SETL Newsletter # 134

J. Schwartz July 1, 1974

Inter-Procedural Optimisation

The optimisation algorithms described in newsletter 118, 130, 131 and A. Tenenbaum's thesis are all intraprocedural, in that they work with a schematised program consisting of one single 'main routine' which is assumed to be free of subprocedure calls. These algorithms also ignore the complications to flow analysis which arise when subprocedures become the values of variables or of parameters, and when transfers to variable labels occur within a program. A useful optimiser system will of course have to handle both these situations. In the present newsletter we shall outline algorithms, adapted from those developed for a PL/1 optimiser by F. Allen and her associates, which begin to be adequate to this purpose. It will be seen that in the form in which they will be presented these algorithms use some of the ideas developed in newsletter 131. We shall also employ the terminology introduced in that newsletter.

1. Flow Estimation, the Call Graph.

Let P be a program in which procedure and/or label variables are used. The first problem to be overcome is that when we encounter P we do not know what structure its flow, i.e. its program graph, has. This problem is particularly acute in SETL, since variables are untyped, so that any variable can take on a procedure value, and since the map applications f(x) and $f(x_1, \ldots, x_n)$ can also be function calls. Before applying other global optimisations we must therefore aim to estimate P's flow, i.e. to determine which variables v in P can have procedure (resp. label) values, and the procedures (resp. labels) which can become values of each such y. This information must be developed by an algorithm which does not require precise information concerning P's flow, since it is this flow which we are trying to find. Note that the algorithms in which subsequently use the flow will remain correct even if the flow is overestimated, but not if is is underestimated. Here we speak of an overestimation of flow if a transfer or call that is actually impossible is judged possible, and of an underestimation if a possible transfer or call is judged impossible. We may speak in a similar sense of overestimation (and underestimation) of data flow: data flow is overestimated if we adjudge the set ud(i) of all ovariables o which can set the value of a given ivariable i to be larger than it is.

To estimate ud(i), we begin with a coarse overestimate ud₀(i) and refine it. The initial guess ud₀(i) is obtained as follows. P is schematised in a manner 'resolving' the names used within P, i.e., assigning explicitly different symbols to names which have the same spelling but which appear in different namescopes. Then we put the ovariable o in ud₀(i) if i and o involve the same symbol x (i as a use, o as a definition). This rule applies if neither o nor i is a subprocedure parameter or argument. Subprocedure arguments are treated both as ivariables and ovariables, rather as if a function call of the syntactic form $y = f(a_1, ..., a_n)$ consisted of two successive statements

(1) $\underbrace{enter}_{y = f(a_1, \dots, a_n)}_{y = f(a_1, \dots, a_n)},$

with a_1, \ldots, a_n in the first line being ivariables and a_1, \ldots, a_n in the second line being ovariables. (The reader is reminded that a SETL subprocedure can modify the parameters with which it is called, and that a subroutine can be regarded as a function which returns a nil value to a dummy variable

that is never used.)

SETL-134

A procedure parameter appearing in a header line

(2) define $sub(p_1, \ldots, p_n)$

or

(3)

(2') define $f(p_1, \ldots, p_n)$

is considered to be an ovariable, which receives a value from the corresponding argument when the subprocedure is entered. In setting up $ud_0(i)$, we use the following rules to handle subprocedure arguments and parameters. For the ivariable a_j appearing in the first line of (1), $ud_0(a_j)$ includes each ovariable p_j appearing in a header (2) or (2') for which n = m. Variables appearing in the context

return v

within a function headed by (2') are ivariables, and $ud_o(v)$ includes each ovariable y appearing in the second line of the 'expanded form'(1) of a call. Moreover, a return statement of the form (3) or of the simpler form

(3^t) return

used within a subroutine is considered to have every parameter p_j of the subroutine in which it appears as an ivariable; and the ovariable a, appearing in the second line of (1) belongs to $o(p_j)$ whenever the call (1) and the subroutine header (2) have a matching number of parameters.

The function f (or the subroutine *sub*) is considered to be an ovariable of the header line (2') or (or (2)) which defines f and thus acts very much like an assignment to f.

