SETI, Newsletter 131 June 7, 1974

HMore on Copy Optimization of SETL Programs J. Schwartz

L. Introduction.

SETL is by definition a “"value" rather than a pointer
language. This cuan force SETL cbjects to be copied censid~
erably more often than one would like (see NL 57). It 1is
therefore important to find ways to reduce the number of
copy operations that appear in the compiled from of a 3ETL
program P; indeed, this may be the single most important
optimizatiorn that can be applied to P. The present
newsletter will describe a method for analyzing SETL programs
to find contexts in which copying can be omitted. This
method; which is purely static, can also be applied in
connection with the partly value, partly pointer semantics
of the present SETLB system to detect possible deviations
from strict value semantics &and issue appropriate warnings.
An analysis of the kind we envisage might also be capable
of producing information which makes it easier for a SETLE

it

user to improve his programe by inserting explicit copy
operations at a few crucial points.

A preogram P to be analyzed is assumed to be schemetized
in the manner “escribed in NL 130, i.e. to be represented
as & collec:ion of basic blocks, each block consisting of

schematized instructions which wve will write either as

(1) v o= op(il,..a;in)

or in iafix or in any other «onvenient form. As in NL 13{.

=

i refer to & specific ocourrance of a varisble v

-1
cd

N
L -
W2 Sha

in ‘target’ vosition within an Instruction (1} as an ovarible,
and to a spacifiiec coccurrence of a variakle ij in argument
positisn withis an operatior (i) as an fivariabiz. An

avariabls wiil sometliimaes be taken o stand for the

operation (L) which zets its walue.

k3

‘long' SETL objects are always accessed via 'root words’
or 'zooth pointers’® which point to the meuory block in whickh

he actial representation is stered. If to simplify thino:s

e gbstract from the action of SBTL's garbage collector and
assume an infinite amount of memory o be available, then thes:
pointers can always be taken to contain unigue adresses, and

to be In 1-1 correspondence with SETL ‘'values®. It is then wall
to think of each pointer as pointing to its own private
"segmant’, Infinite in length, wiithin which an indefinitelw
large data item may be built up. When a 'long’ SETL objzor L
is made part of a SETL composite ¢ (either & set cr a ftuple!

w2 vary nuch prefer to insert i's 'root pointer' rp into c
without copying; the same remark applies to simple assigmments
which transfer the value of one variable to esncther. If this
is done, then rp may be extracted later, and used; if tha rules
of value szmantics are to ke adhered to, wa must be sure

5

that rp still points to a memory block representing the value
1. The problem we face is to haxmonize this requirement with
cur desire te improve efficiency whenover possible by
modifying existing data objects rather than by continvally

- v

creating new obijects which differ only slightly from old oraw

B
e

This dilemma appears whenever ws meeb tha instructicon
(2) . 8 = 5 with xj

egpecially when thls instruction sppears within a loop.

3
5

instyruction (2) can be implemented in one of two ways: eitrer

. . e e 3 o
by wreating s new copy nbod ¢f tie boty bed of s fand

correspondingly a nsw pointer ¢ thig acata object;: oF by
modi fying the body of ¢ (by inszriing x into This bodyl),

in which case ths ¢ld nointaey p roew peinks to the repreasan mo on

of 8 with % ard no vew porntar Lo created. Lf bod is laro

. .
tha fsecond procaedurs gan of cour " eve & e
L o T et I3E Ty > SR ~ > r b sy
] Tie 030 s EIIYARVETY G 3 FECEAT A S RN I B

- - 5 L - e
t z-:f \f/’LE‘I‘: g i < Ly 1].6’—- }}"i ST, 1IN i\"a7 i

SETL 131
. O

relaticonship hetween p and the SETL value which it formerly
represented. We must guard against degtructive pointer uses
which have unanticipated side-effects: to do so, we must traca
the direct and indirect flow of pointers through P, from the
points at which a new memory block is allocated and a new
pointer p is created, out to all the objects which come to
incorporate p, and out to the places*at which we finally
decide to use p destructively. ' .

The central idea of the scheme to be developed may ke
put as fcllows. When a pointer p becomes the value of an
ivariable 1 which is used destructively by an instruction cp
of a program P, any object into which p may have been
incorporated might undergo unanticipated side effects. We
therefore aim to determine the set £(i) of all ovariables o
of - P vwhoge current values might possibly incorporate p:
destructive use of p is possible only at program points at
which all these o are dead. We find &(i) (or rather an upper (fi
‘bound for it) in two steps. First we determine the set —
exsinthis(4) of all instructions which can have been
executed between the time at which the pcinter p was created
and the time p became the value of i. Then we determine the
set of all ovariables into whose value one of these
instructions may have inserted p: this gives us (an upper
bound for) 2(i). }

The technigue to be used assumes that P has been
subjected to a preliminary ‘'data flow analysis' or
*definiticn chaining' which for each ovarisble o supplies
the set du(o) of all variebles which can use the value
stored by o, and for esach varizlie i supplies the set
ud{i) of all ovarirables which can store the value used by i.

The operations for which we may wish tO use one
argument destructively are s with x , s less x , s lesf x

s{y) = x where 3 is a set, s{y} = x whevre s is a tuple,

we assume that a copy of s is generated when the sots sti

GETL 131) ’ .

By e aeey,)l m o cslv] = x s{yz,L.n;yn} = x o, s o+ ot oA
g - t . However, rather than confronting this full range of

i ities immediately, we simplify cur discussion
fespecially in Section 2 below) by ignoring tuple operaticns
completely, and by assuming that the only four set-~thoeoretic
operations which appear in our schematized programs are
s+t, 3~t, {x}, and =s. HNote that this does not actuvally
restrict the qunerality of the set-theoretic coastructions we
are @ble to handle, as the other set-thsoretic operations - an
be expressed in terms of these four primitive cnes. 0Of couise,
in a ‘production’' implementation of the algorithms <o be
described below. we might well prefer an operation as
important as s{y} = » to have a direct rather than a
contincent representation.

Extensgion of our schemata and algorithms to handle tuple
operationsAis routine, and the necessary extensions are
described in Section 4.

- Intend:ing to discover the places in a program P at which

degtructive pointer use will be legal, we hegin by assuming

that pointers are never used destructivelw. Tous, 2.4.
v

or s—~t are calculated. Each copying operation generates a aw

ocinter, so thait we reckon each overation suck as s+t 0r g~

to be the origin of a rew pointer; the pointer points to the

«

éata ‘body® which represents s+t or s~%, On the other hand

arn: cpearatior sach as {xi is assumed to wmeke use of an old

w i LLER a copy of x. The sel-thacrzii
sum g+t Lg assuned Lo genezate s ¢ 'single~level' and not
2 ffullt oopy of s. f.a., we genarate a copy of the tabia

repyvesenting ¢, but this tal

P T e e O £ e e 2 n o . e e N Ay
exigting mankers of ¢, which eye chemselives not oopisd.

The gengeaguencas of 1 desgtyvchive caleouisztior of s+t oo oz-t,
PO - A N P [- R e e L - o~ o~ g e
ohy amoag hs otheyr oiifects prordagates an ol polinte:

riither than genarating & new one, will Le considored bholow,

SETL 131

In zome cases, we may want to call explicitly for the
formetion cf 2 copy of s. We assume that an operation cepyfls)
is available for this purpose. This is agsumed to generate
a 'single level’, and not a 'full' copy 4in the sensz just
explained. For generating'full copies explicitly, we might
provide aﬁ operation fullcopy(s). A 'fully independent copy'
generating oparation close to this is in fact called into
play when a 'read x' operation brings in a ZETL data object
from an external medium. In what follows we shall rapresent
operations like read x as schematic assignments x = dcta;
where data is an operator that creates an obiect, perhap:
composite, but having no pointer in comron with any prior

okject.

[$2}

O

2. Svstems of Equations Describing the Transmission of Pointers.

Let i be an ivariable and lot o be an ovariable of P.
Then by crthis(i; (resp. crthis(c¢)) 've mean the set of all
variables which can create an object which at somne moment

in the execution of P becomes tlk2 current value oY i (resp. o).

" If the value of 1 or o can be a set, then by crmemd (i} (resy.
ermemb (0!} we mean the collection of all ivarabl:s 3 whose
valves become incorpcrated as members into a set which at

some moment in the execution of P becomas the curient value
of 1 (resp. o;. We classify the operations occurrisg in

P, and their asscciated variabla2s o, as follows:

transfor operations: o = il;

null opsrations: 0 = n&;

inclusien operations: o= {i,};

extraction cperations: o ="§il;

da+ta operations: o = data;

setalgebraic oparations: o = i1+i?; G o= i}"iz- (for zet

py <psrations: o = copy’i.l;:

C

op
other zlgebraic nperations: o= i1+11; c = X —12; ene (fox K,}

SETL 121

To define that cne of these several classes to which the
cperation <efining o belilongs, we shall write an approprizuin
one oI the predicates transfic}, nulllo), ineclicl, extr(-i,
datafol), eetalgio), copyop(ot, other(o/. When we wish o
distinguiskh i1+i2 from il“iz in the setalg case, we shall
wxite setalgplsfo) and setalgmns (o) respectively.

A systen of equations defining the sets crthis(i),
crthis (o), conend (i}, and crnemb (o) results irom the follow-

ing considerations. Let i be an ivariable. Then

(L ' crechis(i) = [+: o € ud(i}) crthis(o);
1]

cxmanb{i) = {+: o € ud{i})] crmemb(o];

Next, let o be an cvariable, and let i, lor i; and i4) be

the arguments of the operation defining o. Then o belongs

to crthis(o). Moreover, if transf{o), then crthis(o) includaz
crthis{il). If extr(o), then ecrthis(o) includes

[+: iecrmemb(il)]crthis(i). Similarly, if transf (o), then crmend {o)

includes crmemb(i,). If incl{o); then crmemb{o} is {il}' I7 alcplis(o).
. & . o

then crm&mb(il) + crmemb(iz) ig included in crmemb{o};
1f algmns(o}, then crmemb(i1) is included in crmemb {0} .
If copyop{o), then crmemb(o) inciundes crmemb(il), If datalc;:,

.

then crmemb (o) is {nf%l. Finally, if extr{c), then since

the valuve of any 1 € crmemb({i,) may be transmitted to o,
it follows thsat cxmemb (o} = [+: 1 € crmemb(i1)]crmembiiﬁ

The following eguations in SETI notation express these fachs.

