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The optimisation algorithms described in newsletter 118, 

130, 131 and A. Tenenbaum's thesis are all intraprocedural, 

in that they work with a sche'matised program consisting of 

one single 'main routine' which is assumed to be free of 

subprocedure calls. These algorithms also ignore the complications 

to flow analysis which arise when subprocedures become the 

values of variables or of parameters, and when transfers to 

variable labels occur within a program. A useful optimiser 

system will of course have to handle both these situations. 

In the present newsletter we shall outline algorithms, 

adapted from those developed for a PL/1 optimiser by F. Allen 

( and her associat·es, which begin to be adequate to this 

purpose. It will be seen that in the form in which they 

will be presented these algorithms use some of the ideas 

developed in newsletter 131. We shall also employ the 

terminology introduced in that newsletter. 

1. Flow Estimation, the Call Graph. 

Let P be a program in which procedure and/or label 

variables are used. The first problem to be overcome is 
that when we encounter P we do not know what structure its 

flow, i.e. its program graph, has. This problem is particularly 

acute in SETL, since variables are untyped, so that any 
variable can take on a procedure value, and since the map 
applications !(x) and £{x1 , ... ,x) can also be function calls. -n 
Before applying other global optimisations we must therefore 
aim to estimate P's flow, i.e. to determine which variables 
v in P can have procedure (resp. label) values, and the 

procedures (resp. labels) _which can become values of each such v. 
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This informatioij must be developed by an algorithm which 

does not require precise information concerning P's flow, 

since it is this flow which we are trying to find. Note 

that the algorithms in which ·subsequently use the flow will 

remain correct even if the flow is overes·timated, but not 

if is is underestimated. Here w~ ·speak of an oveztestimation 

of flow if a transfer or call that is actually impossible is 
judged possible, and of an undeztest·l"mation if a possible 

transfer or call is judged impossible. We may speak in a 

similar sense of overes·timation (and underestimation) of 

data flow: data flow is overestimated if we adjudge the 

set ud{i) of all ovariables o which can set the value of a 
given ivariable i to be larger than it is. 

To es·timate ud(i), we begin with a coarse overestimate 

ud
0

(i) and refine it. The initial guess ud
0

(i} is obtained 

as follows. P is schematised in a manner 'resolving' the 

names used within P, i.e., assigning explicitly different 

symbols to names which have the same spelling but which 

appear in different namescopes. Then we put the ovariable 
o in ud

0
(i) if i and o involve the same symbol x (i as a use, 

o as a definition).This rule applies if neither o nor i is a 

subprocedure parameter or argument. Subprocedure arguments 

are treated both as ivariables and ovariables, rather as if 

a function call of the syntactic form y = !(a1 , ... ,an) 
consisted of two successive statements 

(1) enter f(a1 , ... ,an) 

y = f(a1 , ... ,an); 

with a1 , ... ,an in the first line being ivariables and a1 , .•. ,an 
in the second line being ovariables. (The reader is reminded 

that a SETL subprocedure can modify the parameters with which 
it is called, and that a subroutine can be regarded as a 

function which returns a nil value to a dummy variable 

that is never used~) 

2 
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A procedure parameter appearing in a he~der line 

(2) 

or 
(2 ') 

is considered to be an ovariabl.e, which re,cei ves a value 

from the corresponding· argument when the subprocedure is 

entered. In setting up ud
0

(i), we use the following rules 

to handle subprocedure arguments and parameters. For the 

!variable a. appearing in the first line of (1), ud
0

(aj) 
J . 

includes each ovariablep. appearing in a.header (2) or (2'} 
J . 

for which n = m. Variables appearing in the context 

(3) return v 

Q within a function headed by {2') are iyariables, and ud
0

(v) 

includes each ovariable y appearing in the second line of 

the 'expanded form'{l) of a call. Moreover, a return 

statement of the form (3) or of the simpler form 

(3.) return 

used within a subroutine is considered to have every parameter 

pj of the su.broutine in which it appears as. an i variable; 

and the ovariable a. appearing in the second line of (1) 
J 

belongs to o(p.) whenever the call (1) and the subrou~ine 
) . 

header (2) have a matching number of parameters. 

The function f (or the subroutine sub) is considered to 
·be an ovariable of the header line (2') or {or (2)) which 

defines/ and thus acts very much like an assignment to f. 

3 
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In this same sense, we consider a labeled statement 

(4) lab: .•. 

to have the _symbol lab as an ovariable, since (4) defines 
lab and thus acts very much like a assignment to Zab. 

