SETL Newsletter 133A
J. Schwartz

Additional Pursue Block Examples.

Examination of the SETL algorithms of O.P. II reveals a rumbler of cases in which the pursue construction suggested in Newsletter 133 allow algorithms to be written in substantially more succinct and/or transparent ways. This newsletter will record several such cases. In the algorithms to be presented, we use a notation somewhat different from that suggested in NL 133; specifically, we write
(1)
as
(1)
and write
as
(2")
and write
(3) (pursue $x \leq \forall n \leq y \mid C(x))$
as

34
C (pursue $\forall \mathrm{V} \varepsilon \mathrm{s} \mid \mathrm{C}(\mathrm{x})$)
(tuxes | C (x).
a

$$
\left(x \leq y^{n} \leq x \mid \mathrm{c}(x)\right)
$$

etc. For the original forms of the algorithms to be giver. the reader is refered to O.F. In, pages to be cited. In many of these algorithms we wil see that use of the $\forall V$ construction suppresses one level of control that would otherwise be explicit; this often allows a few auxiliary variables, and the operations which update them, to be dropoed. The \forall constraetion proves to be useful in describing 'transitive closure' constructions of the most general sort, as well as systeas of numexical or combinatorial equations to be solvec by iteration. It is not useful iox describing algorithns whose specific procedural gtructure is of importance either for efficiency or because the input to be processed has some specifically serial cheracter. It may be observed that procedural viewpoincs, whose ultimate root probably lies in the sequential nature of hardware, pervade many attempts to define algorithms. Note also that recursive routines can in some cases be replaced by $\forall \mathcal{Y}$ blocks.
A. Predominator finder (0.P.II, p 265)
definef predoms(nodes, entry);
$/$ * the sucessor function cesor is assumed to be global */ notfor $=n \ell ;$ notfor (entry) $=$ nodes less entry;
$(\forall \forall x \in \operatorname{nodes}, Y \varepsilon \operatorname{cesor}(x))$

$$
\text { notfor }(y)=\text { notfor }(x) \text { less } y+(n o t f o r(y) \text { om in); }
$$

end $\forall H$:
dom $=n 2$;
(Hye nodes) con $(y):=$ nodes - notfor (y) less $X:$
xeturn dom :
end predoms;
E. Nodal Span parse, simple Eomn (0. Xiriop. 162-162).
define nodparse (input; gxam, root, synupes, spans, divise, amo:
 divlis $=n$;
($\psi \forall$ sespans, spend ε spans $\{s(3)\}$, type ε gram $\{s(2)$ is typl, spend(1) is typ2)
<s(1), type, spend (2)> ts newsp in spans; <newsp, typi, s(3), typ2> in divlis;
end $\forall \forall:$
/* check on grammaticality */
if \underline{n} (<1, root, ilen $+1>$ is topspan) ε spanis then <spans, divlis, amb> $=$ <n\&, nli $£$; return;
end if;
/* else clean up set of spans and determine ambiguity */
amb $=$ f; goodspans $=\{$ topspan $\} ;$
($V \forall s \in$ goodspans) if (divlis $\{\mathrm{s}\}$ is dl) gt 1 then ambig $=t ;$; goodspans $=$ goodspans

$$
+[+\mid d \varepsilon d l]\{\langle s(1), d(1), d(2)\rangle+\langle d(2), d(3), s(3)\rangle\} ;
$$

end $\forall \forall ;$
return;
end nodeparse;
(this is 17 lines excluding comuents; the algorithm of pp. 161-162 is 34 lines).
C. Nodal span parse, Earley form (0.P.II, PP. 163-164).
define earleyparse (input,grani,root, syntypes, spans, divlis,ami);

divlis $=n \ell ;$ symbs = $\{$ root $\} ;$
ultbegin $=\{\langle x(3), x(1)\rangle, x \in g x: a\}$;
descends $=\{\langle x(3), x(2)\rangle, x \varepsilon g r a m\}+$ ultbegin;
$(\forall \forall y \in$ ultbegin $)$ ulibegin $=$ ultbegin $*\{\langle y(1), z\rangle, z \varepsilon$ ultbegin\{y(2) $\} ;$;
(V) y e symbs) symbs = symbs + descends [symbs];
startat $=\langle u l t h e g i n\{$ root $\} ;$
($\forall \forall=\varepsilon$ spans spena ε spans $\{s(3)\}$.
type ε gram(s(2) is typedispendil) is typi! * staxtetis(i)i) <s (2) is newbeg, twe, spend(2) is reves n spans:

 $\operatorname{end} \forall \forall$

* now check for grammaticality */
(the remainder of this algorithm is identical with the corresponding portions of the code given above for the simple nodal spar parse)
end eaxleyparse;
D. Toplogtcal analysis algorithm:0.2.II; pp. 262-263

Here we recast our algorithm substantially, in a mathematically equivalent but very much less efficient form. Our new algorithm merely pushes the representative of each 'block' B in our collection to the smallest (earliest row, earliest column) possible position in the connected region similarly colored bricks containing 1 . This algorithm, as revised, extends easily to three and more dimensions. Attempts to optimise the algorithm are bound to raise interesting problems.
define a smaller b; /* lexicographic comparison for bxjeks */ $\langle x, y\rangle=a ;\langle u, v\rangle=y ;$
return x 断 u or (x eg u and Y lt v);
and smaller;
define a touches $b_{i} / *$ adjacency function for bricks/ $\langle x ; y\rangle=a ;\langle u, v\rangle=b ;$
return (y eq v and abs (ax; eq 1) or
(abs $(v-x)$ eg 1 and x eg ox

$$
\text { if } v \bmod 2 \text { eg } t \text { then } x \operatorname{eg}(u-1) \text { else } x \operatorname{ta}(u+y)) ;
$$

end touches;
define x topanalyse (color, nrows noels):
f^{*} bricks is assumed to be globes *

represents $=\{\langle b, b\rangle, j \in$ brick $\}$:
($\psi \hat{\psi}$ b ε bricks, bprime f bricks
b touches bprime and color(bprime) eq color(b) and (represents (b) smaller represents (bprime))
represents (bprime) = represents (b);
end $\forall \forall$;
pyimebricks $=\{b \varepsilon$ bricks \mid represents (b) eq $b\} ;$
inside $=n \ell$;
($\forall \mathrm{p} \varepsilon$ primebricks $\mid(\exists \mathrm{b} \varepsilon$ bricks $\mid \mathrm{b}$ smaller p and b touches b)
inside $(p)=$ represents (b);
end \forall;
return inside:
end topanelyse;
(Excluding coments, this is 24 lines; the algoritha given on pp. 262-263 is 31 lines.)

In casting about for dictions allowing gereral purpose languages of higher level than SETL to be defined, the idea of using nonprocedural dictions which select a desired item out of some very large space of objects is bound to crop up. This is a technique which is used from time to time, often with spectaculax suceess, in methematics (consider, for example, the definition of homology groups by the use of singular homology.) In programming terms however this approach does not always seem convenient, and at any rate the trensformation into usable algorithms of solutions defined using this technique raises problems which belong to mathenatics rathe: than to routine optimisetion.