{2) crthis(o! = if transf(o) then crthis(aralic})

elce if ewvtr{o} then

)

P

1
e
)

crmemb {o) tranzf (o) or copyop{c} then crmeuwb (argl (o]
else if incl(o; then {arglio)}
¢

else if algpis(o) then crmend

«lsz if crgmnsio) thean crmemb{aral (o))
z2lse 1f sotri{o then

+ 2 orvaws{aalont b I
e ¢ if AT 3 T2 N

{+: i€ormemb{argl{o))}]erthis(i; o2lesio

SETL 131 /

in these equations, argl and arg? are understood to trans-
form o into its first and second arguments. The systen of
equations (1) and (2) are, in an obvious sense, monctone in
their right~hand sides, and can therefore be solved without
difficulty by -a convergent monotone iteration-process.
We keep a 'workpile' which always contains those ivariables i
and ovariables o for which some value crthis(i), crthis(o),
crmemb (i), or crmemb(c) must be adjusted (necessarily
upwards) . Eqﬁations (1) and (2} are used when an adjustment
must be made. The map du(o) is kept available, as is a map
aux(ol) - sending each oy into the set of all ivariables i
which are arguments of an operatiocn of the form o = i and
for which o, € crmemb(i). Whenever crmemb(dl) is adjusted,
all i € du(ol)' are put back on the workpile for readjustment,
as is every o which is the output cf an operation with argument
ie aux(ol). Whenever crmemb (i) is adjusted, the output of
the operation of which i -is an argument is put back on the (
workpile. Moroever, if this operation has the form o = 31,
then i is added to aﬁx(ol) for each o, newly added to crmerb(i).
This adjustment process converges when the workpile has become
null, at which point our determination of the maps crmemb
and erthis will be complete.

By crpart(i) (resp. erpart(o)) we mean the set of all
cvariables which can create an object which at some moment
in the execution of P becomes a part, i.e. either an object
identical with, or a member, or a member of & member, etc.

£ the current value of i (resp. o). Bguations analogous

o)

resp.
to (1) and (2) «an be stated for crpart, and these turn
out to be almost the same as (1} and (2). The principal
difference is simply that crparti{o! contains o unless transf{c' or
extr(o), and that if incl(c), then crpart{o)} includes
both =rthis{i,) and crpartiii). Thig remark leads to #hie

following eguations:

crpart{il = [+: o € ad{i)] orpart{ac);

crpartfa) = 1f transf(o) then cypartiargi(o})

else 1f extrio: then

{+: L1€crmemd (argl{o} ! lorpart (1L}

else {o} +

if incl{o; then crpartlarglio)}

alge if algpiﬁfo) then crxpartl{argl{c))
+ crpart(arg2(ci};

elge if algmas{o) or copyop(o}
then crpartlarvgl(o}}

Once ermemd has been calculated, these eguations can be
solved by a straichtforward monotone convergance procedure.

Let us row define exsinthis(i) {(resp. eazsinthislo})

ivarisbies i (resp. ovariabies o) as follows: exsinthis(i:
fresp., exsiathis(o)}} is the set of all instructions sxecuted
since ihe oreaticn of the pointer which is the current valus
£ 1 {resp. ¢ij. We define cxsrnmenb(i) and ewsinpart(il
{recw. esewrvart{o} and exsivpart(o)} in much the

sama ways ensinmemd (i) (resp. swcinmenb (o)) is the

pointer whish can bz a membal L
{(z2ep. o)y cwstavark{i}) (res: T
¢l all insio Onz exeocuted nte

EER o ChLons
can e Ivayiabloe L
S portbie s o n L
Pong Bor e v oledd
thion a1 v osnd resvdinatone &b Thi
e e e AL 2, DV AR A G RAFINGR I S IR -4 ~ LA - P R

G

SETL 131

{4} exsinthis (i) = chainback(i) + [+: o € ud(i)] exsinthis(o); ()
exsimtentz (i) = chainback(i) + [+: o0 € vd(i)] exsinmemb {c]:
chainback(i) + {+: o € ud(i)] exsinpart(o}:;

1t

exsinpart (i)

Hext, let o be an ovariable, and let i, (or i, and i,) be
the arguments of the operation defining o. Then o belongs
to exsinthis(o). Moreover, if transf(o), then exsinthis (o)
includes exsinthis(il). If eitr(o), then exsinthis (o)
includes exsinmemb(i;). Hence we have '

(5) exsinthis{o} = {o} + if transf(o) then exsinthis {argl (o))
else if extr(oc} then
‘exsinmemnb (argl(o))else ni;

Sindlarly, o belongs to exsinmemb (o). In addition, if
transf(c) or copyop(o), then exsinmemb (c) includes
exsinmemb(il)¢ If incl(o), then exsinmemb (o) includes
exsinthis(il). If algpls(o), then exsinmemb (o) includes

exsinmemb (i,} + exsinmemb(i,); if algmns(o), then (:}

exsinmemb(il} ig included in exsinmemb(o). If extr{o),
thern the set exsinmemb(i) is included in exsinmemb (o); moreover,
if il is the variable of any operation in crmemb (o)
{these il necessaxrily belong to exsinmemb(i)) then the
set exsinmenb(i,) is included in exsinmemb (o).
Hence we hava ”)
{5'} exsinmemb (o) = {0} +if transf(o} oxr ccpyop{o)
then exsinmemb (arcgl{c))

else if inclio) then exsinthis{argl{ci}

elses if alopls (o) thern exsinmemp (3rgl{c))+exsipmemb(arg2{o))
else if algmne (o) then exsinmemb (arglic)}
else if extr(c) then exsinnerb (argl(o})

+ [+;ij_ € crmemb(axgl(o))Jexsimmemb(il)

else ni; (

"

e

The guantity exsinpart (o) satisiss rather s eilaor

whith stand in the same relationship to (5% as (3) dves to
the second éguation of (2). The main change Lo ba noted

ig that, if inol{o}, then exsinpart(o) includes both exsinthis:ulj
and exsinpart{il). Moreover, in the case extri(c},

exsinpart{c) cszn be defined simply as {o} + exsinpart(i,}.

Making these changes, and the other more routine cﬂanq&s

that are necessary, we come to the following equatlana.

{5") exsinpart{o) = {0} 4 if transf(o) or copyop (¢} or incl(o]
then exsinpart(argl (o))

else if algpls(o) then exsinpart(argl{i})+exsinpart{args{u}]
else if algmns{o) then exsinpart(argl(o))
else if extr(o) then exsinpart(argllo};

else ni;

Once ermemb has been calculated, the system (4,5,5',5")
can be sclved by a straightforward monctone convergenoce
procedure. ‘

We axe now ready to determine the set £(i) of ali
cvariables © whose current values might possibly incorporate
the pointer p which is the current value of i. Th=z
operations which have been ax2cuted since p was created
constitute the set Pi = exsinthis(i); the crerations which
may have created o constitute ths 3et crthis(i}). Given &

?

: - B ST I TR
> a 'relativized GG

guppart P of ths progr Peowa da

function crpart_{o) as follows: ¢ is an ovariable of .

crpar f {0} is “ﬁe rasult of snlvirg the egueitions {2,3,4)

£ wd iy by an oocurrance

ew K0 W2

]
rh
Itd
ju]
2]
o
2
e}
foaet
jal]
P]
hd
o
1)
i
9]
;y-
QO
2
[}
=
&
i
fs]
ks

A

nf ud{al N P, Note that thiz has prsoissly the

ignoring all irstructicons that 4o not beione Lo ¥, Tha
condéition that o should belong to 2{i} czn iror be

written as

(5) crpart, (o} N crthis{i) # ni ,
i
which is of course equivalent to
-1
(7) o € crpartF [erthis(i)] .

Hence, we may state the follow1ng condition.

Destructive Use Conditiom. ﬂet i be an ivariable of
SETL program P, and let Pi = exsinthis(i) Then if every o
belonging to the get crpartP [crthls(i)] is dead immediately
before the i is used (where-ih describing an ovariable

as dead we ignore its immediately following use as 1)
then i may be used destructively.

The following considerations illuminate an important
aspect of the Destructive Use Cocndition. In the
pages we have imagined that each pointer used at the SETL
implementation level references some unique memory segment, (j\
and that a new pointerr,with its own segment, is created

each time a value creating operator (such as o = nf; o= {';}

;
o = data; o = 1l+12) rather than a value-extracting or
value~transferring operator (i.e. o = il or o = il) is
executed. Now suppose thal for soms reascn we decide to
ganerate fewer pointers than would otherwise be required

by re-using pointers where possible (in effect, performing

an abstract kxind of garbage collection). Plainly, a pointer
p becomes available for re~use as soon as every object which
could either be equal to p or contain p as a subpari is dead:
we shall say irn this situation that p is totally dead.
Moreover, by re-using a pointer p which is available for
re—use, instead of generating a new pointer, we do not change
anything which could possibly be visible at tha SETL level;
such re-use is as fully ‘transpareat' as ali other

garbege—~collector activity. ®inally, we need not

betweaen ve-used and newly generated pointers: for ex

SETL 131

an operator o = {i;} or o = i,+i, may for all purposes bz
S

o

comsidered to generate the pointer p refsrencing the value
fi;} or iy+i, which iz formed, and this irrespective of
whether p is in fact re-used or newly generated. In
particular by re-using totally dead pointers we cannot affect
any of the information which enters into a decision as to
whether the Destructive Use Cendition is or is not satisficd
&t some particular peint of a given SETL progyram P.

Suppoze next that by applying the Destructive Use
ondition we estabiished that come operation &f P, e.qg.

