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The 'level' of a language, i.eo, its degree of abstractnes$, 

is essentially defined by the manual optimisations and routine 

program transformations which the semantic structure of the 
langu~ge enables one to·a~oid making. For example, by writing -
progra.~s in FORTRAN one avoids all necessity either to allocate 

registers to data or to linearime mult~dimensional arrays; by 

writing programs in SETL one is able to bypass many questions 
of data structure choice. Xt then becomes the business of a 

compiler to impose the bypassed transformations and optimisations. 

To the extent that the compiler succeeds in doing this, the 

step to a higher language level is without costr to the extent 
' . . 

that it uses efficiency-inferior substitutes for the better 
sequences which a hand programmer might invent, t.he use of a 
high level language imposes spacu and routine penalties. 

At the present stage of developnent of ~ptimisation 
methods, certain optimisations can be handled automatically, 
while others cannot. Among those which cannot, some are 
'almost mechanisable'. and most appropriately regarded a.s 

rou.tir1.e transformations which can be applied without undue 

intellectual effort by the educated programmer afte:c stud~l 

·of a very high level program text; others are deep and 
.nathematical, i .. e., are real 'inventionst .. Transformations 

of the first sort are typified by t.he iterator inversion 
optin-dsations introch.,ced by ,'1ay Earley, cf. Newsletter 138; 



··~n'\l'tmtions belongi.ng to the seGm:d catego::ry arr:~ typi.f.5.ed h/ 

. the haa.psort algorithm, which we are hardly in a posi tio11 t.o 

x-egard as a routinely optimised variant of any t.riv.ial, 

direct,sorting procedure. 

. 
To attain significant insight into t.he process- of p:::01,;-r,s-.nmd.n•? 

,c.:n.e will wish to see as many as possiblG of the devices .. •1sed 

:ln prog:r.ammi.ng as routine program tra.nsf'ormat:ions, p:r:og:--mr:s 

~dll thereby be seen to invol•1e rc3latively few unique 
1 :i.nventions 1 

• As part of this process, one will have to le;;.rn 

bo t:rite programs in their 'ur/orms ', i .. e .. , as they may he 

'.r-tlpposed to exist before. the application of any routine, evt: 1~ 

if manual, optimisation (but nevertheless a~t.:er the c.ryst21J.isat:LY.\ 

!lf the program out of a still more primitive underlying- 1 t!:bble r - 1 
. . 

'To do so is not easy, since to apply routine optimisations ts 
110 much a part of t:he programmer's stock-in-trade, so fi.:-:e,d 

a habit, that a special intellectual effort is requ:i.red to 

desist. from it or even: to see clearly that one can desis·:::.o 

Nevertheless, by disciplining ones3lf to supress routine 
optimisation i4e~, by learning to use a language, and e!"J?':(_!ia:U./ 

a high level lP .. 11guage, in as high a style as possiblc1, o:.,,~ . . 

can hope to create highly succinct, -readable, and ma:t.h,~m ,;,t.ic;:iX. 

program versions, from which secondary, more efficient.· •,te:r::dm"ls 

(still inn high level language; such as SETL) can be seen. 
t.c ari..ge by a process of transcr:1ption having a formal f.i Z\'or. 

~ .. nd from this S(~cor1dar.y hl.rih-lg\rsl, j;>rog,:~a.m version. 2- :E1:.."'t-.:·~:.t.)J:· 

lower language_ level can begin~ 

If this general approach to programming .:i.s adoph=::t.;_, L ·H 

·t~a:!.zu-;lt programmer~ s knm,l~dge -r.-,:ill &.mon9 oth.E:i-: tnins '" c::; ,_;T:i :'.:<., 

0 
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i. A~gorithms, :Le., various basic algorithmic inventions 
(,a.~., heapsort, fa.at Fourier t.ransfonn, fast polynomial 
fac:tori.sation method$, parsing met.hods, etc .. ). This knowledge 

i~ function-oriented and much of it has a mathematical flavor, 
ii. Optimising tra.nsfo1.,nations. (e.,g. 'iterator inversion', 

techniques for deferri~g or eliminating computations, reducing 
·iterations to recuraions, recursions to stack manipulation, 
~ondensing and encoding tables, etc.) These transformations, 
SOl'l'i.e of which-are discussed more explicitly below, have a 

i 
pragmatic flavor. 