The rules stated above define ud
0

(i) for each ivariable 

of P. To refine this overestimate of the data flow, we 

proceed as follows. Using ud
0 

in place of the use-definition 

chaining function ud which appears in newsletter 131, · . 

equations (1,2) of section 2 and equations (1-4) of section 
4, we calculate the functions crthis, crmemb, crcomp, crsomcomp 

appearing in these equations. The reader is reminded that 

o~this(i) {resp. crthis(o)) is the set of all ovariables 

which create an object which at some moment in the execution 

of P becomes the current value of i (resp. o}. Moreover, 

ormemb(i) (resp. crsomoomp(i) is the set of all ivariables J 
whose values become incorporated as members into a set 
(resp. as components into a tuple) which at some moment in 
the execution of P becomes the current value of i; crmemb ( o). 

and orsomcomp(o) can be defined in a very similar way for 
ovariables o. Note that the function that we primirily want 

is czothis(i), and that crmemb(i), etc. are merely needed as 

auxiliary quantities for calculating crthis. 

Leto designate the ovariable of a subprocedure header

line (2) or {2'), in the sense explaned in the sentence 

preceeding (4) above. The subprocedure declared by (2) or 

{2') can become the value of an ivariable i only if 

4 

.o £ arthia~J. Similarly, of o' designates the label-representing 

ovariable of the labeled statement (4), then an ivariable i 

can have the Z.ab of (4) as one of its values only if o' E crthia;{l), 

() 
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Thus, by calculating c.rthiE?. we obtain conditions, which 

should be reasonably accurate, restricting the variables 

which can assume procedure and label values,as well as the 

particular procedure and label values whfch these variables 
can assume. ·These conditions give'us our first estimate 

{actually, overestimate} of the flow of P. 

Note in passing that since the number of procedures 

and explicit labels appearing in a SETL program P will 

generally be far smaller than the number of ivariables of P, • 

it may be preferable to calculate not crthis(i) but its 

inverse function orthis- 1 (o). Equations somewhat like the 

equations given in section 2 and 4 of newsletter 131 but 

involving these inverse functions can be written and actually 

will be outlined in later section of the present newsletter. 

Once having arrtved at a first estimate of the flow 

of P, we may revise our prellminary overestimate ud
0

(i) of 

the data-flow of Pr obtaining a more precise overestimate 

ud1 (i}.~ Using ud1 in place of ud
0 

and recalculating 

crthis-'(i) by the method just explained, we can obtain a 

still more precise estimate ud2 (i) and so on inductively. 
Since all the sets involved are finite, this process will 

stabilise after a finite number of steps. Actually, since 
" each such iteration may be relatively expensive, we may 

decide to iterate only once or twice, and to use the flow 
estimate corresponding to ud

0
(i) or ud1 (i) in applying 

other global optimisation processes to P. 

To calculate udn+l from the· flow Fn estimated from udn, 
·we C?ould proceed as follows. In very much the ordir..ary way, P 

is schematised into a collecti.(:m of basic blocks. When a 

block Bends with a transfer 

(5) go t<:> Zabvar 
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where Z.abva:r is_a variable having the labels L1 , ••• Ln as 

possible values, then B has as sucessors the blocks 

B1 , ••• ,Bn beginning with L1 , ••• ,Ln respectively. Points 
at which functions of the form y = f(a1 , ••• ,an) m~ght be called 

are expanded as follows. Let_t~e procedures which can be 

a value of f be called :rout 1, ••• ,routk. Let· 1J 1 , Pj 2 ' • •., 13n 
be the fonnal parameters of routj, and let p. denote the 

JO 
value returned by rout .• Let a label r. be generated to 

J J 
mark the point of entry to rout .• Then the function call 

J 
y • f(a1 , ••• an) is expanded into the following code schema. 

(6) go to labvar; 

/* where the possible values of Zabvar 

are the generated labels tl, £2, •• -. R.n 

appearing inunediately below*/ 

/* Pj 1 , ••• ,pjn are the parameters of routj */. 

6 

go to rl; /* rj is the point of entry to routj *I 

retlabl: <a1 , •.• ,an> = <P11 ,P12 , ••• ,Pin>; 

Y = r 10 ; /* Pjo designates t~e value returned by routj*/ 

go to .to; 

go to r2; 

retlab2: <a1 , ••• ,an> ·- <p21 , P22 , ••• , P2n> i 

go t9 10; 

... 



0 

f.k: <Piel' lit2 1 • • • 1 Picn> = _<al'··· ,an>; 

go to rk1 

y • Pko1 

to:/* no-operation;.but marks the end of the 

7 

preceeding code sequence*/ 

A statement 

(7} 

occuring in the routine l'out. is treated as if it were a 
J 

transfer (5) for which the possible values of Zabvar are the 
collection of all generated return labels l'etlabi appearing 

in an expansion of the form (1) immediately prior to a transfer 

to the point of entry to ~out J· 

,. 

