
SETL Newsletter · l 1·34 J. Schwartz
July 1, 1974

The optimisation algorithms described in newsletter 118,

130, 131 and A. Tenenbaum's thesis are all intraprocedural,

in that they work with a sche'matised program consisting of

one single 'main routine' which is assumed to be free of

subprocedure calls. These algorithms also ignore the complications

to flow analysis which arise when subprocedures become the

values of variables or of parameters, and when transfers to

variable labels occur within a program. A useful optimiser

system will of course have to handle both these situations.

In the present newsletter we shall outline algorithms,

adapted from those developed for a PL/1 optimiser by F. Allen

(and her associat·es, which begin to be adequate to this

purpose. It will be seen that in the form in which they

will be presented these algorithms use some of the ideas

developed in newsletter 131. We shall also employ the

terminology introduced in that newsletter.

1. Flow Estimation, the Call Graph.

Let P be a program in which procedure and/or label

variables are used. The first problem to be overcome is
that when we encounter P we do not know what structure its

flow, i.e. its program graph, has. This problem is particularly

acute in SETL, since variables are untyped, so that any
variable can take on a procedure value, and since the map
applications !(x) and £{x1 , ... ,x) can also be function calls. -n
Before applying other global optimisations we must therefore
aim to estimate P's flow, i.e. to determine which variables
v in P can have procedure (resp. label) values, and the

procedures (resp. labels) _which can become values of each such v.

SETL-134

This informatioij must be developed by an algorithm which

does not require precise information concerning P's flow,

since it is this flow which we are trying to find. Note

that the algorithms in which ·subsequently use the flow will

remain correct even if the flow is overes·timated, but not

if is is underestimated. Here w~ ·speak of an oveztestimation

of flow if a transfer or call that is actually impossible is
judged possible, and of an undeztest·l"mation if a possible

transfer or call is judged impossible. We may speak in a

similar sense of overes·timation (and underestimation) of

data flow: data flow is overestimated if we adjudge the

set ud{i) of all ovariables o which can set the value of a
given ivariable i to be larger than it is.

To es·timate ud(i), we begin with a coarse overestimate

ud
0

(i) and refine it. The initial guess ud
0

(i} is obtained

as follows. P is schematised in a manner 'resolving' the

names used within P, i.e., assigning explicitly different

symbols to names which have the same spelling but which

appear in different namescopes. Then we put the ovariable
o in ud

0
(i) if i and o involve the same symbol x (i as a use,

o as a definition).This rule applies if neither o nor i is a

subprocedure parameter or argument. Subprocedure arguments

are treated both as ivariables and ovariables, rather as if

a function call of the syntactic form y = !(a1 , ... ,an)
consisted of two successive statements

(1) enter f(a1 , ... ,an)

y = f(a1 , ... ,an);

with a1 , ... ,an in the first line being ivariables and a1 , .•. ,an
in the second line being ovariables. (The reader is reminded

that a SETL subprocedure can modify the parameters with which
it is called, and that a subroutine can be regarded as a

function which returns a nil value to a dummy variable

that is never used~)

2
..

a

(

SETL-·134

A procedure parameter appearing in a he~der line

(2)

or
(2 ')

is considered to be an ovariabl.e, which re,cei ves a value

from the corresponding· argument when the subprocedure is

entered. In setting up ud
0

(i), we use the following rules

to handle subprocedure arguments and parameters. For the

!variable a. appearing in the first line of (1), ud
0

(aj)
J .

includes each ovariablep. appearing in a.header (2) or (2'}
J .

for which n = m. Variables appearing in the context

(3) return v

Q within a function headed by {2') are iyariables, and ud
0

(v)

includes each ovariable y appearing in the second line of

the 'expanded form'{l) of a call. Moreover, a return

statement of the form (3) or of the simpler form

(3.) return

used within a subroutine is considered to have every parameter

pj of the su.broutine in which it appears as. an i variable;

and the ovariable a. appearing in the second line of (1)
J

belongs to o(p.) whenever the call (1) and the subrou~ine
) .

header (2) have a matching number of parameters.