G o= ilviﬁ , car and will be performed destructively. The

uebtruc tive Use Condition assures us that if p is any pointer
which can appear as a value of il . then, aside from itsg use

as il’ p is totally dead. DPestructive use of p is essentially
eguivalent to re-use of p in the sense of the preceding
paxagraph; however, in re-using p we gain an efficiency
advantage by exploiting the Fact that the segment to which

.t points happens %0 contain a representatior of the

SETL value il. The argument of the precediny paragraph
therefore shows that applicaticon of the Destructive Use

Principle at one pcint in P doess not affect iis zpplicability

at other points of P, i.e. that it may bz appliad independently

to each of the instructions cf F. This importaant addendum
to the Destructive Use Princinle will be used without explici:

yeference in what follows.

3. A Fow Sxomples.
Congider the code sesguence
(13 El. s = nl:

Ri: {while ...

A s = L
3: G = o owith X
i: e i L

R o= oo Wikl g

SETL 121

Analyzing this example by the method described in the
preceding geciion, we find that for the ivariable g
appearing in line i3 (which for brevity we write as i:s:43)
we have P = exsinthis(i:s:23) = {21,%£2,23}. Thus
crpart:llcrthis(i:s:LB)] = {o:s:21, 0:3:23} (where by
o:v:ﬁjP we designate the appearance of v as an ovariable
in line 3j) and then the Destructive Use Condition assumes
us that 1:8:243 can be used destructively.

On the other hand, in

(2) £1: 8 = n&;
£2: {(while ...)
£3: s = s with x;
L24: ¢ = ¢ with s;

£5: end while;

we have P = exsinthis(i:s:23) = {21,22,23,24}. Thus
crpart:licrthis(i:s:£3)] = {o:s:21, o0:s:83, o:c:i4},
and sifce there is no reason why c should be dead before £3
is erecuted, destructive use of i:s:43 is not possible.
| Note that a SETL compiler incorporating the analytic
procedures we have described could explicitly indicate the
points at which it felt censtrained to insert copying
operations; and, by printing out the 1list of iive members
of P, cculd indicate why thse operations were required.
For example, the annotation 'copy s - because parZ of c
in line 24' could be attached autbmatically to line 23
in (2).

Next consider the code

(3) Li: 8 = t;
£2: {while ...}
£3: s = g with x:

24: end while:
£5%: ¢ = ¢ with s:
P ey
26: d = d with t:

@

. Aralyzing thisz, we find that i:8:£3 cannot be used destrac-

tiveldly winos Jhis piginth chenge b owhizh de wrad in 75 Hurnoo
. o ey £ & omv e N T T £ y- P -
a copy apeirat.on 1 negcessary. However, thls oopy

operation can be moved out of the while loop, by charging (3

to the code sequence

(4} £1: 8 = %;
11': 3 = copyl(s):
£2: (while ...)
£ic s = 8 with x;

ené while;

o= ¢ with s;

d = d with t;

ek

w0
[5 B 3
1

1]

=
o
e

The analysis of (4) is very much like that of (1), and the
possibility of using i:s5:£3 destructively follows by an

]

srgumnent like that given in conmmecticn with (1}.

G

SETL~131

4. Tuple cperaticns.

The analysis method described in section 2 ignores
tuple operations. In the present section we shall remedy
this shortcoming by describing the way in which the
procedures of section 2 need to be extended if programs
containing tuple operations are to be handled correctly.

Of course, the algorithms of section 2 remain unchanged in
general form; to handle tuple operations, we only need to
change some of the details of these algorithms.

Cur first task is to introduce a number of functions
which are the analogs for tuples of the maps ermemb and
exsinmemb of section 2. Let 0 be an ovariable of a SETL
program P, and let n be an integer. Then crecomp(o,n) is
the set of all ivariables i' which can be transmitted
to the n-~th component of some (tuple) value of o
(by not necessarily any'component other than the n-th).
Moreover,; ersomeompf{o) is the set of all ivariables i'
which can (as far as we know) be transmitted .
to any component of some (tuple} value of o. We define
exgincomp(o,n) as the set of all instructions executed
since the creation of a pointer which can be the n~th
comporient of the current (tuple) value of o; and exeginsomcomp(cl
as the set ¢of all instructions executed since the creaticn
Of a pointer which can appear as some component of %“he
current tuple value of o. Analogous functions
erconpi{i,n) crsomcompi{i), exsincomp{i,n), and ezsinsomecomp (i’
are defined for the ivariables i of P. '

We continue to assume that P is available in schematised
form. Now, however, we allow the following additional operatione

to appear in the schema representing P,

tt
n

BOT0~E3D 16
tuple-former operations: rom < e i g
componant extractors 3 o o= il‘iz} i11 a tupl
subtuple extractors : o = i:(iz:i3) ¢
‘tail!? extractors s o = i,(i,:) N
component insertion: : o = {il(iz) é-—-133 (o a tople)
tup;a concatenation : o0 = iy + i, (il,iz'tuples;

Note that the component insertion gperation, which in
order to conform to our general ivarable/ovariable conventions,
we shall write as o = {il(i2) 4- i3}, is ordinarily
written as vi{n) = ¢; and ordinarily presumes destructive use of

{which is the il of our schematic notation.) Moreover,

we assume that before copy elimination is attempted for P,

P has been subjected to a’'typefinding' analysis of the kind
described in A. Tenenbaum’s thesis, =0 that the types of the
variables appearing in P are known. It is of course not to
be expected that our somevhat over-idealised assumptions

will apply:in the precise form stated: to & full, preduction

Ve
version of a copy optimisation program. Such a program
would conseguently be rather more complex than the still
somewhat simplified algorithms which we are abcut to
prasént. However, since in the present newsletter we wish
Lo avoid writing out a long and highlv detalled crpiinmiser
spacification, we have little choice but to ignore these
a2dditional cemplicetions.

.

We ghall write predicaies fformliol, compexiol,
gybtgx(@), tﬁiiel(O}, {nma(o)J and econcatio) to indicate
hat the operatiocn defining o iz of tuple-former, comoonent

cxbractor, suntunle extractor, 'tzil’ extyactor, COUPOnNEnc

Lion,or tuple concatenation hvpe respecitivels.

%

SETL-131 17

The way in which we deal with certain tuple-related operations
vhich have integer parameters will vary, depenéing on
whether or not compile~time constant values or lengths of
these parameters are known. To make this information available,
we suppose a function known(i) to be available(as the result
of a preliminary 'constant-propagation' process). The value
known (i) is n if i is known at compile time to have the
value n; otherwise known(i) is Q. If the type of i is a tuple,
known (i) gives its length if this is known, rather than i's
value. The functions crcomp(i,n) and crcomp(o,n) will be
recorded only when known(i) ne Q (resp. known (o) ne Q) and
only when n < known(i). In other cases, these functions
are taken to have the nominal value nf.

The functions crcomp(i,n) and crsomcomp(i) satisfy the
following equations: '

(1) crcomp(i,n) = if known(i) is n ne Q then
[+: © eud‘(i)] crcomp {o,n)

else nf;
crsomcomp (i) = [+: o€ud (i)] (crsomcomp(o) +
if known(i) ne Q or known(c) eq @ then nf
else [+: 1 < m < known({o)]crcom, (c,m});

Tc obtain equations for crcomp{o,n) and crsomcomp (o) we

reason as follows. If tform(o). then crcomp(o,j) is"{ij}

for all 4§ from I to the number of input parameters of o.
Moreover, crthis(o) = {o0}. 1If concat(o), then crthis(o) = {o},
Moreover, if known(il) = n, we have crcomp{o,ij) = crcomp(il,j)
for 1 < j < n, crcomp(o,j) = crcomp(iz,j~n)‘for 1 <3 =<

—

Loown (i However, if known (i,'= @, then crcompf(i,,jy will
1 * i

2)'
alwavs be nf, and crsomcomp{c) is the union of crsomcom,{il),
ursomcomp(iz), and of all the non-null sets among crcomp(ilgj)
and crcomp(i,,j). For the *tail’ extraction operator. and

e

assuning that known(i.,) = n and Lnown{i,, » L w2 hoave
o Ry . N

SETL-131 ’ R

crcomp (0,3) = crcomp(iy,j - n) for j > n; crsomcomp (o) =
cxsomcomp{il}. If known(iz) is O but known(il) # Q,then
crsomconp (0) = crsomcomp (1,) + [+: 1 < § < knawn(il)j crcomp(il,j},
If both known (il) and known (iz) are §, then |
we have simwly crsomcomp{o) = crsomcomp(il). Similar
relations hold if subtext(o); relevant details appear in
the formal equationg for crsomcomp(o) and crcomp{o,n) written
beiow. If inxa(o}, knéwn(iz)‘ii n ne 2, and krown(iy) ns %,
then we have crcomp({o.n) =?{ié}while crcomp(o,n; = crcomp(il,m}
for m ¥ § and crsomcomp{o) = crsomcomp(il). 1f known(il)'gg ¥
but known(iz)gg 2, then crcomp(o,m) = crcomp{il,m) for all
m, while crsomcomp(o) = crsomcomp(il) +'{i'3}° Details
concerning the cases in which known(il) eq i appear in the
formal equations written below.

' The component extractor case,i.e. the case compex(c),
affords complications much like those already encountered
in the extr{o) case of section 2. Considering the compex (o) case,
suppose first that known(i,) is n ne @ and that known{il) na Q.

Then gince crcomp(o,n) is the set of zil ivariablec

which can be transmitted to the n~th ccmponentiof
the value of o, while crsomcomp(n) is the set of all ivariables

which can be transmitted to some (variable.or-unknown)

Component of the wvalue of o, we have

(2) crthisfo) = [{+: 1 .e crcomp{i,,n) + crsomconp (i, ;! cvtbusl i},

..

