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Deduction of:· In'olusio!}~f!Dbership Relations o 

1. Confirmatiori··ot relationships without use c>f chains of est1:1alities •. 
I ,..,,., • •• •. 

; ' ;) '"?i ~: 

In this newsletter we shall discuss the inclusion/membership 
. ,· . . . . . ' . ~,-1-+ .,. ··. . . •, 

analysis algorithms described in NL 130P jo.stifying their 
•• ' - I ' • ' - ' ' • .... ,, l . ! ') ~ :: 

correctness,·.· and· emending a number of inaccuracies concerning 
the·use of eqijalities in inclusion/membe~ship analy~is. 

Note first (lf ~ll that in ·writing a relationt:ihip oRox, we 

assert. that' imltiediately afte:.:· o has been evaluatel\it
1
·has a· 

value oalo whidh stands in the relationship R to the"value 
vaZo~ calculated at the laet evaluation of ox prio:: 'to th.s 

• ·- ' • <" •• • • ._., : • ..,: . • 1i· ·~ '. ; 

evaluation of 1·0. (Assuming that c and OX are not tl"\e ·same . 
C , • ' • 0 • '), ~ ;"': 

ovariable; · this is· the value which c1x retains wheri ialo is 
• i ("" .~, • ' ': : '. ;'.' • :·:· :- • •'•, • 

calculated.) . Similarly, in writ.ing iRox, we a:n! as·se·rting that 

at the m~ent of· its use .i has a ~•alue equal to tha{ 'iast 
calculated for ox. The assertion essential to j11sti:icaticn 

of the 'elimination of relat:J.onships' method of .i'ncilt:aion/me.mbership 
' 

deduction sketched in ~'L 130 is that any set of relationships 

confirmed by this method of deduction (for brevity, ·w~ shall 
call t.bese •confirmed relation.ships') is true. 

For this asserticn to be justified, we must tieflni:.~ our 

deduction method clearly, and restrict it carefully in one 
particular regard. The aitua.tio.r,.s which make nect:ssa::-y the 

restriction to which we allude are typified by the to.lowing 

example: 

s - ... 
s• - !!!_; I* line 2 *I 
{while 4 •• ) 

s III s less y; - /* line 4 *I 
X n -9&; /* line s *I 
s' = s' ~!.1:£ x; .1~ lirt<:: 6 */ 

end while; 



SETL-13CB-2 

In this code, the ivariable oc~--urence of sin line 5 is 

linked only to the ovariable occurence os of sin line 4. 

Thus _we can be sure that ox e os (where ox is the ovariable 
occurence of x in line 5.) The ivariable occurence of s' 
(line 6) is linked only to the ovariable occurences of~• in 
line 2 and ·6, which we shall call os2i and 0s6 1 respecti,rely. 
Since os2 e 3, e. os (because the "\l'alue of os2' is nt) it might 

. . - ' 

appear that t.here was no reason ever to eliminate the plaJsib~.e 
relationsh~p os6' 3 e os, yet as a matter of fact this may 

well be false since, sis diminishing, perhaps to.!!!,, while s 9 

is increasing. The . trouble comes from the fact that line 4, 

which modifies s, can be executed between the time that os6! 

is calculated a:ttd the, time that its value is used. 
This makes it plain that our deduction algorithm shoulcl 

not confirm a relationship iRox if there exists an ovariable 

o Eud(i) and a.path from o to ox to i free of occurences of 
other ovariableu o•e ud(i). Setting aside all special issues 

involving the use of equ.ality (these issues will be discussed 
. . 

later in the present newsletter) we can state the rules to be 
applied in this case, together with a number of other significa1~t 
supporting definitior~ and rules, as- follows: 

