
SETL Newsl~t~er 131

Hore on _Cop~_Qg_tirni~ati,on of SE'rL Programs

1. ,. In troduc_ti ·-:?n.

June 7, 1974

._T. s chwartz

SETL is by defin:l t.ion a "value II rather than a poi.nt.e1:

languagE-?. 'rhis c:tn force SETL objects to be copied ccnsid­

erably more often than one would like (see NL 57}. It is

cllerefore iml?o:ctant to find ways to reduce the number of

copy operations that appear in the compiled from of a. SE'l'L

program P; indeed, this may be the single most importa.nt

optimization that can be applied to P. The present

newsletter will describe a method for analyzing SETL p'.".:"ograms

to find con.texts in which copying can be omitted. This

r;1ethod,. which is purely static, can also be applied in

connection with the partly value, partly pointer sema,,tics

of the present SETLB system to detect possibla deviations

from strict value semantics E!.!ld issue appropriate warnings ..

An analysis of the kind we envi1:rnge might also be capable

of producing information which makes it easier for a SETLB

user to improve his pr.ograrr.s by inserting explicit

operations at a few crucial points.

A program P to be analy ze:C:. i~; ass wned to be schen;a·.::i zed

in the manner :escribed in NL 130, i.e. to be represented

as a. collec;.:ion of basic blocks, each block consistin'] of

schematized instructions which we will write either as

o:i.: in infix or .in c>..ny other. c,::ii).venient form" As in NL 130

in i target 1 :)o:o: i tion within an ins tru.ction (l} as an ,:::,, vm,i ·:b 7.f

··•1d to ,~ C">'' --- ~ J"" c,..·cl·1r·re11·,,-::, 01·· " v=-1··i a1-le 1.· ; r• -r-gt1·1·'-"11t '"• .• V, .c,e,·-··-.l.• .. ,.. .:\, . . -.,...;: .. C,. ,_. •• ,- ,~• , • j .. La C'-... . l (.;:.

F0S:_ti::n v,i..V,-j_s. an opt::·ratio:r. u.; cd~ an ·Lva1-.{r,,l;Z?-., An

C

l

1 I,ons' SETI. objects are always· accessed v.ia 'root wordf·'

or 1 :coot poi.ri.t(.rs I which point to t:b.e memory bJock :~n wld.r'

the act:i:!al re.presentation is s t.cred. If b.:> s.i.mplify t:h:l. r;g~,

•-,P abstr:act from ti1a a(Jtion of SJ:'l'L I s garbagl\';; collector .:iD<'

ussum,~ an infinite a.mount of merr,ory to be available, th,::11 Uir:.t'•?.

pointers. can always be taken t.o contain unique adresses, ?.red

t.c be ::.n 1-1 correspondence with SETL I values t,. It i.s then ~-n lJ

to thi1,.k of each pointer as po:(n.ting to its 0·1-m pr:iv;:1te

~segmerd·c # J.n.fin.ite in l~..1gth 1 w:i.tJ1in which an indefinit.,"'Jy

'f=-r•,,..e ,'j-:-:.~·':' .!,i.. .. .,,.,., ma•r be b·ui.1.•,.,_ ·w• :J11e,...."' 'lL"·-:g 1 s~·~,L r,b·•";'d'>·:· c.t ... ~ i.,.], t..a .. i. \.,,C.t.d. ::r l,.. L\ttf. ;-ilj,fl '0.-,1, c.,tJ:... ... ~- J., J

is madEo. pa:rt of a SETL composite c (either ,1 set or a tuple:. l

we very much prefer to insei:·t i's 'root pointer' 1-1.; into c

wi t.hout copying; the same remark applies to simple assigE,r:r:0 t:.:-;

which transfer the value of one variable to a.nothe;.:-. If ·U:i.i.H

is dom~,, then rp may be extracted later, and used; :tf t.h2: ~"'-::J,:

of value semantics are to be adhered t.o, we must be sure

that rp sb..11 points _ to a memory block rep:l'.esenting the value

. io The problem we face is tn harmoniZE-; this requirement wi tb.

onr dHsi:r-e tc :Lmpro11e t'.: f fic:Lex:cy '.-;'het'H:C\:·e:.: po~:;~ible by

modifying existing data. objects .:~a.the1:· tirn.n by conti.rn .. ,aJ:.:.y

a = s with x;

·;"" ~-. -~ ~­._, ;.: ·-· ..,,

E!SpE:Ciillly wl"ien t.115.s instruci';:.j_on ::.:pp'-?i:trs wi t.h.i.n a loop. 'I"- ,_e;

instxuction {2) can be irnplea,,:mted in one of t.~vo ways: eitYE!)~

c::;,rrespond.:..:•1gly a ::-•-'=''"" pointer · .. c ~ hL-=: 6.~t.'l c-i:'>je,-;t); er ,:'.·1

modifying ·.:ht:, b::.:idy :~f ~, (by· ;ins:s,rt.ing x ·into this lic-dy),

3

SETL 131

relationship between p and the SETL value which it form.erly

represented. We must guard against destructive poinb~r uses

which have unanticipated side-effects; to do so, we m,2st traco

the direct and indirect flow of pointers through P, from the

points at which a new memory block is allocated and a new

pointer p is created, out to all the objects which come to

incorporate p, and out to the places~at which we finally

decide to use p destructively.

The central idea of the scheme to be -developed may be

put as follows. When a pointer p becomes the value of an

!variable i which is used destructively by an instruction cp

of a program P, any object into which p may have been

incorporated might Wldergo nnanticipated side effects. We

therefore aim to determine the set t(i) of all ovariables o

o·f - P who11e current values might possibly incorporate p;

destructive use of p is possible only at program points at

0

which all these o are dead. We find i (i} {or rather an upper c~·
-bound for it) in two steps. First we determine the set

e.:tsinthis(i) of all instruct.ions which can have been

executed between the time at which the pc.inter p was created

and the time p became the value of i. Then we determine the

set of all ovariables into whose value one of these

instructions may have inserted p1 this gives us (an upper

bound for) .i (i) •

'l'h.e technique to be used assumes that P has been

subjected to a pre~.iminary 'da.ta flow analysis' or
1 definition chaining' which fo::: each 0°1ariable o supplies

the set du (o) of a.11 variables which can use the value

stored by o, and for each variable i supplies the set

ud (i) of all ovari.ables which can store the value used by i.

The operations for which we may wish to use one

argument destructively S 1J'1 th X ' s less x v s lesf x

s (y) = x where ;:; is a set, s (y) = x where s is a t1.1ple,

0

SETL 131

s ·- t . Howe-;er·, r,::.ther than conf1~ont.ing this ful: .. r,_msrc: c;;,

possibi 1i ties imrnediatf..=ly, we simplify e,ur discussion

!especially in Sect.ion 2 below) by ignoring tuple opera.ticnr,;

comp.let:el.y, and by c1.ssmning that the only four set-theoretic

opera.tions which appear in our schernatized programs are

s+t., s-t~ {x},, and 36. Note that this does not actually

restrict the generality of the set.··thec.n:etic co;,1structions ·,•;e

are able to handle, as the other set-th~oratic operations , n.n

be expressed in terms of these four primitive cnes. Of coln::ser

in a I product.ion I implt=::mantation of the algori. tluns to be

described below, we might well prefer .:m ope1:at.ion a.s

important as s{y} = .x to have a direct ratl1er than a

con.tingf.:mt representation.

Extension of our schemata and algorithms to handle tup1e

operations is routine, and the necessa:r.y extensions a.re

described in Section 4.

IntencEnsr to d:.scover the places :in a program P at wh5.·::h

destructive pQinter use will be legal, we begin by asHumi n~;

that pointers a.re never used destructive1:> 'Izrns, 8,9.

we assw.ne th.3 t a copy of s iu ge;neratod when ::he S-S!ts s+t

or s·-t •ire ca.1c·~\lat~,a.. Each copying opeJ~;ition gene:cat(!S a .>ew

pc-inter, so t'iat we reckon each op,?r~t.ion such c.~s ::c;+t or s··-;

to be the op1'.q-£n of a r-ew pc,inte:r; the poi.nt2•r poi.~·if.s t) trv

d;,,ta 'body; uhich :represents s+t m: s--,-. On the 0U1<~r hand

a.r. Gp';;'..rJtJo:·r s:.wh as {x} is assnmPd to Tt.3ke l.1Ee e,f 2111 cJ.d

SETL 13]

In some cases, we may want to ·call explicitly for. the

formetion cf a. copy of s. We assume that im operation copy (0,.f

is avai.lru':>le for this purpose,. '11his J.B as·i-rumed. to generat.e

a 'single level 2
, and not a 'full' copy in the sense ju~.\:

explained. For generating full copies explicitly, we might

provide an operation fuZZaopy(s). A 'fully independent copy'

generating op"lration close to this is in f.~ct called into

play when a 'read x' operation brings in a SETL d~ta 0bject

from an external medium. In what follows WE shall rep .. "'.'.'es:ent

operations like .read x as schematic assignme.•nts x = dcr;a;

where data is an operato.r that creates an object1; perhap:,,

composite, but having no pointer in comrr.on with any prior

object.

5

2. Systems of Equations Describing t~.1e 'I'rans1viission of Pointers.

Let i b6 an i .. .rariable and h~t o be an ovariable of P~

Then by arthie (iJ (resp. crthis (c)) ·4e mean thE. set of all

variables which can create an object which at SOI•\e moment

in the execution of P becomes tt,~ curr\~nt value of i (resp.- o).

If the va1l~€ of i or o can be a set, then by crmem;i (·i) (resp.

crmemb (o)} we mean the collection of a11 ivariabJ·~s j whose

values become incorporated as m1~mbers into a set ·,rhich at

some moment i.n the execution of P becom1.?.s the cur.,·.ent value

of :L (resp. o; • We classify the operations occurri:- g in

P, and their. associated variab13s o, as follows:

transfer operations:

null operations:

inclusicn operations:

extraction operations:

da~a op~rations:

op::"!ration:r- ~

copy operations:

other 2l0ebr<lic 0perations:

o = i1i·

o = n_~;
o=- {i1 L
o = ~il;

o === dat.a;

0 = i,+i2;
.J.. •

() =
o == copy ':1 ,) ; .,

0

(__.:

S"i:.'TL 131

To define tJ-;.1t cne of these seve:::.:i::~ classes to which th11

operatio~1 Le :U.n5.ng o b~~longs, we :-::hall wri tt~ a.n appro1:.::·i. ,c,, ,,

one of t:.ho p.·::ed:Lcat.es transf(o)., nuZZ(o)s inc'l(c)., ext;x·(,)_,

data(o}~ eeta.l..g(o) 1 copyop(o)~ othe:::(o) .. When we wish ·c.o

distinguish i 1+.i 2 from i 1 ·~i2 in the setaZg case, we shall

write setatgp Ze (o) and setalgmns (o) respectively.

A synt.em of equations defining the seta crthis {:i.),

c:.:this (o) , crmerr.:b {i), and c:cmen-ib (o) results f:rorr. the fo1101•.•.,.

ing cCJnsideratic.ns. Let i be an iYariable. 'l'hen

(1) crthis(i) = [+: o E ud(i)) crthis(o);

ci"lilamb{i) = [+: o E ud(i)J crmemb(o};

Next, let o be an ovariable, and lE:t i 1 {or .i1 and _; 2) be

the arguments of the operation defining o. Then o belongs

to crthis (o) • Moreover; if transf {o), then crthis (o} includ,~,::1

crthis (i 1). If extr(o), then crthis (o) includes

[+: iEcrmemb (i1)] crthis (i) • Similarly, if transf (o), then crmemb {o}

i?cludes crmemb(i 1). If incl(o), the? crmemb(o} is {i1 }. If alspls(o} ·

then crmernb(:L 1) + crmemb{i2 } is ~.nGluded in crmemb(o) i'

if algrr.ns(o), then crmemb(i
1

) is included in crmemb(()J.

