa p.

It would be quite easy to use mechanisms like those
describad in the prede@ding paragraphe to associate enced-
ing/decoding actiong with modifications/retrievals of recond
attributes. We dc not provide such a feature because relstively
concrete and strictly efficiency-oriented considerations of
this sort are somewhat foreign to the SBTL spirit.

To create a record with form f, cne invokes the function
{50} : hewr@coxd {{+ area). —

Here arsa is an arsa-valued expression; the newly created
record iz mede resident in area. Racords » created by a

call {50) have all their attributes initially undefined.
 {Consequently, (initinf f){gn) will be returned if r is

created by & call (50} and r(gn) iz accessed immediately
after »r is created.) To allow creation ¢f a2 record r of
formm f, scme of whose fields are set to values different fron
(initinf r)(qn}, we provide a variant of {50), having the
gyntax |

{51) nawrecord (f,araa,(imitialisad-attributea-liet),initialmnaluce—tuple,

The quantities f and area have the same significance in (51)
as in (50); initialised-attributes-list is a list of qualified

. names validly addressing attributes of a record r of form f,

and initigl-values-tuple is an expression evaluating to a tuple

32

t. This tuple must have as many components as there are
gualified names in the initialised-values-liet; the successive (.5
fields named in thig list are initialised to the succezsive
values occuring as ¢omponents of t. Note (from D.P. III, item
20.A) that the construct

(52) <v qualname-list>x,

vhere qualname-liet is a lis¢ of qualified names and r a record,
forms a tuple by extracting from the fields named in qualname-liet.
Thus the construction

{83) newrecbrd{f;aﬁaa&initialiecd-atépibutes-zikt,AV quaZnameflisﬁ>r%

serves to form a new record with certain of fts fields initialised
with values taken from particular fields of the record n»r.

If & form f has the structure
(54) name {formezpn],
‘an@ {f in addlition amarezinf f(name) is mot Q (so that a specifies
an area) then the crea parameter of (50} or {(51) can be elided _
and a recoréd of foxrm f created by a call

N

{55) : newrecord (f)
or

(56) newrecord(f,(initialissed-attributes-list),initial-valucs-tuple).

7. Physical contiguicy; Space teélamation.

We noted in Section 2 that the bulk of a data base may
very well reside om a disc or drum ﬁyge of memory in which it is
natural to move data by 'pages' conglsting of several hundred
adjacent words, and that in such an environment physical
contiquity becomes an important issue. If this is the case
iterations extended over whole files will require relatively few
page accesses and run relatively rapidiy if «ll the data items

R

which must be accessed during the iteration are physically
placed in logically corresponding order. During such an
iteration, one will have to acceszs:

(2) the pecinters which constitute the file;

(b} the records tc which these elements point;
and, as an auxiliary

{c) the implementation-level master catalog which gives
position of every record.

This last data structure is necessery since ve assume that
each record has a serial number giving it continuing identity,
and that & record can be located efficiently if this identifier
is known. Note that since the size of record attributes is
aliowed to varxy dynamically, records may have to bz moved in
physical storaga: of course, the master catalog entry that
locates a record should not move. '

-. It is reasomsblis to. suppese.that recards crezted within

an area A sare issued serial numbersg in their order of creation:
this convention, which makes deletion of whole arnas particularxly
convenient, impliee that & record is fully identified by the
area to which it belongs and by its serial number withir this
area. We may assume that the master catalog for aach arva is
maintained in a physical order corresponding to tiie increasing
order of record numbers. After executien of a QEigsg_stauement
(23), or of the space-recovery operation described below, gaps
can appear in the sequence of record numbers recorded in sich

& catalog. Note that areas will also have identifying ser.al
numbers, recorded in an implementation~lsvel'master catalog of

areas'.

A file, which is essentially a large tuple; can be stored .
in a balanced multiway tres, the recdrd'identifiers which (ﬁ‘
constitute the file beaing kept physically in the logical ordex
in which they occur within the file. Use of balanced multiway
trees makes element insertion and deletion efficient.

The records created within an area can initially be placed
in positions corresponding to their order of creation, and
each record can be left in its initial position unless it grows
80 large that it must be moved. For each physical page, in-
formation distinguishing'sections in use'from'sections not in
use'can be maintained, and the page can be replaced when
appropriate. Moreover, account can be kept by Separate areas of
the total size of'secticne not in uge', and areas for which
this total has grown substantial can be compressed overall.

The conventions which have just besn outlined imply that
for a newly created file consisting of newly “reated records,
the physical order of recoxds, of record identifiers within
the file, and of record lccators within the master catalog
lccating the records will all coxrespond. Thus iterations
extended over such files will reguire particularly few pags
accesses and will be particularly efficient. For this reason,
if it is anticipated that iteration will often be extended over
a file, it may be advantageous to use the file former diction
(27) to create a new copy of both the file and its records (or of
relevant record portions), even though the copying operation
itself is expensive. |

As already noted, garbage collection will probably not be

35

a practical technique for recovery of unused space in large
file systems. The areq construct and the delete statement

(24) provide an acceptable meanz for recoving the space occupied
by substantial data sets generataed for predictably
temporary use. Hdwevat. this technigque c¢annot be used to re~
cover space occupied by records which are initially mads part
of several files and subsequently removed from some of them.