1

For much the same reason; we have

(2') crmemb(e) = [+: i € crcomp(i,,n} + crsomeonp (i, 1] crmemos (1),

Tf krown {0} iz @ ne &, wa have

-~ < LY . . gy S Y P g VA ca
(') crcompio,i: = [+: 1= crggmp(llrn)% crsomaomp i Y ocroo s 4

b

and

SETL-131
(2") crscmcomp{o) = [+: 1€ crcomp(il,n)

+ crsomcomp(il)?crsomcomp(i),

both for 1 < j < m. On the other hand, if known (o} eq 9,
then all crcomp(c,j) are taken to be 2, and we have

(3) crsomgomp(o) = [+: i € crccmp(il,n) + crsoncomp(il)]
{(crsomcomp (i) +
if known(i}) is m eq Q then nf else
[+: 1 < 3 < m] crcomp(i,])) .

Corresponding details for the compex(o) tases for which
either - known(i,) egq 2 or known(i;) eq Q are found in the
formal equations written below.

This survey should suffice as introduction to the following
equations for the functions crcomp(o) and orsomcompi{o), and
to the following revised equations for the functions erthis,
ermemb, and erpart, all of which we now procezd to give.

First we give the equation for crthis.

{4) crthis(o) =if null{o} or incl(o) or data(o] or setalg(o)
or copyop(o) or other(o) or tform(o) or

or subtex(o) or tailex(o) or inxa(o) or concat(0j

then {o}
else if transf(o) then crthis(argl(o))
else if extr(o) then
[+: 1 € crmemb(argl(o))]erthis(i)
else /% if compex(o) then */
if known(argi(o) is il) is tuplen ne { then
if known{arg2(n}) is inx ne Q then
[+: i € crcowp(il,inx)+crsomcomp(il) Jerthis (i
else /* if inx eg & then */
[+: i € [+: 1 < n < tuplen]crcomp(il,n)
+ crsomcomp{il) Jerthis{i)
else /% if tuplen eq Q then */
[+ iecrsomcomp(il)]crthis(i);

N
}

The eguation for crmemb is as follows:

{5) crmeub(¢i = if null(o) or other{o) ox tform{w) or suhtexi)
or tailex(o} or inxa{o) or concat(o)
then ni
‘else if incl{o) then crthis(argl(o))
else if algpls(®) then crmemb(argl(o))
+ crmemb (arg2{0)}
else if algmns (o) or transf{o) or copyop(c)
then crmemb{arqgi{d)}
else if data(o) then {ni}
else if extr (o) then
[+: 1 € crmemb{(aral{o})] crmemb (i)
else /* if compex(o) then */
if known(argl(o)is il) is tuplen ne & then
if knownlarg2(o)) is inx ne @ then
[+: 1 € crcompf{il,inx) + crsomcomp(il}]crmemb {i)
else /* if inx eq Q then */ |
- {+: 1 € [+: 1 < n < tuplenjcreomp(il,n}
+ crsomcomp (i) Jornexi» (1)
else /* if tuplen eg Q */ then

[+: i€crsomcomp(il) jermemy (1) ;

Next we give the eguation for crcomp(o j;, This equation is
uied only 1f the type of 9 is a tuple and kaown(e} ne &,
i which case we have one equation for each 1 < 3§ < known(c).

NMote that the functicr arcefo; 3} which appsars below is assumed

oo oyeturn the d-th argurent of the oreratiin deficing or this

argument 1s of course an ivariable.

(6)

Now we give the equation for ersomcomp(c). This e

crcomp{o,3j) = if tform(o) then crthis(arg(o,j))

elge if subtex(o) or tailex(o) then
crcomp (il ,j+known (i2))
else 1f inxa(o) then
if known(arg2(o)) is inx ne Q then
if j eg inx then crthis(arg3(oj})
else crcomp(argl(o),j)
~else /* if inx eq Q1 then */ nf
else if concat(o) then '
if j le known(argl(o}) is lenl then
then crcomp{arglic},i)
else crcomp(argz(o)-lenl)
else if transf (o) or copyop{oc)
. then crcomp{argl(oc),j!
else if data(o) then {nt}
else if extr (o) then
{(+: 1 € crmemb(argl(o)) lcrcomp (i, j)
else /* if compex(o) then */ '
if known(argl{oc) is 11} is tuplen ne O then
if known{arg2{c)) iz inx ne { then
[+: 1 € crcomp(il,inx) + crsomcomp{il) !
crcomp (3., 3}
else /* if inx egq O then */
[+: 1 € [+: 1 < n < tuplenlcrcomp(il, n}
+ crsomcomp{il) lcrcomp(i, j}
else /* if tuplen eq & then */

2

[+: 1 € crsomcomp(il)] crocomp{i,j):

vaticn is used

q]
oaly if the value of o is a tuple, and is complicated by the

need to deal with variocus subcases which arise depending on

whather or

defining

¥

not. the lengths of o0 and of ithe several iwvariables

ars known.

e

PPaARa ¥)

(73

<13

crsomcomg: (0} =
if tform{n) then nl
alse if data{w) then {nk!
else if subtex{o) then
if known(argl(o) is il) is tuplen eq { then
- crsomcomp (il)
else /*'if tuplen ne 2 then */
if xnown(arg2(o)) is inxl eq 9 then
crsomeonmp (i1) + [+: 1 < n < tuplen}crcomp(il,n}
else /* if inxl ne N then */ '
if known(arg3{o)) eq 2 then
crscemcomp (il) + [+: inxl < n < tuplenjcrcomp(il,n)
else crsomcomp{il) |
else if tzilex(o) then
if known(argl(o} ig il) is tuplen eq Q then
crsomcomp {il)
elee /* if tuplen ne Q then */
if known{arg2(o}) is inxl eq & then
crsomcomp {i1) + [+: 1 < n < tuplenl crcompf(il,n)

else /% if inxl ne Q then */ crscuacomp (i1}
else if inxa(o0) then
if knownf{argl(e) is 1l) eq 2 or known{arg2{o}} egq { th:n
crgomcomp {il) + crthis{arg3(o))
else crsomcomp (il)
else if ccncat{o} then crsomcomp{argl(o} is il)
+ crsoncomp {arg2({n) is i2) +
if known(il) is Jenl eg P then
if inown(iZ} is lenl eq & then ni
elsc {+: 1 < n < len2) creomp{i2,n)
eise /* if Yenl ne it then ¥/

eloe T4 1 4 on < lenl) crcompf{il,n)

a1]
SETL-131

23

O

else if {ransi(o) or copyop (o) then crsomcomp(argl(o)}
else if evtr(c) then
{+: i € crmemb(argl(o})] (crsomcomp (i) +
if known(o) eq £ and known(i) is ilen ne Q then
{+1 1 < n < ilen]crcomp(i,n) else ni)
else /* if compex{(o) then */
if known(argl{c) is il) is tuplen ne 2 then
if known(arg2(o)) is inx ne Q then .
{+: i € crcomp(il,inx)+crsomcomp(il)] {(crsomcomp (i) +
if known(o) eq @ and known(i) is ilen ne £ then
[+: 1 < n < ilen]crcomp(i,n) else ni)
else /* if inx eq Q then */
f+: 1 € [+: 1 < m < tuplen)crcomp(il,m)
+ crsomcomp (il)] (crsomcomp (i} +
if kxnown (o) eq @ and known(i) is ilen ne Q then
[+: 1 < n < ilenjcrcomp(i,n) else ni)
else /* if tuplen eq @ then */ | C
[+: i € crsomcomp (il)] (crscmcomp (i)+
if known (o) eq 2 and known(i) is ilen ne Q then
[+: i < »n < ilen] crcomp(i,n) else ni);

To allow for the existence of tuple operations, we must
revise the dafinition of the sets erpart as follows {cf. the
paragraph preceding formula (3) of Section 2): By erpart(i)
(resp. crpart(o}} we mean the set of all ovariables waich can
traate a pointer which at some moment in the execution of F
becomes a part, i.e. sither a pcinter identical with, or a
wember pointer, or z component pointer, or a member of a
member, member of s component, component of a member etc.
pointer of the current value of = {resp. o}. Revisad cguarions

for erpart are as follows:

crpart{i} = [+: o € ud(i)]crpart(oj;
crpart{®} = 1f transf (o] then crpart(argl(o))

slse 1f extr{o) «hen

[+: i € crmemb{argl(®))lcrpart(i)

('I

else if compex{o} thexn
if known(argl(o} is il) is tuplen ng 0 than’
if known(arg(2)) iz inx ne Q then
[+: i € crecomp(il,inx)+
_ +crsomcomp(i;)]crpart€i)
else /% if inx eq O */ then
{+: i€[+: l<n<tuplienjorcomp(il,n)
+ crsomcomp(il) Jcrpart (i}
elgs /* if tuplen eg Q */ then
[+: i € crsomcomp(il) Jorpart{i)
else {0} + |
if incl(oc) then crpart(argl(o)}
else if algplis(o) or concat(o)
crpart{argl{e}) + crpart(arg2(oc))
else if algmns (v} or copyopi{o) then
c,gaft(érgl(o}}
else if subtex{s) then
1f known{argi{c) is 11} is tuplen ¢y &
gg}knowm(argl(o)} is inx eg & then
elge /* 1if tuplen ne & arnd inx ne 3 then
if known(rgifo;} is inxhi eq §I then
irpt{voinzinctuplenlt creomp (il o)

[4+: i€crsomcomp]
CIP“}"-]‘:{II P
else /% 1if inxhi ne ¢ then %/
{r: d€crsomocmp ik e dix < n < dnshilorcorpils o
u,\“jpo i
elge 1If tallexio) then
if knowen(",«w'; (o) L:‘; il) E;Q'_ -i:L‘A[.T‘J‘E,‘h a0 q
ox knownlovg2lei) ig inx eg § Shon »

eise@ /* if tuplen ne Q and int ne Q then */ C.}
[+: i€crsomcomp (i1)+{+3 inx<n<tuplenlcrzcomp (i,)
cypart(i)
else if inxa(o) then _
if known(argl(o) is il) is tuplen eq @
or known(arg2(o)) is inx eg 0 then
crpart(il) + crpart(arg3(o))
else
[+: i€crsomcomp (il)+ [+: lgpg;uplen{n ne inx}crcémp(il,n)chpaxﬁ\i)
+ crpart{arg3{o))
else if data(o) then {nt}
else if tform(o) then
[+: 1l<n<nargs (o) Jcrpart(arg(o,j))
/* where nargsfo) is the number of arguments
of the tuple-forming operation defining o */
else /* for other operators */ n&;

The equations for crthis, ermemb, crpart, crcomp, and crsomcoip
stated in the present section can he solved by a procedure
hardly differing from the iterative procegs outlined in Section 2.
The Destructive lUse Condition retains its validity in the
presence of tuple operations.