J..ii~ Formal principles of data structure choice. 
iv. Tricks, perhaps even machine-dependent tricks, for 

inner-loop optimisation. 

The optimising transformations noted under (ii) above 
maiy even~ually come to lie within range of a fully automatic 
optimiser. However, even before this becomes possible, ~e 
1nay hope to develop semi-automati.c {possibly interactive) 
systems capable of accepting 'high style' codes ar1d transfonuati.<m 

di~cectives as input, and of producing 'low ~tyle • codes 

(perhaps in the same language) as output. 

2. · A catalog of routine- but non-automatic opt·imisations. 

At the periphery of any attempt to formalise t~e process 
of optimisation one will collect rJpt.im:lsing transformations 

too complex to be worth perfor.m.ing automatically, but st:i.11 
ee:sent.ially routir,e~ At: the AT..(;OL or FORTRAH level, for 

exa..,uple, the following recognised optimisations fall into the 

':r,,uti:ne but not a.utom~tic- categt;ry: 
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1. · trn:switd'nt·ncr.. CcnvE:rt. a loop cont.aining a loop•· --~ 
incl.ependent forward brr..nch ('bypasse) ,_into two separate li~ops, 

one contai.ning the bypassed code: the other · 'i tting it: :md 

enter one or the other loop., dep~ndi!!-9 on t 
a-ppropriate ~est, made before loop -entrance .. 

..:-esul t of ar,. 

2 • · y,op Amalg·amati'o~ · · · · foX' · ',1an1mi~n"2 'J • If two 
sucessive loops 

1 .•. 

. 2 ••• 

\ 

Dfd 1 N • A~ B 

btoak1 

Dt' 2 

b1,ook2 

manipulata sufficiently disjoint data, amalgamate then::. 

into a single loop 

.. 
0~ 1 N • A, B 

blockl 
b1,oo1c2 

thereby saving loop-_-associated bookeep.i.ng and possibly at tainJ.i1. 1;1 

other benefits besides 

3. . p_opp :o!1.rollj.n9. Change crlt.ic:-il i.nner 100~13 cd: ::'11!~ .f'.'):e::-.: 

l -
:to loc,pe 

. .. 

D~ 1 N ~ A, B 
b t:ock 

0 . 
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where each paas thro~gh., ~~ latte:r· loo·p in.creat3e~ the loop ir.1.de}~ 

by k_, and where b1.ock1 $ •• , ~btookk ·are ·obtained from the bZook 

- of the former loop by substituting N + 0, N + 1, •• ., ,N + k - 1 
respectively for N~ This can: cut down significantly on the 

number of loop-bookeepi?g operations executed. 

The text of routines called from within critical inner loops, 

and also routines called only once, can be inserted 'in line', 
and optimised in the context of t.~eir points of call. This will 

allow constants to be propagated into the routine body, te:;t 
outcomes to be calculated at compile time and useless code 

eliminated, redundant computa:tions removed, etc. 

5. · Transformation ·of recur•sions ·to stack manipulatio,!!_. 

A hand programmer, knowing the subset of internal variables 
of a recursive routine whose values will be required after a. 
recursive call, ·can stack only these1 moreover, his specially 
tailored stacking procedures can be considerably more efficient 

than the general procedures used to support a generalise<l 

recursive call facility. 

As one of a large number of occasionally useful program 
improvements we mention 

6. · 1rra·ns·fortnati•on ·o·f ·an '5.'.qlined•i•ate pr·e-exi t recurs:i.vl'.~ gel.:f.: 0
" 

call ·to a· ·•change' <:>f inpu·t ·parameters· and restart; 

The code structure 

enter: 
· procedu·re recursive (parama, paramb); 

0 • • 

call recursive (apa, apb); 

return1 
. . . 



can be transformed to 
· P,rc·ced~ recursive (para."na, paramb); 

~nter: •.• 
savea c parama1 saveb = parmnb; 

parama = apa; paramb • apb; 

. go to enter r 

C O • 

P.t or above the SETL level of language we find the follow:Ln,.J 

:rou.tim=! but not easily mechardsable optilnisations. 

