Deduction of Inclusion/Membership Relations.

1. Confirmation of relationships without use of chains of equalities.

In this newsletter we ghall discuss the inclusion/membership analysis algorithms aescribed in su 130, justifying their correctness, and emending a number of inaccuracies concerning the use of equalities in inclusion/menoership analysis.

Note first of all that in wxiting a relationship orox, we assert that imaediately after o has Been evaluatec it has a value valo which stancs in the relationship R to the value valor calculated at the lad evaluation of ox prio to the evaluation of 0 . (Aserming that 0 and ox are not the same ovariable, this is the value which ox retains when valo is calculated.) similarly, in writing iRox, we are asserting that at the moment of its use 1 has o value equal to that last calculated for ox. The assertion essential to justi!ication of the 'elimination of relationshins' method of incluaion/menbership deduction sketched in wh 130 is that any set of relationships confirmed by this method of deduction (for brevity, we shall call. these 'confirmed reiationshins') is true.

For this assertion to be justified, we must iefine our deduction method clearly, and restrict it carefully in one particular regard. The aituations which make necessary the restriction to which we allude aze typified by the following example:

```
8* ...
s' = nt; f* Inve 2*/
(while ...)
    s=s less y; /* line 4*/
    x m= Эe;
    s' m s'with x; f* line 6 %/
```

end while;

In this code, the ivariable occurence of s in line 5 is linked only to the ovariable occurence of of s in line 4 . Thus we can be sure that ox \in os (where ox is the ovariable occurence of x in line 5.) The ivariable occurence of A^{\prime} (line 6) is linked only to the ovariable occurences of ε^{\prime} in IIne 2 and 6 , which we shall call os2' and os6' respectively. Since os $2^{\circ} \exists^{\prime} \in$ os (because the value of os 2^{\prime} is nl) it might appear that there was no reason ever to eliminate the pladsib!e relationship os $6^{\prime} \ni \in$ os, yet as a matter of fact this mar well be false since s is diminishing, perhaps to nl, while $s^{\text {i }}$ is increasing. The trouble comes from the fact that line 4 , which modifies 8 , can be exacuted between the time that os6: is calculated and the time that its value is used.

This makes it plain that our deduction algorithm shouid not confirm a relationship iRox if there exists an ovariable 0 Eud(i) and a.path from o to ox to i free of occurences of other ovarisbles o'E ud(i). Setting aside all special issuas involving the use of equality (these issues will be discussed Iater in the present newsletter) we can state the rules to be applied in this case, together with a number of other significant supporting dexinitions and rules, as follows:
A. Relationshins iRox and oRox can be confirmed either on vaius grounds or on atandard grounds.
B. A relationship iRox (resp. ofox) is confirmed on value grounds (which we will abbreviate $2 s$ vconfd) if either:
a. constant values are known for i and ox (resp. o and $o x$) and the relationship is seen to hold for these constant values; or
b. a constant value is known for i (resp. o) and R is seen to hold in view of this known value and the known type of the value of ox there an example would be $i=n l$ and ox a set, in which case $i \exists \in \operatorname{ax}$ can be vconfd); or
c. a constant value is known for ox, and R is seen to hold in view of this known value and the known type of the value of i (O o). (An example here would be ox $=$ ne, in which case we can be sure that $i \in$ ox is true.)
C. A relutlonshtp orox will be confimed on standard grounds (which we will abbreviate as sconfd) under the conditions explained in NL $130,1 . e .$, if appropriate relationships $i_{j} R o x$ involving the argument ivariables f_{j} of o are confirmed. A relationship iRox will be sconfd if the relationship orox is confirmed for ezch $o \in$ ud(i), and if, whenever oRox is sconfd rather than vconfd, there can exist no path from o to ox to i which does not paus through some other variable in ud(i).
D. Cases in which 0 and ox axe the sane ovariable require special treatment, and are probably best handied by not adaitting any relationship of the form oro as plausible unless it is time a priopi.

Given these rules, it is not hard to see that every confirmed relation is true.

To prove this, we envisage some run of the program P which we are analysing, consider the full sequence of ovariatle evaluations which takes place during this run, and let the n-th evaluation in this sequence evaiuate 0 .

We argue by induction on n_{*} If $n=2$, then o must be set either by a read statanent, in which case the set of corifirmed relationships orow will be null, or o must be set from a constant, i.e., from an ivariable whose value is known, and then cleariy each confimmea orox must be vconfa. Eut it is plain that all vconfi relationghips are true.