The function exsinthis(i) appezrs in the statement of the
RDegtructive Use Condition and for this reason we continue the
present section by giving the equations required to calculate

exsinthis. In this function there appear szeveral other functio -

Lo 7
S o2 0L e Pe
Sk o L e o5

exeinmemb, which 1s the set of xli instructions executed since

the creation of a pointer which is 2 member of the current

velue of av ivariable {or ovariable): exsimscomacnmp, wiiich i
tha set of zll ingtructions executed gince the creation of

& pointer which can appear as some {unkncwn) componant of the
current value of (an i~ or o~) variable; and exsincomp(o,j)
{resp. exszncomp(z,g)) which is the set of all irstructions
exacuied since the creation of a pointexr which can appe bt
the j=-th component of the current value of o {resp. i}.

These various quantities obey equations rathar liks th fOf
ertitis, cermemb, crsomcomp, etc. which have just been written.

We shall for this reason not give a full set of eguations;

-~y

instead, we shall confine ourselves to writing out the eguation

foy exsinthis, exsinmemb, and exsincompl(o,jl- Note that
exvincomp{ec,jl and exsincomp(i,j) are dafined eonly when

kncwn(o) ne @ {resp. known{i) ne 2); in other cases,

<

14 .

rr——r

-

exsincompfo,j) and exsincomp(i,j) have the nominal value
For an ivariable i we have

chainback{i) + [+: o€udf{i) jexsinthisia);

{9) exsginthis{i) =
exsinmenb{i) = chainback (i) + [+: ofud(li) jexsinnment{n};
exsincomp (i, i}=chainback (i) + [+ di{i)jexsincompio, 3}

{0f, eguation (4) of Section 2, and alsc the remarks preceds
that equation.)
Mext, lat © be an covariable, and let il"(or i, and 1.} ro
-t e

the arguments of the operation defining c¢. Then o© Dbalongs

exysinthis{ol. If transflcl, then e¢xsinthis(o] incluies

&xsinthis(i1}~ T{ e

xntk*s oY inein

[4 er L . -
VISR "l‘.‘ - 4 CRre ¥

make no gpecial contribubion Lo eysinthisist . 11 In a2l

b -
.
[

(10} exsinthisi{o) = {o} + if transf(o) then exsinthis{argl{o))
else if extr(o) then (‘5
exsinﬁemb(arg}(c}})
else if compex(o) then
if known(argl(o) is tupl) is tuplen eg & then
exsinsomcomp (tupl)
else if known(arg2(o)) is inx eg @ then
exSincomp(tupl,inx)
else exsinsomcomp (tupl)+
| [+: l<n<tuplen] exsincomp (tupl,n) Y
else /* for other operations %/ nl;

Next we give an eguation for exsinmemb(o). The equation which
we give is justified by reasoning like that which precedes
equation {(5') of .section 2; we leave it to the reader to work
out necessary details:
: .
(10') exsinmamb(o) = {0} + if transf(o) or copyop(o} ox algmms (o)}
then exsinmemb(argl(o)} (jﬁ
else if incl(o} then exsinthis(argl(o))
else if algpls(c! then exsinmemb{argl(o))+exsinmendy (ary2 (2))
~else if extr(o) then exsinmemb(argl(o))
+ [+: i € crmemb(argl{o})] exsinmemb (i)
else if compex(c) then
if knowniargl{o) is tupl) is tuplen eq & then
exsinsomcomp (tupl)+[+: i€crsomcomp (tupl)lexsinmemb (i)
else if krown(arg2(o}) is inx eq & then -
exsincomp (tupl,irix) +
Fe: iscrtomp(tupi,inx]}exsinmemb(i)
else axsinsomcomp (tupl) ¥
[#: deccrsomcomp (tupi)] exsinmenxb (i}
{+: decrcomp(tupl,nj] exsinwenb(i))

else /* for other operatoxs */ ni;

Filraily, we give an eguationfer exsincompio,nd . As alrezdy
stated, this fvicticu is only defined when known{o) ne &

sl only fer n < kxnown{ol. The eguaticon which we give can be

e

Austified by veasoning adapted from that which precedes ejuatiom

{5} of Sectiur 2Z; howevey we Leave all details of this roason-

ing to the readeyx.

{11} exsincomp(c.n) = {o} + if transf(o} or copyop (o)
then exsincomp{argl{o),n)

else tform{c) then exsinthis{arg(o,n))

o 2

2
th s

elsze

.,
¥

tallex{o} or subtex{s) then
exsincomp{argl{o), n + known({arg2(=))}
alse if concat{o) then
if n le {(xnown(argl(o} ig i) is ilen then exsincomp{i,n}

—

A

else exsincomp(arg2i{c}, n - ilen
else if inxalc: then

if known{argZ(o)) is inx ey & then ng

else if n ne inx then exeincomp (argl{o) ,n)

eige exsinthisg(arg3{s))

else if extr{s) then exsimenb (arglic))

+ f[+:r 1 € crmemblargl{c)) lexsincomp {i,n:
else if compexio} then

Lf knownlargl(e) is tupl! is tuplen_eq Q then

axaisgomnccmp (tupl}+ {+: i1€craomcomp {tupli lexsinoonpil,

elge of knowni{arg2{c)i ig inx nae O then

%

ercincomp(tupl, inxt4 [+ i€crocomp (tupi,iny)]

exsivcoms (L, 0]

else exsisonromp {(tupl)+ [+ i€crsomcomp {tupl! jexsineiao ™

] : G o o 4 N { oo e et e iem myw e Y * I BT e e w e e © A
by Ik vl e slatioeems Sl Do e A8 nonn i NN
UKL O

Y S et e v oy A e g O .,
azilse JS* for ciher operators ¥,/ nl;

5. Additional examples.

Next, ir order to get scme idea of.the advantage which oux
copy optimizations might securs in typical casez, we examinc
a number of ccdes taken from 0.P. II. The first is the
Cocke-Earley 'nodal span' perse, in the form given on
page 161-162. Here the algorithm is

define nodpaxse (input,gram,root,syntypes,spans,divlis,amb);
todo = ni; divlis = n&; spans = {<2,s,1>, s€syntypes{input(i}}}:
(1 < ¥n < #input)
todc = {<n+l,s,n>, s € syntypes{input(n)}};
spang = gspans + todo;
(while todo ne ni)
next from todo;
<end, typ2,mid> = next;
(Vspend€spans{mid}, type€gram{hd spend is typl,typ2})
newsp = <end, type,spend(2)>;
<newsp,mid, typl, typ2> in divlis;
if n newsp € spans then
newsp in spans; newsp in todo;

end if;
end Yspend;
end while;
end Yn;
/* check on grammaticality #*/
if n (<#input+l,root,l> is topspan) € spans then
<gpans.,divlis,amb> = <n?,nf.£>; xeturn;

end if;
/* else clean up set cf spans arnd determine ambituity #*/

0

spans = nf; amb = f; etdescs {topspan) ;
/* clean division list */

divliis = {@ © diviis | hd 2 € soans);
return;

end nodparse;

(f\

Destructive use of a variable is potentially possible in
the operation rcpans = gpans + Zodo; next from todo;
<nevsp,mid, vypl typ2> in diviis; newsp in spans;
newsp in todor . The Destructive Use Condition of Section 2
can be seen to validate each of these destructive uses; all
that is involived is the rather trivial observation that
neither todo, divlis, or spans ever becomes an element of any
larger compoesite object.

Next we examine the ‘graph ordering' algorithm given on p.
of ¢.P, II. The code for this is

definef graphcrd(nodes, entry);
/¥ the successor map ceegor is assumed to be global */
order = <entry>;
mark = {<entry,t>};
jlast = 1 /* jlast is highest numberéd node from which
_ ' new path may begin */;
(while jlast > 3j > 1, last € cesor({order(j})|mark(last) na t)
/¥ start new path #®/ a
path = <last>; mark(last) = t;
/¥ and extend az far as possible */
(while 31 next € cesor(last) |mark(next) ne t)
path = path + <next>;
mark {(next} = t; last = next;
end while 73; '
/¥ insext path &f
vrder = order (1
jlast = % + ip
/* note path{fpath) has no vnmarked successors */
end while jlast;

renurn order:

1

znd sraphord:

P

265

SETL-131 ' | 33

Here the potentially destructive operations are path = patht<nena>;
and mark (next) = t; and both of these are admissible by the (T)
Destructive Use Cendition, simply because neithey path nor mui
ever becomes an element of a larger composite.

Next we consider a fragment fram the set of ‘interval-finding’
routines given in O.P. II, pp. 269 ff. The code in question in
as follows:

definef interval (nodes,x); _
/* npreds, followers and cesor are assumed to be glcbal *,/
/* count the number of predecessors of every node */
npreds = {<x,0>, x € nodes};
{(¥x € nodes, y € cesor(x))
npreds(y) = npreds(y) + l:;
int = nult; followers = {x}; count = {<y,0>, y € nodes};
count(x) = npreds (x);
/* 'count' will be a count of the number of predecessors of
a node which belong to the interval being conztructed */
_(while {y€followers|npreds(y) eq count(y)! is newin ne ni) (j\
(Yz € newin)
int{#int+l) = z;
z out followers;
(Vy€cesor(z) |y ne x) count(y) = count(y)+l; y i

et
<
]
G
o~
9
<
+
o
[
n
.