Because of the way that subprocedure calls are handled in (6) 7 

loops containing calls will appear ~s multi-entry loops, 

and the calculation of udn+l from the flow estimate determined 

by udn may involve considerable node splitting. Moreover, 

the subroutine treatment which has been outlined loses sight 

of the fact that a procedure called from one place cannot 

return as if it had, been called from another. We conclude 

that this simple scheme for treating subprocedures 
overestimates the flow of Pin a significant way, and that 

it should be replaced by a treatment which is more precise and 

which makes repeated node splitting unnecessary. An algorithm 

for calculating ud, modified to meet these objections,will 

be sketched in the next section of the present newsletter. 

The analysis that has been described in the preceeding 

pages allows us to detect situations in which a procedure is 

called with the wrong m.unber of arguments. 



These will appear as situations in which a subroutine rout 

with ri parameters is transmitted ,a.s value to a procedure 

call f(a1 , •.• ,an) requiring a number of parameters min. 

If f is seen to have no possible value other than rout, a 
fatal diagnostic can be issued; in other cases, a nonfatal 

warning is more appropriate. By making •subroutine of n 

parameters' a type in the calculas of types described by 

A. Tenenbaum additional information concerning procedures 

called with the wrong number of parameters can be uncovered 

by the type-finding process. 

Note that the analysis which has been described also 
uncovers the calZ graph G of the program P. This is the 

graph whose nodes are the subprocedures s
1

, s 2 , .•• P, and 

in which s 2 is a sucessor of s 1 if and only if s1 
contains a call to s 1 • A set of subpr.ocedures belonging to 

a strongly connected region of G are s~id to be co1~t:wursive 

with each other, and the procedures belonging to them are 

said to be recursive. The information made manifest in G 

is useful for various optimisations, e.g. non-recursive 

routines can use simplified linkage convertions. 

8 

() 
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2. Calculation o·f ·the ·da·ta f1ow mappi11g ud ( i) • 

In the present section, we assume that the control flow 
of P has been estimated, i.e. that we have found all variables 

which can assume label or procedure values, and have estimated 

the label and procedure values which each such variable can 

assume. We will describe a procedure for calculating ud(i) 

and other important data-flow related mappings from this 

estimate. This procedure, largely taken from recent work 

9 

of F. Allen, treats subroutines in a special way which avoids 

the objections noted in the preceeding section to the subroutine 

treatment outlined there. 

our aim· is to treat procedure calls as elementary 

operations rather than as transfers which complicate the 
flow of P. To treat a call q to a subroutine er as elementary, 

Q w~ must ascribe three values to it: 

i. The collection defsof(q) of all definitions (ovariables) 

occuring in sr which might supply the value of a variable 

used immediately after return. from q; 

ii. the collection usesin(q) of all variable-uses 
(ivariables) occuring in sr which use the value which the 
corresponding variable has immediately before sr is entered. 

iii. The collection thPu(q) of all variables v which 

can be transmitted thru sr along some path clear of redefinitions 

of v. 

These functions are used to calculate various data-flow 

related mappings, among them the set p(b) of all definitions 

-d which can reach the entrance to a block b along some 
path. 
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The basic relationship used for calculating this function 

is simply 

(1) p (q) -= [ +: pe: pred (b)] (p (p) * thru (p) + defsof (p)) , 

where pred(b) is the set of predecessor blocks of b. The 

relationships (1) constitute a system of equations whose 

solution can in simple cases be obtained efficiently using, 

e.g., the interval method. 

To handle a program P containing subroutines and 

subroutine calls, we proceed as follows. The flow of P is 

estimated and the call graph G of P determined. As already 

noted, any set of subprocedures represented by nodes of G 

belonging to a strongly connected subregion is said to be 

ooreouPsive. If there exist corecursive subprocedures, we 

choose a non-null set B of edges of G such that G - B 

contains no cycles; B should be chosen so as to be minimal 

in some appropriate sense. Each edge belonging to B re

presents one or more calls from one procedure p1 to another 

procedure p 2 . For each p 2 appearing as the terminal node 

of such an edge e, ~e define a formal auxiliary routine p 2 •, 

and repl;ice the call from p
1 

to p 2 which e represents by 

corresponding call from p1 to p2 . We then use an initial 

overestimate of thru(p') and defsof(p') for each of the 

auxiliary subprocedures p' introduced in this way,taking 

thPu(p') to consist of all variables and defsof(p') to consist 

of all global variables or parameters of p which appear on 

the left-hand side of some assignment belonging either top 

or to any procedure which might be called, directly or in

directly, from p. With B removed, the subgraph G - B of G 

is free of cycles i.e. is a tree;and by arranging this tree 

in a linear order we succeed in arranging all of the sub
procedures represented by Gin an order in which each procedure 

follows the procedures 

10 .. 