For use in such cases, it might be appropriate to provide an
explicit purge statement of the form. '

(57) . purge area-list: file-index-list;

Here we take areq-liet to be a comma~separated list of area-
valued expressions, and file-index-liect to be a list of file- or
index~-vaived expressions. When.(57) is executed, every reccrd

in any of the areas occuring in area-list which is not referenced
by a file or index in the file-index-list will be deleted,

and thes space occupied by these records recovered. If a record
is Geleted from an area, the master catalog entry which locates
it wiil aiso be eliminated.

36

SETL-129 , Phillip Shaw

O

égggndix:'%:criticél angd Suppleﬁenta:y Corment on the Foregoing.
o ' By Phillip shaw
I. Characteristic Problems of "Data Basae" Systems

Poilowing general usage, by "data base" we mean systems in
which a diverse coliection of applications share a common
pool of information, as distlaguizhsed from single-application
systems (evea_pnline aystems guch as airline reservations)
and from systeﬁs in which the various applications maintain
private files (whether on the same or on different systems).
In gereral, the reslative merits of data-<base versus
: priéate-file systems reflact the trade~cffs involved in any
. ceatralization-decentralization problemrand the disadvantages
'nwmgntmdata?base,ggstama.then formn the so-called "data base prableﬁ“.
The advantages of data-base systems are evident: There is (j
&t least potentially a lower per-spplication cost for the
information, and the various applications are consistent in
their *facts® (e.g.reports fxom "payroll® and from “"personnel®
~ would agree 23 to hov many "employess® there are).
4
The drawbacks of data-base systeme relata to three areas:
conflicting requirements, imtefﬂ@xance, and the need for:
automatic recovary oparations.

Conflicting reguirements

The varicus applications sharing a data base cenerally differ
. substantially in regaxrd to what information is needed, and
how it is to be accessed. DPrivate~-file syztems have quite
the¢ advantage here, in that the files can be exactly tailored
to application requirements. (;]

37
SETL-129

'In data basze systems the stored information is morxre than
any one application neads, and the organization is ideal

- for at most one of the applications. Other applications
must make-do with supplementary link-fields and secondary
indexes, so that access is somewhat less efficient and
programming considerably more complicated and error-prone.

Interference

In shared-data systems, a "vread” cperation must be delayed if
an "uypdate* op%the»aame data item i3z in progress, and an
*update” operation must be dslayed if either a "read" or an
“update®” is in progress. Clearly such interference (and

the complexity involved in detecting and coordinating such
conflicts) is not encountered in private-file systems.

. Also, in order to achieve zdeguate levels of utilization

and responsiveness, datafbése_systens_generally have to
coordinate requests on the basis of smaller units of in-
formation for shorter periods of access than has been required
in batch or time-sharing syatuﬁsz lockihg at the "record® _
rather than "file" level, and assigning locks to "transactions"®
rathar than to “jobs”™ or to *gessions”. All of which tends

to increase the camplexity of both the application programs

and of the underlying system, over what is required for
private-£file systems, |

Another, more severe, form of interxference is caussd by
incorrect programs and data. The data-base can be (correctly)
‘updated with incorrect information; or, it can be incorrectly
updated by an erroneous program; or, it can be partially

- updated by a program which aborts in themiddle of updating

a file or record, leaving the information in an inconsistent

and incorrect state., In private-file systems thsse problems

of course affect only the zingle application, whereas in
data~base systems the effect can be congsiderably more widespread.

.

38
SETL-129

Automatic Recovery

"Recovery® refers to the actions which restore a system to
good working order after a failure has besen detected.

This is inherently more difficult in data-base systenms
than in filé<oriented systems, because of the complexity
of the data structures and the imcremental nature of the
update operations.

Data-base systems are also generally operated "online”,
with transactions entered from remote terminal; and, they
tend to be highly integrated into the operation of an
enterprise. This, coupled with the very fact that the
data-base is shared by numerous spplicetions, means that

. the impact of failure is both more widespread and more

.--88%ere than is the case with private-file systems. Recovery

operations'muét‘theréfoze proceed at speeds which preclude
manual intervention, and so must be pre-planned and
programmed. '

33
SETL-129

IXI. Functional Data Structures

It is possible to completely define a data structure or
class of data structures by speclifying a collection of procedures
which implement the operations which are defined for instances
of the data structure. Typically one would provide ,
~ procedures for operations of create, select, update, perhaps
- slze, etc. Langﬁagas which provide such a capability |
include GEDANKEN, POP2, PPL, SIMULA-67, ELl, and SETL.
The primary design variations relate to
a) whether the number and weaning of the "entriass”
or operations is open-ended and
arbitrary (as in SIMULA-67) or fixed and
standardised (az in all of the others); and
b) whether the representatiocn, or basic data, of such
data structures can be accessed only by the defined
procedures {(as in GEDANKEN and I believe SETL) or
aleo by other routines {28 in the other languages
above) . : | :

I feel that such an approach, with in»open~ended number of
procedures and with only the defined procedures able to
access the data structure, has very great, potential value
for data base systems. This is because such an approach
makes it possible to centralize certain critical operations.