7 a Set theoretic• strE;!.l;l~h: re"ductio1!_. (J. Earley I s 
1 lterator inversion'; 'formal differentiation'.) This 
transformation, of common ()ccurence, keeps the current value 

oi a frequently used expression available, and, at each program 

0 

point at which one of the parameters of the expression changes, c, 
inserts operations updating the ,,alue of the, expression. U;>ie.ting 

ra~y be very much faster than recalculation since the new value 

required may not differ- much from the available prior va.lue. 

8-,, Transfonnati•on of tree iterations into recursions. 

If some process P must be applied to all the nodes of a trE>e, 

,3.''1d if the order in which the tree nodes are processed i.s 

trrelevant, then the tree may be walked recursively a,nd P app.lie:O::: 

to i.ts node~ as they are enco1.:.ntered. This same r12mark applie •~ 

,;:n an}" situation in which a necessary order of node processinJ 
.i.s compatible or can be made compatible with, some treewalk 

order, and to a wide variety of tree related calculations. -J'he 

:c:-s::~curs:i.ve routines typically used in such situations can be 

::c;ti~idered to arise by application of this organising i.dea to an 

miderlying, less specifically arranged, algori dun. General!-:/ 

Iii,eaking, any relevant aspect of the mathematical structure 

of a compound data object can be used to guide and optimise 
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~'.:h.2 order of processing of its consti t.uent subpart;:3. ;For 

(.;,;;,:ample, strings may be proce~sed in right-to-J.e:ft or<lerf 

c::,rcle-free graphs J.n an ancestor-df~scendant-ancestor order, ,~tc, 

9 •· Computation defer·a·1 ,. ·r·epl:ac·ement ·of compound data ob_:0~.~: 1:·~ 
· e!. igenerator•· ·coroutines· which ·generate ·t~eir• ·ind•ividual~ part~. 

In some cases~ a compound object 1nay be seen to be generated 

~tone point in a code only in order that it may be iteratei 

over later in the same codeo If this the case, we may,instead 

~f generating the object, simply provide a generator routine 

which will supply its sucessive parts as they are subsequently 

required. The generator routine and its internal data c;,an tY:1en b::a 

regarded as a kind of symbolic form of the object, which would 

otherwise have to be enumerated in extenso. As a typical 

~ample of this frequently occuring optimisation we may note 

the existence of'on the fly' parser/code-gener~tor routines 

which generate the nodes of a par,;e tree implicitly and use 
them immediately for object code genera.tlon r without ever 

finding it necessary to build up~ full representation of the 

tree itself. A parser/code-generate~ of this sort can be 

regarded as an optimised version of a two stage compiler which 

first generates a tree and t..hen walks it to produce object cede, 

Note that routine program trans-fcrmations of lower-level 
0 ·-6) above are also applicable at the SETL level and .-~ t r::i o·he: 

linguistic levels. 

The p1.·ogram transformations d,?fined in the preceeding 

pages are optimisations in the strict sense that they trans :frr~,n 

c?H;: c::ode into another hewing exiwtiy the same f.u:.-1ct ton. }: ; ~ ::., 

·.11r;::-th considei:ing, as akin to t,"-1e3e, a wi6.er class of -t:r-c1n,c·· 

:::.,.)~,-.m-:utions which do not ·o.;:-ec:i::;~J.~y :•.;:r.-~;,uyr.•.rr·!,- l-:.L,.t inste;:;.~l i::}:t=' 

L) 1;:rc.-grmn function, in wa~,s hct.,•ever U:·3.t tu.:,:; fr3S"~,:'::.:;dl_:,- :ro•.,·.· i•·,.·. 



We may regard the •une.xtended' ve:csion·of a program to be 

:;!Xtended as an ur.•f'or-m fi:·om which the extended version arises 

zout.inely. Amo!19 transformations of this class we note the 

.following: 

10. · Insertion of· diagnos·ti'cs: ·and· data-acc·eptability tests 1 

relaxatlon ·of asswn1!_,ti'on-s ·concernlng: ·input data. 