If copyop (o) , then crmemb (o) includes crmemb (i
1

) • If data { (,, ,

then cr:mern.b (o) is { ~:} .. Finally, if extr (o), then si . .nce

the valu.e of any i E crm~(i1) may be tram;mitted t.o ,),
' f 11 t1 t mb (' • . E mb { .) - ' . . ' J. t o ows .Hi crme .o 1 = t+: 1 crn,e 1 1 J cnnmr:'J ~ J.} •

The following eq..:1atiom:: in SETL notation e:l\.-p:t::t!Ss e1es:e f,,ct:::,,

(2) crthis(o.: = if tra71sf {o) t.1-:ten crthis (argJ..(o);

e1se if extr {o) then ,

t + ~ i.Ec·r-mernh (ar_gl to))] crthi:; U.)

crmer!lb (o) -- J f t.rm).sf (o) ~:?E. copyop (o) then crme:1.b (2;.rql \ <•:
f.:lse if incl(o) then {argl(o)}

SETL 131

In these equations, arg1 and al"g2 are tL""lderstood to trans­

form o into its first and second arguments. 'fhe system of

equations (1) and {2) ar.e, in an obvious sense, monotone in

their right-hand sides, and can therefore be solved wi t.i'lout

difficulty by ·a convergent monotone iteratioff process.
We keep a 'workpile' which always contains those i variables i

and ovariables o for which some value crthis(i), crthis(o),

crmemb(i), or crn~mb(o) must be adjusted (necessarily

upwards). Equations (1) and (2) are used when an adjustment

must be made. The map du{o) is kept available, as is a map
aux(o1) · sending each o1 into the set of all !variables i

7

0

which are arguments of an operation of t.lie form o = 3 i a.nd

for whi·ch o
1

E crmemb (i) . Whenever crmemb (o
1

) is adjusted,

all i E du(o1} are put back on the workpile for readjustment,

as is every o which is the output cf an operation with argument

i E aux(o1). Whenever crmemb(i) is adjusted, the output of

the operation of which i • is an argument is put back on the (-,

workpile. Moroeve~ if this op~ration has the form o = 3i,

then i is added to aux(o1) for each o 1 newly added to cnr.emb (i).

This adjust.ment process convergas when the workpile has become

null, at which point our determination of the maps crmemb

and arthiB will be complete.

By cz,pa:r>t(i) (resp. crpart(o)) we mean the set of all

ovaria.bles which. can create an object which at some mornen.t

in the execution of P becomes a part, iee. either an object

ic1entical with, or a member, or a member of a. member, etc.

of the current ·value of i (resp. o). l~quations analogous

t0 (1) and (2) C!,J.n be stated for ar>part, .and these turn

out t.o be al.most the same as (1) and (2). The principal

l . ff . . l th t t' ' t · 1 <t-- .- ' ' c 1 .. ··erence J.s s:unp y .a . crpar ,o! co;1 ·a.1.ns o un ess rc1.x:.sr \0_,

e,:tr (o) r and tha.t. if incl (o) , then crp2.rt (o} .:i.nc.ludes

bot.11 ,:;xthis(:L
1

} and crpart(1.
1

}.

following equations:

or

(,J;\ -2:x:p,u~t.: {ij .. [+: o E: ud (.::.) J ,:npart (d t

crpc-11::t(u) -· if t:cansf{o) then cr.p(:1::t{arg1.{o})

else if extr{cj then

[+: ilEcrmeml:Hargl (o))] c1.-part (il)

elae {o} ...

if incl(o) .then crpaxt(argl{o}) .. ~-:_. ,, ,), .

else if algp.h: fa) t."len crpa1~t (a:rg:~ (o}}

+ crpart(arg2(o));

else if alg)jms {o) or copyop (o}

th,m crpart (a:cgl {o)}

else nt;

Once crm,?-mb has been calculated, these equati.one can be

solved by a f>tr.:::.ightforward monotone convergence p:roceduxe,

Let us t:G'i-: define e:csinthis(·U (reso .. ea:sinth-tt, (o})

for iva:riab1es :i (resp. ova1:ia.b1es 6) as follows~ exsi:nthi.3 (i

(r.es9. e:.i:sinthis (o)) is the f.H~t of all j_nstr,1ctions ,::Yoecute.-1

in much the

is the

SE:TL 131.

{4) exsinth:i.s{i) - chainback(i) + .[+: o E ud(i)] exsinthis(o); 0
exsinrne:-ab(i.) = chainback(i) + [+i o E ud(i) J exsinmemb(o;;

exsi.npart(i} = chainback(i) + [+: o E ud(i)] e.xs.inpart(o);

Uext, let o be_ an ovariablet and let i 1 (or i 1 and i 2) bf':

the arguments of the operation defining o. Then o belongs

to exsinthis(o). Moreover, if transf(o), then exsinthis(o)

includes exsinthis(i1). If extr(o), then exsinthis(o)

includes exsinme.rnb(i1). Hence we have

(5) ~xslnthis (o) = {o} + if transf (o) then exsinthis (argl (o))

else if extr(o) then

·exsinmemb(argl(o))else nt;

Si.milarly, o belongs to exsinmemb(o). In addition, if

transf(c} or copyop(o), then exsinmemb(o) includes

exsinmemb(i1). If incl(o), then exsinmemb(o) includes

exsinthis(i1). If algpls(o), then exsinmemb(o) includes

(~xsinmernb (i 1 } + exsinmemb (L,}; if algmns (o), then Q
~ ~

exsinmamb(i1) is included in exsinmemb(o). If extr(o).

then the set exsiwnemb(i) is included in exsinmemb(o); moreover,
if i.

1
is the variable of any operation in crmemb (o)

(tnese i,1 necessa.rily belong to exsinmemb (i)) then the

set exsinrnemb(i,) is included in exsinmemb(o).
·'-

Hence we ha V•:

{ 5'} exsinmemb (o) = {o} +if tra.nsf (o) or copy op (o)

then exsinmeirsb (argl (o))

else i.:: inc) (o) tl1en exsint.hi.s (argl {c,})

else if ,ilgpls {o) ther, exsinrnemb (arg·l (oj) +exsinmemb (arg2 (o))

else if algr,mE' (o) t..hen exsi~memb' (argl {o))

else if: e:,xtr (c,) t.h£m exsinnertb (a.r-gl (o)}

+ [+ ~ i., E crmernb (arql (o}) J exsi r1memb (i 1 }
.L -

else !Li; c,

0

l·

SE'l'L 131

wh.ii.ch sta..;id in the same relationship to (5') ar {3)

the second 1~qua.tior. of (2). 'l'he main chan<;e to b:s•

is thatr if in:::l (o) , then e:icsinpart (o) includes both

noted

and exainpart(i1). Moreover, in the case extr(o),
exsinpart{o) c-:?.n be defined simply as {o} + c~xsinpart(i1 }.

Making these changes, and the ·other more routine chc,ng.;;;s

that are necessar.t, we co~ to the following equations.

{5"} exsinpart {o) = {o} i· if transf (o) £!: copyop {o) or incl (o)

then exsinpart (argl. (o))

llJ

else if a.lgpls (o) then exsinpart (arg}. (i)) +exsinpart { arg? (c) }

else if algmns(o) then exsinpart(argl(o))

else if extr(o) then exsinpart{argl(o))

else nt;

Once oPmemb has been calcula.ted, the system (4~5,5 1 ,S'")

can be solved by a straightfor,.,.,.ard monotone con•teJ:-geEce

procedure.

We are no,;,,' rea.dy to determinf: the set t (i) of all

cvariables o vhose current valu,2s might po:3sibly incorpor?.te

the pointer p which is the c:urrent. value of i. The

operations whic:h have been ax,~c1,t.ed since p was c:reated

constitute the set P. = ex.sinthis (ij ; the ocerations ,...,,t.icL J. ~

may haw~ creato<l n consti tu::e t::b;.:, set crtJ1Ls (i}. bivsn o.

function cc::-j,Jart._ {o) as fo1.J..ows; c .is an

,..rpa~·t io) -~ ~ J-
1:1·.c ~.1.c,'11 t· of· rr1·l'"1' -- ·" t'·e·

,..- • .L. ~ ·- \ ·'- ,c, ,.I <.! A;:, ,~... - - ·"' . .. • l, ~ l ,; .. ,

ovari.a.ble

equ? t.i on•,;

C' -{' T_> ...,..,..,._ J.. ;

-,
after ~cplacinu each·occurrsn~2 ~f ud(i) b) an occ~rrencP

of ua·{.,.) n :; , .\Jote tha.t. th:ts ho:--, :;n:,,;ci::-·c:.ly -::h~~ eLfr::,ct ·:-:f

SE'rL 131

crpartp. {o) n ex-this (i) r1 nt •
l.

which is of course equivalent to
-l

(7) o E crpar~. [crthis(i)] •
l.

Hence, we may state the following condition.

Destructive Use Condition. Let i be an ±variable of ~.

SETL program P, and let Pi= ~xsinthis(i). Then if eve1:1 o

belonging to the set crpart;'~[crthis{i)] is dead immediately
before the i is used (where -ift describing an ovariable

as dead we ignore its immediately following use as i)

then i may be used destructively.

The following considerations illuminate an importa.~t

aspect of the Destructive Use Condition. In the
pages we have imagined that each pointer used at the SETL

implementation level references some unique memory segment,

and that a new pointer,wi.th its own segment, is created

each time a va.1 ue creating operator (such as o = !!~i o = {: ~}-;

o = data; o = i
1
+i 2 ;) rather than a value-extracting or

value-transferz-ing operator {i.e. o := ;. 1 or o = i 1) is

executedo Now suppose that for some reason we decide to

generate fewer pointers than would otherwise be required
by re-using pointers where possible (in effect, performing

an abstract kind of garbage collection). Plainly, a pointer

p becomes available for re-use as soon as every object. which

could either be equal to p or contain p as a subpart i.s dead;

we shall say in this situation that p is totally dead.

lfioreover, by re-using a pointer. p which is available for

re-us0, instead of gene:ratir:g- a new pointer, we do not change

aaything which could possi.b]y be visible at th,, SE'TL l~v,~l;

s 11ch r<',-1Jse is as fully 'tr.,:zn:Fparent' as a.1). other

92rb2:.ge-collector i'tcti vi ty. r•tna lly r ·:•1 f.c need not di stir:guistJ

11

C-

0

(_,

~3ETT., 131.

::m opErator o = {i.} or o = i,+i
2

~ay for all purposes b~
.l. .1.

cr:r·1sidered to gen,-n:ate t...'1e pointer p referencing- the va1 :;e::

{i1 } er :t 1+i 2 which is formed, c.nd this irrespective of

y"'•hether p is in fact re-used or newly generated~ In

particular by re-using totally dead pointers we cannot. nffeet

any of the infcirnrn.tion which enters into a decision as tc

whether t.he Destructive Use Condition is or is not sat.isfh::d.

;1:t soma particular point of a given SETL prorJram P"

Suppose next t:h.at by applying the Destructive Use

Condition we estab}ished that nome operation of P, e.g~

o ~ i 1-i-;;, can and will be performed destructively. The
Q,

Destructive Use Condition assures us that if p is any pointer

which can appear as a value ;Jf i 1 , then, aHide from its us,~

a.s i 1 , p is t.c,tally dead. Destructive use of p is essentially

equivalent to re-use of pin the sense of the preceding

paragraph; however, ir, re-using p we gain an efficit1ncy

advantage by exploiting the fact that the segment to which

J_ t points happens to contain a :representatior: of the
t:•prpr u., "l ll"' 1.·
•.. , ... -4_.!J V •1.-1... .-_·; l. The argument of the pn:~ceding paragraph

ti:erefore shows that appli.cat.i e,r, of t.he Dest:ructive Use

Principle at OIH:? pc.int in P do,~s not cl ffect j ts ;;;.pplicabi 15. ty

at other points of P, i.e. that it may be apFJ.i.,~d ir,dependrmt!y

to each of the instructions of F 6 'l'his important. ao.donc'~urn

to the Destructive Use Princ.i::>lc will be used without expL.c.i.