G 
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(not in the set of formal auxiliary routines p') which it 

calls. Using Allen's term, we call this order the inverse 

invokation order1 and this is the order in which we will 

process the collection of procedures constituting P. To 

process procedure sr, we take the set of all the global 

variables appearing in er and. in all the routines it calls 
(which are prior to it in inverse invokation order), and 

to this s.et append the formal parameters of sr, obtaining 

a set V. Then, to regularise the processing which will 
follow, we set up a block of formal assignments, one 

assignment for each of the variables in v, and prefix this 

11 

block to the .. first statement of si'. The collection of ovariables 

of this block will be called the e3:tel'nal ovariabZes of er 
and will be designated by the symbol EXOV. 

Next, we decompose sr into intervals, splitting nodes 

if necessary, and use equation (1) to calculate p(q) for 

each of the blocks q of sr. The values thru(p) and defeof(p) 

which we use in doing this are defined as follows: 

a. For a basic block p, thru(p) is the intersection 

of the sets thru(3:) associated with each of the individual 

statements x of p. If x is an assignment statement, then 
thru(:x:) consists of all variables other than the target 

variable of x. If x is a call to a subprocedure ssr, then 

thru(:x:l consists of all variables v which ~re not substituted 

for parameters p of the call x and which belong to thru(ssr), 

plus those variables which are substituted for some parameter 

of asr which belongs to thru(ssr). If x is·a call to a 

subprocedure which is somewhat indeterminate and might be 
either ssr1 , asr

2
, ••• ,then thru(:x:) consists of all variables 

·v for which there exists some j such that ssr = ssr. satisfies 
J 

the condition stated in the preceeding sentence. 
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Note that since all routines called from s~ preceed sr in 

inverse invokation order, the value thru(ssr) will always 

be available during the computation that we have just de

scribed. ; , 

b. Let p be a basic block, x a statement of p, and 

o an ovariable of x. Then o belongs to iefsof(p) if it 

belongs both to defsof(z) and to thru(y) for each yin p 

which follows x in the serial order of p. If x is an 

assignment ·statement, then defsof(x) is the target variable 

of x. If x is a call to a subprocedure ssr, then defsof(x) 

consists of all variables v which belong to defsof(ssr), plus 

all variables v which are substituted for some parameter of 

ssr which belongs to defsof(ssr). If x is a call to a 

subprocedure which is somewhat indeterminate and might be either 

ssr1 , ssr
2

, .•• , then defsof(x) consists of all variables v 

for which there exists some j such that ssr = ssr. satisfies 
J 

the condition stated in the preceedin~ sentence. 

Once p(b) has been determined by using these conventions 

and by making appropriate use of equation (1), we calculate 

(2) [+: b£ returnstats] p(b) * EXOV, 

where returnatats is the set of blocks of sr which consist 
only of return statements (for convenience, each return 

statement is segregated into a block of its own.) Then 

thru(sr) is defined as the set of variables in V whose 

corresponding ovariables belong to the set (2). In addition, 

defsof(sr) is defined as the set 

(3) [½: b£ returnstats] p(b) - EXOV. 

C 
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Note that the sets thru(p) and dsfeof(p) which result 

from our calculation satisfy th.ru (p) £ thru (p ') and defeof(p) ~ defeof (p 1 
· 

for each subprocedure p which is a terminal node of some 

edge of the subset B of the call graph G. The sets thru(p') 

and defsof(p') overestimate.the true data flow functions 

which should be associated with the subprocedure p; the 

sets thPu(p) and defsof(p) also overestimate these functions, 

but not as badly. By replacing thru(p') and defsof(p') by 

thru(p) and defsof(p) respectively and by repeating the computation 

which has just been described, we can improve our estimates. 

This improvement can be iterated as often as desired, in 

principle even until stable estimates of the functions thru 

and defeof result. But the high cost of iteration may only 

justify one or two itera.tions, which anyhow should in most 

cases yield reasonable estimates of thru and defaof. 