‘end ¥z;
end while;
return int;

end interwval;

definef intexrvals{nodes,entry}:;
/* followsra, follow, intov are all assumed to be global #/
ints = ng; geen = {entry}; follow = ni; intov = ni;
{(while seen ne nf)

node frow seen;

interval(nodes,node! is i in ints:

follow (i) = followers;

{2 < Vk < i} dintov(i(k)} = i:;

geen = seen + follovers:

=

YRR
fus o3 N

ot
P R &

L&Y

b
i

end while;
return ints;

end intervais;

We ignore any special problems having to do with ‘cross sub-
routine' optimizetion, thus in effect assuming that these two
functions are in some appropriate way consolidated into one.

The operations containing potentially destructive variaklao
uges are: nprede(y) = npreds{y)+1l; count(x) = npredsix);
z out followers; count(y) = count(y) + 1; vy in followers;
(and now pagsing to the subroutine intervale) node from scen;
follow(i) = followers; seen = seen+followers;. With the
exception of z gut followers and y in followers, the legitimacy
of ali these destructive uses is obvicus from the fact that
neither npreds, count, seen, nor follow are made elements
of any largexr cbjects. Destructive use of followers in '
2z out followers and y in follovers is also justified, but
somewhat more of the force of the Destructive Use Principie
is needed to establish this. Specifically, we must note that
from the initial definition of followers up to the (dynamic)
occurrence of z cut followers nc instruction making followers
pait of a more ccmpound object is executed. A similar remarxk
applies to the occurrence of y in followers.

Note that the set {y€followers|npreds(y} eq count(v)} is
a good candidate for elimination by Earley's method of
*iterator inversionxi.e. by set~thecretic strength reduction.

SETL-131

6. A General Remark Concerning the Mappings Described in the

" Preceeding Fages

The mapping erthis discussed in the preceeding pages is
analogous to the mapping ud which appears in conventional
data-flow analysis, i.e., to the map which chains each use
of a variable to those definitions which can set the value
0f the variable. However, whereas in calculating the mapping
ud we only link an ivariable i to an ovariable o if there
is a path leading from o to i'which ig free of redefinitions
of the variable common to o and i, the mapping erthis will
link i to o wherever the object x created at o can be trans-
mitted to i, either along such a path or indirectly through
any chain of operations which embed x into some nested
collection of sets and tuples and then later extract it.

Thus erthie expresses g considerably more extensive concept
of value transmission than does ud.

The inverse map crthis * extends the definition-to-use
chaining map du ordinary data fiow analysis in a similar way.
In chosing data representations for the objects appearing
in SETL programs we will often need to know all the operaticns
aprlied to the object created at a given cvariable o. Cnce
the map crthisnl has been calculated, this information is
eascily obtained: we have only teo f£ind all the ivariasble= in
crthis"l(o), and note the opexraticons to which these ivarxiables

are arguments.

It will be seen in a lazter newsletter that by regarding
Lhe ovariables of a prﬁéram as nodes in a graph G whose 2dges
ara defined by thz mappings crmemb, ercomp, crsomeemp dlscussed
2bove and then hy analvsing this graph we ¢an hope to yain
some idea of the lcgical data~types in terms of which a2 nrocram
is organised. In particular, recuvrsive datas types correspond

2 loops in G.

rs
[P
[)

@

C

e

7. Paths Along Yhich Variables and SETL Values are Live.

For certain purposes one will need to know not only the
pattern in which ivariables are chained to ovariables as uses
and vice-versa, but even the specific paths along which an
ovariable ¢ is connected to an ivariable which uses the value
generated by o; these are the so-called Iive paths forxr o.

Ir optimising languages of the FORTRAN level, information cf
this type can be used in generating register allocations by

a packing process; applications to SETL of information of

this same type will be described in section 8 and 9 below.

In a conventicnal data flow analysis, a live path calculation
will have twc functions, which we shall call pud and pdu,

as result. The function pdu maps each ovariable o into the

set of all program edges which belong to a path connecting

¢ to one of its uses; the set pud waps each ivariable i into
the set of all edges belonging to a path comnecting i to one

of its defining ovariables. These two functions can easily

be expressed in terms of two functions which are in any case ant
te be calculated during conventional data flow analysis.

The first of these functions, reachss(b), gives the set of

all ovariables o whose values wouvld be used in the basic

bElock b if b contained a use of the variable v ¢f o; the

second of these functions, live(b), gives the set of ivariakles
which are live o3 entrance to the pasic block . Then the

edge e starting at a block bl and ending at b. belcnygs o
pdu(c) if some ivariable i involving the same Qariable v as

¢ satigsfies i ¢ live{bZ? and if eiiher o ereaches(bl) and bl

ig free of redefinitions of ¢, ox if o is the last target
accurence of ¢ oin bl' Similarly, e belorgs to pud(i) if

iz live(t,; and if theve exists an ovarisble o with variakle
I such theat either o € reachas(h,} and by, is free oX 1x&-

o
&

definitions of o, ¢r if © is the last target occurencs of

SETL“].31 ’ el

in the pressnt section we will show how various mapping:
related to pud and pdu can be calculated. These mappings
generalise pud and pdu in much the same way that the maps
.erthis, erpart, erhold,etc,generalise ud (compare the remaxks
.made in the preceeding section.) fThe functions in which we
shall be interested are as follows:

a, perthie(i,0) defines the set of all piogram graph edges
which can belong to an execution-time path connecting an
ivariable i with an ovariable o which creates a SETL object
which reappears as the value of i.

b, permemb(i,0) defines the set of all program graprh edges
which can belong to an execution~time pathlconnecting an ivariable
i with an ovariable o which creates a SETL object which is

a mémber of a set appearing as the value of i,

C. perpart(i,0) defines the set of 2l program graph edges

which can belong to an execution-time'path connecting &an

ivariable i with an ovariable © which creates a SETIL object

which is a part of (i.e. a member of,a member of, a member cif, etc.)

a set appearing as the value of v.

Note that in the present section, as in section 2 above,
we simplify our discussion by ignoring tuple operations
completely, and by assuming that the only four set~-thsoretic
operations which appear in our schematised programs ars
s+t. s-t, {x}, and 2 s. Equations for perthis, pcrmemb,
perpart etc. could of course be developed for full SETL including
tuple operations: the general structure of thesze equations
would be similar ¢o the simplified equations which will be
_written below. lowever, net wishing to write out wet ancther
lengthy group of set-theoretic formulae, we shall not

Present these fuller eguations.

SETL-131

Note however that in treating tuple operations we would
introduce functions persomeomp and percomp in additioa to

the functicns porthis, permemb, and perpart appearing below.

In writing eguations (1-3) below we use various major
and auxiliary functions introduced in section 2, including
the functions arg! and arg2 which transform an ovariable ¢
into its first and second arguments. | '

The equations which are now to be given are justified
by the following reasoning. First consider perthis, and a
prcgram path p which leads from an ovariable o to an ivariable i
at which the value x created by o reappears. If % is re-
created by extraction somewhere along the path, there will
be some last peoint @ at which an extraction operator is applied
to obtain x : the operand of this extraction operator must
of coursz be some set of which x is a member. Past a, the
value x can only be transmitted, by transmission operations
v = expn. If such operations appear at the end of p, then
p can be decomposed into two shorter raths, the second of
which is a path from a transmission operator to i, and the first
of which is a path from o to an ivariable il at which x reappears.
If no such cperations occur at the end of p, then o is the
last relevant operation in p, and p decomposes into the part
2f p preceeding =, plus a part folicwing © which is free of
operaticns relevant to x. This le:ds us to the following
equation for perthias:

(L)Y [+: 0y€ ud(i)itransf(o}](pud(iﬁol) + pcrthis(argl(ol),o);

-

+[+: o,€

¢

td(i}[extrie)](pud(igol) + pcrmemd (avgl{o.),0)).

Next, consider permemb, and a program path p which
leads from an ovarible o to an ivariable i at which a set

-

3 contalning the walue » c¢reeted by o appears.

.

(V%]
~.r

SETL-131

Let o denote the position of the operation along p which
creates the set s. Let oy be the ovariable of this operation.
Then the part of p which follows a consists entirely of

edges belonging to pcrthis(i,ol). The operation whose valge
defines 0, must be either a copy operation, a setalgebraic
operation, or an inclusion operation. In the first two of
these three possible cases, x must be a member of an
appropriate operation argument; if oy is the‘target ovariable
of an inclusion operator with argument ivariable il' then x
must be a possible value of il' This justifies the following

equation for permemb:

{2) [+: 0y ¢ crthis(i)lcopy(ol) or setalg(o;)](perthis(i,oq) +
pcrmemb(argl(ol)go))
[+ 0y ecrthis(i)!algpls(ol)](pcrthis(i,ol) + pcrmemb(argZ(ol),o}
*[+: o4 ecrthis(i)fincl(ol)](pcrthis(i,ol) + pcrthis(argl(ol),Q&T

" The function perpart satisfies a similar equation which
can be justified by a similar argument. Consider a program
rath p which leads from an ovariable o to an ivariable i at
which there appears a set s containing as a part the value
x created by o. Let a denote the position of the operaticn
along p which creates the set s, and let 04 be the ovarisvle
of this operxation. Then the part of p which fecllows a consists
entirely of edges belonging to pcrthis(i,ol)a ke operation
whose value defines o, must be either a copy cperation, a
setalgebraic operatio;, er an inclusion opexation. In the
first two of thesze three possible cases, x must be a part
of an appropriate operation argument; if o4 iz the target
ovariable of an inclusion operator x must be either a poussible member
- 0of a possible value of i, or a possible part of such s value.
Hence we deduc= the fcllSwing equation for perpart:
(3) [+: o scrthis{i)lcopy(el} or setalg(oy)l(pcrthis (3,
. poerpart{arpl (¢

s 0, eorthis(i)lalgels o) 1(PErthis (i, o) + povprreinrylio o

o~

)

SETL~-151

r -
+i+

.01

The system (1-2-3) of equations, as well as the more
alaborate when tuples and
tuple cperations are allowed to enter our considerations,
can be solved routinely by the method of monontone convergence

system which will replace it

described in an earlier section.