The function f (or the subroutine sub) is considered to
·be an ovariable of the header line (2') or {or (2)) which

defines/ and thus acts very much like an assignment to f.

3

SETL- 134

In this same sense, we consider a labeled statement

(4) lab: .•.

to have the _symbol lab as an ovariable, since (4) defines
lab and thus acts very much like a assignment to Zab.

The rules stated above define ud
0

(i) for each ivariable

of P. To refine this overestimate of the data flow, we

proceed as follows. Using ud
0

in place of the use-definition

chaining function ud which appears in newsletter 131, · .

equations (1,2) of section 2 and equations (1-4) of section
4, we calculate the functions crthis, crmemb, crcomp, crsomcomp

appearing in these equations. The reader is reminded that

o~this(i) {resp. crthis(o)) is the set of all ovariables

which create an object which at some moment in the execution

of P becomes the current value of i (resp. o}. Moreover,

ormemb(i) (resp. crsomoomp(i) is the set of all ivariables J
whose values become incorporated as members into a set
(resp. as components into a tuple) which at some moment in
the execution of P becomes the current value of i; crmemb (o).

and orsomcomp(o) can be defined in a very similar way for
ovariables o. Note that the function that we primirily want

is czothis(i), and that crmemb(i), etc. are merely needed as

auxiliary quantities for calculating crthis.

Leto designate the ovariable of a subprocedure header

line (2) or {2'), in the sense explaned in the sentence

preceeding (4) above. The subprocedure declared by (2) or

{2') can become the value of an ivariable i only if

4

.o £ arthia~J. Similarly, of o' designates the label-representing

ovariable of the labeled statement (4), then an ivariable i

can have the Z.ab of (4) as one of its values only if o' E crthia;{l),

()

SETL-134

Thus, by calculating c.rthiE?. we obtain conditions, which

should be reasonably accurate, restricting the variables

which can assume procedure and label values,as well as the

particular procedure and label values whfch these variables
can assume. ·These conditions give'us our first estimate

{actually, overestimate} of the flow of P.

Note in passing that since the number of procedures

and explicit labels appearing in a SETL program P will

generally be far smaller than the number of ivariables of P, •

it may be preferable to calculate not crthis(i) but its

inverse function orthis- 1 (o). Equations somewhat like the

equations given in section 2 and 4 of newsletter 131 but

involving these inverse functions can be written and actually

will be outlined in later section of the present newsletter.

Once having arrtved at a first estimate of the flow

of P, we may revise our prellminary overestimate ud
0

(i) of

the data-flow of Pr obtaining a more precise overestimate

ud1 (i}.~ Using ud1 in place of ud
0

and recalculating

crthis-'(i) by the method just explained, we can obtain a

still more precise estimate ud2 (i) and so on inductively.
Since all the sets involved are finite, this process will

stabilise after a finite number of steps. Actually, since
" each such iteration may be relatively expensive, we may

decide to iterate only once or twice, and to use the flow
estimate corresponding to ud

0
(i) or ud1 (i) in applying

other global optimisation processes to P.

To calculate udn+l from the· flow Fn estimated from udn,
·we C?ould proceed as follows. In very much the ordir..ary way, P

is schematised into a collecti.(:m of basic blocks. When a

block Bends with a transfer

(5) go t<:> Zabvar

SE'fL-13 4

where Z.abva:r is_a variable having the labels L1 , ••• Ln as

possible values, then B has as sucessors the blocks

B1 , ••• ,Bn beginning with L1 , ••• ,Ln respectively. Points
at which functions of the form y = f(a1 , ••• ,an) m~ght be called

are expanded as follows. Let_t~e procedures which can be

a value of f be called :rout 1, ••• ,routk. Let· 1J 1 , Pj 2 ' • •., 13n
be the fonnal parameters of routj, and let p. denote the

JO
value returned by rout .• Let a label r. be generated to

J J
mark the point of entry to rout .• Then the function call

J
y • f(a1 , ••• an) is expanded into the following code schema.