In a logic1Slly ninimal version of a program which handles 

input data,one will probably want to assume that the data 

conforms to some convenient external specification; such an 

assumption may of course be overopt.ilt'listic. One corrects it, 

and comes to a sounder program version, by a process, often 

routine, which inserts tests for data acceptability at suitable 

points along data input paths. These tests can correct or 

reject erroreous data, and may emit notifications when data is 

r.e~ected1 by the time they release data to the rest of the 
system, it can have been certified as (partially!) correct. 

Insertions of this type cause a program to grow incrementally; 

a similar process of incremental program growth is to be expected 

wheneyer logical assumptions concerning input data are 
relaxed, and when in consequence processing of this data must 

cope with the new possibilities. In all such cases, it will 
sometimes be possible to insert,along the relevant input paths, 
code which handles these new possibilities. If the 1 old' code 

will never. •see• any of the new ca!les which are being 

handled., this incremental approach is fully successful. 

Generally, so fully isolatP-d a trE;atment of a significantly 

t1.,'tpanded set of allowed cases w:i.ll not be possible, and the 

Cl'.>de ~'hich handles new cases may need to use sections of old 

r..:ode, so that to acc·cxmodate the new code in a rational manner 

old code may have to he restructuredr- online blocks moved 

around or converted to subprocedures,etc~ Note that many 

of thase same transformations wil.! have to be applied when 

,md if. the pr~sence of a bug signals the occurence of 
inter.·ual d.a.ta not COl:ifonning to assumption< 

0 

• 
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·lle We note, to conclude this sec·tion, that equatiortr, 

of ordinary mathematical form may be considered to constitute 
a programming langu~ge of very high level. Equations specify 

their solution, but not how to find it; however, if the way 
in which e~ations of a given class are to be solved can be 
deduced from the form of the equations themselves, we can 
r~ge,rd passage from the equations to the routine which solves 
them as a transformation from higher to lower program lan9uage, 

in principle like the other transformations which have been 
consider in the preceeding pages. 
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3 ,.· ~efit"~ assoc•iated with the ·fo)~·ma'l" us·e· of ·'high~ s_tyle: 

· ~1~22.t.~J~!,~ants. 

One only extracts a programmi?g style's full potential 

benefit when one succeeds in codifying the style as a language 

subject to automatic processing. ~evert.heless, even if this 

c~owning step is not taken, benefit can still be derived from 
the deli.berate use of 'high style', l.e., deliberately ab~tract 

a,nd unoptimised, program variants. A high style algorithm wi-11 

suppress some of the optimising complications which the same 

algorithm, written in the same language in a 'lower' style, 
\\,"OUld embody. The introduction of these optimisations then 

constitutes a separate step of composition~ By breaking the process 

of algorithm composition into two subparts, and by approaching its 

second step in a manner emphasising its routine aspect, the 

programmer will attain a significantly better final result 

0 

than if ·.he approaches the whole design of an algorithi""[l at once. Q 
It is also worth noting that, when a program is to be 

proved correct, it is bound to be best to approach it via a 

variant of maximally high level, to prove this variant correct 

first, and then to prove that the optimising transformations 

subsequently applied to it preserve correctness. Note that a 

:relatively small stand·ard set cf optimising transformations is 

likely to be used repeatedly, so that the proof that theRe 

t.:ransformations: preserve correctness wi.11 he a standard 'Lemma' .. 

Horeo~ver, compared to an equivalent low level variant, a high 

level program va~iant will be significantly less cluttered with 
subsidiary detail of the sort that makes difficulties for and 

."lengthens a correctness proof., 

By using a given language Lin a deliberately 1 high' style, 

w~ p:repare ourselves for the formal definition of a still h:\.Jher 
F-.h?!1'.antic l.eve~. I,' of language., 'l'he program 1.:ransforma tiorn., that \ 

o.rG informally seen as routine imp:r.ovements -:;,1l'J·sr1 -;:, is used iu h-i.(·', 
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\ style become potentially automatic optimisations when L' is 

0 

C
. 
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explicitly formalised. Note that it is only after we have 

formally defined L' that the problem of optimal translation 

of L'-programs into L-program is truly opened; i.e., it is only 
this step of formal definition that allows us to see certain 

fundamental issuesconcerni~g L-level pr~rams in their truest light. 