(4)

In this same sense, we consider a labeled statement

lab: ...

to have the symbol *lab* as an ovariable, since (4) defines *lab* and thus acts very much like a assignment to *lab*.

The rules stated above define $ud_{o}(i)$ for each ivariable of P. To refine this overestimate of the data flow, we proceed as follows. Using ud in place of the use-definition chaining function ud which appears in newsletter 131, equations (1,2) of section 2 and equations (1-4) of section 4, we calculate the functions crthis, crmemb, crcomp, crsomcomp appearing in these equations. The reader is reminded that crthis(i) (resp. crthis(o)) is the set of all ovariables which create an object which at some moment in the execution of P becomes the current value of i (resp. o). Moreover, crmemb(i) (resp. crsomcomp(i) is the set of all ivariables jwhose values become incorporated as members into a set (resp. as components into a tuple) which at some moment in the execution of P becomes the current value of i; crmemb(o). and crsomcomp(o) can be defined in a very similar way for ovariables o. Note that the function that we primirily want is crthis(i), and that crmemb(i), etc. are merely needed as auxiliary guantities for calculating crthis.

Let o designate the ovariable of a subprocedure headerline (2) or (2'), in the sense explaned in the sentence preceeding (4) above. The subprocedure declared by (2) or (2') can become the value of an ivariable i only if $o \in crthis(i)$. Similarly, of o' designates the label-representing ovariable of the labeled statement (4), then an ivariable i can have the lab of (4) as one of its values only if o' $\in crthis(1)$.

Thus, by calculating *crthis* we obtain conditions, which should be reasonably accurate, restricting the variables which can assume procedure and label values, as well as the particular procedure and label values which these variables can assume. These conditions give us our first estimate (actually, overestimate) of the flow of P.

Note in passing that since the number of procedures and explicit labels appearing in a SETL program P will generally be far smaller than the number of ivariables of P, it may be preferable to calculate not crthis(i) but its inverse function $crthis^{-1}(o)$. Equations somewhat like the equations given in section 2 and 4 of newsletter 131 but involving these inverse functions can be written and actually will be outlined in later section of the present newsletter.

Once having arrived at a first estimate of the flow of P, we may revise our preliminary overestimate $ud_0(i)$ of the data-flow of P, obtaining a more precise overestimate $ud_1(i)$. Using ud_1 in place of ud_0 and recalculating *crthis*⁻¹(*i*) by the method just explained, we can obtain a still more precise estimate $ud_2(i)$ and so on inductively. Since all the sets involved are finite, this process will stabilise after a finite number of steps. Actually, since each such iteration may be relatively expensive, we may decide to iterate only once or twice, and to use the flow estimate corresponding to $ud_0(i)$ or $ud_1(i)$ in applying other global optimisation processes to P.

To calculate ud_{n+1} from the flow F_n estimated from ud_n , we could proceed as follows. In very much the ordinary way, P is schematised into a collection of basic blocks. When a block B ends with a transfer

go to labvar

(5)

(6)

where labvar is a variable having the labels L_1, \ldots, L_n as possible values, then B has as successors the blocks B_1, \ldots, B_n beginning with L_1, \ldots, L_n respectively. Points at which functions of the form $y = f(a_1, \ldots, a_n)$ might be called are expanded as follows. Let the procedures which can be a value of f be called $rout_1, \ldots, rout_k$. Let $P_{j1}, P_{j2}, \ldots, P_{jn}$ be the formal parameters of $rout_j$, and let P_{j0} denote the value returned by $rout_j$. Let a label r_j be generated to mark the point of entry to $rout_j$. Then the function call $y = f(a_1, \ldots, a_n)$ is expanded into the following code schema.

go to labvar;

/* where the possible values of labvar
are the generated labels ll,l2,...ln
appearing immediately below */

*k*1:
$$\langle p_{11}, p_{12}, \dots, p_{1n} \rangle = \langle a_1, \dots, a_n \rangle;$$

/* p_{j1}, \ldots, p_{jn} are the parameters of rout j */.

go to rl; /* rj is the point of entry to rout, */
retlabl: <a_1,...,a_n > = <p_11, p_12, ..., p_in >;