Now soppose that $n>1$, und first consider the case of a confirmed relationship ifox involwing one of the argument dwariables of 0 . If wconfd, thig ralationship is true, other. zise it is aconfa. Tho value of i. usedin evaluating o will. be that stored at the last preceening time that an ovariable $0^{\prime} \in$ ud(i) was encountered. Since iRox is confirmed, $O^{\prime} R o x$ zust also be confimmed, and hence either vconfd or sconfe. If o'Rox is vconfa, then o^{\prime} Rox must remain true when i comes to be used, even if the yalue of ox has changed since o^{\prime} was evaluated, aince if ox can change, o ${ }^{i}$ Rox must hold (as a reiationm ship between ovariable vaiues)
by virtue of the known value of o^{\prime} and the type of ox. If o'rox is sconfd, then by rule (c) above, the path from a^{\prime} to i cannot have passed through ox. By inductive hypothesis, o'Rox was true (as a relationship between values) at the moment that O^{\prime} was evaluated; since the value of ox cannot have changed, iRox must remain true (as a relationship between values) when i comes to be used. And now, since orox is by assumption sconfd, ... \because it is; when regarded as a relationship between ovarisble values, a logical consequence of relationships involving argument. ivariables, which relationships are known to be true. Hence oRox is true for $n>1$ completing our induction and proof.

The following is a practical technique for imposing the restriction that a relationship inox should not be sconfd unlesa there exists no $0 \in u d(1)$ and path o to ox to i along which no other $o^{\prime} \in u d(i)$ is encountered.
i. Ignoring this restriction, generate a preliminary estimate of the set of all confirmed relationships.
ii. Form the set of provisionally confirmed relationships iRox for which there exists an $O \in$ ud(i) such that ox can be reached from 0 along a path clear of occurences of the variable v common to o and i.
iii. For each such relationship, modify the text of the source program being processed by inserting an assignment $v=v$ into it and re-analyse data flow. If after this the ovariable of this assignment appears in ud(i), then iRox must be dropped.
iv, After applying rule (iii) to drop some collection of relationships iRox, proceed, much as in step i, to eliminate additional relationships untis a mutuaily confirming collection 18 obtained. By the preceeding proof, all the relationships which remain must nesessaril.y be true.
2. The use of chains of equalities.

Next let us consider relationships of the special form o eq ox, and the way in which the preceeding argument is changed if we allow reasoning by chaing of equalities.

Note first of all that, in the present context, the relationship oy eg ox is not symmetric. In writing oy eq ox, we assert that imediately after the evaluation of $O Y$, $O y$ has the same value as was last calculated for ox; in writing ox eq oy, we assert that immediately rafter the evaluation of ox, ox has the same value as was last caiculated for oy. Suppose now that ox eg oy has been proved, and that we also know that oy cannot appear on a path from ox to 0 that does not go through ox twice. Let valox (resp. valoy) be the value obtained when ox (resp. oy) was last calculated prior to some paxticular calculation of 0 . Let valoy' be the value obtained when oy was last calculated prior to the calculation of valox. Then since by assumption the value of oy is not recalculated between the caluciation of valox and the calculation of 0 , valoy and valoy' must be the same. Thus the relationships oRoy and oRox are equivalent. To fix our attention on this useful fact, we state it formally as a lemma.

Lemma 1. Let os eg oy be true, and suppose that oy cannot appear on a path from ox to o that does not pass through ox twice. Then if orox is true, so is oroy, and vice-versa. Next suppose that 0 ' eg 0 , and that ox cannot appear on a path from o to $o^{\text {e }}$ which does not go through o twice. Let valo be the last value calculated for o before some particular evaluation of 0 ", and let valox be the last value calculated for ox before valo is calculated. Then at the moment of calculation of 0^{\prime}. valox is still the last value calculated for ox. Hence if oRox is true, then o'Rox is true. Suppose next that o' eg o, and that ox cannot appear on a path Exom o to o! which does not go through o' before reaching o again or reaching a progran exit node. Then the value valo calculatel fox at some given moment is equal to the value valo' calculated for $0^{\prime \prime}$ when 0^{\prime} is next encountered; and between these two calculations neither valo nor the last previousiy calculated ox value valox will not change.

Hence if o^{\prime} Row is true, then oRox is also true. The following lemma summarises these observations.

Lemma 2. Let 0^{\prime} eq 0 be true, and suppose that ox cannot appear on any path from o to 0^{\prime} that does not go through o twice. Then
i. If pRox is true, then so is o'Rox.
it. If $o^{\prime R}$ ox is true, and if in addition every path starting at o must pass through o^{\prime} before it reaches o again or reaches an exit node, then oRox is also true.