Note that the function defsof(p) which the preceeding 

calculation associates with a subprocedure p tells us what 

assignment operations and procedure calls c internal top 

can set the value of a global variable or parameter v when 

p itself is called. In some applications we will wish to 

obtain additional information, relating variables v not merely 

to the procedure calls c which set their variables, but to 

the specific elementary operations which assign values to v 

from within the routine called by o. This may for example 

be convenient if we intended either to propagate constants 

or to carry out one of the constant-propagation-like optimisation 

processes described in Newsletters 130 and 131. To obtain 

this additional information, we have only to note the variable 

or parameter v in which we are interested, and, using the 

.value defaof(c), find all the operations within the procedure 

called by c which set \"i proceeding in this way and iterating 

through sucessive subprocedure call operations until a full 

(_ i transitive closure is formed, we will succeed in forming 

the set defeofc(p) of all assignment statements which can 

establish the values of v. 



Then the set .:J.efaofa (p) rather than the set de.fsof(p) carJ be 

taken as an e:<pression of the use-definition · chaining re

lationships in the program being analysed. An alternative 

technique :ts t.o use defsof(p)~ but to chain each variable 

in defsof(p) back to a nominal assignment v = v inserted 

immediately prior to each return statement occuring in the 

aubprocedure p. Both of these techniques are valid for 

entirely general collections of mutually corecursive procedures. 

For the'definition-to~use' part of the data-flow analysis 

process we will often need to have available a function 

usesin(q) which maps each subprocedure q into the set of all 

global variable or parameter uses occuring in q. The set 

ueesin(q) is obtained by sununing, over all the blocks b of q, 

all uses of variables belonging to p(b)*EXOV. The rule for 

associating a set of uses with a block bis as follows: 

Let 7. be a statement of band i an ivariable of x. Then i 

belongs to the set usesin(b) if it belongs both to usesin(:c) 

ilnd to thru(y) for each y in b which preceeds X in the serial 

ord':!r of b~ If y is an assignment statement! then i belongs 

to ,.wee in (y) if it is an argument of the operation appearing 

ou the right-ha.nd side of y. If y is a call to a subprocedure 

~ 0~, then usesin(y) consists of all ivariables which either 
b•,:dong to uaesin(ssr) or are substituted for a parameter 

belonging to ueeain(ssr)~ If y is a call to a subprocedure 

,j.,. 

·,t1hi.ch is somewhat indeterminate and might be either ssr
1

, ssr 
2

, .•• ., 

t;:sn U8€:sfn (y) conslsts of all iva;:-iables which either belong 

to some one of the sets usssin(ssr
2

) or are substituted for 

c, parameter belonging to sorn£?. one of these sets. 

A tran~3itive closure techniqu(, like that described two 

~:,.31~n.qraphs abov·e may be used to chain defin.i tions to the uses 

::he values th<:1y define, even when t.heses uses are reached 

Uir.ough a hm9thy sequenC'-e of possibly recursive procedure calJ s. 

G 

C 
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Note once more that an estimate of the data flow 

within a program Pleads to an estimate of the control 
flow within P, which in turn leads via the processes 
described in the present section to an improved estimate 
of data flow. Thus the entire data and control-flow 
estimation process that has been described can be iterated. 

However,. it is unlikely that more than a very few iterations 

will either be feasible or required. 

3. A few remarks on subroutine linkage optimisation. 

Once the call graph of a program P has been determined 
and the other analyses described in-the preceeding pages 

have been carried out, a number of small but useful subroutine 

linkage optimisations become possible. 

i. Arguments which are never read by a subprocedure 
c··) sr (i.e., 'output' arguments) need not be transmitted when 

sr is called; arguments which are never modified by er need 

not be returned when return is made from sr. 

ii. A function-type subprocedure sr is said to be without 

side effects if sr modifies none of its parameters, modifies 

no global variable, and if every variable local to sr is 
dead on entry to sr. Once 81' is known to be without side 
effects, expressions containing calls to sr can be optimised 
in ways that would be impossible if sr had side effects. 
For example, redundant calculation elimination can be applied 
to such expressions. 

iii. A subprocedure 81' is said to be non-reau1'sive if s:ra 

is not part of any cycle in the .call graph G of the program P . 

. (Note that non-recursive subprocedures can call recursive 
subprocedures and vice-versa.) Arguments to non-recursive 
subprocedures need not be transmitted via a system stack, 

l_ 1 but can be transmitted in a somewhat more efficient manner, 
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by direct assignment to an argument area associated with sr. 

Moreover, sr's temporaries need never be stacked. This 

saves stack manipulation on entry to and return from sr, 

allowing relatively compact and efficient call and return 

sequences to be used. 