(6) go to labvar;

/* where the possible values of Zabvar

are the generated labels tl, £2, •• -. R.n

appearing inunediately below*/

/* Pj 1 , ••• ,pjn are the parameters of routj */.

6

go to rl; /* rj is the point of entry to routj *I

retlabl: <a1 , •.• ,an> = <P11 ,P12 , ••• ,Pin>;

Y = r 10 ; /* Pjo designates t~e value returned by routj*/

go to .to;

go to r2;

retlab2: <a1 , ••• ,an> ·- <p21 , P22 , ••• , P2n> i

go t9 10;

...

0

f.k: <Piel' lit2 1 • • • 1 Picn> = _<al'··· ,an>;

go to rk1

y • Pko1

to:/* no-operation;.but marks the end of the

7

preceeding code sequence*/

A statement

(7}

occuring in the routine l'out. is treated as if it were a
J

transfer (5) for which the possible values of Zabvar are the
collection of all generated return labels l'etlabi appearing

in an expansion of the form (1) immediately prior to a transfer

to the point of entry to ~out J·

,.

Because of the way that subprocedure calls are handled in (6) 7

loops containing calls will appear ~s multi-entry loops,

and the calculation of udn+l from the flow estimate determined

by udn may involve considerable node splitting. Moreover,

the subroutine treatment which has been outlined loses sight

of the fact that a procedure called from one place cannot

return as if it had, been called from another. We conclude

that this simple scheme for treating subprocedures
overestimates the flow of Pin a significant way, and that

it should be replaced by a treatment which is more precise and

which makes repeated node splitting unnecessary. An algorithm

for calculating ud, modified to meet these objections,will

be sketched in the next section of the present newsletter.

The analysis that has been described in the preceeding

pages allows us to detect situations in which a procedure is

called with the wrong m.unber of arguments.

These will appear as situations in which a subroutine rout

with ri parameters is transmitted ,a.s value to a procedure

call f(a1 , •.• ,an) requiring a number of parameters min.

If f is seen to have no possible value other than rout, a
fatal diagnostic can be issued; in other cases, a nonfatal

warning is more appropriate. By making •subroutine of n

parameters' a type in the calculas of types described by

A. Tenenbaum additional information concerning procedures

called with the wrong number of parameters can be uncovered

by the type-finding process.

Note that the analysis which has been described also
uncovers the calZ graph G of the program P. This is the

graph whose nodes are the subprocedures s
1

, s 2 , .•• P, and

in which s 2 is a sucessor of s 1 if and only if s1
contains a call to s 1 • A set of subpr.ocedures belonging to

a strongly connected region of G are s~id to be co1~t:wursive

with each other, and the procedures belonging to them are

said to be recursive. The information made manifest in G

is useful for various optimisations, e.g. non-recursive

routines can use simplified linkage convertions.

8

()

SETL-134

2. Calculation o·f ·the ·da·ta f1ow mappi11g ud (i) •

In the present section, we assume that the control flow
of P has been estimated, i.e. that we have found all variables

which can assume label or procedure values, and have estimated

the label and procedure values which each such variable can

assume. We will describe a procedure for calculating ud(i)

and other important data-flow related mappings from this

estimate. This procedure, largely taken from recent work

9

of F. Allen, treats subroutines in a special way which avoids

the objections noted in the preceeding section to the subroutine

treatment outlined there.

our aim· is to treat procedure calls as elementary

operations rather than as transfers which complicate the
flow of P. To treat a call q to a subroutine er as elementary,

Q w~ must ascribe three values to it:

i. The collection defsof(q) of all definitions (ovariables)

occuring in sr which might supply the value of a variable

used immediately after return. from q;

ii. the collection usesin(q) of all variable-uses
(ivariables) occuring in sr which use the value which the
corresponding variable has immediately before sr is entered.

iii. The collection thPu(q) of all variables v which

can be transmitted thru sr along some path clear of redefinitions

of v.