1:r:?ference. in what fc,llows.

(.l)

:Li.: {while

23: 8 = E wi:.:.l.1. x;

2 4 ; f!!'td "':°/rt~:. lt:: ;:

12

Analyzing thi:, example by the method described in. the

preceding section, we find that for the ivariable s

appearing in line i3 (which for brevity we write as i:sd,3)

we have P = exsinthis(i:s:t3) = {tl,12,13}. Thus

crpart-1 [crthis(i:s:t3)] = {o:s:tl, o:s:t3} (where by
p

o:v:1.
J

in line
us that

we designate the appearance of v as an ovariable

j) and then the Destructive Use Condition assumes

i~s:13 can be used destructively.
On the ot.her hand, in

(2} il: s = n1·;
R.2: (while • 4 •)

R-3: s = s with x;

14: C = C with s;

15: end while;

•••

13

we have P = exsinthis(i:s:13) = {tl,i2,13,14}. Thus (

crpart:1 r0rthis(i:s:13)] = {o:s:11, o:s:13, o:c:t4},

a.nd sihce there .is no reason why c should be dead before R.3

is e>:ecuted, destructive use of i:s:R-3 is not possiblec

Note that a SETL compiler incorporating the analytic

procedures we have described could explicitly indicate the

point.sat which it_ felt constrained to insert copying

operations 6 and, by printing out the list of live members

of P, could indicate why thse operations were required.

For example, the annotation 'copy s -- because pa.r~: of c

in line 14' could be attached automatically to line 13

in { 2) •

Next consider the code

(.3) it. J .. : s = t;
.R.2: {while)
.lt-3: s :::: s with x;
9.4: end whi.le; ___

15: C = C with s:
i6: d = d --.-·

with t;

~ ' .
I

'

0

SETL 13J 14

lmaJ.yzing thL:, v-ie find that i:s:t3 cannot be use::i c.estruc-

oper2.:::ion C--3.n be moved out of th~} while loop, by ch,~r:s;:ln9 0:1

to the code sequenc•~

(4) tl: s m t;
x.1. •: s a: copy(s);
12: (while ... }

P. ~"' ,,.,,. ... ~ .. s = 8 with x;
14: end whll.e,

i,5~ C = C with s;

t6: d = d with t;

'l'he an~dysis of (4) is very much like that of (1), and the

possibility of using t:s:.t3 destructively follows by an

orgument like that given in connection with (1).

SEI'k·l3J.

4~ :runle operations. _.t;,_... .. ___.. __ .. n,___ -

The analysis method described in section 2 ignores

tuple operations.. In the present section we shall remedy
this shortcoming by describing the way in which the

procedures of section 2 need to.be extended if progrmus

containing tuple operations are to be handled correctly.

Of course, the algorithms of section 2 remain unchanged in

general form; to handle tuple operations, we only need to

change some of the details of these algorithms.

Our first task is to introduce a number of functions

which are the analog·s for tuples of the maps· c:Y'memb and

exsinmemb of section 2. Leto be an ovariable of a SETL

program P, and let n be an integer. Then crcomp(o,n) is

the set of all ivariables i' which can be transmitted

to the n-th component of some (tuple) value of o
(by not necessarily any component other than the n-th}.

Moreover" crsomcomp (o) is the set of all ivariables i 1

which can (as far as we know) be transmitted
to any component of some (tuple} -value of o. We define

exeincomp(o,n) as the set of all instructions executed

since the creation of a pointer which can be the n-th

component of the curtent (tuple) value of o; and exsinsom~omp(c)

as the set of all instructions executed since the c:reation

of a pointer which can appear as some component of the

current tuple value of o. }\nalogous. functions

arcomp(i,n) crsomcomp(i), exsinoomp(i,n), and ~=sinsomcomp(i)

are defined for the ivariables i of P.

We continue to assume that P is available in schematised

form. Now, however, we a.llow the follm'ling adr.Utio:nal operation~:

to appear in the schema representin9 P,

0

0

J.6

tupJ.e-fcrmer operations: 0 ,:.::

cornponeni: e:.ct:r actors : 0 -::; i 1 U.2) {i, a i::upI·}
.,,. , ...

S\1..btuple extract.ors : 0 c:: i1 (i2:i3)
II

itail' extractors 0 . 0 3' 1 1 (i2:)
h

component insertion· : 0 = [i1(i2) +--- i3J (o a t.iip.1 '.i)

tuple concatenation :.

Note that the component insertion operation, which i.n

cirder to conform to our general i varable/ovariable conventionc,,

we shall write as o = [i1 (i2) ...(-- i 3], is ordinarily

written as v (n) = c; and ordinarily presumes destru.cti ve use Qf v

(which is the i 1 of our schematic notation.) Moreover,
,,,,e assume that before copy elimination is attempted for P,

P has been subjected to a 1 typefinding 1 analysis of the kind

described in A. Tenenbaumrs t.hes:i.sr so that the types of the

variables appearing in P. are know11, It is of course n.ot to

be expected that our somewhat over.-ide;1lined assumption~

w5.11. apply, in the precise form stated,· to a full, production

version of a copy optimisation program. Such a. pro9ram

\iould conseq;a:,ntly be rather r,1ore complex than the still

somewhat simplified algorithms which we are about to

pr-~sent. However, since in the present newsletter we wish

to ci.VOid writing 01.;t a long a.nd higl-,.:..y detailed r,p'._:Ln:i..stc:J:­

sri:':r.i fication, ,,.,E, have little c;wice but to ignore these

~ddjtional complic2tions.

cun.cat(o)

SETL-131

The way in which we deal with certain tuple-related operations

which have integer parameters will vary, depending on

whether or not cornpile-tim_~ constant values or lengths of

these parameters are known. To itmke this information available,
we s•.1ppose a function knoTJn(i) to be available(as the result

of a preliminary 'constant-propagation' process). The value

known(i) is n if i is known at compile time to have the
value n; otherwise known(i) is n. If the ·type of i is .a· tuple,
known (i) gives its length if this is known, rather tham i.~s

value. The functions crcomp(i,n) and crcomp(o,n) will be

recorded only when known(i) ~ 0 (resp. known(o) ~ n) and

only when n ~ known{i). In other cases, these functions

are taken to have the n~minal value nt.

The functions crcomp(i,n) and crsorncornp{i) satisfy the
following equations:

{l) crcomp(i,n) = if known(i) is n ~ n then

[+: o E'Ud(i)] crcomp(o,n)

else n1;

crsomcomp (i) :a [+: oEud (i)] (crsomcomp (o) +

17

if known (i) ~ n 2!:. known (o) ~ 0 then nf.

else[+: l ~ m ~ known(o)]crcom~(o,m));

'l'o obtain equations for crcomp(opn) and crsomcomp(o) -w·e

J:eason as follows. If tform (o) _. then crcomp (o, j} is -{;i,j}

for :111 j from 1 to the number of input parameters of o.

Moreover, crthis (o) = {o}. If concat (o), then crthis (o} ::: {o}.

Moreovt~r, if known(i1) = n, we have crcomp(o,j) = crcornp(i1 ,j)

for 1 ..::_ j .=:, n, crcornp(o,j) = crcomp(i2 ,j-n) for l .::_ j ::_

Lr1ow,1 (i
2

) • However, if known (i11,-= n, th,:;:n crcomp (i 1 , j} wi 11
a.lway;3 be nfl, and crsomcomp (o) is -the union of crsc,mco1,ip U.

1
),

n

\.!rsomcomp(i 2), and of all the non-null sets amon9 crcomp(l
1

Jj) (___:

and crcomp(i~,j). For the ~tailj extraction operator. and ~.
,., :}St~n:L'.'";q that known (:L,)

.,
~ n a.r .. n].~ ~t()\\i'r!. { i "'I ~ v-~ L· ···i··.: ·;"1 :1 ";/f;_

.1

0

()

SE'l'L-131

crcomp(o,j} == crcomp(i1 ,j - n) for j > n; crsomcomp{o) =
cr:!.orocomp a 1 ; • If known {i

2
) is n but kno\,m (i

1
) i1 n, then

crsomcomp(o) = crsorncomp(i1) + [+: l ~ j .::_ known(i1)] crcomp(.i
1
,j).

If both known (i1) and known {i2) are n, then

we have simply crsomcomp(o) = crsomcomp(i1). Similar
relations-, hold if subtext (o); relev·ant details appear in

the formal equations for crsom~~mp(o) and crcomp{o,n) written

bei.ow. If inxa(o), known(1
2

)" i.! n !!,! Q, and knm·m(i1) ~~ ~1,

then we have crcomp (o !n) =·{1
3

} while crcomp (o ,n) = crcomp {.:t 1 trn)

form t j and crsomcomp(o) ::: crsomcomp(i1). If known(i1) ne n
but known(i2)~ 0, then crcomp(o,m) = crcomp~i1 ,m) for all

m, while crsomcomp(o) = crsomcomp(i1) +·{1
3

}. Details
concerning the cases in which known(i1) ~ n appear in the
formal equations written belowo

· The component extractor case,i.e. the case compex(o),

affords complications much like those already encountered

in the extr (o) case of section 2. Considering the compex (o) ease I'

suppose first that known {i2) ·is n ne n and that known (il) !1~~- fL

Then i::ince crcomp (o ,n) is the set of all ivariabJ.:::,13

which can be transmi t.ted to the n-th component of
the value of 0 1 while crsomcomp(n) is the set of all ivaJ:J5\bJ.8s

which can be transmitted to some (variabl~nor-unknmrn)

component o.f the value of o, we have

For niuch the same reason: W•: have

i :-: -~- ,.;r ~s ,1)1-r·1J::-·-1In1, ~:· J.
1

) J
-'·

S.E1'J..,.·131

(2 11
) crscmcomp (o) -- [+ ~ i E er comp (i

1
, n)

+ crsomcomp(i1):crsomcomp(i),

both for 1 :S. :} ~ r,1. On the other hand, if knr.vA1n (o) ~ n,
then all er comp (o, j) a:ce ta.ken to be n, and W<:! have

(3) crsomccmp(o) • = [+~ i E crcomp{i
1

,n) + crs01H,omp(i
1

) J
{crsomcomp(i) +
if known(i) ism~ 0 then n.t else

[+: 1 ~ j ~ m] er comp (i, j.))

Corresponding details for the compex (o) r~ases f,:ir which

either knownCi 1) ~ 0 or knowrdi1) ·~ 0 are fom\d in the

formal equations written below.

This survey should suffice as introduction to ti,e following

equations for the functions crcomp (o) and t'.!rsomcomp {o), and

to the following revised equations for the ~unctions cPthis,

crme.mb, and crpart, all of which we now proctad to give.

First we give the equation for crthis.