We note finally that the development of programming languages 

t.o progressively higher levels will eventually close the gap 
which presently separates the 'bottom-UP' approach of the fonual 

language designer from the 'top-down• approach inherent in 

various current studies of 'autanatic programming'. As thi.s 
gap narrows, programming language design should be able to 
contribute significant ideas to, and absorb ideas from, the 

.natural-language/artificial-intelligence oriented 'automatic 

programming' work. 

4. A few suggestions made in confo:rmi ty with the preceedin~ 

gengralisations. 

While not having any great improvement in language level 

to recommend at the present moment, I shall suggest a few syntactic 

conventions intended to make 'converge' iterators of the sort 
introduced in Newsletter 133 and 133A easier to use. For the 

reasons adduced in Newsletter 135A, iterators of this s~rt 

may be expected to occur frequently. I will also suggest a 

few. small SETL extensions which address deficiencies of the 

language and which may be found particularly convenient for 

the 'high style' use of SETL suggested in the preceeding pages. 
A·fter. these e:,ctensions are outlined, a few sample algorithms,. 

w~itten in the envisaged style, will be ~iven. 

Revising the syntax (but not the sema.ntics) suggested in 

Newsletter 133A, we shall write simple converge iterators as 



O.) c V > 

Note that, as before, the block is executed till. its execution 

fails to modify any-variable. The frequently occuring case of 
f:h1.: general form 

will be abbreviated 

< V > 

end V1 

(VxEs I C (x)) 

bl.oak 

end Vx; 

{cf. Newsletter 133A) as 

(Y'/xEs I C (x) ) 

bt.oo'k 

end '('t/; 

If th~ block in (1) consists of a single assignment statement 

~ = e?.pn, we shall abbreviate {1) simply as 

{2) x =: expn; 

A converge iterator of 'i:.he form (2) will often be preceeded by . 
~tn assignment initialising :lC. Accordingly, we write 

f!.8 an abbreviation for 

x n expn1 ; 

x = : x .2£ e:cp:l2; 

0 

0 



Fer succinctness, we allow the 1 i terati~g assignments' ;2) anc! D) 

t.o be used as expressions also, their value being that of x 
when iteration ceases. 

As a first example, note that these conventions enanle us to 
write a quite succinct transitive closure routine: 
define£ tranc (f,s)1 return x a:; s + f[x]; end tranc; 

Especially in using condensed dictions such as (2) or (3), 
but also in SETL programs more generally, the syntactic overhead 

associated with a subfunction definition and call may be bigger 

than the function body itself. With this in mind, we introduce 

an _abbreviated function-call style. Functions are called in 
this abbreviated style simply by.writing their names, with no 

parameters: (in effect, parameters are transmitted globally.) 
The function body of an 'abbreviated form' function is introduced 
by the keyword where, which must be followed immediately by 

a token identical with the name fname of the function being called. 
This may either be a label, or (for brevity) an assignment 

target._ The abbreviated function body is terminated by 

end· where; 

. All variables occuring in the body of an abbreviated function· are 

global to the ordinary function or subroutine containing its 
body; and the function itself has this same scope. Th~ value 
returned is the value of the var.iable [name at the moment of 
return, which is t..'1.e first moment when either a 'return 1 statement 

or an • end WJ:i.!!,!!' :i.s encountered .. 

The following example illustrates these comrentions, 

(and :-:1.lso assumes, for convenience, that oper:1.to.rs sending a 

SE'l'L map into its domain and range respectively have been definedf 
'ran.3e' is also assume to apply to a tupJ.e, and give the St.:!t 

CJf its components.) 