 $y = P_{10}$; /* P_{jo} designates the value returned by rout_j*/ go to l0;

$$2: \langle p_{21}, p_{22}, \dots, p_{2n} \rangle = \langle a_1, \dots, a_n \rangle;$$

go to r2;

retlab2: $\langle a_1, \ldots, a_n \rangle = \langle p_{21}, p_{22}, \ldots, p_{2n} \rangle;$

 $y = p_{20};$ go to l0;

A statement

(7) return p;

occuring in the routine rout_j is treated as if it were a transfer (5) for which the possible values of *labvar* are the collection of all generated return labels retlabi appearing in an expansion of the form (1) immediately prior to a transfer to the point of entry to rout_j.

Because of the way that subprocedure calls are handled in (6), loops containing calls will appear as multi-entry loops, and the calculation of ud_{n+1} from the flow estimate determined by ud_n may involve considerable node splitting. Moreover, the subroutine treatment which has been outlined loses sight of the fact that a procedure called from one place cannot return as if it had been called from another. We conclude that this simple scheme for treating subprocedures overestimates the flow of P in a significant way, and that it should be replaced by a treatment which is more precise and which makes repeated node splitting unnecessary. An algorithm for calculating ud, modified to meet these objections,will be sketched in the next section of the present newsletter.

The analysis that has been described in the preceeding pages allows us to detect situations in which a procedure is called with the wrong number of arguments. These will appear as situations in which a subroutine rout with n parameters is transmitted as value to a procedure call $f(a_1, \ldots, a_n)$ requiring a number of parameters $m \neq n$. If f is seen to have no possible value other than rout, a fatal diagnostic can be issued; in other cases, a nonfatal warning is more appropriate. By making 'subroutine of n parameters' a type in the calculas of types described by A. Tenenbaum additional information concerning procedures called with the wrong number of parameters can be uncovered by the type-finding process.

Note that the analysis which has been described also uncovers the *call graph* G of the program P. This is the graph whose nodes are the subprocedures s_1, s_2, \ldots P, and in which s_2 is a successor of s_1 if and only if s_1 contains a call to s_1 . A set of subprocedures belonging to a strongly connected region of G are said to be *corecursive* with each other, and the procedures belonging to them are said to be recursive. The information made manifest in G is useful for various optimisations, e.g. non-recursive routines can use simplified linkage convertions.

2. Calculation of the data flow mapping ud(i).

In the present section, we assume that the control flow of P has been estimated, i.e. that we have found all variables which can assume label or procedure values, and have estimated the label and procedure values which each such variable can assume. We will describe a procedure for calculating ud(i) and other important data-flow related mappings from this estimate. This procedure, largely taken from recent work of F. Allen, treats subroutines in a special way which avoids the objections noted in the preceeding section to the subroutine treatment outlined there.

Our aim is to treat procedure calls as elementary operations rather than as transfers which complicate the flow of P. To treat a call q to a subroutine sr as elementary, we must ascribe three values to it:

i. The collection defsof(q) of all definitions (ovariables) occuring in *sr* which might supply the value of a variable used immediately after return from q;

ii. the collection usesin(q) of all variable-uses
 (ivariables) occuring in sr which use the value which the
 corresponding variable has immediately before sr is entered.

iii. The collection thru(q) of all variables v which can be transmitted thru sr along some path clear of redefinitions of v.

These functions are used to calculate various data-flow related mappings, among them the set $\rho(b)$ of all definitions d which can reach the entrance to a block b along some path.

The basic relationship used for calculating this function is simply

10

(1) $\rho(q) = [+: p \in pred(b)] (\rho(p) * thru(p) + defsof(p)),$

where pred(b) is the set of predecessor blocks of b. The relationships (1) constitute a system of equations whose solution can in simple cases be obtained efficiently using, e.g., the interval method.