4. Eguations for the inverse function crthis- 1 • 

We noted in section 1 that, since the number of procedures 

and explicit.labels appearing in a SETL program P will 

generally be far smaller than the number of ivariables of 

P, it may be preferable to calculate not the function crthis(i) 

which maps each ivariable of Pinto the set of all ovariables 

which can create an object which becomes the value of i, 
but rather to calculate the inverse fu~ction arthis- 1 (o) 

directly. In the present section, we will sketch a system 

of equations, dual to the equations for crthis, which make 

direct calculation of crthis-1 possible. To this end~ we 

introduce a number of auxiliary functions. ·By iuses(o) we 

designate the inverse of the function crthis(i); iuses(o) 

may also be described as the set of ivariables i in which there 

appears as argument an object created by evaluating o; by 

ouses(o) we designate the set of all ovariables o' in which 

16 

such an object reappears. By ihoZds(o) designate the collection 

of ivariables i in which there appears as argument a set 
containing (as one of its members) an object created in evaluating 
o; by oholds{o) we designate the collection of ovariables o' at 

which such a set can appear. By isomcomp(o) we designate the 

ivariables i in which there appears as argument a vector (of 
possibly unknown length) having as component (in unknown 

position) an object created in evaluating o; by osomcomp(o) we 

designate the collection of ovariables o' at which such a 

vector can appear. Next, let n be an integer. 

.. 

(_ 
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By icomp(o,n) we designate the collection of ivariables i 

in which a vector of a known length at least equal ton, 
having as its n'th component an object created ln evaluating 
o, appears as an argument1 by oaomp(o#n) we designate the 
collection,of ovariables o' at which such a vector can appear. 

Rather than confronting the.full zoo of primitive 

SETL operations all at once, we shall at first. simplify 

our discussion by ignoring tuple operations, and by assuming 
that the only four set-theoretic operations which appear 
in our schematized programs Pare s+t, s-t,· {x}, and 3s. 
(A similar procedure is used in Newsletter 131, and is 
justified there.) The operations occuring in P may then 

be classified as transfer, null, inclusion, extraction, 
data, setalgebraic, copy, and other (non-set) algebraic 
operations (see NL 131, p. 5), and to describe these respective 
operation classes we introduce predicates tPansf(o), nuZZ(o), 

incl(o), e:ctP(o), data(o), setaZg(o), copyop(o), other•(oL 

The operation forms described by these predicates are 

transf(o): 0 - il; 
nul Z. (o) . o = nt; . 
i.ncZ(o) . o •. {i

1
}; . 

e:ctzo( o) . o -=3 i 1 : . 
data(o) . 0 = data; . 
setaZg(o): (for sets) 

setalgpls(o): o = i 1 + i 2 1. 

setaZ.gmns(o): 

copy(o) : 

othsl'(o) : 

o = i 1 - i 2 ; 

o = copy(i1 ) 

o = i 1 + i 2 ; o = i 1 - i 2 , etc. 

17 

I, 

(for atoms). 



For the functions iuses and ihoZds we have the following 

equations: 

(l.) iuses{o) = [+: o' c ouses(o)] du(o') 

iholds(o) = [+: o' £ oholds{o)] du(o'). 

(Here, du is the definition-to-use chaining function provided 

by data-flow analysis; it chains each ovariable o to the 

set of all ivariables which can be reached from o along a 

path free of redefinitions of the variable appearing in o). 

The oueee function obeys a slightly more complex set of 

equations. If i is an ivariable, let out{i) designate the 

target ovariable of the schematised assignment statement in 

which i appears as an argument, and let argpos(i) denote 

the (numerical) argument position in which i appears. Then 

the value created by evaluating o can reappear either as 

the output of a transfer operation whose argwnent belongs to 

iuses (o), or as the output of an ex.traction whose argument 

belongs to ihoZde(o). Thus we have 

(2) ouses (o) = {out (i} r iE iuses (o) I transf (out (i))} + 
·{out(i), iE iholds(o} lextr(out(i))}. 

The equation for oholde(o) is substantially more complicated. 

A sets having among its members some object created by 

evaluating o can appear as the output of an operation of 

transfer, set.algebraic, or copy type; provided that. an 

appropriate input argument of this operation belongs to 

ihotd(o}. Moreover, scan appear as the output of an 

inclusion operation, provided that the input to this inclusion 

belongs b:> ·tuses (o) • Finally, s can appear as the output 

of an extraction operator o = 3 i. For this to happen, 1 

must ::>elo11.g to some set oh,,, Zd-S ( o ') for which o' belongs 

to oho1.ds(o). In consequence of all these facts we have 
the tr,11.owing equation for oho Zds ( o): 

I• . 

(1 

(_ 
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(3) oholds(o) = {out(i),•ie: iholds(of!setalgpls(out(i)) ·£!:. 
transf(out(i})or copv(out(i))} - -

+·{out(i), iE i.holds(o) lsetalgmns(out(i))~~d 

argpos(i) s 1} 
+·{out(i), i£ iuses(o) I incl(out(i))} 

+ [+: o' E oholds(o)] {out(i), iE oholds(o') I 
extr(out(i))}. 