These functions are used to calculate various data-flow

related mappings, among them the set p(b) of all definitions

-d which can reach the entrance to a block b along some
path.

SETL·-134

The basic relationship used for calculating this function

is simply

(1) p (q) -= [+: pe: pred (b)] (p (p) * thru (p) + defsof (p)) ,

where pred(b) is the set of predecessor blocks of b. The

relationships (1) constitute a system of equations whose

solution can in simple cases be obtained efficiently using,

e.g., the interval method.

To handle a program P containing subroutines and

subroutine calls, we proceed as follows. The flow of P is

estimated and the call graph G of P determined. As already

noted, any set of subprocedures represented by nodes of G

belonging to a strongly connected subregion is said to be

ooreouPsive. If there exist corecursive subprocedures, we

choose a non-null set B of edges of G such that G - B

contains no cycles; B should be chosen so as to be minimal

in some appropriate sense. Each edge belonging to B re

presents one or more calls from one procedure p1 to another

procedure p 2 . For each p 2 appearing as the terminal node

of such an edge e, ~e define a formal auxiliary routine p 2 •,

and repl;ice the call from p
1

to p 2 which e represents by

corresponding call from p1 to p2 . We then use an initial

overestimate of thru(p') and defsof(p') for each of the

auxiliary subprocedures p' introduced in this way,taking

thPu(p') to consist of all variables and defsof(p') to consist

of all global variables or parameters of p which appear on

the left-hand side of some assignment belonging either top

or to any procedure which might be called, directly or in

directly, from p. With B removed, the subgraph G - B of G

is free of cycles i.e. is a tree;and by arranging this tree

in a linear order we succeed in arranging all of the sub
procedures represented by Gin an order in which each procedure

follows the procedures

10 ..

G

. ' ' SETL-134

(not in the set of formal auxiliary routines p') which it

calls. Using Allen's term, we call this order the inverse

invokation order1 and this is the order in which we will

process the collection of procedures constituting P. To

process procedure sr, we take the set of all the global

variables appearing in er and. in all the routines it calls
(which are prior to it in inverse invokation order), and

to this s.et append the formal parameters of sr, obtaining

a set V. Then, to regularise the processing which will
follow, we set up a block of formal assignments, one

assignment for each of the variables in v, and prefix this

11

block to the .. first statement of si'. The collection of ovariables

of this block will be called the e3:tel'nal ovariabZes of er
and will be designated by the symbol EXOV.

Next, we decompose sr into intervals, splitting nodes

if necessary, and use equation (1) to calculate p(q) for

each of the blocks q of sr. The values thru(p) and defeof(p)

which we use in doing this are defined as follows:

a. For a basic block p, thru(p) is the intersection

of the sets thru(3:) associated with each of the individual

statements x of p. If x is an assignment statement, then
thru(:x:) consists of all variables other than the target

variable of x. If x is a call to a subprocedure ssr, then

thru(:x:l consists of all variables v which ~re not substituted

for parameters p of the call x and which belong to thru(ssr),

plus those variables which are substituted for some parameter

of asr which belongs to thru(ssr). If x is·a call to a

subprocedure which is somewhat indeterminate and might be
either ssr1 , asr

2
, ••• ,then thru(:x:) consists of all variables

·v for which there exists some j such that ssr = ssr. satisfies
J

the condition stated in the preceeding sentence.