(4) crthis(o) =if null(o) ~ incl(o) £;: data(o; 2,,;: setalg(o)

or copyop(o) 2£. other(o) £E_ tform(o) or

9£ subtex(o) ££ tailex(o) ~ irixa(o) or conca.t(o)

th1:!n { o}

else if transf(o) then. crthis(argl(o))
else if extr(o) then

[+: i E crmemb(argl{o)}]crthis(i)

else /fr if compex (o) then * /
if known (arg1 (o) ~s il) i~ tuplen ~ Q then

i f known (arg2 (o)) i_~ inx n~ 11 then

[+: i E crcomp(i.Linx)+crsomcomp(il)Jcrthis(i)

1 '* ' f . r:· h */ e se 1 1 .. 1.nx ~- •• t en

[+: i e [+: 1 ~ n ~ tuplen]crcomp{il,n)

+ crsomcomp(il)]crthis{i)

else/* if tuplen ~g n then*/

[+; i-SCrsomcomp (il) Jcrthis (i.);

c·

l

~l'he equation for cr'l,1emb is as follows:

(S} crmernb(o) = if null(o) or other(o) or tform(o) o.r s1.J::ite:-:(c)

or tailex(o) or inxa(o) or concat(o)

then nR.

·else if incl{o) then crthis(argl(o))
else if algpls (O) then crmemb (argl (o))

+ crmemb (arg2 ! o} }

else if algmns{o) or transf~o) ~ copyop(c)

then c.rmem.b (arg1 (o))

else if data(o) then {n£}

else if extr(o) then

[+: i E crmernb (arg1 (o} _) J crmemb (i)

else /* if compex (o) then t< /

if known(argl(o)is il) is tuplen ~ n then

if known.(arg2(o)} is inx ne Q then

[+: i E crcornp{il,inx) + crsomcomp(il) Jcrmem.b (i)

else/* if inx ~ Q then*/

[+: i E [+: 1 < n .s_ t up len J crcomp (i 1, rd
.J.. crsom·--omo 'J'-;) J , ,l,..,._,.._.., < ·' ;· , .. 1._. .. 6;. \ .. ~.. . (_...,,.,Jjl. ,;,.: .• ,,J., \

else/* if tuplen ~.9. Q */ then

[+: iEcrsomcomp (il)] crmemb (i);

Ne.xt Wf>, give the equation for crcomp (~, ;j). Th.i.s equation is

ut,::'.C only if: the type of o in a tuple and known {o} ~e O,

ir i>;,hich ca::;-e we hc1ve one equa·U.on for ea.eh l ::. j :~ knowr, (o) ..

Nc,te that the ftnctior arc_:r!osj) w"l,id, appe;a;::s belo•r1 is ,1ssur11.:.•~ 1
•

(6) crcornp(o,j) = if tforrn(o) then crthis(arg(o,j))

else if subtex(o)- o~ tailex(o) then

crcomp(il,j+known(i2))

else if inxa··(o) then

if known(arg2(o)} is inx ne n then

if j ~ inx then crthis (arg3 (o))

elss crcomp(argl(o),j)

. else /* if inx ~ n then */ nR.

else if concat(o) then

if j 1~ known(argl{o}) is lenl then

then crcomp (argl (o) , j)

else crcomp(arg2(o)-lenl}

else if transf(o) or copyop(o}

then crcomp(argl(o) ,j)

else if data(o} then {nt}

else if extr(o) then

[+: i E crmemb(argl{o))]crcomp(i,j)

else/* if compex(o) then*/

if known (argl {o) :!.! 11) ~,:; t.:.upJ.en ~- n t.hen

if known(arg2to)) i~ inx ne O then

[+: i E crcornp(il, inx) + crsomcomp (il} J
crco..rr,p (i, j)

else /* if inx ~ n then */
[+: i ~ [+: 1 ~ n ~ tuplenJ crcomp (i l, n)

+ crsomcomp(il)Jcrcomp(.i.~j)

else/* if tuplen ~ n then+/

[+: i E crsomcomp(il)] crcoI;1p(i 1,j);

Now we give the equation for crs omcomp (o). This equa ticn is use-d

0:11:y if the ;,aJ.ue of o is a tuple; and is complicated by the

ncec to deal wi t.h various subcases which ~.rise de.pending or,

w::-,ether or uot ':.he lengths of o ::1.nd of th':: ,3evex:a.:. ivar:iable::

defining o .an~ kncY4n.

C

L

(7) crsomcomp(o) =
• 1 if tf(J!'IT: (,J) then nt

0

-2lse if dcd:a (o) then {n~}

el!,e if subte;: (o) th;:,m

i£ known(argl(o) is il) is tuplen ~ n then

crsomcomp (il)

else/* if tuplen ~ n then*/
lf k.w:;;wn. (arg2 (o)) is in.xl eq O then

cr.somcomp(il) + [+: 1 ~ n < tuplen}crcomp{il,n)

else/* if inxl !!!! n then*/
if known (ar:g3 (o)) ~ n then

crscmcomp(il) + [+: inxl < n < tuplenJcrcomp(il,n)

else crsomcomp(il)

else if tailex(o) then

if known(argl(o} is il) is tuplen ~ n then

crsomcomp(il)

else/* if tuplen ne n then*/

if known(arg2(o)) is inxl ~ n then

crsorocomp (il) + [+; l ::_ n ~ tuplen]. crcomp (i l, n)

else /* if inxl ne n then */ cr:scrncomp {il)

else i.f :inxa (o) then

if kr2own(argl(o) is il) £S{ Q £.t known(a:rg2{o)) §:'i r th-,:1

cr.somcomp(il) + crthis(arg3(o))

e:' .. c;e cr::wmcomp (il)

·else if ccncat(o) then crsomcomp{a.:cgl(o) J_~ il)

+ crs-:n1comp ~arg2 (r:1) is i2} +

if know,1 (il) is lenl §.9. n t:he1;,

if :,;nown (i2) J~ len2 ~ L then nt

else (+: l :._ n ~. len2] crccmp(ii,n}

else/* if lenl ££~then~;
·1' :f.' :.· --r ·,11 ,· 1"; i 1·1e n +thr:,n n f. . . } .J. ... ,. l / .f'- r ... -. .\{l ,.,

else i:f tr,'3.nsf{o} 2!. copyop(o) ·them crsomcomp(argl(o))

el~a if e'ttr (o) tJ1en

{+: i E crrnemb(argl(o))J (crsomcomp{i} +
if known(o) !9. n ~ known(i} is ilen ne O then

[+ 2 1 ~ n ~ ilen] crcomp (i ,n) else !!!,)
else/* if compex(o) then*/

if known. (a:rgl {o) is il) is tuplen ne O then

if kno-vm (arg2 (o)) is inx !!!. Q then

[+: i e crcomp(il,inx)+crsomcomp{il)J(crsomcornp(i)+

if known (o) ~ o ~§. known (i) is ilen ~ n the.r.~

[+: l ~ n ~ ilen]crcomp(i,n) else nt)

else/* if inx ~ n then*/

[+: i E [+: 1 ~ m ~ tuplen)crcomp(il,m)
+ crsomcomp (il)] (crsomcomp (i 1 +

if known (o) 5 n anq known (i) is ilen ~ 11 then

[+: 1 ~ n ~ ilen]crcomp(i,n) else nt)

23

else /* if tuplen ~ n then */ C
[+: l E crsomcomp(il)J {crsomcomp(i)+

if known(o) £g_ Q and known(i) is ilen ne n then
{+: ~;- < n ~ ilen] crcomp(i,n) else nt_);

To allow for the existence of-tuple operations, we must

revise the d,3fini tion of the sets c'!'pax-t as follows (cf. lhe

paragraph precedin~r formula (3} of Section 2): By crpart (i)

(resp~ crpa:rt(o)) -we mean the set of all ovariables wnich ctm

craate a pointer which at some moment in the execution of P

becomes a pa.rt, :i .• e. ei the1.· a poi.nter identi_cal with p or a

member point~?r, or .:;: component poi.i'lter, or a member of a

member, m.ember of a. co~1ponent, component: of a member etc.

pointer of the r.:nrrent value of :;_ {r,e;Ep. o). RE>·1J1.H~ct egu.?.·t.ions

(0) crpart(i} - [+: o E ud(i)]crpart(o);

crpart(o) ~-- if transf(o) t:1en Cr}?art(argl(o))

[+: i E crmemb {argl (6)) l crpart(i)

else if compex(o) then

if known (argl (o) is il) j_s tuplen ns n :th8n ·

if known(arg(2)) 4.E:. inx ~ n then
[+ ~ i E crcomp (i l e inx} +

+crsomcomp (i~}] crpaz·t (i)

else /t.r i. f i.nx eq O */ then -
[+: iE !+: l~n:":,.tuplen](;rcorop (i 1, ~1)

+ crsomcomp(il)] crpart CU
else /* if 'tuplen .!:':S. 0 • / then

[+: i e crsomcomp(il) Jcrpart(i)

else {o} +
if incl (o) then crpart (argl (o))

else if algpls{o) 2£. concat(o)

crpart(argl{o)) + crpart(arg2(o)}

else if algmns (ci) 9r copyop (o) then

crpar.t (arg l { o} }

else if subt:ex{o) then

if knol<n:d a.r9 J. (c•} i~. il) J.:.~ tup] en ~~-'J i2

~f. kno•,.-n (aJ~~i: (o)) .1 s inx eg n tri..:n er::, cc:i.:·t (i l:l

else /* :Uc tup2.en !~<:: n and inx ne ,1 ther, ,, .1

if known (and (o)} j_s inxhi en. S"2 then
.... --.. ::2

else /* if tuplen ~ O and int !le n then 1
: /

!+: iEcrsomcomp U.l) + [+: irrn:,S_n~tuplenJ c;,:-comp (iJ., ·~) _;

crpart(i)

el9e if inxa(o) then

if known(argl(o) .!!_ il) is tuplen ~ n .
~ known(arg2{o)) is inx ~ n then

crpart(il) + crpart(arg3(o))

else

(J

[+: iEcrsomcomp(il)+[+: l!,_n~tuplenln ~ inx]crcomp{il,n}]m.:.)'..'D.tt\i}

+ crpart(arg3(o)}

else if data(o) then {!1,_~}

else if tform(o) then

[+: l<n~nargs{o)]crpart(arg(o,j))

/* where naPgs{o) is the number of arguments

of the tuple-forming operation defining o */

else/* for other operators*/ nt;

The equations for crthis, cz-memb, crpal"t, crcomp, and crsomco,p

stated in f;he present section can be solved by a.procedure

l1ardly differing from the i te1.·ati ve procer1s outlined in Secti:;r1 2 ~

The Destructive Use Condition retains its validity in the

preGence of tuple ope1:ations.

'.rhe function exsinthis(i) appears in.the st.atAment of the

Dest.ructi ve Use Condition and f,::,r th.is reason we cc,ntinue the

pre:s,~mt section by giving the equations r.equi.red to calculat,s

e:cain this. In this function there appeci.r s.eve:ra.l other func·::.ic,

C

0

e::t1inmemb, wr-ich is the set of all. instructions executed sine,,,

th-:;. crea.tion. of a pointf~r which :is a merrh,?r of t.hE: current

th2 set of ::;.11 instru,'.!t.ions 1;;cxecuted ~J.nce thei creatf.on of

a pointer which can appear as sc>me {unknown) compm1ent ()f tt: ::

cu:::-rent valuf! of {an i- or o·-) variable; and exsincomp(osj}_

{resp. e:xslnoomp(i,j)) which is the set of all instn.,ctio:n~

executed since the creation of a pointex which can -~.ppea.r. a:i

th1~ j-th c-timponent of the current value of. o (re::-,p .. :i.).

'!'hese 't..rari.ons qua.;.tities obey equations 1:ath<1r lik~, Lho5e. fee

c1>i:his., armemb;; r:H•somcwmps etc. whi.ch have just bei::::-1 wri.ttem,

We shall for thiu reason not give a full set of equai:ions;;

inf:tead, we shall confine ourselves to writing out t:he equa.tion.·:.

