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/l. Higher-Level· co·ntro"l Dictio•n. 

1. Introduction 1 Pursue tnocks. 

J. Schwartz 
June 20, 1974 

If dictional and semantic forms of higher level than 

those utilised in SETL were available to us, we would be 

able to regard SETL programs as 1 hand compiled' versions 

of programs originally existing in a still higher level language. 

This would r.ave several important advantages: 

i. We would know, on firmer grounds than we now do, 

what sorts of constructions were likely to appear in typical 

SETL programs. 

ii.- We might become aware of higher-level constructions 

which SETL can only translate in a clumsy way, and this 

might suggest extensions to or modifications of SETL. In 

general, we could expect to design SETL with a surer hand 

if we were able to regard it as a cut-back version of a 

language of higher level then itself. 

iii. A new level of optimised translation, with SETL 

as its target language, ~ould emerge for study. 

Till now only a few dictions of higher level than 

those provided by SETL have been suggested as SETL extensions. 

These are: 

a. The suggestions for 'prescriptive' dictions which 

grow out of R. Krutar' s generalisations of the s:::TL sinster 

call notion; cf. Newsletters 59 and 30. 

b. Pattern matching dictions, generalised ite~ators, 

and other miscellaneous suggestions of Jay Earley; cf. 

l_ 1 Newsletters 52 and 56, 56A, 56B., as wcl l as the pa~:-ers of 

Earley cited in NL. 
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c. Nondeterministic control dictions, as developed 

by Hewitt, Sussman, and others in the PLANNER, CONIVIVER, 

and QA4 language.s; cf. AIA Newsletter 12. 

The present newsletter will suggest a control diction 

of higher level than t.hese presently available in SETL. 

The diction to be suggested is related tot.he dictions 

noted in pointed (a) above: like them, it has its origin 

in the observation that in many cases the intent of a code 

sequence is simply to force some set of conditions to hold 

simultaneously. 

The new dictions we introduce center about the not.ion 

of a pursue iteration. Such an iterative block is open.ed 

by a header having the form 

(1) (pursue foratZ-iterato:r) b'look ender. 

Here, foral,7,-iterator designates any SETL iterator of the 

V type; block any block which could follow such an iter;tor;, 

and ender a punctualing terminator which can either be 
1
;', 'end ; ', 'end pursue', etc. The semantic rules gover.ning 

such an iterator within a SETL program Pare as follows. 

Let the iterative block (1) be entered; let the variable~ 

bound in the forall iterator be x1 , •.• ,xn. As long as 

there exist elements v1 v••·,Vn in the range of the itera;or 

such that the state of P 'It data is changed by sub:-:;t.:i. tuticn of 

V,, .•. ,V followed by execution df bZock, then block is 
·'-< n 

executed. When no such v
1

, ..• ,vn exist, the finiHh block (l' 
is exited. 

We a.lso permit degenerate constructions ( l '.: :; n which ~he 

fcra"l. l-fterato1~ is ·null. The semantic rules whic~ apply ar,· 

much the same as those just explaine6, exc~pt that no bound 

variables x 1 .•• x need to be replaced: in the d~generate caie 
. n 

we execute the block of (1) 

0 
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as l~ng as this changes the data state of P. 

Here is a transitive closure routine written as a 
degenerate pursue block: 

(2) (pursue) s = s + f[s];; 

thi:; may be compared to the standard SETL 

(2 ') (whiles ne s + f[s]) s = s + f[s];; 

no ◄ e that (2) is noticeably less redundant than (2'}. 
Th, following pursue block describes the bubble sort: 

( 3 (pursue 1 ~ "/ n < t f) if f (n) ·S! f {n+l) then <f {n) , f {n+ 1) > 

= <f(n+l), f(n)>;; 

This is very similar to the standard SETL 

(3') (while 1 < 3n < t f I f(n) 2!, f(n+l)) <f(n) ,f(n+l) 
I 

= <f(n+l), f(n)>;; 

When se7eral conditions are to be forced si.multoneously 

the pursue cunstruction can be distinctly more confortable 

than the while diction which comes closest to it in standard 

SETL. As an :?xample, consider a graph g defined by a set nds 

of nodes and ,:1 map naybs which send 

of all its ne:.ghbors. Let six sets all, al2, a21, bl, b2 

be defined on each of the nodes of g, and suppose that we 

seek to find two functions fl and f2 on g which for all n £ nds 

satisty both the equation 
I, 

(4) fl(n) = [+: n e: naybs(n)] (all(n) * fl(n) + al2(n} * f2(n) 

+ b (n)) 

and the corresponding equation for f2. 