A. Relationshii;,s iRox and oRox can be confirmed either 
on value grounds or c,n standard grounds.· 

B. A relationship iRox (resp. oRox) is confirmed on value 

grounds (which we will abbreviate as ·oconfd) if either: 
a~ constant Vqllues are known for i and ox (resp. o and ox) 

and the relationship lt is seen to hold. for these constant valu~s; 
or 

b. a c~nstant value is known for i (resp. o) and R is 

seen to hold in view of this known value and the known type of 
·the value of ox (here an example would be i = n£ and ox a set, 
in which case i 3 e ox can be vconfd);_or 

c. a constant val·u.e is known for ox, and R is seen to 
hold in view of this known valu~ and the known type of the value 
of i (or o). (An example here would be ox= ni, in which case 

we can be sure that i e ox is truec) 
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C, i\ relat:f.onship oRo.x will be confirmed on standard 

grounds (which we will abb1:eviate as saonfd) u11der the conditions 

explained in NL 13~, i.e., if appropriate relationships ijRox 
involving t.he argument iva.riables ij of o are confirmed. A re

lationship iRox will be sconfd if the relationship oRox is 
confirmed for each o e ud(i), and lf, whenever oRox is sconfd 
rather than vconfd, there can exist no path from o to ox to i 

which does not paas t.hrough som~ other variable in ud(i). 
D. Cases in which o a.."'ld ox are the same ovariable 

require special treatment, and ar.e probably best handled by 
not admitting any relationship of the form oRo as plausible 

unless it is time a pPio~i. 

Given these rules, it is not hard to see that every con~ 
firmed relation is.true~ 

To prove this, we envisage some run of the program P 
·which we are analysing~ consider the full sequence of ovariable 
evaluations which takes place during this run, and let the n-th 
evaluation in this sequence evaluate o. 

We argue by induction on n~ If n = 1, then o must be set 

either by a read state..-rnent, in which case t..:he set of cor.firmed 

relationshipa oRox wili be null, or .. o :must be set from a constant, 
i.e., from an ivar.i.able whose value is known, and then clearly 

each confirmed oRox must be vconfd. But it is pl.ain that all 

vconfd relationships are tr.ue. 
Now suppose that n :> l: and first consider the case of a 

confirmed n:~latJ.on2hip iRo): imrolving one of the argument 

ivariables of o. If vconfd,, thi.1;1 roJ.ationship is t..rue. Other· .. 

wise it is u1confd. Th:si value o:f i. used in evah1a tJng o will 

be that stored at the last preceflding time that an ova.riable 

o' E ud(i} Wds encmm.tered. Since iRox is confi:rmed, oiRcx 

· must also he confirme.d, and hone!?! either vconfd or sconfd .. 

If o • Rox is vconf d, then o 'RoJt: must rf'lil,"-in true when i comes 

t.o be usedf even :lf the value of ox has changed since 0 1 wa.s 
evaluated, aince, :lf ox can change, o 1 Rox. must hold (as a relntion

ship between ovariabl,e values) 
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by virtue of the known value of o' and the ~ of ox. If o 'Rox ("', 

is sconfd, then by rule (c) above, the path from o' to i 

cannot·have passed through ox. By inductive hypothesis, o'Rox 
was true (as a relationship between values}· at the moment that 

o' was evaluated; since the value of o~ cannot have changed, 
iRox must remain true {as a·relationship between values) wh,m 
i comes to be used. And now, since oRox is by assumption sc·;,nfd, 

it is~ when regarded as' a relationship between ovariable val~es, . . 
a logical consequence of relations~ips involving argument ~ -

. 
ivariables, which relationships are known to be true. Hence 

oRox is true for n > 1 completing our induction and ~roof. 
The.following is a practical technique for imposing the 

restriction that a relationship i:Rox should not be sconfd unles,, 
there exists no o e ud(i) and path o to ox to i along which no 
other oae ud(i) is encountered. 

i. Ignoring this restriction, generate a preliminary 

estimate of the set of all confirmed relationships. c~-
li. Form the set of provisionally confirmed relationships 

iRox for which there exists an o e ud(i} such that ox can be 
reached from o along a pat.h clear of occurences of the variable 
v common too and i. 

iii. For each such relationship,.modify the text of the 

source program being processed by inserting an assignment v = v 
into it and re-analyse data flow. If af~er this the ovariable 

of this assignment appears in ud(i), then iRox must be dropped. 

iv. After applying rule (,iii) to drop some collection of 

relationships i.Rox, proceed, much as in step i, to eliminate 
additional relationships untD. a mutually confirming collection 

is obtained~ By the prec:eeding proof, all the relationships 
which remain must ne,::;essarily be true 9 

Next let us consider relationships of the special form 
o ~ ox, and the way J.n which the preceeding argument is changed 

if we, a_llow reasoni~g by chain.e: of equalities. 