To handle a program P containing subroutines and subroutine calls, we proceed as follows. The flow of P is estimated and the call graph G of P determined. As already noted, any set of subprocedures represented by nodes of G belonging to a strongly connected subregion is said to be corecursive. If there exist corecursive subprocedures, we choose a non-null set B of edges of G such that G - B contains no cycles; B should be chosen so as to be minimal in some appropriate sense. Each edge belonging to B represents one or more calls from one procedure p_1 to another procedure p₂. For each p₂ appearing as the terminal node of such an edge e, we define a formal auxiliary routine p2', and replace the call from p₁ to p₂ which e represents by corresponding call from p_1 to p_2 . We then use an initial overestimate of thru(p') and defsof(p') for each of the auxiliary subprocedures p' introduced in this way, taking thru(p') to consist of all variables and defsof(p') to consist of all global variables or parameters of p which appear on the left-hand side of some assignment belonging either to p or to any procedure which might be called, directly or indirectly, from p. With B removed, the subgraph G - B of G is free of cycles i.e. is a tree; and by arranging this tree in a linear order we succeed in arranging all of the subprocedures represented by G in an order in which each procedure follows the procedures

(not in the set of formal auxiliary routines p') which it calls. Using Allen's term, we call this order the *inverse invokation order*; and this is the order in which we will process the collection of procedures constituting P. To process procedure *sr*, we take the set of all the global variables appearing in *sr* and in all the routines it calls (which are prior to it in inverse invokation order), and to this set append the formal parameters of *sr*, obtaining a set V. Then, to regularise the processing which will follow, we set up a block of formal assignments, one assignment for each of the variables in V, and prefix this block to the first statement of *sr*. The collection of ovariables of this block will be called the *external ovariables* of *sr* and will be designated by the symbol EXOV.

Next, we decompose sr into intervals, splitting nodes if necessary, and use equation (1) to calculate $\rho(q)$ for each of the blocks q of sr. The values thru(p) and defsof(p)which we use in doing this are defined as follows:

a. For a basic block p, thru(p) is the intersection of the sets thru(x) associated with each of the individual statements x of p. If x is an assignment statement, then thru(x) consists of all variables other than the target variable of x. If x is a call to a subprocedure ssr, then thru(x) consists of all variables v which are not substituted for parameters p of the call x and which belong to thru(ssr), plus those variables which are substituted for some parameter of ssr which belongs to thru(ssr). If x is a call to a subprocedure which is somewhat indeterminate and might be either ssr_1, ssr_2, \ldots , then thru(x) consists of all variables v for which there exists some j such that $ssr = ssr_j$ satisfies the condition stated in the preceeding sentence.

Note that since all routines called from *sr* preceed *sr* in inverse invokation order, the value *thru(ssr)* will always be available during the computation that we have just described.

b. Let p be a basic block, x a statement of p, and o an ovariable of x. Then o belongs to defsof(p) if it belongs both to defsof(x) and to thru(y) for each y in p which follows x in the serial order of p. If x is an assignment statement, then defsof(x) is the target variable of x. If x is a call to a subprocedure ssr, then defsof(x)consists of all variables v which belong to defsof(ssr), plus all variables v which are substituted for some parameter of ssr which belongs to defsof(ssr). If x is a call to a subprocedure which is somewhat indeterminate and might be either ssr_1 , ssr_2 ,..., then defsof(x) consists of all variables v for which there exists some j such that $ssr = ssr_j$ satisfies the condition stated in the preceeding sentence.

Once $\rho(b)$ has been determined by using these conventions and by making appropriate use of equation (1), we calculate

(2) $[+: b\varepsilon returnstats] \rho(b) * EXOV,$

where returnstats is the set of blocks of sr which consist only of return statements (for convenience, each return statement is segregated into a block of its own.) Then thru(sr) is defined as the set of variables in V whose corresponding ovariables belong to the set (2). In addition, defsof(sr) is defined as the set

(3) $[+: b\varepsilon returnstats] \rho(b) - EXOV.$

1 37 M

Note that the sets thru(p) and defsof(p) which result from our calculation satisfy $thru(p) \subseteq thru(p')$ and $defsof(p) \subseteq defsof(p')$ for each subprocedure p which is a terminal node of some edge of the subset B of the call graph G. The sets thru(p')and defsof(p') overestimate the true data flow functions which should be associated with the subprocedure p; the sets thru(p) and defsof(p) also overestimate these functions, but not as badly. By replacing thru(p') and defsof(p') by thru(p) and defsof(p) respectively and by repeating the computation which has just been described, we can improve our estimates. This improvement can be iterated as often as desired, in principle even until stable estimates of the functions thruand defsof result. But the high cost of iteration may only justify one or two iterations, which anyhow should in most cases yield reasonable estimates of thru and defsof.