The functions perthis, permenb,

hY

ecrthis(i)fincl(ol)](pcrthis(i,o}) + pcrpart(arglfo)
+ perthis(argliog).cl).

Y
2t

and perpari obtained by solving this system express useful relation-

ships between dataflow and control flow in SETL programs.
The next two sections of the present newsletter exhibit some

of the uses which these functions have.

8. Replacing Blank Atoms by Pointers.

To mimic pointer semantics in SETL, one can use blank
atoms, intréduce a global mapping pointete, and regard each
pointer as a blank atom which can only be used to index this
mapping. ©Of course, SETL permits more general pointer con-
structions, e.g. the SETL user can intrcduce many such
'pointing® functions into a single program. There is however
one aspect of the way in which pointers are ordinarily used
in pointer-oriented languages which is missed in an uncptimised
variant of SETL. In a pointer coriented language, only objects
vhich can b2 reached through a chain of relationships
p. = pointsto(pjml) starting from the value P, of somne

3
explicit »ointer variakle (or perhaps from z revnrsively
c 11 other

v a
whjacts are recognisably dead and can be garbage-~collected.

stacked incarnation of such a variable) are-li

L unoptimised SETL this fact will e missed, since

eompller will assume that expreszssicons

L2

such as § pocintsto,

potntsto eq § .

P

s

2, might have to be evaluated;

collection ag apglied in pointer

vy ¥ -~ 9 - CLAy s
vaiues of these synressicns,

Suitable optimisation can relieve this difficulty and
convert SETL programs which mimic pointex constructions into
codes which actually use pointers. The following appreach can
an implementation-level object type

In addition to

be used: we introduce
pointer, flagged'in some recognisable way.
its tag field, a pointer will contain a maching address
field referencing a block in the heap; two pointers will
only be equal if their tags and addresses are equal. Then,
whenever a blank atom x is created by a call to newat, we
rmust decide whether to create it as a pointer (foxr which
a block of storage will at the same time be alloczated) or
to create it in the standard SETL form. For the former

choice to be made, we demand the following:

a) Among the operations in which the value x appears

are certain indexed retrievals f£.(x) and indexed assignments

-

£;{(x) =y, for which the following conditions are satisfied:

f

b) The values of the variables fj,j l,...,m appearing
a

as first argument in these indexed retrievals and assign-

ments are never themselves made components of any vector ox

members of any sst.

c) The only operations applied to the mappings £

are retrievals fj(y), indexed assignments fj(y) = 7, and

£,

-

assignment operations = W,

d)

which creates

Let o be the target ovariable of the call to
th2a blank atom x.
appearing in the context fj(i}h Then we insici
f.

J
belong to the set porthis{o,i}.

newst

iwariable
that no

I,et 1 be an

assignment fj = w having as target variable can

Joe
o]
n

Note that condition (&)

i 21 :“: ,‘.
will never ke calculated after
This

recorded

to leave

to

made . allows

us

in the block which

C

L

sk
<

SETL-131

If the herget ovariable 0 of a newat call satisfies
cenditions (a-d), then the atom x generated by the call can
b2 crecated as a pointer, and a heap block hb sufficient tc
xecord the value of each function fj satisfying conditions
{z~d) (in regardwto X) can be allocated; of course, x should
point tc hb, If this is dbne, values fj(x) can be retrieved
by extracting fields from hb, eésentially as if fj(x) we e
transformed into pointsto(x)(nﬁ). Note that this moeds of

access need not be used for every element of the domain D

O

F fj, but only for those which are pointers created by a
particular newat call. For other elements of DI, the standard
SETL hashing scheme can he used to access fj(x). Of course,
maximum advantage is obtained when all elements of the domain
of a functiocn fj are pointers of the same kind, since in this
case a minimum number of conditional transfers appear in

the code secquances which retrieve and store fj(x).

Note that whan a pointer x beccomes inaccessible, the
block hb to which it points becomes recognisably subject to

garbage collection,

To illustyrate the possible effect of the type of optimisation
which has jast been described, we coneider the Huffman tree
algorithm huftchbizs of O.P.I1II., p. 149. This contains cnly
cne call to newat; the blank atom n created by this call
appears as argument in three functions £, », and wfreg.

Trese ifunchtions satisfy conditions (a-d} above; hencs it is

seen that 7 c¢an be created as a peointer to a block of three
components. This leads us dirgctly to a list-like representaticn
of the tree ‘mglicit in the huftobles algovithm, wnd hence

Lo an automatis iuplementation of this aloorithm rather like

that which miche be uveed if the algorithm were Implemented

nanvally.

" SETL-131

It may well be possible to extend the preceeding
considerations to multi--argument mappings one of whose
parameters is a blank atom. However,in the present newsletter

we shall not pursue this line of thought.

The fact that SETL uses garbage collection imposes a
substantial overhead on SETL programs. In languages like
PL./1 which allow objects to be allocated within areas which
can be freed explicitly,much of this overhead is avoided,
essentially because space recovery can be carried out
more guickly when an entire area is freed than when items
must be individually classified live/dead by a garbage collector.
In the present section we shall sketch a methed which may
allow an optimiser to find effective schemes for allocating
SETL objects within areas, and also to discover program points

at which these areas can be freed.

Our idea is as follows: suppose that an object V is
created when the source expression of an ovariable o is
evaluated. Consider a program point p, not lying along an

edge belonging to the set
(1) liveval (o) = [+:i € crthis 1(o)] pcrthis(i,o}.

Then the object V will never be used after Pq is passed.
Rence, if we use an area A to allocate space for storage of
ezch value V created at o, we will be in a positicn to insert
an instruction which frees A when Po is reached. However,

to free A we must be sure that no object in 2 is a member ox
a component 0f any object s not in A, since if this condai
were not satisfied even tests like s eg Sq would fail aftex

A vere freed,

HETL-1L31

e carcy oat the anslyveis which these conzideraticn:
suggest . we construct a graph G whose nodecg are the ovariatlisy
o of a program ? toe be =znalysed. Given two ovariables o
aind 0, we draw a directed edge frem o to o if o ¢ eréwr':;E,a,
G € crcomﬂ(ol,n) for some n, or o € crsomcomn{ol). Strongly
connected regions of this graph represent groups of ovarichbles
vhose values should be allocated within the same area since
chey must always be freed together. For this reason, we
reduce sach strongly connected part R of G to a point by

identifying the members of such an R. This transforms G

H

intc 2 loop~free graph G'. Given an n = G, we find the satf
pred{n) of 3ll of the predecessor nodes 8y of n in G', and

the set ovars(n) of all ovariables o which are members of an n,
belonging to pred{n). The pctential freeing pointe for m ars the

soints x in the flow graph of p which belong tc the interseciion
X

iy
[%)
© e

freepoints(n) = [*: o € ovars(n)] killsval(o),

vhere kiillsval({¢g; ia the ss«t of edges complementary to the get

.

liveval(o} of {1}. We introduze zn area h{n) for each n

iy
s}
.

e

However, if two wodes ny 32 € G? have the same set of frzeing
P

acg for
the ovariables both of ovarsin,} and of ovars(n,); hence A(n,)

0

points, the same area ShOhlé he uw“d to allocate

zr? Aln,) wmay as well be identified, Moreover, if ng ® G has

the pror

(J

2rty thav free :(n,) € freepoinfsi 1) whi

~

other r» ¢ G for which freep&ints{r; Cfreepoints(n,’ satisyies

freepointe (.,)T ifreepoints{n}, bthen theve will pover be
reascn to free Aflﬁ) without freeinyg K(nl), and A{n.) can be
b

allccated 2s a subarea of Ain,). Vacnever we inzert an
o

instruction frealing A{n) we pust #}s0 insert an Instiuciion

F ey G e €4 e I PR s . S T L [T
Troeging An') whenever n' ig & pregpcagsor of noin 20 i

of covres, Bin')

T o s N - I - —pra g . K .y w - PR » e Rl e TP (0
Fote aceso that the riule Tush ostated Wild introdugs vieodndars

renaeed soing an oxdinary redundant-ageyatlion ramoaval corhns

43
SETL~131

@

If o € ovars(n), and if the'operétion defining the wvalue
of o will build up a SETL cbject for which space mast be
allocated, the necessary space should be allocated in the
area A(n).

To illustrate the preceeding considerations we considex
the path algorithm of 0.P.I1I, pp. 123-124. We write this
code in & form more conventent for our purposes as follows:

/* 2z, y, gr, f, and cap are defined before the following code
is entered */

0,: new = {y}:

0,: set = new;

Ogy: next = n&;

(while new ne nf) @
Oy newer = ni; |

Og: (v € new)

Og grofv = gr{v};

CPE prior = n&;

Og* {Yue grofv)

Oqt capquant = cap (<p;v>,f,c)

if u ¢ set or capquant gt o then continue;;

©1p° prior = prior + {ul};
end Yu;
Cqq: (Yue priox)
Oyt paix = <u,v>;
Oy next = next + {pair}:

if u eq x then go to done:; -

SR:;.IE:“‘ .‘_ 3 l

set = gset + {ul;

Oy .t
14
0y newer = newer + {uj;
LD
end Yu;
end Yv;
o new = newer;

0
e
o~
-
3
0

nextpt = next{pt):;
if nextpt eq 1 then cuit;;

Opy ! pair = <pt, nextpt>;
0,5t pth = pth + {pair};
Ot pt = nextpt;

end whil

D

.
E

finish: /* after this point, the variables new, sei, newer, groj:,
prics, capquant, pair, nezt, w, v, and nexipt are

&
211 dezd, However, pth remeins alive */

The allocation routines which have been cutlined would
analyse this code approximately as follows: the operations

defining o

2 3

or Pqar Yy3e Gy

O, wither simply transaii pointers or use them destructively,

50 C1gr T Pigr Unne and

- L&

oy this resgeon are ignored,

SETL~3131

The loophead operations Og and 13 are basically extraction
operators, and hence may be assumed not to create any new -

objects. Thus the ovariables at which space must be allocated
are Oll Q31 Q4 Cc * O9: Ogs Ogs Oya¢ Oy87 ©3p¢ and 0oy«