Xt ls a. progra.m which sol~.res the combinatorial 'matching' 

pr:oble.."U describL-d on pp. 122 .... 125 of OP II. I. e ~, a map wi t:.h 

,jjl_sjcir1t domain and ra!l,ge are_ given·, and the algorithm extra,:ts 

a maximal 1-1 submapping of the given mapa This procedure used 

is adapted from the mazfZow algoritlun of OP l:I, p. 123., 

definef ma,xmatch(map): 
<source, sink>= ·<newat,· n~wat>: 

graph~ map +·{<source, x >, x e domain(map)} 

+·{<x, sink>, x e range(rnap)}; 

graph~: graph - (path!!, p) +·{<x(2), x(l)>, x E p}; 

where path= :: nt +·{<pred(z), z>, z E(domain(path} + {sink}) I 
pred {z)· r.e n}; 

where pred =- : : ,!!! + · { <x (2i ,x (1) >, x E graph ! sink ~ E dorn.?in :r:.-:-:::' 
· and x(l) E domain(pred) +· {sourcel ~ x(2} net E domain(p:r.rni.)}. 

end where; end where. 

return map-graph; 

end maxmatch; 

··We shall convert this 'high SETL' program to an equival,.:nt 

'low SETL' form, simply in order to illustrate the transcri::?tic,n 

process involved o Studying the preceeding code, we note tr1.;;. ,~ 

path is used only to support an iteration, so that its exp.li,.:it 

formation can be suppressed. Moreover, the map pred and its 

domain can be formed differentially; and the two successiv:~ 

it.e~ations used in the initial formation of graph can be 

arl'mlga."llated.. The inner program loop io thai: which forms p1:•ed" 

'/:~f.se observations lead us to the followir.g 'low DETL' cod"3: 

define_: mmanatch (map) r 
<sourcer sink> = <!J-~~t; !!_~~>; 

gr-::i:;?h •~ r,.t1 
i\.!vc ) 'y.-.-- map 



x !!! graph, <source, x(l) >· !!!_ graph;·· <x(2), sink>- •in graph; 
;j \/~· ~}°)1,.1, 11 

(while ~J ;-a loop till return is made * / 

/* build up pz•sd * / 
reached =. {source} ; new =. {source}';- pred = ·n9.,; 
(while new ne · nR,) · 

. --
point-~ new; 
newest= graph.{point} - reached; 

CV np e newest) 
pred(np) = point; 

np !!!_ new; 

np !,_n reached; 
end 't/np; 

end while; /* now p~sd is built up*/ 
if sink note reached then 

else 

-
return map-graph: 
/* replace path edges by their reverses.*/ 

point C Sink; 

(while pred (point) ts predp ~~ O) 
<predp, point>·~ graph; 
<point, pl:"edp> ·!!1, graph; 

end while; 
end if; 

eud while; 
end maxmatch; 



T\-ro other SETL e~iCtensiorrn ~re worth ·!;m9gesting: 

a_ ~}he very restrictive way in which ~-i is. presently 

tr<?ated in SETL has the advantage of exposi.ng program faults 

rapidly at run time,but in some ·cases it forces longish 
circumlocutions to be used where the programmer would find it 

1nore convenient to use an nor illegal operation as a termination 

s ietn~.1 of some kind. For use in such cases, the following d,'.!'Fict: 

:ls suggested.· If s:rpn is an 'elementary' SETL expression, i.,. e. , 

an expression involving only primitive SETL operations without 

embedded function calls, the expression 

(1} 

has the following semantics: if evaluation of expn leads either 

to an {l result or to a run-time error, (1) has the same value 
as e%ini

3
; otherwise it has the same value as ezpn. 

b. The conventions for tuple component na"ning descy·ibed 

in O.P. II. page 94, are still too primitive and clumsy. Th,"! 

following revised conventions are suggested. 

:l. If e is not an integer. constant, and in particular 

if e is an expression with a tuple~ map, or string value .. w.:--,.U.c: 

n ls an integer-valued expression, then e. n is synonymous w i. th c ( ,1.) _ 

ii o By writing . 

gname has cn1 , ••• ~ en. : 
- IC 

:one dafines cn1 , •.• ,cni as macros for the int.eqe:::-s 1, •.•• }~ 
:•t .. 

respei;;t:iyely, Of course, it f.s int.endej tha:: th~se int~g~r-". 

g!:-1.i:)uld be ;_1sE.-d. to dt:rnignate tuple compc-nents:. 'i'he token ;Jn:,.· .. e 

..:: -· · .,.. • 1 J . 1· ' ,:: • .. •; h . 1 1 . t 
• .::i sc,nc,.n .... 1.ca .... y ins q,-:.1 . .1.1.c[{n.:.., ano a!J mne11cn;i.c va.,_ue on /: ; . 