Note that the function defeof(p) which the preceeding calculation associates with a subprocedure p tells us what assignment operations and procedure calls c internal to p can set the value of a global variable or parameter v when p itself is called. In some applications we will wish to obtain additional information, relating variables v not merely to the procedure calls c which set their variables, but to the specific elementary operations which assign values to vfrom within the routine called by c. This may for example be convenient if we intended either to propagate constants or to carry out one of the constant-propagation-like optimisation processes described in Newsletters 130 and 131. To obtain this additional information, we have only to note the variable or parameter v in which we are interested, and, using the value defsof(c), find all the operations within the procedure called by c which set v; proceeding in this way and iterating through sucessive subprocedure call operations until a full transitive closure is formed, we will succeed in forming the set defsofc(p) of all assignment statements which can establish the values of v.

Then the set defsofc(p) rather than the set defsof(p) can be taken as an expression of the use-definition chaining relationships in the program being analysed. An alternative technique is to use defsof(p), but to chain each variable in defsof(p) back to a nominal assignment v = v inserted immediately prior to each return statement occuring in the subprocedure p. Both of these techniques are valid for entirely general collections of mutually corecursive procedures. 14 ...

For the definition-to-use part of the data-flow analysis process we will often need to have available a function usesin(q) which maps each subprocedure q into the set of all global variable or parameter uses occuring in q. The set usesin(q) is obtained by summing, over all the blocks b of q, all uses of variables belonging to $\rho(b)$ *EXOV. The rule for associating a set of uses with a block b is as follows: Let x be a statement of b and i an ivariable of x. Then i belongs to the set usesin(b) if it belongs both to usesin(x)and to thru(y) for each y in b which preceeds x in the serial order of b. If y is an assignment statement, then i belongs to ueesin(y) if it is an argument of the operation appearing on the right-hand side of y. If y is a call to a subprocedure ser, then usesin(y) consists of all ivariables which either belong to usesin(ssr) or are substituted for a parameter belonging to usesin(ssr). If y is a call to a subprocedure which is somewhat indeterminate and might be either ssr_7 , ssr_9 ,..., then uses in(y) consists of all ivariables which either belong to some one of the sets usesin(ssr,) or are substituted for a parameter belonging to some one of these sets.

A transitive closure technique like that described two paragraphs above may be used to chain definitions to the uses the values they define, even when theses uses are reached through a lengthy sequence of possibly recursive procedure calls. Note once more that an estimate of the data flow within a program P leads to an estimate of the control flow within P, which in turn leads via the processes described in the present section to an improved estimate of data flow. Thus the entire data and control-flow estimation process that has been described can be iterated. However, it is unlikely that more than a very few iterations will either be feasible or required.

3. A few remarks on subroutine linkage optimisation.

Once the call graph of a program P has been determined and the other analyses described in the preceeding pages have been carried out, a number of small but useful subroutine linkage optimisations become possible.

i. Arguments which are never read by a subprocedure sr (i.e., 'output' arguments) need not be transmitted when sr is called; arguments which are never modified by sr need not be returned when return is made from sr.

ii. A function-type subprocedure sr is said to be without side effects if sr modifies none of its parameters, modifies no global variable, and if every variable local to sr is dead on entry to sr. Once sr is known to be without side effects, expressions containing calls to sr can be optimised in ways that would be impossible if sr had side effects. For example, redundant calculation elimination can be applied to such expressions.

iii. A subprocedure sr is said to be non-recursive if sr
is not part of any cycle in the call graph G of the program P.
(Note that non-recursive subprocedures can call recursive subprocedures and vice-versa.) Arguments to non-recursive subprocedures need not be transmitted via a system stack, but can be transmitted in a somewhat more efficient manner,

by direct assignment to an argument area associated with sr. Moreover, sr's temporaries need never be stacked. This saves stack manipulation on entry to and return from sr, allowing relatively compact and efficient call and return sequences to be used.