Let us write o —~—> o' to indicate that an edge runs from

o to o' in the graph G introduced above. The only edges

present if such a graph is formed, for the cocde shown above

Ong — 097 - Diagrammed, this is
= ~
1 ©3 9 9 97 95 95 015 O3 O 9pn

This graph is clearly of a very simple structure; indeed, it
is largely disconnected. PFreeing points are shown in the
following table:

~irredundant

ovariable freeing all points freeing points
04 Oy¢ finisn Oy gt
05 0, = Og, finish finish
O, ©) = 037 O34 = finish Oy
o6 0y = Ogs 93y ~ finish 944
o - ' . - 4 S
2 2 Cgr Oy¢ finish olb(}
Og 0 ~ 94, finish finizh
©y5 Oy = 94 finizan finish
018 none e
Os4 nore e~

Q- (84
‘\l none

SETL~131

Thus cur anslysis leads us to introduce five arcas, which

we may designat: as A(l), A(2), A{}), A{4), and A(5). Thes:
may be allocated within each other, in the pattern A(1l} <
A(2) € 2{3) € A(4) € A(5). The set grofv is formed within
A(l), which is freed imnediately after the end of the

(Yue grofv) - loop. The set prior is formed within A(2},

which is freed immediately after the end of the (Yue prior} « loop.

The set {y} is formed within A(3), which is freed immediately
after O16° (Since this set consists only of a single element,
it is of course better to identify A(3) with A(4) and to
suppress this freeing operaticn). The set newer is formed in
A{4), which is freed on exit from the first while loop of

the above code. The set next, as well as the items pair and
u, are formed in A(5) and freed on exit from the above
routine. All of this describes a reasonably acceptable
allocation/freeing scheme. Of zocurse, the scheme obtained

is one which aims singlemindedly to free areas as soon as
possible. A more sophisticated analysis would attempt to
move deallcocaticn operations out of loops, and might be able
to trade garbage-collector time for othexr forms of execution

time in a more sensible way.

SETL~131

i0. Detecting ‘Stack' objects.

Space for storage of SETL objects is ordinarily reserved
within a garbage-collected 'heap' area; and a ‘'stack'! area
is used for recursion control. However, since space is
more efficiently recovered from the stack than from the heap,
there is advantage to be gained by allocating storage blocks
on the stack rather than on the heap when this is possibie;
a block allacated on the stack is recovered simply by éropping
the 'stack top' pointer below the start of the block, 1In
the present section, we shall describe conditions under which
this can be done (automatically, by a SETL optimising compiler.}
Objects allocated on a stack during the running 9f programs P
are normally associated with 'blocks' within P, in the sense
that these objects remain 'allocated' only within the block,
and are automatically deallocated (by restoring the 'stack top'
pointer to a prior value) when exit is made from the hlock.
The 'begin' blocks of ALGOL 60, PL/1l, and BALM all play .
this role. In SETL,blocks having this semantic function are

el
O
ot

specifically defined, and we may therefore ask ‘what program
subparts are to play the role of these "blocks"?' We might
choose to have subprocedures play this role; alternatively,
program intervals might be chosen. We shall suppose in thisg
section that intervals are to play the rcle of blocks,

An object x defined by an ovarigble o appearing within an
interval I can be allocated on the stack and dealloczted on

exit from I provided that the following conditions are satisfled:

i. The cbiject x is alive only within I; moxeover, it

Sda

2 not made a part of any composite obiject which remains alive

ountsnide of 1.
i,

g

ii, Thz cbject ® is never us:

P

- destructively to produce
an object which either remains alive ocutside I or is mads
of

part a composite cbject which remaine alive cutside L.

SEN~131 #

'Stack obijects' can easily be distinguished once the
avviliary funstions describad in section 2 and 4 have been
celoulated, We proceed as follows:

 a) First build the set & of all those ovariables of ¥
which have no uses outside I. Using the inverse of the
function erpert of section 2, select a subset A’ of 4 by
eiliminating all those variables which belcong to cerparié(z) fuor
some ivariable 1 not occuring in I.

b) When i pattern of destrﬁctive uses has been decided
on, check the ovariable o' of each operation in I conta:ining a
destructive ivariable use, to ensure that o' belongs to AF.

If rot, let i' be the ivariable of o' which is used destructiwvaly,
and find all ovariables oeA' which belong to erpart{(<’).
liminate these o from A'. Repeat as long as A' keeps

diminishing. The o which remain in &' whern it stops diminishing

define the wvalues which may ke formed on the stack ratherx

than in the heap.

If the’technique just outlined is used, one will probably
want to distinguish between the part of the stack which
contains the root words of ‘stack variables' and the part
which containg cbiject representations. This can be donz esgily
by ueing appropriate pointers, which are themselves atzched
ind unstacked as one enters and exits from intervals: soae
mrdification of the present SETL garbage collector, and

ecpecially of its 'move' portions, may alse be required.

1l Appendix, Pointer overlap in PL/1.

Methods of analysis like those described in secticn 2
and 6 of the presevt newsletter can be applied To the zaslveis

o

Siopodater avariapr in PLAYL. Two pointap-variad

SETL~131

If ¥ is not analysed in some helpful way for pointer overlap,

s

(1‘

then in compllers P it may bhe necessary to make the 'worst

assumption that all pointers overlap, and sc crude zn

assumption may conceal redundant expressions and opportuniti

for code motion that could otherwise be found.

In order toc keep our discussion short, we shall analyse

the pointer overiap problem under a number of aimplifying
assumptions., P ig assumed to be schematised as a set of

e

(o)

basic blocks, each of which consists of schematised instructic

We allow instructions of the following form:

llocate(x)

(1} single-variable allocation: p =
array allocation : p = allocate(a)
based retrieval : P=p;— X
based indexed retrieval : P =p; — x(n)
based storing s P = X = Py
based indexed storiag : p—x(n) = py

)

In addition, we allow avithmetic, boolean. etc. operalions

which do not create, fetch, or store a pointer walve. Note

that in confining our list of pointer operaticns ho (1), we

ignore tha complications which ariss from the existence of

an ADDR function. The details nezded to treat struchtwiees

are alsc lgnored, as is the treatment of non-base

pointer vaviables and pointer arvays. Note that oporationg
Enown to Le avithmetic will he ignoved in the viohn

foollows: in particular, we shall concern ocurselves with

s ®{n) and indexed stcrace nperatios

p - % (n is an arrxasy of pointers. These
Gl 581 discussion are easi.y ma 103
notoe hows he ANDR Yuenotion will plar {bhe ress
cfoour
We: setes aiicelol, wolyiol RN

VBT LR R R et

-

4

4

I

2
o

-

SETL-131

[
=
(v
ey
~

s .
ana 1 (%3

a pointer whi

b} ermemnbp (o)
a pointar
or array ab

Similar Ffunciions

vd{i} be the set of all

(23 crthisp
crmembp

(i3
(1)
The corresponding

(jﬁ ' mecre complicated.
thisp{o)

For a
={o} while
haged indexed retrieval

crthisp(c} = crmeibp {p,

-t

mere complex

{from

&t which the poir%er v

denotes the seot of all o

denctes the set of

which might be stored into some Value

e-definition chaining process),

crmembp {n) is null.

gointey in the operation defini

a
i

=uy o'e crmembp(p,.) can pe a value of p, -— x; and crmewlo 0l
t1

{‘output wvariabla' ar "definition’)

nput wvariable’ or ‘use'! of P, Then

, wWhich creats
1
become the value of o;

aill o

eh might

which creztz

1

,.\t'

which some value of o can point.

zre intreoduced for ivariableg i. =t
cutput variables chained to i {Ly
Then planiy

= I+: o uwd{i)]

[N

crthisp(o};
= [+: 0e ud(i}] crmembp(o);

equations for ovariables are someshat

n allocation operation o, we have
For a basasd cor
with p, as input pointer, we hav:
3. To calculatse crmembp (a) when

relaticnship must be usad.

ng o.

1
zbove) as the set of all pointers v
created by such an o' may point.

v, there must exist an operation

1
Thus for o to belong (0

&
A ok cemrd i fan Tt - e
Ad p‘:rtntsJ--f\, Txh 13
P PII ¥ - 3 + H
i A S t
v ‘. < ‘ -
e 7 i -y 1607 : S :
H - .. I
: ounya » SERSA)
P N
faa [

- P o : 'S o e 2 e

let losiara?d) map mach I for which rafirs
3 L

tast srgumant of che operation in which ©

shows

has
iable either of p = Py X OF

just besen given
of

d renw ieval operator, we can estima
)

?

{3} crmemb(o! = crthisp [{lastarg({i
For a rpased storing operator p-— x =

ar
reprosenting no change} and ormembo (o) =

garre ruale spplies to based indexed str
Yz have agreed to write alloc(o), retr(o}.

cperation dofining o is of allocation,

&

e,

axed or unindexed) respectively.

if steri{o},

type {(ince
the p., of

jet arg

51

o)
7
ny
Ll
:.,l-
oy
o

2
“-—I~
o

using

4

and both p and py as ivariables;

ixth lines of

that
the

e

Pyr

+hen

4

4=y

aembp i)

ing

vetrd

[N

ns

QOCUYTs,

crmerh (0

) ,ie crthisp T

vhe notations

tori{i)

when

n is the

corresponding

as

fermembniory
feymemapisra

51: Firstinsicy
we count i &s
orthisp:ol = or

i

operators.

crmembp {argl (o))

crihicp s

thaen */ ¢

we may write the equetions
i4) crthisp(o) = if alloci{c) then {o!
else ii yety{o)then
else /% if stor{c}
crmembp (o} = if allocin) then nf

[T
LY

=l ved
et

&

MONOT oS COnvarens s

crthiisn o,)

~ -

[