L 
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Note first of all that, in the present. context, the relationship 

oy !9. ox is not symmetric. In writing oy ~ ox, we asser~ that 
immediately after the evaluation of oy, oy has the same value 

. • . I ,-· 

as was last calculated for ox; in writing ox .!::,S. oy, we assert 
' '~ ' . ; . 

that immediately after the evaluation of ox: ox has the same 

value as was last calculated for oy. Suppose now that ox~ oy 
has been proved, and that we also know that oy cannot appear 
on a path from ox to O that does llOt go through ox twice. Let: 

. . 

valox {resp. valoy) be the value obtained when ox (resp. oy) 

was la~t cal~lated prior to some particular calculation of o. 

Let valoy' be the value obtair1ed when oy was last calculated 

prior to the calculation of valox. Then since by assmnption 

the value of oy is not recalculated between the caluclation 
of valox and the calculation of o, valoy and valoy' must be 

the same. Thus the relationships oRoy·and oRox are equivalent. 
'l'o fix our. attention on this useful. fact, we state it formally 

(: as a lemma. 
Lemma 1. Let ox 5 oy be true, and suppose that oy cannot 

appear on a path from ox too that does net pass through ox 

twice. Then if oRox is tru.e, so is: oRoy, and vice-versa. 
Next suppose that o' ~ o, and 'that ox cannot appear on 

a path from o to 0 1 which does not go through o twice. Let valo 
be the last value.calculats<l for o before some particular 
evaluation of o•, and let valox be the la~t value calculated 

fo1: ox before valo is calculated. Then at the moment of calculation 
of o•~ valox is still the last value calculated for ox. Hence 

if oRox is true, then o'Rox ia true. Suppose next that o' ~ o,and 
that ox cannot appear on a path from o to•~' which does not go 
through o' before reaching o again or reaching a program exit 

node. Then the value valo calculate:! fox :) at some given moment 

· is equal to the value valo' calculat~d for 0 1 when o' is next 

encountered; and behleen these two c.-:t.lculations neither valo 

nor the last previously calculated ox value valox will not change. 
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Hence if o'Rox is true, then oRox is alf.~o true. The following 

lemma summarises these observations. 
Lemma 2. Leto' !!:I. o be true, and suppC>se that ox cannot 

appear on any path from o too' that does not 90 th.r.ough o 

twice. Then 
i. If oRox is true, then so is o'Rox. 

ii,, If o'Rox is true, and if in additi•~:in every path start

ing at o must pass through o' before it reaches o again or 

reaches an exit node, then oRox is also b:'tt(?.. 

It is easy to give -examples which show that the hypotheses 

appearing in Lemma land 2 are essenti.al. First consider 

the code 

8 - • • • I* line 1 *I 
a• • nJ.1 /* line 2 */ 
(while • 4 • ) 

s - • • • /* line 4 */ 
if . . . then quit; 1 

a' -., /* line 6 */ 

end while; -
t - s' less ... , /* line 8 *I -

Denote the ovariable occurences oft, the two ovariable occurences 
of s~ (in lines 2 and 6), and the two ovariable occurences of 

s (in lines 1 and 4) by ot, os2', os6', osl, and os4 respectively, 
and the ivariable occurences of s and a e by is and is'. Then 

is is linked only to os4, so os6' ~ os4. Moreover is 1 is 

linked only to 6s2' and os6', and since 0s2 1 3 E os6', we 

have ot 3 E 0s6 1
• But ot3€os4 need not be true, since os4 can 

be re-evaluated between the execution of line 6 and the next 

following execution of line 8. 

C 
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As a sacond e.Y.:entple 1:.-elated t<'1 r.emma 1, consider the code 

(while .... } 

S a •.,. 

if ••• then quit;; 
s' 1111 s; 

end while; 
.t a:; s; 

/* line 4 */ 

/* line 6 */ 

Let the o .. .rarJ.able occurences of s, s', and t be called os, os 1 , 

and ot respectively, arid let the two ivariable occurences of s 

(in lines 4 and 6} be called is4 and is6 respectively. Then 

since is4 is linked only to os I we have os' .~.S. os. S.imi larly J 

ot ,!g_ os~ But ot ~ os' can clearly be false. 