Note th2.t

e:;.;ri.ncomp (o,, j) a:nd e:cs1.:ncomp (i,:j) are d,efined only when

knc'vv-n(o) rie rl: {resp. known (i) ~ m; in other cas:;::.:11

e~csin.comp (o, ;J) and e:reirwomp (i 1 j) ha,re the nom:i.na1 value nL

For an ivariahle i we have

(9) exsinthi s {i) ffl chainback (i) + [+: oEud (i)]exsinthis {o,);

exsin:memb {i) -· chalnback(l) + [+ ~ oEud (.t)] ~xs .; nvnem1-, (('\ ~ '- .,.,.. .t. ,,_, ~ I ;

exsincomp(i,:j)=chainback(i) + [+: o€ud(i) }exnincon:p(otj;

(c:f. equa.ti.on (4} of Section 2, and ,'llso the re/1v.u·k,:-: r:n;'c :,ed.i.

L~at ~quation ..)

Next, 1-at o be an ovariable, ·and let i 1
the argume:rd:s of t.he ope:r:ation d.efi.ni.ng c.
exsinthis {o) . If transf (o), then exr.d.nthif, (c,J incl 1.,rles

0. ❖• • '1 . 1 'l. ' • l . ,- l /. } . . ,,·,:n'l~·r cast'.S \1/l.1.-,l. t:rJ-S<~ t f~I)er;c.-..?.r\g :-:.n ··.:;.i)e ~-'f!:.1:r':;~\ c:.:~: .\:t!\)\,.-~·) \J
1

. l;~: .. ···)

J.:.r1.c•i-:11 { i 2) ; CJ?· t:a i 1.:·. \:. f ~Lr!~:.~se (~,,LS(:\S ~~·~r:•})t?-t., :r: i:~: ~::q:~J ! J(; t1,-:~. t ii ;r; _::, ".:.111 ~;_ t_ ~>I
z ::11 l 8h., ~ () t.h :::;?:· cJ:?,::: :r a. ti ():tts , s uc!l1. r~s i_1·~ct~;xe c! a.:; <.:i :~. ~:~· .:·1~~:-:::, 1 ---~ .i :-; 1 ! ~_- ...

J .l ·:.r.1.

SETL-··12 .. '-

(10} exsi.nthis(o) - {o} + if transf{o) then exsinthis(argl(o))

els.e if extr(o) then

exsinmemb{arq](o))

else if compex(o) then
ii known (argl (o) is tupl) i.s tuplen eg f, thE n

exsinsomcomp(tupl)

else if known(arg2(o)) is inx ~ n then

exsincomp(tupl,inx)
else exsinsomcomp(tupl)+

[+: l~n~tuplen] exsincomp(tu:pl.,n}

else/* for other operations K/ ~!;

Next we give an equation for e:z:sinmemb(o). The equation which

we give is justified by re:!soning like that which precedes

equation (5 ') of .'section 2: we leave it to the reader to work

out necessary de·:ails:

(10') exsinme:mb(o) = {o} + if transf(o) 2t copyop(o} or algmrrn(o)

then exsinmemb(argl(o)}

·else if incl (o} then exsinb'lis (argl (o}}

else if algpls(c,) then exsinme:mb(argl(o))+e;xsin.memb{ax·.f2(1)))

else if extr(o) then exsinmemb(argl(o))

+ {+: i E crmemb{urgl{o)}] exsirunemb(i)
else i ~ compex.(o) then

if known ,:argl {o) ;is tupl) is tuplen ~S n then

exsi nsomco:mp (tupl) + [+: iEcrsomcornp (tupl) J ei;sinmernb _(i)

else if known (arg2 (o}) _is inx ~ P. then

exsincomp(tupl~inx)+

[+: icc:tccmp(_tupl 1 inx)] exsinrrernb(i)

else •i!~C3.~.nsomcomp (tt.1p1; +
[+: i!::cx-sornc•tmp(tupJ.)] ,~xstnmem.b{i)

[+: l~u~;_tup:LB:r•l (exsincomp(t:upl,n)+

i+: it:.cr :.:ornp (tup1, a) 1 ex,:,il~.wemb (i.))

e.lSE! /·' for ot:her ope:rato:i:s */ ~.9..;

_,/

C

C)

l

::;~·•d o,1ly f0r :I ::_ .:-:nc,,,,1T;(oJ. Th£: eqnatfon which we ~:·i'r•:? c.::.i;_ b'-"

.)U:3 tified by r£a:: :;rd :lg adapted f:,:rn.n that. which precedes e ;u2.~:1 ur:.

ing to the reader,

(11) exsincoF.1p {c, n) = {o} + if transf (o) ?..!. copyop (o)

then exsincomp(argl(o),n}

else if tform{0) then exsinth.i.s(arg(o,n)')

else if ta).lex(o} 9..!'. subtex{o) then.

exsincomp (argl (o}. n + known (arg2 (oj))

else if co:cJcat (o) then

if n 1& {known(argl(o) is i) is ilen then exsincomp(i¥n)
else eY.siy;omp (arg:2 {o) ~ :n ., ilen}

else if inxa. (C· 1 th,·?n

if knc:iwn {arg2 (o)) is inx ~St n then n!

else if 1~. !!£ inx then €1;,tdr:Gomp (ar.gl (o} ,n)

eJ.se exsinti'1ie (,3rg3 {()})

else i.f e}~tr (,;:;,; tJum e;~sin.mem.b (argl {o))

+ (+: i <:.= . . cr.namb (argl{o}) Jex:3incomp U,n;
else if coi11rex (o) the:n

eJ.s-e U2 }nown { arq2 {o)) iu iDx :ne n ther:
~ -- .. _.

e;irnL1 comp (tu.pl,.. in~H· [H iEcrcomp (tup1, i r.,x)]

5. ~ddi tional examples.

Next, in order to gP.t acme idea of t.he advantage which ou.·:·

copy optimizations might secu.rs in typical cases, we examine
a number of cc-des taken from ·O. P. II. The first is th.e

Cocke-Earley 'nodal span' pa.ri:te, in the form given on

page 161-1620 Here the algorithm is

define nodpaise(input,gram,root,syntypes,spans,divlis,amb};
todo = nx.; divlis = nt; spans= {<2,s,l>, sEsyntypes{i:nput{I) }h

(1 ~ Yn ~ :Jinput)

todo = {<n+l,s,n>, s E syntypes{input(n)}};
spans= spans+ todo;

(while todo !!.!! nt)
next from todo;

<end,typ2,rnid> = next;

(VspendEspans{rnid}, typeEgrarn{hd spend is typl,typ2})

newsp = <end,type,spend(2)>;

<newsp,mid,typl,typ2> !~ divlis1
if~ newsp e spans then

newsp in spans; newsp in todo;

end if;

end Vspend;

end while;
end ~n;

/* check on grammaticality*/
if!! (<iinput+l,root,1> !,! topspa,..,) E spans then

<spans ,di vlis I amb> =-= <nl ,!l,~J f>; return;

end if;

/* else clean up set cf spans a1"id determine ambituity */
spans = nt; amb =, f.; getdeEcs f topspan);

/* clean division list*/

divlis == {d E cUvl::.s i hd cc spans};

return;

end nodpa.rse;

l

C

S:t-:·l'L·-131

Destructive use of a variable is potentially possible in

th0 op,:!rat.·'..or, r-:pans == spans + todo; next fr_-:n!! tc.do;

<newsp,mid.,typ1,typ2> !!! divlis; newsp in sparis;

newsp i.n todo;- • The Destructiw.; Use Condition of Section 2

can be set::n to validate each of these destructive uses; all

that is in.vohrea.· is the rather trivial observation. that

neither todo., divlis., or spans ever becomes an element of any

larger compot'li te object.

Next we exarrdne the vgraph ordering' algorithm given on p .. ?GS

of 0-P~ II~ The code for this is

define£ graphord (nodes, entry} ;

/* the succes&or map cesor is assumed to be global*/

order= <entry>;

mark= {<entry,t.>};

jlast = 1 /* jlast is higheBt numbered node from which

new path may begin */;
(while jlast ~ :-lj ~ l, last E cesor(orde:r(j)) jmark(last) n11 t)

/ 1: start. new path "/

pctth ::: <last>; mark (last) = !:_;

/* and extend as far as possible*/

(while 3 t.1(~xt E cesor {last) I mark {next) ne !)

path= path+ <next>;

mark (next} -· !_; last = nexi:;

end while 3;

/Y- insert p,;;!th i':-.fter jt.li node in Qrder * /

order= o:ca,2r(1~~) +path+ onfor(j+l·;);

jlast ,,,, j <· i'patr, + l;

/ 1' note path (J.ip;_~th) has no t:,.mo.ark":id suc::ce.sso.rs ~/

SBTL-131

Here the potentially destructive opera.tions are path = path+<ne:,t >;

and mark (next) ::,· !J and both of these. are admissible by the

Destructive Use Condition, simply becat;se nei ·chu~ po.th n,.r mo;

ever becomes an element of a larger composite.

Next we consider a fragment fran the set of 'interval-f:i,:ndir,9

routines given in O.P. II, pp. 269 ff. 'I'he code in questio!l L,

as follows:

definef interval(nodes,x);

/* npreds, followers and. cesor are assumed to be giobal */

/* count the number of predecessors of every node*/

npreds = {<x,O>r x E nodes};

(~x E nodes, y E cesor(x))
npreds(y) = npreds(y) + 11;

int ~ nult; followers= {x}; count 2 {<y,O>, y E nodes};

cou~t(x) = npreds(x);

/* 'count' will be a count of the number of predecessors of

a node which belong to the interval being constructed*/

(while {yEfollowers I npreds (y) ~ C(?unt (y) } if: newin ne g~J C
(Vz E newin)

int{#int+l) = z;

z out followers;

(VyEcesor(z) IY ne x) count(y) = count(y)+l; y .i:i f,,J. 1 s..--;w 0~rs;

'end Yz;

end while;

return int;

end interval;

definef intervals (nodes ,entry);

/* folloW0Pa,, foZZow, intov are all assumed to be global */
"". •""f".'l".l = I t } "'°' _ ,.en .cy ;

(while seen r,e nR.)

node % r~!~ seen;

inter~al(nodes,node) is i in ints;

follow(i) = followe:rs;

(1 < Vk < til intov(i(k)) - 1;;

s0en =seen+ follo~ers;

0

end while;

raturn ints;
;,,n"' ·' n,,.-ervalc- • -..:;- •r--c, J.. \.. .. •.~ I

We ignore any special problems having to do with 'croHs sub­

routine' optimization, thus in effect assuming that these two

functions are in some appropriate way consolidated into one.

The operations containing paten tially destructive variabL.:,

uses are: npreds{y) = npreds{y)+l; count(x) = npreds{x);

z out followers; count(y) = count(y) + l; y !E. followers;

(and now pass i.ng to the subroutine i.ntervats) node ffom S(~en;

follow(i) = followers; seen= seen+followers;. With the

exception of z out followers and yin followers, the legitimacy

of all these destructive uses is obvious from the fact that

neit.her npr.ede~ count, eeen, nor follo~ are made elements
of any larger objects. Destructive use of followers .in

z ~ followers a.nd yin follouers is also justified, but:.

somewhat more of the force of the Destructive Use Principle

is needed to establish this. Specifically, we must note that

from the ini tiaJ. definition of fol l01,Jers up to the (dy~a.ruic)

occurrence of z out followers no instruction making followerz

part of ,2 more co!npound object is executed~ A similar remark

applies to the occurrence of y J.!l followers.

Note that the set {yEfollowers I npreds (y} ~ count (y) } is
a good candidate for elimination by Earley' s m{~thod of
1 iterator inver3ion\i.e. by set-t11eo:rt,~tic ~t:nmgth reduction.

SETL-131

6.)1 _ General· R€.'.!'E.:~rk c_on·c·e·rn~ ·the· Ma£P.g1"gs Described !E~~h"~­

E.r~ceeding:2_~e-~.