!'!~rv,ar. to :remind one of ::-he oh5ect.s w:',cs"-: CfWtp,::•ner.ts are '.:-,2 .. :· 1;-; 

(2} 

0 
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Wh{::T.e cn
0 

is an integer, and which designates cn1 , .... ,cnk as 

11me:.ros for cn0 + 1 ..••• ,cn0 + k respectiv·eJ.y, mi 'Jh t also be 

·useful. 

Once this macro facility is introduced, the following 
s.dditional notational forms will probably biJ convenient: 

(3) 

for the tuple whose nj - th 
wh.osf: other components are 

component is ej, 1 < j• < k, and 

f2 .. Moreover , 

can usefully stand for the multiple assignment 

iii. As an aside, we note a f:ew notational possibilities 

suggested by (3). It would not be unreasonable to introduce 

'named para.meter' procedures and functions .introduced by header 

lines of such forms ~s 

{4) definef procname parlist1 parname2 parlist2 •.. parna~ek parlistk, 

defi:nef sw.iv·eled body distance x angle theta; 

!!ere proana:me :names the procedure r pa:rn1ime 2' .•• , parname k names 
its parameter subgrom:is, and each partiet. is a coroma-sc-- ·.·-_ted - - J ... 
list: of parameters. Then, when. prc1aname is called, we allow 

the parar1eter subgroups to appear in any order, each preceeded 

b;{ its n.ame; but within a group ar9ume:nt.s must be given in the 

•:,.irder in which the corresponding parameters appe.J.r in the 

corresponding parliet of (4) ~ 



'J:his allows calls to have the pleasing form exemplif1cd br 

swivel body2 distance x2 angle thet.a21 

which can equivalently be written 

swivel body2 angle theta2 distance x2; 

Omission of designated 'optional' parameter :Jroups can be .allowe-5., 

Named parameter functions can be allowed also, but since 

functions nest some system of parenthesising delimiters is 

called for. One possibility is to call the function intrcduo,;,i 

by a declaration such as (4) by writing 

0 

(: procname drglist1 parname2 arglist2 .o.parnamek arqlistk), 

~Chere the named-argu.'1lent groups can be optional. An exam~le might b( 

{: swiveled body distance x angle y). 

As a final example illustrating some of the conventi.r .. .:1s 

S'.1ggested above, we give Qhigh SETL' code for the Cocke-Allen 

program g:caph analysis process described on pp. 269-272 er O.P. 1~:
Note that the code which follows combines the four routirws 

interval, in.terva,Zs dg, dl'Jeq of those pages. 

define£ dSb:J t<JTiipt11.0de~, gro.phcesor, graph-ead) ~ 

<nodes, cesor r head::-= <sraphnodes, gr:.:1phcesor, grapheac'.>; 

intov = ~~; /* maµ each ncde i~to its interval*/ 

dscq = ; : <nodes>+ if i(int.ervals 



0 

~:.e..!.~ inte,·val = : : < 3fo11owers> 2!t ~m} t 1+ 
I+: nd E (cesor[rang~finterval)]-· J 

cesor. rnodBs-ran,:?(: f::.ntervaJ i])} <nd·· 

~!Yer.~ followers ::; {head} +-

( cesor frange i in tervaJ.1 

rebn:'n ~a '-eg t cesor, in tov>; 

and dseq~ 

is intnodes] - :Lr, tnode.s c:--t: .. 

Concerning the above, note that it :i.s assumed, sine;? 

that each occt.1rence cif tht? t:okl'n z'nter:.177, witJ-dn follnw • ..,,r·.,; 

refert, simply tc, t-.h":, (".Ur:rent vahv=-. of t.he vari3b]e '1:n,i:.,>-·11,i? 1
, 

and dnes not cau~e a recursive Gall, 