4. Equations for the inverse function crthis⁻¹.

We noted in section 1 that, since the number of procedures and explicit labels appearing in a SETL program P will generally be far smaller than the number of ivariables of P, it may be preferable to calculate not the function crthis(i)which maps each ivariable of P into the set of all ovariables which can create an object which becomes the value of i, but rather to calculate the inverse function $crthis^{-1}(o)$ directly. In the present section, we will sketch a system of equations, dual to the equations for crthis, which make direct calculation of $crthis^{-1}$ possible. To this end, we introduce a number of auxiliary functions. By iuses(o) we designate the inverse of the function crthis(i); iuses(o)

may also be described as the set of ivariables i in which there appears as argument an object created by evaluating o; by ouses(o) we designate the set of all ovariables o' in which such an object reappears. By *iholds(o)* designate the collection of ivariables i in which there appears as argument a set containing (as one of its members) an object created in evaluating o; by oholds(o) we designate the collection of ovariables o' at which such a set can appear. By *isomcomp(o)* we designate the *ivariables* i in which there appears as argument a vector (of possibly unknown length) having as component (in unknown position) an object created in evaluating o; by osomcomp(o) we designate the collection of ovariables o' at which such a vector can appear. Next, let n be an integer.

16

5.45

By icomp(o,n) we designate the collection of ivariables i in which a vector of a known length at least equal to n, having as its n'th component an object created in evaluating o, appears as an argument; by ocomp(o,n) we designate the collection of ovariables o' at which such a vector can appear.

Rather than confronting the full zoo of primitive SETL operations all at once, we shall at first simplify our discussion by ignoring tuple operations, and by assuming that the only four set-theoretic operations which appear in our schematized programs P are s+t, s-t, $\{x\}$, and \exists s. (A similar procedure is used in Newsletter 131, and is justified there.) The operations occuring in P may then be classified as transfer, null, inclusion, extraction, data, setalgebraic, copy, and other (non-set) algebraic operations (see NL 131, p. 5), and to describe these respective operation classes we introduce predicates transf(o), null(o), incl(o), extr(o), data(o), setalg(o), copyop(o), other(o). The operation forms described by these predicates are

> $o = i_1;$ transf(o): null(o) : o = nl; $o = \{i_1\};$ incl(o) : £ $o = \exists i_1;$ extr(o) : data(o) : o = data;(for sets) sstalg(o): setalgpls(o): $o = i_1 + i_2;$ $setalgmns(o): o = i_1 - i_2;$ $o = copy(i_1)$ copy(o) : $o = i_1 + i_2; o = i_1 - i_2, etc.$ other(o) : (for atoms).

For the functions *iuses* and *iholds* we have the following equations:

(1)

iuses(o) = [+: o' ε ouses(o)] du(o') iholds(o) = [+: o' ε oholds(o)] du(o'). 18 ...

43.24

(Here, du is the definition-to-use chaining function provided by data-flow analysis; it chains each ovariable o to the set of all ivariables which can be reached from o along a path free of redefinitions of the variable appearing in o). The ouses function obeys a slightly more complex set of equations. If i is an ivariable, let out(i) designate the target ovariable of the schematised assignment statement in which i appears as an argument, and let argpos(i) denote the (numerical) argument position in which i appears. Then the value created by evaluating o can reappear either as the output of a transfer operation whose argument belongs to iuses(o), or as the output of an extraction whose argument belongs to iholds(o). Thus we have

The equation for *oholds(o)* is substantially more complicated. A set s having among its members some object created by evaluating o can appear as the output of an operation of transfer, setalgebraic, or copy type, provided that an appropriate input argument of this operation belongs to *ihold(o)*. Moreover, s can appear as the output of an inclusion operation, provided that the input to this inclusion belongs to *iuses(o)*. Finally, s can appear as the output of an extraction operator $\bar{o} = \exists i$. For this to happen, i must belong to some set *oholds(o')* for which o' belongs to *oholds(o)*. In consequence of all these facts we have the following equation for *oholds(o)*: (3) oholds(o) = {out(i), is iholds(o) setalgpls(out(i)) or transf(out(i)) or copy(out(i))}