3 
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The necessa;.y program CcY! be written in a very straightforward 

way as 

f~! {pursue VnE nds) 
fl (n) = [ + :•, e: naybs (n) ] ( all (rn) * £1 (m) +al2 (m) *f2 (rn) +bl (m)) ; 

f2(n) = [+~ E naybs(n)] (a2l(m)*f2(m)+a22(m)*f2(m)+b2(m)); 

end; 

2. A remark on t"ie optimisation of Pur~ue Blocks. 

We shall no, describe a method which may in some cases 

allow pursue blc,:ks to be optimised automatically; the~ 

same method is :,otentially appli.cable to other SETL iterative 

forms. Considir a pursue construction of the form 

(6) {pursue Vx£s) btock; 

and let active(s) denote the set of all x e:s which have the 
- 0 ,' . 

follc--wing property: if x is replaced by x
0 

and b Zoak is exe,cuted, 
then some part of the data environment of the SETL program 

containing (1) is changed, When x
0 

E active(s) and block is 

exe~uted, active(s) may of course grow; moreover, :i.t may be 

posr;ible by inspecting btoak to determine the set s.' of all 

ele:nents which could possibly be added to active (s) when 
b lc,-Jk is executed. Suppose that this is possible, and more 

sp~cifically suppcse that one can gemE:rate a expression 

t(x
0

, a. x1 , . .. ,x), involvina x , the current value a of · n .., o 
the set aative (s), and certain other variables x 1 i ••• ,xn 
<'Jppear:i.ng in bloe!k, such that <f,{x, active(s)., x1 , .•• ,x) 

o n 
must certainly include s'. Then the pursue iteration (6) 

cf.m be ::ompiled as follows: 

(7:· active = s; 

(whi'Le active ~ n.i doing active = <I> (x ,a,xi, .•• xn) ;~ block t L · 
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When {6) is transformed into (7) by the process we envisage 

it may be found necessary to add to the set aative all x 

for which a relationship £1 {x
0

) * £2 (x) ne ni holds; where 

f 1 and £2 are maps which appear in blook. To g'~arantee 
that these x can be found efficiently, an optimising compiler 

r -1 may chose to make use of the inverse map £
2

• If this 

is done, code updating the value of f;1 may have to be 

generated. 

As an example of all this, consider the bubble-sort 

program (3). It is seen by inspection of the block B appearing 
within the pursue iterator (4) that when B is executed for 

a particular n only n-1 and n+l can be made active. Thus 

a suitable optimiser might be able to compile (3) as 

( 8) active= {n, 
(while active 

n from 

if f(n) 

·1<n<#f}; 

~ nt) 
active; 

2!, f (n+l) then 

<f(n), f(n+l)> = <f(n+l),f(n)>; 

if n s.! 1 then (n-1) in active;; 

if n 1t t f then (n+l)· in active;; 

end if f(n): 

end while; 

Generally speaking, (8) is a better algorithm than (3); 

especially if,as we may assume without grave lack of realism, 

5 

an optimising compiler handles the set active appearing in{8) either 

as a bit-vector supplemented by a list or simply as a bit-vector. 

As a second example, consider the transitive closure 
routine (2}. If this is rewritten slightly as 

(pursue Vxes) s = s + f{x}:; 
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then the optimising procedure ,.,,e have suggested might be 

able to realise it as 

(10) active= s; 

(while active~ nt) 

end while; 

x from active; 

news= s + f{s}; 

active= active+ (news - s); 

s = news; 

In rnany cases, (HJ) will perform much more efficiently 

than either (2) or (9}. 

C 