The mapping a'l"this discussed in th.e preceeding pages .is
analogous to the mapping ud which appears in conventional

da,ta-flow anal::tsis, i.e., to th~ map which chains each use
of a variable to those definitions which can set the va_lm.~

of the variable. However, whereas in calculati:ng the mapp.i.nq

ud we only link an ivariable i to an ovariable o if there

is a path leading from o to i which is free of redefinition[,

of the variable common too and i, the mapping crthis will

link i too wherever the object x created at o can be trans­

mitted to i, either along such a path or indirectly through

any chain of operatlons which embed x into some nested
collection of sets and tuples and then later extract it.

Thus crthie expresses a considerably more extensive concept

of value transmission than does udc

The inverse map arthis-l extends the definition-to-use

chaining map du ordinary data flow analysis in a similar way.

In chosing data representations for the objects appearing

in SETL prc,gra.'11s we will often need to know all the operations
applied to the object created at a given ovariable o. Once

·· l the map c.rthis has been calculated, this information i.s

easily obtained: we have only to find all the i varia.ble::1 in

crthis-1 (o), and note the operations to which these ivariabl0s

.are arguments.

It will be seen in a later newsletter that by regarding

the ova:i:-iables of a program as nodes in a graph G whose (:d9e.:s
~ . ~

u:!_::;r:ussea

c:bove and. then by analysing tbis graph \,,!.~ :::·2.n ::10;_:>1:'! to ·;cd.,-1

0

some idea of the lcgical d21t.a-·type£: in ter . .11s of which a r.n::t:::-am L
/

j s organised. In parti,:::u.la::c, recursive dat.Z'. types c:orn:::spo-;-:d

',:,:J loops in G-

SET:L.·-1.31

For cert,~iri purposes one will need to know not only the

pattern in which ivariables are chained to ovariables as uses

and vice-·versa, but even the specific paths along which an

ovariable o is connected to an brariable which uses the va:'t ue

generated by o; these are the so-cc:.lled live paths for o.

In opti~ising languages of the FORTRAN level, information of

this type can be used in generating register allocations by

a packing process; applications to SETL of information of

this same t.yp£ will be described in section 8 and 9 below.

In a -~onventional data flow analy::.ds, a live path calculation

will ha~.re twc fl.:mctions, which we shall call pud and pdu,

as rer;ult. The function pdu maps each ovariable o into the

set of all program edges which belong to a path connecting

o to one of its uses, the set pud maps each ivariable i into

C'.1 . the set of all edges belonging to a path connecting i to one

of its defining ovariables. These two functions can easily

be expressed in terms of two functions which are in any case apt
to be calculated during conventional data flow analysis~

The first of the3e functions, rsaohes(b), gives the set of

a.11 ovariables o whose valuc:s would be used in the basic

block b if b contained a use of the variable v cf 01 the

second of these .functions f i1:ve (b), gives the set of i va.riables

which are livf:1 c..-·! ent.rance to th,~ basic block 't·. '!'hen the

edge e starting ~ta block b
1

and e~ding at b~ belongs t~

pdt;.(o) 3.f son,1_;. ivariable i i•,src·,1~•J·r1•, 1-1,.,p .-,:-·1·,r=> 1.··=··.-1.·..,'-1e v "S ·- J V - .i..,, ~ ,-:_, -!1.-~,· ,.._-,uJ. .__ ct-4.... O.AJ ., ;.,._

(' c:: +- • C' .c; ·i ::, i.;• i . 1 • ~ {J:: ·1 _, ._a_J..c,.l-t!.- __ f •. ,.ive ~1
2

.

iB free of redefinitions

and if ej~her o cieacte~(b1 } and b 1
of 0, or if o is the last target

occurence of v in b~ •
.l.

~imilarly, e belon~s to pud(i) if

i r. 1:.-;,re (b~, and i:E there exists an ovz:;.:d.ablP. c with variab:~e
J.

h such th2t either o

de :f:in i. ti r:i1"' s of o, or if o is the laat taraet 0ccurenc·~ 0f
V :.t.·.1

SETL-131

Xn the pres£.mt section we will show how va.rious mapping;,~

related to pud and pdu can be calculated. These mappings

generalise pud and pdu_in ~uch the same way that the maps

, cr•this, c1'pa1't, cphoZ.d .• etc,generalise ud (compare the rema:cks

. made in the preceeding section.) The functions in which we

sha.11 be interested are as follows:

ao pcrt1u:e (i, o) defines the set of all program graph edges

which can belong to an execution-time path connecting an

ivariable i with an ovariable o which creates a SETL object

which reappears as the value of i.

b. pcrmemb(i,o) defines the set of all program graph edges
'

which can belorig to an execution-time path connecting an iva:riab1e

i with an ovariable o which creates a SETL object which is

a member of a set appearing as the value of i.

c .. pc rpart (i ~ o) defines the set ~:rf all program gI.·aph edges

which can belong to an execution-time·path connectiny an

ivariable :t with an ovariable o which creates a SETL object

which is a part of {ioe. a member of,a member of: a member of; ,~tc.)

a set appearing as the value of v.

Note that in the present section, as in section 2 above~

we simplify our discussion by ignoring tuple operations

completely, and by assuming that the only fou:- set-th-eoretic;

opeirations which appear in our schematised programs are

s+t! s-t, {x}, and 3 s. Equations for -pcrthis; parmemb~

pa rpart etc. could of course be developed for full SETL inclv.d.ing

tuple operations: the general structure of these aquationE

would be similar to the simplified equations which will be

written beJ.ow. Howevt::r, not wishing to write out yet anot.he1

lenqthy grc:,up of Eet-theoretic formulc1e 1

?resent these fuller equations.

we f-ha11 not

0

SE'l'L-131

NotE: however thr;t in treating tuple operations we wm1ld

introduce functi.ons p:J raomcomp and pcrcomp in addi tj 0,1. to

the functions po r·J;his., pal'memb ~ and pa r'pa~t appearing below.

In writing equations (1-3) below we use various majoz­

and auxiliary functions introduced in section 2, including

the functions ar•gl and arg2 which transform an o,'j'a:riable c

into its first a.rid second a:'('guments ~

The equations which are now to be given are justified

by the following reasoning. First consider pcrthiep and a

program path p which leads from an ovariable o to an ivariablr.~ i

at which the value x created by o reappears. If x is re­

created by extraction somewhere along the path, there will

be some last point a at which an extraction operator is applied

to obtain x ; the operand of this extraction operator must
of course be some set of. which x is a member. Past a, the

value x can only be transmitted, by transmission operatj.or,s

v == expn. If such operations appear at the end of p, then

p ca.n be decomposed into two shorter paths, the second of
which is a path from a transm.issim:: operator to .i, and the fi.:cst

of which is a path from o to an ivariable i 1 at which x !.'e:app,~d~::-s.

If no such cpe:;~·citions occur at the end of p., then o; is the

lagt relevant operation in p, and p decomposes .into the part.

,:>f p prec:eeding 1:c, plus a part following a. which is free of

operations raleva~t to x. This le~ds us to the following

equation for pc~t½ia:

[.,_ . . .

+[+:

u<l(i)jtransf(o)] (pud(i,o 1)

ud.(i) !extr(o)J (pud(i;o1) +

+ pcrthis(argl(o1),o)j

pcrmemb (argl (oi) ,o)).
,J_

Nex·c. ., ccn:,:i.,.-,er pcrme.mb p and a program path p "vib.ich

leads from an ovarible o to an ivnriable i at ~hich a set

s ccmttd.n.ir:.g t.:,e ~talue x crea.tf'd by o appears.

SETL-131

Le·t c~ denote the posit:.ion of the ·operation along p which

creates the sets. Let o1 be the ovariable of this oper~tionu

'l'hen the part of p which follows a consists entirely of

edges belonging to pcrthis (i ,o1). The operation whose va.lue

defines o1 must be either a copy operation, a setalgebraic

operation, or an inclusion operation. In the first two of

these three possible cases, x must be a member of an

appropriate operation argument1 if o1 is the target ovariable

of an inclusion operator with argument ivariable i 1 , then x

must be a possible \1alue of i 1 • This justifies the following
equation for pcrmemb:

37

0

{2) [+: o1 e: crthis(i) jcopy(o1) or setalg(o1)J (pcrthis(i,o1) +

pcrmemb(argl(o1),o))
+[+: o1 Ecrthis(i)!algpls(o1)J(pcrthis(i,o1) + pcrmemb(arg2(o1),o)
+[+: o1 £crthis(i)fincl(o1)](pcrthis(i,o1) + pcrthis(argl(o1)got
The function porpart satisfies a similar equation .which

can be justified by a similar argun\e11t. consider a progra.m

path p which leads .from an ovariable o to an i.variable i at

which there appears a sets containing as a part the value

x created by o. Let a denote the position of the operation

along p which creates the sets, and let o1 be the ovariable
of this operation. Then the part ,of p which follows a consist~

entirely of edges belonging to pcrthis(i,o1). The operation

whose value defines o 1 must be either a copy opc~ration, a

setalgehraic operation, or an inclusion operation. In the

first two of these three possible cases, x ~ust be a part

of an appropriate operation argument; if o 1 is the target

ovariable of an inclusion operator x must be either a pr:.;ssible rn~mber

of a possible value of i
1

or a possible part of such a. ,,a.lue,,

l!e,.we we deduce the following equation for pa::-•par-t:

(3) [+: 01

-+· r + = 0 }_
I ' . ' • ' ~::: rt h i s (i ./'. I B.] £' ~ L., (0 1 l 1 (p C T t n 1 s l l J ,) 1 J t r :: r p:

...... \ f... .l. .. ., - }

+[+: o
1

£crt1lis(t)!incl(o
1
)](pcrthis(i,o1) + pc:rpart(a:rgl:o.·i~o1

+ pcrthis(argl(o1)ic)j.

The system (1-2-3) of equations, as well as the more

elaborate system which will replace it when tuples and

t:uple operations are allowed to.enter our considerations,

can be solved routinely by the method of monotone convergence
described in an earlier section~ The functions pcz•this, par,.,.er;:bs

and pc:rpart: obtained by solving this system express useful rela.t::.cm­

ships between dataflow and control flow in SETL programs.

The next two sections of the present newsletter exhibit some

of the uses which these functions have.

8.. ·Replacing Blank Atoms· by Pointers.

To mimic pointer semantics in SETL, one can use blank

C1 atoms, introduce a global mapping poin ta -to, and regard each

pointer as a blank atom which can only be used to index this

mapping. Of course 1 SETL permits more general pointer con·­

structions, e.g. the SETL user can introduce many such

'pointing' functions into a single p}~·ogram. Thr1re in however

one aspect of the way in wh:i.ch point.P-rs are ordinarily used

c.)

in pointer-oriented ianguages which is missed in an unopti!niued

variant of SETL. In a pointer oriented language, only objects

which can b~ reached through ,~ chain of relationships

pj = pointsto{pj_1) starting from the value p 1 of some

eJ:plici t po.inter vn:~i.able (or per:v1ps from a :recursively

stacked inca?nation of such a variable) are•live; all other

c,b l?ct.s are recog;tis2,bly dead and C.:;:n be garbage·~collected.