SETL-13~

Note that since all routines called from s~ preceed sr in

inverse invokation order, the value thru(ssr) will always

be available during the computation that we have just de

scribed. ; ,

b. Let p be a basic block, x a statement of p, and

o an ovariable of x. Then o belongs to iefsof(p) if it

belongs both to defsof(z) and to thru(y) for each yin p

which follows x in the serial order of p. If x is an

assignment ·statement, then defsof(x) is the target variable

of x. If x is a call to a subprocedure ssr, then defsof(x)

consists of all variables v which belong to defsof(ssr), plus

all variables v which are substituted for some parameter of

ssr which belongs to defsof(ssr). If x is a call to a

subprocedure which is somewhat indeterminate and might be either

ssr1 , ssr
2

, .•• , then defsof(x) consists of all variables v

for which there exists some j such that ssr = ssr. satisfies
J

the condition stated in the preceedin~ sentence.

Once p(b) has been determined by using these conventions

and by making appropriate use of equation (1), we calculate

(2) [+: b£ returnstats] p(b) * EXOV,

where returnatats is the set of blocks of sr which consist
only of return statements (for convenience, each return

statement is segregated into a block of its own.) Then

thru(sr) is defined as the set of variables in V whose

corresponding ovariables belong to the set (2). In addition,

defsof(sr) is defined as the set

(3) [½: b£ returnstats] p(b) - EXOV.

C

.l3

Note that the sets thru(p) and dsfeof(p) which result

from our calculation satisfy th.ru (p) £ thru (p ') and defeof(p) ~ defeof (p 1
·

for each subprocedure p which is a terminal node of some

edge of the subset B of the call graph G. The sets thru(p')

and defsof(p') overestimate.the true data flow functions

which should be associated with the subprocedure p; the

sets thPu(p) and defsof(p) also overestimate these functions,

but not as badly. By replacing thru(p') and defsof(p') by

thru(p) and defsof(p) respectively and by repeating the computation

which has just been described, we can improve our estimates.

This improvement can be iterated as often as desired, in

principle even until stable estimates of the functions thru

and defeof result. But the high cost of iteration may only

justify one or two itera.tions, which anyhow should in most

cases yield reasonable estimates of thru and defaof.

Note that the function defsof(p) which the preceeding

calculation associates with a subprocedure p tells us what

assignment operations and procedure calls c internal top

can set the value of a global variable or parameter v when

p itself is called. In some applications we will wish to

obtain additional information, relating variables v not merely

to the procedure calls c which set their variables, but to

the specific elementary operations which assign values to v

from within the routine called by o. This may for example

be convenient if we intended either to propagate constants

or to carry out one of the constant-propagation-like optimisation

processes described in Newsletters 130 and 131. To obtain

this additional information, we have only to note the variable

or parameter v in which we are interested, and, using the

.value defaof(c), find all the operations within the procedure

called by c which set \"i proceeding in this way and iterating

through sucessive subprocedure call operations until a full

(_ i transitive closure is formed, we will succeed in forming

the set defeofc(p) of all assignment statements which can

establish the values of v.

Then the set .:J.efaofa (p) rather than the set de.fsof(p) carJ be

taken as an e:<pression of the use-definition · chaining re

lationships in the program being analysed. An alternative

technique :ts t.o use defsof(p)~ but to chain each variable

in defsof(p) back to a nominal assignment v = v inserted

immediately prior to each return statement occuring in the

aubprocedure p. Both of these techniques are valid for

entirely general collections of mutually corecursive procedures.

For the'definition-to~use' part of the data-flow analysis

process we will often need to have available a function

usesin(q) which maps each subprocedure q into the set of all

global variable or parameter uses occuring in q. The set

ueesin(q) is obtained by sununing, over all the blocks b of q,

all uses of variables belonging to p(b)*EXOV. The rule for

associating a set of uses with a block bis as follows:

Let 7. be a statement of band i an ivariable of x. Then i

belongs to the set usesin(b) if it belongs both to usesin(:c)

ilnd to thru(y) for each y in b which preceeds X in the serial

ord':!r of b~ If y is an assignment statement! then i belongs

to ,.wee in (y) if it is an argument of the operation appearing

ou the right-ha.nd side of y. If y is a call to a subprocedure

~ 0~, then usesin(y) consists of all ivariables which either
b•,:dong to uaesin(ssr) or are substituted for a parameter

belonging to ueeain(ssr)~ If y is a call to a subprocedure

,j.,.