The system of equations (1-3) can be solved by a straight

forward monotone convergence procedure. Note that in applying 

these three equations to determine data flow in the presence 

of label and procedure variables, we would only calculate 

ohoZds(o) for the relatively small number of ovariables 
which define labels or procedures, and for any additional 
ovariables to which our attention is directed in the course 

of solving equations (1--3). 

If we now pass to a discussion of full SETL by admitting 

the existence of tuple operations, the preceeding equations 

undergo substantial complication: tuple operations of tuple

former, component extractor, subtuple extractor, tail extractor, 

component insertion, and tuple .concatenation type, which 
we designate by the predicates tfo~m(o), aompex(o),subtex{o), 

tailex(o), inxa(o), and concat(o), appear in our schematised 

programs P. These classes of operators have the following 

typical fonns: 
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compex(o): 0 = il (i2) (il a tuple) 

subtex(o): 0 = 11 (i2:i3) " 
tailex(o): 0 = il Ci2:> " 
inxa(o) . . 0 = [i1Ciz) +- i3J (o a tuple) 

oonaat(o): 0 = il + i2 (il, i2 tuples). 

Note that the component insertion.operation, which for 

conforrnability with our general ovariable/ivariable conventions 

we shall write as o = [i1 (i 2) +-i3], is ordinarily writtwn 

as v(n) = c; vis both the o and the i
1 

of our schematic 

convention. In what follows, we shall make use of functions 

argl(o), arg2(o),etc. which extract the first, second, etc. 

components of the operator whose output ovariable is o. 

It is also convenient for us to make use of two auxiliary 

funct~ons ianycomp(o) and oanycomp(o). The set ianycomp(o) 

designates the collection of ivariables i in which there 
appears as argument a vector (of possibly unknown length) 

paving as component (in a position which is either known or 

unknown) an object created in evaluating o; by oanyaomp(o) 

we designate the collection of ovariables at which such a 

vector can appear. Note the distinct.ion between fso'71aomp(a) 

and ianycomp(o) (and the parallel distinction between 

oeomcomp(o) and oanycomp(o)): an ivariable belongs to 

ianycomp(o) if its value can be a vector in which a certain 

object appears in any component position whether known or 

unknown, but belongs to isomcomp(o) only if this object appears 

either in an unknown component position or in a vector whose 

length is unknown. Thus ianycomp(o) always includes icomp(o,n), 

while isomoomp(o) need not include icomp(o,n.). As in 

Newsletter 131, we use functions known(o) and known(i), -;:. 

which have the value Q if o {resp.i) is either. an integer 

of unknown value or a vector of unknown lP.ngth, and have 

20. ... 

C') 

the value n if o(resp.i) is either an integer of value 

known at compile time to be n, or a vector of length U 
known to be n. 
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Using these conventions, we may state the following 
revised equations for the functions iuees, iholdR, i~omco~p, 

icomp, lan.ycomp, iueee, oho'Lds, oaomcomp, oaomp, and oanya,;;mp. 

(4) iuses(o) = [+: o' E ouses(o)] du(o'); 
iholds(o) = [+: o' £ oholds(o)] du(o'); 

21 

icomp(o,n) • [+: o' e: ocomp(o,n)]{i £ du(o')lknown(i) ne 0}; 
ianycomp(o) = [+: o' £ oanycomp(o)] du(o'); 
isomcomp(o) = [+: o' £ osomcomp(o)] du(o')+ 
+ [+: o' e: oanycomp(o)I (known(o') !!. k) ne n] 

[+: 1 < n ~ k lo' £ ocomp(o,n)] 
{it du(o')!known(i) ~ O}; 

The equations for ouses, oholds, ocomp, oanycomp, and oeomcomp 

can be written most easily if we introduce the following macro: 

(5) macro againextractions(o~; 
({out(i), ie: iholds(o) lextr(out(i))} 

+{out{i), ie: isomcomp(o) l~ompex(out(i))and 

argpos (i) ~ l} 

+{out(i1), i 1 £ ianycomp(o) lcompex(out(i1 )) and 

argpos(i1 ) ~ 1 and 
if (known(arg2(out(i1 ))) !!_ n) 5 O then! 

else if icomp(o,n) ~ 0 then f else i 1 e: icomp(o,n} }} 

endm againextractions; /* which.marks the macro's end*/ 

The set againextraations(o) is the set of all o' in which the 

object created by evaluating o re-'\ppears by extraction either 

of an element from a set or of a component from a tuple. 
Using this macro, we may write the following eq,jations: 
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(6) ouses (o} ::,: {out{i), iEiuses (o} j.transf {out(i))} 