40
SEIL-129 '

The operations which one would want to centralize (in the
access procedures) would be those which
a) are dependent on the particular organization of
the data; or
b) affect the consistency of the data; or
c) require exclusive access to the data.

Por example, one ﬁight program a fanctional data structure
which would be accessed as if it contained the payroll file
sequenced by amployee—name;‘inte:nally, however, the access
procedures of that data structure might in fact obtain

the required dsta from several files, perhaps following
supplementary link fields or using secondary indexes.

211 of those details would, however, be known only to the
access procedures. Thus, they are the only procedures
which would have to be changed if the "reszl” data structures
were changed or re-organized.

As another exampie, if all updates tec the salary fields

are performed by calls to such an access procedure, then

- that procedure can inspect the update value to ensure that

it is a positive number, not tco big or too small, etc.

By validating that access procedure, one can then ensure

that the validity (but not of course the correctness) of

the salary fields will be maintained, no matter which program
actually may call for the updating.

Finally, if all routines which require exclusive access to
the date are coded as such acceszs procedures, then one can
onca and for all be &ssured that no simultaneous updates will
.ba attempted, thereby relieving the referzncing programs of
respongibility for issuing locks, etc.

41

SETL=129

Functional data structures have two disadvantages:

i) every field reference'requires a procedure call;
and ’ » '
ii) the initial programming effort (when setting up
A the data structures) is greater. | ‘

I feel that the increase in flexibility (for re-organizing
the data) and in reliability are quite sufficient to justify
the increased execution cost, and that the programming
simplicity after the initial set-up of such data structures

- would easily justify the higher initial programming cost.

IXI. The suitability otAOh«Bnits~£or Data Base Error Handling

PL/1 On-conditions provide the thcility’for a program to

- -—gpecify a routine-which-should be-given cvontrol when error

or exception conéitions subseguently arise. My primary
condern is that tha ON-unit is specified by, and located
within, the executing program, and not with details as to
vhether the OM-units are static or dynamic, or whether they
are invoked by a CALL or a GOTO, etc.

QGil-conditions can be clasgified into thode for exceptions,
such as ENDFILE, those for fixable errors, such as some
CONVERSION conditions, and those for unfixable error such
88 wild branches or bad data. :

There are a variety of acceptable ways of handline ENDFILE-type
conditions which do not involve ON-units. I tend to prefer

. having READ return a null-valued record pointer, which I -
" would test with an explicit IP NULL statement. If, however,

implicit branches to endfile labels‘ar. desired, I would
much prefer to see them spacified, as in COBOL, as explicit

. label arguments in the I-O statements; or, perhaps better,

as attributes in the file declaration.

£2

Either such approach keeps the spacificaﬁion of endfile
actions closely asesociated with the specific file, which
seems desirable.

The main example of fixing up bad data is PL/l character
input, where blanks are often found in places where zercs
sre required. An On-unit can then translate the blanks

to zeroes, and retry the conversion. I would prefer to

ses such translations either built-in to the conversion,

or specified as an option on the declarastion of the specific
£ield. :

Thus, I would argue that exception~conditions and fixable
errors should be dealt with in the usar program, but with
such more rudimentary mechanisms thar On-units. That |
leaves unfixable errors.

There ars two possible actions for unfixable errors. One
is ¢o abort the program, and the other is to skip part of
it and carry on. The latter action is appropriate for
iterative type programs, where, for example, when one input
record is found to have unfixable errxors it is possible to
record that fact and go on to the next input record.

In abort conditions there are two actions which are required:
one is to provide a diagnostic dump of the program, and
that can always be implicit; two, is to determine what affect
on the data base the program failurs implies. For example,
the program may have been in the middle of updating a fils
or record, thus leaving it in an inconsgistent state.

In ékippabls error-conditiong there sre zlso two actions
required: one is to detexmine where in the program processing
should resume, and two is to gignal some outside agent
(either a human or a recovery program)

to handle the skipped transaction. It would seem appropriate
te handie the first of these actions in exactly the same

way one elects to handle ENDFILE~type conditions --- either
a label-parameter on the 1I-0O operation, or a label attribute
on the file declaration.

The remaining Question then is how to handle the recovery
actions which are required for abort conditions and for
skipped errors. Some form of ON-unit specification may
indeed be appropriate for specifying such actions. But
for reliability, it seems highly desirable that such
specifications not be made by the various application
programs, but rather be centralized, perhaps associated
with scheduler programs and/or with porticnsg or the
Gata-~base itself.