It is easy to give examples which show that the hypotheses appearing in Lemma 1 and 2 are essential. First consider the code

```
\(8:\)
\(s^{\prime}=n \ell:\)
/* line 2 */
(while ....)
    \(s=\ldots\)
/* Inc 4 */
    if ... then quit;:
    \(s^{\prime}=\mathrm{s}\)
/* line 6 */
end while;
\(t=s^{\prime}\) less ...;
```

$$
\begin{aligned}
& * \text { Lie } 1 * / \\
& / * \text { line } 2 * /
\end{aligned}
$$

/* In e 4 */
/* line 6 */
-
/* line 8 */

Denote the ovariable occurences of t, the two ovariable occurences of $s^{\text {r }}$ (in lines 2 and 6), and the two ovariable occurences of s in lines 1 and 4) by ot, os 2', os 6', os, and os t respectively. and the ivariable occurences of and s° by is and is'. Then is is linked only to os 4, so 056' eq os t. Moreover is' is linked only to os 2' and os s' and since os 2' $\ni \in \cos 6^{\prime}$, we have ot $\exists \in$ os 6'. But ot \because eos 4 need not be true, since os 4 can be re-evaluated between the execution of line 6 and the next following execution of line 8.

As aecond exmple related to asma 1 , consider the code

> (while ...)

$$
8=\ldots
$$

if ... then quit;:

```
\(s^{\prime}=8 ; \quad / *\) line \(4 *\)
```

end while;

$$
t=8 ; \quad / * \text { line } 6 * /
$$

Let the ovariable occurences of $3,3^{\prime}$, and t be called os, os', and of respectively, and let the two ivaxiable occurences of s (in lines and 5) be called is 4 and is6 respectively. Then since is 4 is linked only to oss we have os' eq os. similarly, ot eq os. But ot eg og can clearly be false.
fext we give an example showing that if its hypotheses are substantially relased Lemma $2(i)$ may cease to be true. Consider the code

```
Ex ...
sy = n\ell;
    f* line 1 */
/* line 2 */
(while ...)
    s m sy yess ...;
    /* line 4 */
    sx = sx less ...;
/* line 5 */
    gy = Bx;
    *'=3; /* line 7 */.
* line 6 */
```

end while;
in which o. and zwarisbles osxi, osx5,osy2, osyb, os,os', isy, isx5, isxb, anc is occur (the reacer will easily identify these occurences.) Since isx6 is linkac only to osx5, osy69eosx5. Since osy2\#eosx 5 also (by vecnfirmation), we have osjeosxf. cleaxly os' eq os; yet os' $¥$ Eosx 5 may be Ealse since sx can binge (by the execution of line 5) after sis calculated (in line d).

Finally, we give a simple exarapie which shows that the second part of the hypotheses of Lemma $2(i i)$ cannot be substantially relaxed. Consider the code

```
x m ...
y=\ldots
1f y E z then
\mp@subsup{y}{}{\prime}=X
elae...
```

which may also be written

$$
\begin{aligned}
& x=\ldots \\
& y=\cdots \\
& \text { if } y \in x \text { then } \\
& y=y \text { oralternativel } y \exists x ; \\
& y^{\prime}=y ;
\end{aligned}
$$

else...

Then it is clear that oy' eq oy and that oy'Eox is true; however there is no reason why oy Eox should be true.

If we substitute an ivariable i for the ovariable o^{\prime} in Lemma 2, we obtain a statement which is also true. To see this, let the variable of the ivariable i be v, introduce an assign~ ment vv $=v$ immediately before the occurence of i, and let the resulting ovariable occurence of vv be called O^{\prime}. Then plainly iRox is equivalent to 0^{\prime} Rox for fll ox, while paths to i and paths to o^{\prime} are essentislly the same.

Equality relationships should be used in the following way to deduce additional relationships of membership and equality for a program F. We begin by calculating the class CREL 1 of all confirmed (i.e., vconfd and sconfd) relationships fcr p without making any special use of equality relationships. By the argument presented in section 1 , all these relationships are true.

Some of the relationehers in cate, nay be rozationsinge ot
 these relationships can be usea to confirm a still lerger set cREJ ${ }_{1}^{\prime}$ of relationships. Specifically, given a relationship orox in CREL_{2} or $\mathrm{CREL}_{1}{ }^{\prime}$, we
i. Add oroy to CREL ${ }^{\prime}$ if oy eg oy and there is no path from ox to oy to ox which does not go through ox twice:
ii. Add oroy to CREL_{1} " if oy eq ox and there is no path from oy to ox to o khich does not go through oy twice;
ifi, Ada 0^{\prime} Rox to CRFJ, ${ }^{\prime}$ if o^{\prime} eg o and there does not exist a path from o to ox to 0^{\prime} which does not go through o twice;
iv. Add o^{\prime} Rox to CREL,' if O eg 0^{\prime} and if in addition every path starting at o' must pass thru o before it reaches o' again or reaches an exit node.