·,t1hi.ch is somewhat indeterminate and might be either ssr
1

, ssr
2

, .•• .,

t;:sn U8€:sfn (y) conslsts of all iva;:-iables which either belong

to some one of the sets usssin(ssr
2

) or are substituted for

c, parameter belonging to sorn£?. one of these sets.

A tran~3itive closure techniqu(, like that described two

~:,.31~n.qraphs abov·e may be used to chain defin.i tions to the uses

::he values th<:1y define, even when t.heses uses are reached

Uir.ough a hm9thy sequenC'-e of possibly recursive procedure calJ s.

G

C

SETL-134

✓ • '
I
I

Note once more that an estimate of the data flow

within a program Pleads to an estimate of the control
flow within P, which in turn leads via the processes
described in the present section to an improved estimate
of data flow. Thus the entire data and control-flow
estimation process that has been described can be iterated.

However,. it is unlikely that more than a very few iterations

will either be feasible or required.

3. A few remarks on subroutine linkage optimisation.

Once the call graph of a program P has been determined
and the other analyses described in-the preceeding pages

have been carried out, a number of small but useful subroutine

linkage optimisations become possible.

i. Arguments which are never read by a subprocedure
c··) sr (i.e., 'output' arguments) need not be transmitted when

sr is called; arguments which are never modified by er need

not be returned when return is made from sr.

ii. A function-type subprocedure sr is said to be without

side effects if sr modifies none of its parameters, modifies

no global variable, and if every variable local to sr is
dead on entry to sr. Once 81' is known to be without side
effects, expressions containing calls to sr can be optimised
in ways that would be impossible if sr had side effects.
For example, redundant calculation elimination can be applied
to such expressions.

iii. A subprocedure 81' is said to be non-reau1'sive if s:ra

is not part of any cycle in the .call graph G of the program P .

. (Note that non-recursive subprocedures can call recursive
subprocedures and vice-versa.) Arguments to non-recursive
subprocedures need not be transmitted via a system stack,

l_ 1 but can be transmitted in a somewhat more efficient manner,

SETL-134

by direct assignment to an argument area associated with sr.

Moreover, sr's temporaries need never be stacked. This

saves stack manipulation on entry to and return from sr,

allowing relatively compact and efficient call and return

sequences to be used.

4. Eguations for the inverse function crthis- 1 •

We noted in section 1 that, since the number of procedures

and explicit.labels appearing in a SETL program P will

generally be far smaller than the number of ivariables of

P, it may be preferable to calculate not the function crthis(i)

which maps each ivariable of Pinto the set of all ovariables

which can create an object which becomes the value of i,
but rather to calculate the inverse fu~ction arthis- 1 (o)

directly. In the present section, we will sketch a system

of equations, dual to the equations for crthis, which make

direct calculation of crthis-1 possible. To this end~ we

introduce a number of auxiliary functions. ·By iuses(o) we

designate the inverse of the function crthis(i); iuses(o)

may also be described as the set of ivariables i in which there

appears as argument an object created by evaluating o; by

ouses(o) we designate the set of all ovariables o' in which

16

such an object reappears. By ihoZds(o) designate the collection

of ivariables i in which there appears as argument a set
containing (as one of its members) an object created in evaluating
o; by oholds{o) we designate the collection of ovariables o' at

which such a set can appear. By isomcomp(o) we designate the

ivariables i in which there appears as argument a vector (of
possibly unknown length) having as component (in unknown

position) an object created in evaluating o; by osomcomp(o) we

designate the collection of ovariables o' at which such a

vector can appear. Next, let n be an integer.

..

(_

• I

C

SETL·-134

By icomp(o,n) we designate the collection of ivariables i

in which a vector of a known length at least equal ton,
having as its n'th component an object created ln evaluating
o, appears as an argument1 by oaomp(o#n) we designate the
collection,of ovariables o' at which such a vector can appear.