> + {out(i), is iholds(o) | setalgmns(out(i)) and argpos(i) eq 1}

The system of equations (1-3) can be solved by a straightforward monotone convergence procedure. Note that in applying these three equations to determine data flow in the presence of label and procedure variables, we would only calculate *oholds(o)* for the relatively small number of ovariables which define labels or procedures, and for any additional ovariables to which our attention is directed in the course of solving equations (1-3).

If we now pass to a discussion of full SETL by admitting the existence of tuple operations, the preceeding equations undergo substantial complication: tuple operations of tupleformer, component extractor, subtuple extractor, tail extractor, component insertion, and tuple concatenation type, which we designate by the predicates tform(o), compex(o), subtex(o), tailex(o), inxa(o), and concat(o), appear in cur schematised programs P. These classes of operators have the following typical forms:

tform(o): 0 = <i₁,...,i_n>

comper(o):	$o = i_1(i_2)$	(i ₁ a tuple)
subtex(o):	$o = i_1(i_2:i_3)$	11
tailex(o):	$o = i_1(i_2:)$	n
inxa(o) :	$\mathbf{o} = [\mathbf{i}_1(\mathbf{i}_2) \leftarrow \mathbf{i}_3]$	(o a tuple)
concat(o):	$0 = i_1 + i_2$	(i ₁ , i ₂ tuples).

Note that the component insertion operation, which for conformability with our general ovariable/ivariable conventions we shall write as $o = [i_1(i_2) \leftarrow i_3]$, is ordinarily writtwn as v(n) = c; v is both the o and the i, of our schematic convention. In what follows, we shall make use of functions arg1(0), arg2(0), etc. which extract the first, second, etc. components of the operator whose output ovariable is o. It is also convenient for us to make use of two auxiliary functions ianycomp(o) and oanycomp(o). The set ianycomp(o) designates the collection of ivariables i in which there appears as argument a vector (of possibly unknown length) having as component (in a position which is either known or unknown) an object created in evaluating o; by oanycomp(o) we designate the collection of ovariables at which such a vector can appear. Note the distinction between isomcomp(o) and *ianycomp(o)* (and the parallel distinction between osomcomp(o) and oanycomp(o)); an ivariable belongs to ianycomp(o) if its value can be a vector in which a certain object appears in any component position whether known or unknown, but belongs to isomcomp(o) only if this object appears either in an unknown component position or in a vector whose length is unknown. Thus ianycomp(o) always includes icomp(o,n), while isomcomp(o) need not include icomp(o,n). As in Newsletter 131, we use functions known(o) and known(i), which have the value Ω if o (resp.i) is either an integer of unknown value or a vector of unknown length, and have the value n if o(resp.i) is either an integer of value known at compile time to be n, or a vector of length known to be n.

20.

×.

Using these conventions, we may state the following revised equations for the functions iuses, iholds, inomcomp, icomp, ianycomp, iuses, oholds, osomcomp, ocomp, and oanycomp.

(4)

 (\mathbb{R})

iuses(o) = [+: o'
$$\varepsilon$$
 ouses(o)] du(o');
iholds(o) = [+: o' ε oholds(o)] du(o');
icomp(o,n) = [+: o' ε ocomp(o,n)]{i ε du(o') | known(i) ne Ω };
ianycomp(o) = [+: o' ε oanycomp(o)] du(o');
isomcomp(o) = [+: o' ε osomcomp(o)] du(o')+
+ [+: o' ε oanycomp(o) | (known(o') is k) ne Ω]
[+: 1 \leq n \leq k | o' ε ocomp(o,n)]
{i ε du(o') | known(i) eq Ω };

The equations for ouses, oholds, ocomp, oanycomp, and ocomcomp can be written most easily if we introduce the following macro:

The set againextractions(o) is the set of all o' in which the object created by evaluating o reappears by extraction either of an element from a set or of a component from a tuple. Using this macro, we may write the following equations:

SETI-134

 $ouses(d) = {out(i), i \in iuses(0) | transf(out(i))}$ (6) + againextractions(o); (7) $oholds(o) = \{out(i), i \in iholds(o) |$ setalgpls(out(i)) or transf(out(i)) or copy(out(i))} +{out(i), i i holds(o) setalgmns(out(i)) and argpos(i) eq 1} +{out(i), i fiuses(o) [incl(out(i))] + [+: o'Coholds(o)] againextractions(o'); (8) $\operatorname{ocomp}(0,n) = /*$ here we assume known(0) ne Ω and $1 \leq n \leq known(o) */$ $\{out(i), i \in icomp(o,n) | transf(out(i)) or$ copy(out(i)) or(concat(out(i)) and argpos(i) eq l) } +{out(i), i i uses(o) | tform(out(i)) and argpos(i) eq n} +{out(i), i i i uses(o) | inxa(out(i)) and argpos(i) eq 3 and known(arg2(out(i))) eq n} +{out(i_1), $i_1 \in icomp(o,n)$ | inxa(out(i_1)) and argpos(i1) eq 1 and known(arg2(out(i₁))) ne n} +{out(i,),i, ∈ianycomp(o) | tailex(out(i,)) and arypos(i) eq 1 and $i_1 \in (icomp(o, known(arg2(out(i_1)))+n) \text{ orm } n!))$ +{out(i_1), i \in ianycomp(0) | subtex(out(i_1)) and argpos(i) eq 1 and $i_1 \in (icomp(o,known(arg2(out(i_1)))+n) \text{ orm } n2)$ +{out(i₂), $i_2 \in ianycomp(0) \mid concat(out(i₂)) and argpos(i₂) eq 2$ and $i_2 \in (i \operatorname{comp}(0, n-known(\operatorname{argl}(\operatorname{out}(i_2))) \operatorname{orm} n\ell))$ + [+: O'∈ocomp(O,n)] againextractions(O');

2.2

SETL-134

(9)

(10)

S

```
oanycomp(o) =
{out(i), i for converse (o) | transf(out(i)) or
copy(out(i)) or converse (out(i)) or (tailex(out(i)) or
subtex(out(i)) and argpos(i) eq 1) or
(inxa (out(i)) and argpos(i) eq 1))}
+{out(i), i fives(o) | tform(out(i_1)) or
(inxa(out(i)) and argpos(i) eq 3)}
+ [+: o'for (out(i)) and argpos(i) eq 3)}
```

{out(i), i∈isomcomp(o) | transf(out(i)) or copy(out(i)) o concat(out(1)) or(tailex(out(i)) and argpos(i) eq .) or (subtex(out(i)) and argpos(i) eq 1) } + {out(i), i∈ianycomp(o) | concat(out(i)) and known(out(i)) eq Ω and if $(known(i) is k) eq \Omega$ then f else $1 < \exists n < k \mid i \in (i \operatorname{comp}(0, n) \operatorname{orm} n\ell)$ + {out(i), i <i any comp(o) | (tailex(out(i)) or subtex(out(i))) and argpos(i) eq 1 and known (out (i)) eq Ω and if (known (i) is k) eq $\hat{\alpha}$ then f else $1 \leq \exists n \leq k | i \in icomp(o,n) \text{ orm } nl \}$ + {out(i), i fiuses(o) | inxa(out(i)) and argpos(i) eq 3 and $(known(arg2(out(i))) eq \Omega or known(out(i)) eq \Omega))$ + {out(i), i∈isomcomp(o) | inxa(out(i)) and argpos(i) eq 1} + [+: o'∈osomcomp(o)] againextractions(o') + [+: $o' \in oanycomp(o)$ if (known(o') is k) eq Ω then f else $1 \leq \exists n \leq k \mid o' \in ocomp(o, n) \end{bmatrix}$

o" \in againextractions (o') | known (o") $\in I \Omega$;

á.,

In order not to complicate the preceding equations unnecessarily, we have at a few points written less precise restrictions than could actually be applied. Most of these elisions relate to cases in which operators transform tuples of known length to tuples of unknown length.