Next we give an example showing that if its hypotheses 
are substantially relaxed Le.rnma 2(i) may cease to be true. 

() Co;nsider the code 

ex• ... 
sy = n.1; 

(while ••• ) 

s • sy less 
sx = sx less 

sy • RX; 

-s• • s; 

end whi.le; 

. 
• ~ • t 

. 
• • • I 

/* 
/tt .. 

/" 
/* 

I* 
/* 

line 1 */ 
line 2 */ 

line 4 */ 
line 5 */ 

line 6 */ 
line 7 */ 

in which o-· and i·lf~.Tiables osxl, osx5 .,o.sy2, osy6, os ,cs' • .isy, 

isx5, isx6t and i..ei occur {the reader will easily identify these 

occurences.) Sinct':: isx6 is linked only to osx5, osy6=>Eosx5. 

Since osy23Eosx5 also (by vccmfirination) , we have os3Eosx5. 

Clearly os' !.~ os;· yet os '3Eosx5 may be false since sx can change 

(by the execution of line 5) afters is calculated (in line 4). 
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Finally, we give a simple example which shows that the 

sec,ond part of the hypotheses of Le..rnma 2 (ii} cannot be sub

stantially relaxed. Consider the code 

X • .... 
y - " .. 
if y EX then 

y' = y 

else • o e 

~hich may also be written 

X • • • 0 

• ft • 

if ye x then 

else .•• 

y a y oralt!,!nativel_y 3x; 

Y' • Y1 

Then it is clear th-15.t oy' !s. oy and that oy 'Eox is true; however 

there is no reason why oy Eox should be true. 
If we substitute an !variable i"' for the ova.riable o' in 

Lemma 2, we obtain a statement which is also true. To see thi&, 

let the variable of the ivaricble i be v, introduce an assign

ment vv ~ v immediately before tl'1e occurence of i, and let the 

resulting ovariable occurence of v"V be called o'. Then plainl1 
iRox is equivalent to o 'Ro:<. for all ox, while paths to i and 

paths too! are essentially the srune. 

Equalit.y relationships should be used in the following way 

to deduce additional relationships of membership and equality 

for. a program F. We begin by calculating the class CREL1 of 

· all confirmed C.i~a .. ,vconfd a.nd sconfd) relationships fer P 

without making any special use of equality relationships. 

By the argument presented in section 1, all these relationships 

are true. 



0 

0 

"' Some of the re1ationshi.p~; :, n CFE~., .. m,',y h:: :r·::l ·,t:i.ons;,i·;,,::, n:': .,_ 

equality. By applyi.ng the principles embodle.d in Le.r::.:va J 

these relati.onsh·ips can be \lSed to confirm a still larqer set CREL1 ' 

of relationships_, Specifically, give:~ a rela.tlonship cRcn·:. 

in CREL1 or CREL1 ' , we 
i. Add oRoy to CREL1 ' if oy ~ oy and there is no path 

from ox to oy to ox·which does not go through o:x: twice; 

ii.. Add oRoy to Cf<EL1 '. if oy ~ o:x-. and there is no path 

from oy to ox to o yhi.ch does not 90 t.hrough oy twice;_ 

iii. A.dd o 'Rox to CRF.L1 ° if o' !':Sl o and there does not 

exist ·a path froro o to ox too' -which does not go_ through o 

twice; 
iv. Add o'Rox to CREL1

1 if o ~ o' and if in addition 

every path starting ,at o' must pass thru o before it n:~aches 

o' again or reaches an exit node. 
It is clear from Lemmas land 2 that all the relationships 

in CREL1 • are true. Next, using these relationships, and 

proceeding as in section l» we can gene,:ate a s.till la.~ger 

family of relationships CREL2• This .i~ done as follows: we 

extend,$.~-definition of the term 'scol'\fd~ by-including any 
. "' .. , .... ,... . . 