+ againextractions(o); 

(7) oholds{o) = {out(i), iEiholds(d) I 
setalgpls {out(i)) 2E. transf (out(i}) 2!. 

copy(out(i))} 

+{out(i), iEiholds(o) !setalgmns(out(i)) and 

argpos{i) ~ l} 
+{out(i) , iEi uses (o) i incl (out ( i}) } 

+ [+: o'Eoholds(o)] againextractions(o'); 

(8} ocomp{o,n) =/*here we assume known(o) ne n and 

1 ~ n ~ known(o) */ 
{out(i), iEicomp(o,n) ltransf(out(i}) ~ 

copy(out(i}) 2.£,(concat(out(i)) and 

argpos{i} ~ 1)} 

.. 

+{out(i), iEiuses(o) !tform(out(i)} and argpos(i) ~ n} 

+{out(i}, iEiuses (o) I inxa(out_(i)) and argpos (i) ~ 3 ( 

and known(arg2 (out(i)}) .§_q n} 

+{out Ci
1
), i 1 Eicomp (o, n) I inxa (out (i 1 )) and 

argpos{i1) £5. 1 and 

known (arg2 (out (il) )) ~ n} 

+{out(i1),i
1
Eianycomp(o) !taile.>dout(i

1
}) ~nd 

argpos(i
1

) ~ 1 and 

i 1E(icomp(o,known(arg2(out(i
1
)))+n) o~ n.t)} 

+{out(i1), iEianycomp(o) lsubtex(out(i1 )) and 

argpos <i 1 ) ~ 1 and 
i 1 E (icomp (o ,known {arg2 (out (il) ) ) +n) or~ !l3:_} 

+{out(i 2), i 2Eianycomp{o) lconcat(out(i 2 ))_and argpost_:i. 2)~ 2 

and i
2

E(icomp(o ,n-known(argl(out(i
2
)}) o~ !}£_)} 

+ [+: o'Eocomp(o,n} J againextractions(o'); 

L'· 
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(g} oanycomp(o) = 

{out(i), iEoanycomp(o) ltransf~out(i)) or 

copy (out{i.)) £E. concat{o1Jt (i)) ~~!-: (tai lex (out(i.) or. 

subtex(ot,t-(i)) ?n9. argpos (i) ~ 1) ~ 

(inxa (out(i)} f!.f'-d argpos (j_) ~ 1))} 

+{out(i), iEiuses(o) ltfo:r."In(out(i
1
))9r 

(inxa(out(i)) an~ argpos(i) ~ 3)} 
+ [+: o•Eoauycomp(o}] again.extractions(o'); 

II• 

{10) osomcomp{o) = 

{out(i), iEisomcomp(o) ltransf{out(i}) £!_ copy(out(i)) ~-: 

concat(out(l)) 2E,(tailex(out{i)) and argpos(i) eg.} or 

{subtex(out(i)) and argpos(i) ~ 1)} 
+ {out(i), iEianycomp(o) lconcat(out(i)) and known(out(i)) .~ n anc, 

if(known(i) is k) ~ n then f else 

1 ~ 3 n ~ k I i e ( i comp ( o , n) £!!!! n .e.) } 

+ {out(i), iEianycomp(o) l(tailex(out(i)) 2E. 

subtex(out(i))) ~ argpos(i) !s. land 

.known(out(i)) ~ n and if(known(i) is k) ~ J then_t 

else l ~Jn.::_ kliEicorop(o,n) ~ nR.} 

+ {out(i), i.Eiuses(o) linxa(out(i)) and argpos(i) ~;. 3 

and(known (arg2 (out (i})) ~ Q 2!. known (out {i)) ~.3. rt)\ 

+ {out(i), iEisomcomp (o) I inxa(out {i)) and argpos (.U ~ 1} 

+ {+: o'Eosom;:;omp(o)] ,againextract:i.ons(o') 

+ [+: o'Eoanycomp(o) !if(known(o') is k) ~ n then f 

else 1 .::_ 3n 2 klo'Eocomp(o,n)] 

o"Eagainextractions(o') !known(o") ~:l n}; 

i, 



In order not to complicate the preceding equations 

rmnecesB-3riJy, we ha~,e at a few pnints w·ritten l~ss precise 

xestrictj.ons than could actually be applied. Most 0f th~sc 

elhdons .:relate to cases jn which opE:>r.,1t0rs trar,sform turles 

vf known length to tup1es o.f unknow·n length. 

24 