It is clear fron Lemmes i and 2 that all the relationships in CREL $_{1}$ " are true. Next, using these xelationships, and proceeding as in section 1 , we can generate a still laycer family of relationships CREL $_{2}$, This is done as follows: we extend the definition of the term 'sconfd' by including any relationship orox ix CREL ${ }_{1}$ ' in the set of confirmed relationships; then CREL_{2} is the set of all relationships which are vconfa or sconfl in this extended sense. The family of relationships CREL ${ }_{2}$ can be extended to a larger family CBEL_{2} ' in much the same way as CREL was extended to CREL ${ }_{1}$ anc then a set CREL 3 can be derived from CREL ${ }_{2}^{3}$ etc.

A few relationships which would remain out of resen if no special use was made of relaticnships of erwality can be derived in the manner just explained. As an example, consider the code sequence

$$
\begin{aligned}
& s=\ldots: \\
& s^{2}=\{x \in s \mid \ldots\} ; \\
& y=\left\langle y_{r} s^{\prime}\right\rangle ; \\
& s^{n}=\left\{x \in s^{\prime} \mid \ldots\right\} ; \\
& u=y(2) ; \\
& x=\exists s^{\prime \prime} ;
\end{aligned}
$$

Here we have of 2 eg os', so that our eg: os'; and os" $\exists \mathrm{E}$ os', from which it follows that 0 " $\exists \in$ dou belongs to CREL ${ }_{1}$ (but not to CREL 1 , and that ox E on belongs to CREL, ${ }^{\circ}$ on the other hand, consider the sequence

```
E=\ldots;
Es=n&: /* line 2 */
(while ...)
    s=s less ...;
    s=s less ...;
    s=s less ...;
    s=s less ...;
    s=s less ...;
f* line 1 */
    /* line 4 */
    /* Line 5 */
    /* line 6 */
/* line 7 */
/ line 8 */
```

end while;

Here ovariables os, os f, oss2, oss8, ox, of, and our, and ivariables is 4, is, iy6, iy7, ix, in, and iss occur (the reader will readily identify these occurences.) It is readily seen that ox \in os 4, so that by \in os 4 , and thus on \in os 4 and os $3 \in$ os 4 all can be confirmed without any special use of equality relationships becoming necessary.

An inclusion/membership analysis algorithm may or may not decide to make special use of equality relationships; it is not at all clear from the proceeding examples that it is worth while doing so. If these relationships are exploited. it. will be necessary to find all cases in which 0^{\prime} eg 0 , and in which relationsinip oRox, o'Rox, oxRo or oxRo' holds, and where there also exists path from o to ox to 0° not going through o twice. This can be done with reasonable efficiency as follows: for each pair of ovariables such that O^{\prime} eq o is confirmed, find the set S from (0) of all blocks which lie along a path from O, and the set S to $\left(o^{\prime}\right)$ of all those blocks which are the origin of a path to o^{\prime} not going through o.
 xatatol to o ot mat the rnos we wam.

3. sure onpiey equafty rejationships.

Bessde simple pruality welatimenips o et ox we car

 be stated for fhese more generad cases:
 and suppost thet on cannot apear on ary peth from a to o' that bue tot so through o brice tren
t If orox is true, than so te on Row

 agzin or yeaches an exit noze: then okox is also trae.
ro prove Lemar 3 (i) first suppose ihat fis a sequence of
 caloulated for o before some partiouma evaluathon of c° whoth

Hence tf omox bs frue, we hate vanorioux and thas

Since 0 sow 4 s equivalent to $\overline{\mathrm{j}} \mathrm{Pos}$, and since o \bar{r} Row

rot only for sequences of component orpatore but ats for sequences of operators ot the form n, \vec{n}. and m.

Next consider Lemma 3 init fut supposing that n is of

 these two dandationg neither vale nor the last previously
 orCs: and heme 3 in follows imentiaceiy.
 suppose that os cannot appear or a path from ox to o that danes
 component operators, and let $\tilde{n}_{n}=n_{k}, \ldots{ }_{n}$, Then if of $\tilde{\eta}$ ox is true, so is okoy, and vice-versa.

To prove this, bet valor fresp, valoy be the value obtained when ox (resp. cyl was last calculated price to some paxtionlar
 same as valoy, end thun of \hat{n} ox and ono y are equivalent.