:crJ °'-moptimised SE';"?L this fact will ::ir:: missed, since'. the S.£.TL

~~omµ.iler wi.I:. assume that e:.q::•~~·f.!:-rnicnn such as r pcf..n ts -to f

eo s, ---•· .
etc, might hav~ to be evaluated;

SET'L-131

Suitable optimisation can reliev~ this diffic:1;lty a:.:<l

convert SETL programs which mimic pointer constructions intD

codes which actually use pointers. 'l'he .following ,=-tpprc:ach can

be used: we introduce an implenien.tation-level object type
pointer, flagged in some recognisable way. In addition to

its tag field, a pointer will contain a machin? address

field referencing a block in the heap; two pointers will

only be equal if their tags and addresses arr:! equal. Then,

whenever a blank atom x is created by a call to~~-' we

must decide whether to create it as a pointer (for which

a block of storage will at the same time be allocated) or

to create it in the standard SETL form. For the former

choice to be made, we demand the following:

a) Among the operations in which the value x appears

are certain indexed retrievals fj(x} and indexed assignments

f.(x) = y, for which the following conditions are satisfied:
J

b) The values of the variables "f. ,j -= l, ••• ,in appearin9
J

as first arg,unent in these indexed retrievals and assign-

ments are never themselves made components of any vector or

members of any set.

c) The only operations applied to the mappings

are retrievals fj(y), indexed assignments fj{y} = z,

assignment operations £ 4 = w .
.J

d) Let o be the target ovariablc~ C::>f the call to ~~~rt=:_

which creab~s the blank atom x. r.et i be an j_var.iable

appearing in the context fj(i). Then we insiEt that no

assignment f. :.: w havina f. a~~ tarql':!t variable can . J ., J -
belong to the set pcrthis(o,i}.

Note that condition (d) imrlies that the value f.! {Y.}
J

will never be calculated after ~n RSsig~rnent f. 0 ,-. z ha,; be:.::.n
)

made. This al lows ,;s to leave an ',:,l.:-sc,L...;•.:,_;,' -.•.::Jue f.., (x)
)

:-:ecorded in thE ::>1.ock to wh:lch l~ po.u1ts"

0

SB'Tl.--131 ..

!f thG ~E~g2t ovariable o of a newat call satisfies

ccnditions {a·-d), then the atom x g.snerated by the call can

.be created at; · a pointer, and a heap block hb sufficient to

record the value of each function fj satisfying conditions

(a-d) (in regard to x) can be_allocated;of course, x should

point tc hbo If this is done, values f. (x) can be retrie~red
. J

by extracting fields from hb, essentially as if fj (:,;:) WEre

t.ra!rnformed into pointsto (x) {n.) • Note that thts moo.e of
J

access need not be used for every element of the dcmain D

of fjr but only for those which are pointers _created by a

pa:.rticular ::~wat call. For other elements of D, the standard

SETL hashing scheme can be used to access f j (:,:) Q Of course,

maximu.m a.dvantage is obtained when all elements of the domain

of a function f. are pointers of the same kind, since in this
J

case a minimum number of conditional transfers appear in

the code sequ-=mces which retrieve and store fj (x).

Note t.hat wben a pointer x becomes ina.ccesnible, the

block hb to which it points becomes recognisably subject to

g~rbage collectjon.

To illust~ate the possible effect of the type of optimisation
t1hich has j·c1s-t been described, we consider the Huffman tree

algor:Lthm huftcbZ,3s of O.P.II., p. 149~ This contains only

one call to ;-,e,~at; the blank 2-tom n created by this ea 11

,1ppeat"s as ar,;u:;nent in three functions t, _:,,, and 1,, f"I'eg.

•rr.ese fu::-1ct. ion~ satis.fy condi t.ions (a-d) nbove; b"nc8 it. iB

ueen that n can~~ created as a pointer to~ block of three

com9onent s, 'l'hif leadr. us directly to a 1 :Ls-t·-lik<:= repre;:'.en ta.tiGl.i

of tbe t:ree :n::~·; 1 ir~it .in the h:,fi:o.bZe3 aJ,.;01·ithm, ,md hEnce

to an a,.1tomati c i'. 1plemer:t8!tioD of th·Ls ;:,c: .. (:;or.i thrn rc·thex:- Ii.ke

t •1At which m' eh·,: be useri if the c;lgorithm Wt-::re .:mplc~m<?.nted.

SETL-131

lt may well be possible to extend the preceeding

considerations to rnulti•-argument map~ings one of whose

parameters is a blank atom. However, in the present newslet.b?r

we shall not pu1.sue this line of thought.

The fact that SETL uses garbage colle·ction imposes a

substantial overhead on SETL programs. In languages like

PL/1 which allow objects to be allocated within areas which

can be .freed explicitly.,much of this overhead is avoided,

essentially because space recovery can be carried out

more quickly when an entire area is freed than when items

must be individually classified live/dead by·a garbage collector.

In the present section we shall sketch a method which may

allow an optimiser to find effective schemes for allocating

SETL objects within areas, and also to discover program points

at which these areas can be freed.

Our idea is as follows: suppose that an object Vis

created when the source expression of an ovariable o is

evaluated. Co!lsider a program point p
0

not lying a.long an

edge belonging to the set

(1) liveval (o) = [+:i E crthis-1 (o)] pcrthis{i,o).

Then the object V will never be used after p is passed.
0

Hence, if we use an area A to allocate spa~e for storage of

each value V created at o, we will be in a position to insert

an instruction which frees A when p is reachr2!d, Howev,~r, ·o
to free A we must be snre that no object in 'P. is a rn2,1L½er o:i:.·

a component of any objects not in A, since if this condition

were not satisfi,=d even tests like s -~ s
0

would fail aft.ex

A were freed. L

(

C

'.r(:• c,:.::::;::y 00 t ths'= a.1rn.1yc.L!:, wh i eh these co::1e.i.7Je:·,;U.c:·'. ··

sng,Je:::;t. i ,,e const:ruct a grapl1 G whnse nodes are the ovari .'lr; ::C r:',

() of a program ? to be 1,nalysed. Given two ovariables o

and 0 1 7 we draw a directed edge

o £ crcomp {o1 ,n) · fer some n, or

connected regions of th.i.s gra.ph

f-::·om O~ to O if O E CITi.1:'.:Fh ~c.-'- J, ,~ .•
i L

o £ crsomcomp(o1). Strong-ly
represent groups of ova:ri.~blr~s

'Whose values should be allocated within the same are.a s:i ?~CP

th,~y mu,;t alwayG be freed togather. For this reason, we

re~uce each strongly connected part R of G to a point by

ice.ntifying the members of such an R. '£his transforms G

Given an n "' G, we find the s,2t

pPed(n) of all of the predecessor nodes n1 of n in G'i and

thE set 01.Mrs (n) of all ovariables o which are members o.f an n 1 .,.

belonging to pred (n). The potential freeing pointe for l'I a::-e tlv.::

points x in the flow graph of p which belong to the interseci.:ion

freepoints(n) = [*: o E ova~s(n)] killsval(o),

where ki 7, liJt-•al (q J :i~~ the sst of edges conplementary tc t.h'-'~ set

tivr.n;al(o) of {1:. We introd110e ;;u1 a:r.ea A(n) for ea.eh n E: G'.

Pr,w•~' 7"''~ 'f t•··o ·,c·dec- n n r G1 ha,··e th,:,, '"'am,:,, '"'et- ,,f .,:,., ~ \, ~.;.!,. f ,., , W,::- 'l. J . ~-~ • ! (2 ~ •1 ~• • ~ . .,,.. ;.::, &!<~ .::,- '"-~•,, ... -·
points, the same area should be us0d to allocate space fer

t.h,::: ovariables both of ovars(n1) and of ovars1n2); hence A(n-1)

l''n} •,·1"-''•' ,,.,~ ··•e 1 , h 0 1.'dnT1t~.f'1.'p,•'l 1\'oreov"'r ~f ~ '"'{' 1·· ., s·l •, 2 .' (u:: <:<.:>1. .• L ,. C • • • ... J.. . ·•· ·-· • ; 1 • .;! r .l. . . • • 3 r~ :, , i-.i :;;

t.he prop,2:rty i:h2.·.: freepoin.ts {n
3

) ~- freepoints !n1) while f'\'C::.:-y

Qi:.l,f?r r . .=:: c; i:'o:r ~·'hich free:;;c:int:3 t-: 1 cf:r.oep::,int.r; (:r~-L' i.:~atir,>l'.i.,~ - .
fr{=etloin-::~ (1!.))<:: fx·ef~})~,i.r;,ts (r1), til~: .. n t.hr.:21:2 't/1'.Ll)_ 11~: :/~}.:~· te -~ ·-
reason tc fr2-e A (n ~) wi -~hout f:.:et'o.i n•J A {n

1
) , dnd ./.,. (n ~) c.::in l:n?

J ~

al.1ocate.o ,?s a S~!barea cf 3\{n.,). 1"~1ene-..;.sr H(, :Lr1a;,;:2:c1
: =:tn

.:;

ii~struc', .iJ1L f:n~("?::.r,g 11 (n} wr~ Dus·c , J i~o insert rrn insi.:-:c·.:,::tLm

SETL-·131

If o E ovars (n), and if the opt~iation defining the valu0

of o will build up a SETL object for which space must be

allocated I' the necessary space should be ·allocated in the

area A(n).

To illustrate the preceeding considerations we consider

the path algorithm of O.P.II, pp. 123-124. We write this

code in a form more conventent for our.purposes as follows:

/* ::r:, y, gr, f, and cap are defined before the following code

is entered*/

ol: new = {y};

o ... :
~

set = new;

o.,: .., next = !!!;
(while new ~ n!)

o 4 : newer= ~1

o
5

: ('tfv € new)

0 6 : grofv -· gr{v};

o
7

: prior= n.t;

·c\fuE grofv)

capquant = cap (<u,-v>, f, c)

1-,:'3

()

if u £: :set or capquant ~~- o then cc-nt:.nue;;

prior= prior+ {u};

end Vu;

(Vu£ prior)

next= next+ {pair};

if u eg_ x then go to done;;

0

done:

encl Vu;

end Vv;

new - newer,

end w11ile;

pth .. " Q;

go tc, fini.sh;

pth = n.l1.._;

pt= x;

(whilu t)

set = set + · {u} ;

newer= newer+ {u};

nextpt = next(pt)1

if nextpt ~S. n then quit,;

0
21

: pair= <pt, nextpt>;

0 22 : pth = pth + {pair};

o~, '): pt = nextpt.;
&. _,

enc while;

finish:/* after this point, the variables new, sets newer,

pfio~~ capquant, pair~ nextJ u, v, and nertpt are

However,. pth remai.!':,s alivG * I

Tli.e all.ccat..ion routines which havf., been <"Jutlined would

analyse this code approximat.sly as foJlous~ the operatioas
~,
·-· ', C:• ,

..;,_,...
Or;,,;, and

'~ .. ~

The loophead operations o5 and 011 are basically extract10:1

operators, a~1d hence rnav be assumed not to create any new - '