relatio_nsh.ip oRox ir. Clmt1 ' in the aet of confirmed relationships; 

then CREL2 is the set of all relationships which are vconfd or 
sconfd in this extended sense.. The fantily of relatior,ships CREL.., 

' ~ 

.can he extended to a larger family <;REL.,' in m"9ch the same way as ... 
-CBEL1 was exterad~ to .CREL

1 
e and then a set. CREL3 can ::,e 

derived from C:REL2
1 etc • 

• 
A few relationships which would re.main cut of rea~h lf no 

special use was made of relationships ('1f equality can be derived 

in the manner just explafated. As an exarr.pl~ r conside:: th €' 

code sequence 

s II: . . . . , 
Ba =· {x e sj ••• ); 
y = <y,s'>: 
sw = {x e s 5 ! ... }; 
u = 1· (2) j 



Here we have oy 2 ~ os', so that ou ~: os'; and osn3 E os', 

from which it follows that os" 3 E au belongs to CREL1 ' (but 

not to CREL1}, and that o.x E OU belongs,to CREL2· On the 

other hand, consider the sequ~nce 

8 = . . . ; /* li11e 1 */ 

BS • !!.!: /* line 2 *I 
,f 

(while .... ) 
s = s, less . I* line 4 */ - • • ._ I 

X Ill :+s; /* line 5 *'' I 

y C: <y,x>; 1• line 6 */ 

u R y(2}; I* line 7 */ 

sa = ss with u; - I* line 8 */ 
end while; 

Here ovariables osl, os4, oss2, oss8, ox, oy, and ou, and . 

ivariables is4·, iaS, iy6, iy7, ix, iu, and iss occur ( the 

reader will readily identify these occurences.) It is readily 

seen 1~at ox E•os4, so that oyi E os4, and thus ou E os4 and 

oss * os4 all can be confirmed without any special use of 

equality relationships becoming necessary. 

An inclusion/membership analysis algorithm may or may 

not decide to make special use of eq·ua,li ty relationships; it 

is not at all clear from the preceedi.ng examples that it is 
worth whil~ doing so. If these relationships are exploited, 

'JI ·--

it. w111 be necessary t.o find all cases in which o' ~ o, and in which 

relationship oRox, o'Rox, oxRc <~r oxRo' holds, and where there 

also exists a path !rain o to ox to 0 1 not going through o 

twice. This can be done with reasonable efficiency as follows~ 

for each pair of ovariables such that o• ego is confirmed, 

find the sets f (o) of all blocks which lie along a path 
. rorn 

from o, and the sets (o') of aJ.l those blocks which are 
to 

the origin of a path too' not going through o. 

0 



-~·, ~r ~~ "./ ·.;- r:. r:~; t"; e.f·; __ ...,_ ~; l 0)( • 

···~ oper:~to.rs n arid perha?<:< al30 0, f!nd n; f;:~ly (::irrq:<r,c::t r.,:r--".--C::J.tc,~:s 

e:r c ~:--r:~ true, ... _,.. 

0 
i::rne, 

component op~ratnrs: n z n .• , • n\, .. 
. l "' 

i.m. 

l 



and since o ~ Rox 

net only f1:;1· se<rJPnces of:· ccr:,.pon~r1t c,p<!rato:r!:: t:,i.::t . .::}.so for ::;eq~enceB 

of operators of the font•. r.~ ni .?.r;d '"· 

these two <J~lc1.:.l,,tion~ neit1.1f::!:' v,J.J('., nor t.hn J..a!',t previ,;..,.,Jsly

calculateii n:x: v-aJ.uP V,'.llcx 1.:,iJ:;_ C-hanqe. Hertce 0 1
,ff;:;~~ i~np1ie::, 

not pa~t s th::-u o.:1r t'l.l ice~ Let 1, -· of 
.-_, 

compor1ent. op~ratorR ,· and let 11 ... 
... .., 
11 OX 

is true, so is •:>Roy II and vice-versa. 

To prove this, let valo.x t;;esp. valoy) be the value obtcined 

when ox (re.sp .. cy) was last calctilate<l prii:.·,r t0 sorr.e p:'-~rtic111.ar 

0 

i 
' 