objects. Thus the ovariables at which !;pace must be aJ located

are o 1 , o 3 , o 4,
06

, o 7 , 0 8 , o9 , 0 12 , 0 18 , 0 20 , and 0 21 •

Let us write o .:__> o' to indicate that an edge runs from

o too' in the graph G introduced above. The only edges

present if such a graph is formed, for the code shown above

are 012 ~ 03 r 08 -to 4>t 08 ~ 07, 08 --+ 012, 02r-01a, ,1.nd

0 20 --. 0
21

. Diagrammed, this is

~~~ . . . -~-- . . 
61 °3 °4 °6 °1 °a 0 9 °12 °1s 02,., 

\.J 

This graph is clearly of a very simple structure; indeed, 

is largely disconnected. Freeing points are shown in the 

following table: 

ovariable 

01 

03 

04 

06 

07 

08 

0 12 

0 1a 

f re·eing ~11 £Oints 

0 16 
.. finish 

01 - 02, finish 

01 - 031 0 11 - finish 

01 - 05l 0 11 - finish 

01 - 06, 0 16 - finish 

01 - 02' fini.sh 

01 - 02' finish 

none 

norte 

none 

i.rredund,r:t 
freeiriq _p,J5.nts . 

finjsh 

f:tn1sh 

f:Lnish 



cl 

li 

SETL-131 

'l'hus our ana-.lysis lt'!a.ds us to. introduce five areas, which 

we may d6signat~ as A(l), A(2), A(3), A(4), and A(5). Thes~ 

may be allocated within e~ch other, in the pattern A(ll ~ 

A(2) £ A(3) c A(4) c A(S). The set grofv is formed within 

A(l), which is freed immediately after t.he end of the 

(Vu€ grofv) - loop. The set prior is formed within A(2), 

which is freed immediately after the end of the ('vt,s prior) ~ l 1.,C,}, .• 

The set {y} is formed within A ( 3) , which is freed immedia.tely 

after 0 16 • {Since this set consists only of a single element, 

it is of course better to identify A(3) with A(4) and to 
suppress this freeing operation). The set neweP is formed in 

A(4), which is freed on exit from the first while loop of 

the above code. The set next, as well as the i terns pa·ir and 

u, are formed in A(5) and freed on exit from the above 

routine. All of this describes a reasonably acceptable 

allocation/freeing scheme. Of course, the scheme obtained 

is one which aims singlemindedly to free areas as soon as 

possible. A more sophisticated analysis would attempt to 

move deallocaticn operations out of 1oops, .md might be abJe 

to trade garbage-collector timr~ for ot.her forms of execution 

time in a more sensible way. 



SE·?I.,-131 

Space for storage of SETL objects is ordinarily reserved 

within a garbage-collected 'heap' area; and a 'stack' area 

is used for recursion control. However, since space is 

more efficiently recovered from the stack than from the heap, 

there is advantage to be gained by allocating sto::i:·age blocks 

on the stack rather than on the heap wher, this is possibj_e; 

a block allocated on the stack is recovered simply by dropping 

the 'stack top' pointer below the start of the block. In 

the present section, we shall describe conditions under which 

thi.s can be done (automatically, by a SETL optimising compiler.) 

Objects allocated on a stack during the running of programs P 

are normally associated with 'blocks' within P, in the sense 

that these objects remain 'allocated' only within the block, 

and are automatically deallocated (by restoring the 'stack top' 

pointer to a prior value) when exit is made from the block. 

The 9 begin' blocks of ALGOL 60, PI./lr and aALM all play 
this role. In SETL,blocks having this Gemantic function are not 

specifically defined, and we may therefore ask twhat program 

subparts are to play the role of these nblocks"?' We might 

choose to have subprocedures play this role; alternatively, 

program intervals might be chosen. We shall suppoGe in this 

section that intervals are to play the role of blocks. 

An object x defined by an ovar1fble o appea.ring w3.ttd.n nn 

ir:terval I can be allocated on the r;tack a.nd deal .l,')c.:::ted Gn 

exit from I provided that the following condit~ons are s2tlsfled~ 

i. The object x is alive only ·within I; mo:rc.~over 1 it 

is not made a part of any composi~e object which remai.ns alive 

ontr5ide of I. 

ii. The object x is never used dc~tructively to produce 

m-1 object which Pither remains 0}5.°'rE: cn1tsjde I or i::::. 1r!cH'J;::, 

part of a comrosL·e object. which :.':em:1i.ns a:LivG. outsidr,: L 

C 



-, r t 

~ 
\. ~ 

0 

( 

'Stack oLie:::ts v can easily be dist.5.ngui.slled once the 

,,n...,·:ili.ary funr·t:tons described in ~ect:ion 2 and 4 have been 

cc.lc:.1J-c':tea. We proceed as follows: 

a:) First build the set t, of all those ovariables of ·I 

which have no uses cutside I. Using the inverse of the 

function orpa~t of section 2, select a subset 6 1 0f 6 hy 

t~:i~.i.rnir1at.ing all those vari.ables wl1ich belor1g to crpa":::· f; c 1.·.) °f:(;.r 

30r% ivariab}e not occuring in I. 

b) WhE-.!n a pattern of destr:--ucti ve uses has b~en deci~1f.. ,~ 

on, check th~::: ovr1riable o' of each operation in I conta.:i.nin~:: a. 

rlestr.-uctive ivar::i.able use, to ensure that o' belongs to L\~. 

If not, let i' he the ivariable of o' wl1ich is used destructi~Hly, 

and find all ovariables oc/1' which belong to C!'flpart(i!), 

Eliminate these o from 6' . Repeat as long as 6.' keep:'; 

diminishing. Theo which remain in t,' wher. it stops dimjnii:"Jhing 

d2fine tbE• value3 which may be formed on the stack ratheJ'.' 

than in the heap. 

If the)t~chnique just outlined is used, one will probably 

want to d:ist.in~r:iish between the part of the stack which 

contains the root words of 1 stack variableP' and the part 

which coritains ob-ject representations. This can be dnr:a e,Js i.1? 

by using appropriate pointers, which are themselves ~tac~e<l 

0"1nd unstacked as one enters and exit.;, f:rorn in~-:ervals; so,1.c; 

1'1,,Ji fication of che present SE'TL garbage u-:i1 1_er::tc1r, and 

''!::-:pecially of :~ts 'move' portions, ;nay aJ.so be requi:~P;_~. 

Methods of analysis like those described in s8cticn 2 



SE'r:C-131 

:tf P .L:.i not analysed in some helpful way for pointe1 .:,YE:rlap, 

tht'.:',n in compil,?.r.s P :i.t may be ner.:essary to makP th'.:~ 'worst c;,. 

assumption that all pointers overlap, and so cnl<le ccn 

assumption may conceal rcdund;rnt express.ions and opporturd ties 

for code motion that could otherwise be found. 

In order to keep our discussion short, we shall analyse 

the po.inter overlap problem under a number of simplifyi.r,g 

assumptions. P is assumed to be schematised as a set of 

basic blocks, each of which c<,nsi sts of schematised instrucb.c-,ns. 

WP allow instructions of the following form: 

(1} single-variable allocation~ p = allocate(x) 

array allocation : p = allocate(A) 

based retrieval . p :::s P1 -+ X . 
based indexed retrieval p = P1 - x(n} 

based storing . p . --t X - P1 
based indexed storL1g : p-► x(n) = P1 

" 

In addition, we allow arithmetic, boolean, etc. operaf1ons 

which do not create, fetch, or store a point.er va lt'<:'. J'J.:,te 

that in con fining our list. of pointer operations r.c ( J) , •,-•e 

:ignore the complications which ~ris~ from the exist.Ence Qf 

:~n ,~nDR function. The details needed to treat· str.1ct,1.;:-i:".s 

ar~ also ignored, as is the treatment of ~on-bnsed 

known to b,~ ar.it.hmcttc •4iJ1 he ic;;'Qo::-ed in +:h-"' .'lnaly:,,::,; '. hic.h 

?c.,J.lows; 1n J:'i:Ht.icuJar, we shall c0ncern ourselves ;,:"cth 

:incexG,1 rc'::xicv~J::; F "-"· p 1 ··-• x(n; an"!. inde:>:ed s:.:c,::ac-f""' :·,p('.l:'<1i.i 1·,·s 
.J.. 

p--·· x(n! '"' p
1 

c:nly when x is an array of poiri,,-:,ts. ~:':·,ese 

(:,rrij ss5.c:•n.s ir1 01)r c<r<=-sf:· ... it. d:isc:L1·~-~-~·;ir)n a1:~e ea=-~_·{ :.y r:1a,J.-:: :.1l_J.; 

. ' . 
\ . 



( 

('input v~riahle' or 'use'! ot P. 

a) crthia~ ~J denotes the set of all o1 which cre6te 

a point,:o:r ·whi(:h might become the value of o; 

b\ o~membpfo) denotes the s~t of all o
1 

which c~e3ta 

a pointer which might be Rtored into some value 

or a~r~; at which some valu0 of o can point. 

Sirnilar f11,1ct t oqs ~ re introclt.1ced for .i va1--j ables i ~ 1. r::::t. 

mi { i) be the set of all output: variables chained to i ,'.by 

,;·he usuaJ. use-<lef .ini t:ion chaining process) • The.n plan i.y 

(2i Cfthisp(i) "' f.+: OE: ud(j)} crthisp(o); 
crmembp(i) = (+: OE ud(i)] crmembp(o); 

The corresponding equations for ovariables are so:net.t1at 

('1 more complicated. For an allocation opera.tion o, we ha VE· 
crthisp (o) :;; {o} ,,.;hi le crmernbp (o) is null. 

bese~ indexed retrieval with p, as input pointer, we ha~2 .... 
crtbisp(o)-= crme::,bp(p

1
). To calcul;,,te Ct7118mrm(o) ,,1~21; 

r~·tr (o) , a more ,ompl•:::x relationslri p r.-ust be us.2d. Let ::,
1
_ 

~ppear as input pointer in the operation defining o. 

;~,.ny o' £ crmeni.bp (p_~) can be a v<1lue c,f p
1 

__ , x; and cnne,·,rp >:\) 

:r:-:-iy be estimat,~d (from c.bo•Je) as the set of <111 pointc<r:~ ·•.r 

z.,,-_ ~Ntdc:1 the poL··'ar v' creat,:cd by such an o' m,'3.y po:int.. 

?.n 

--:1:.:·~:::: p fc).r \:;;-l~.C]) v' is a prJssit)1.(~ 'V0.1.lH?. of J) 1 ;.3.r..ci f:r: 
, - . •. J J ·· ~· ~- '1"}-.-u1 s _~.-- o. _.,,_. · ,-1 t.·.o 1-.. .. e_ .. ! c' .. ,,. ,.·1, i. ·_,, ,,Y)lC(1 V lS a FGSS1. )_.G 'JclUe O.s: r• ,.. _, .L' - • - · 

.::rmc·mbp(o) ~her(, nust. exist o'c ._,:._:-rnemt-p(p.,) and an :inst·.·,-c,; -,,; ,._ 



. L1st .3:rc;u'.::;~nt of chc'. operation in -~hjch i. cccnrs. ':f'hf1n t:tw 

a.rq1:;1,c,n~~ that ha-<.; just hi:!en give:. ,::}70WS -c:hat when 0 is u·.e 
ot1tp'...,t ,_,a:ci;,-.1ble f~ither cf p = p

1
- x or r,f the co:rrer:pon,'t~nJ 

iridexer1 :ret:r.i e·,ra l operator, we ca0 es·t-.imat~ cnnernb (G) a.::; 

c1::rnemb ( o) = 
_) 

crthisp 

.F'or a based storing op~rator. p--> x =-• p1 , we count p c:s 

.._ j I .. 

cvari~bls, and both p and p 1 as ivariables; thPn ~rth;sp(0' ~ cr~i:isrr~ 

\' rep _ __,rc SU" t Lnc_,' n0 change} -"'nd" r~ne"""1·--c, i ~~) :=::. ,~.~·-•ns>11.-b·••) f-o 1 + c·,. t-"\-, ' _..,_.'.., :'; ·, l -.. .-,..,.,1 __,.,J..*.~ ,llL:J._-"\•.,. .., . .._.1,.1; .. r,l..,t' ,,~··•f ,_.,}:. .•.. • .. •.•..-,_~·'\_,··!! 

WE1 h2:,1e agreed t-.o write alloc (o) F retr (o) , an(1 st.0r {o) if the 

cpera~ion d0fining o is of allocation, retrieval, or AtoraJe 

type (intexod or unindexed) respectively. Let argl(o) denote 

the P~ of fl), and, if stor(o), le~ argO(o) denote the p 

appe<',r.1nq in (the fifth and sixth lJnes c•f) 0) .. 'J'he,1 by 

what has just be~n said and using the no~ntions just intrc~~~0~ 

Pe· nay wr.i te the E•quations 

crthisp(o) = if alloc(o) then {o} 

else if :cct1· (o; thtm crmcwJ:ip (arql (r;)) 

.,. 

( 