Rather than confronting the.full zoo of primitive

SETL operations all at once, we shall at first. simplify

our discussion by ignoring tuple operations, and by assuming
that the only four set-theoretic operations which appear
in our schematized programs Pare s+t, s-t,· {x}, and 3s.
(A similar procedure is used in Newsletter 131, and is
justified there.) The operations occuring in P may then

be classified as transfer, null, inclusion, extraction,
data, setalgebraic, copy, and other (non-set) algebraic
operations (see NL 131, p. 5), and to describe these respective
operation classes we introduce predicates tPansf(o), nuZZ(o),

incl(o), e:ctP(o), data(o), setaZg(o), copyop(o), other•(oL

The operation forms described by these predicates are

transf(o): 0 - il;
nul Z. (o) . o = nt; .
i.ncZ(o) . o •. {i

1
}; .

e:ctzo(o) . o -=3 i 1 : .
data(o) . 0 = data; .
setaZg(o): (for sets)

setalgpls(o): o = i 1 + i 2 1.

setaZ.gmns(o):

copy(o) :

othsl'(o) :

o = i 1 - i 2 ;

o = copy(i1)

o = i 1 + i 2 ; o = i 1 - i 2 , etc.

17

I,

(for atoms).

For the functions iuses and ihoZds we have the following

equations:

(l.) iuses{o) = [+: o' c ouses(o)] du(o')

iholds(o) = [+: o' £ oholds{o)] du(o').

(Here, du is the definition-to-use chaining function provided

by data-flow analysis; it chains each ovariable o to the

set of all ivariables which can be reached from o along a

path free of redefinitions of the variable appearing in o).

The oueee function obeys a slightly more complex set of

equations. If i is an ivariable, let out{i) designate the

target ovariable of the schematised assignment statement in

which i appears as an argument, and let argpos(i) denote

the (numerical) argument position in which i appears. Then

the value created by evaluating o can reappear either as

the output of a transfer operation whose argwnent belongs to

iuses (o), or as the output of an ex.traction whose argument

belongs to ihoZde(o). Thus we have

(2) ouses (o) = {out (i} r iE iuses (o) I transf (out (i))} +
·{out(i), iE iholds(o} lextr(out(i))}.

The equation for oholde(o) is substantially more complicated.

A sets having among its members some object created by

evaluating o can appear as the output of an operation of

transfer, set.algebraic, or copy type; provided that. an

appropriate input argument of this operation belongs to

ihotd(o}. Moreover, scan appear as the output of an

inclusion operation, provided that the input to this inclusion

belongs b:> ·tuses (o) • Finally, s can appear as the output

of an extraction operator o = 3 i. For this to happen, 1

must ::>elo11.g to some set oh,,, Zd-S (o ') for which o' belongs

to oho1.ds(o). In consequence of all these facts we have
the tr,11.owing equation for oho Zds (o):

I• .

(1

(_

()

SETL-134 19

(3) oholds(o) = {out(i),•ie: iholds(of!setalgpls(out(i)) ·£!:.
transf(out(i})or copv(out(i))} - -

+·{out(i), iE i.holds(o) lsetalgmns(out(i))~~d

argpos(i) s 1}
+·{out(i), i£ iuses(o) I incl(out(i))}

+ [+: o' E oholds(o)] {out(i), iE oholds(o') I
extr(out(i))}.

The system of equations (1-3) can be solved by a straight

forward monotone convergence procedure. Note that in applying

these three equations to determine data flow in the presence

of label and procedure variables, we would only calculate

ohoZds(o) for the relatively small number of ovariables
which define labels or procedures, and for any additional
ovariables to which our attention is directed in the course

of solving equations (1--3).

If we now pass to a discussion of full SETL by admitting

the existence of tuple operations, the preceeding equations

undergo substantial complication: tuple operations of tuple

former, component extractor, subtuple extractor, tail extractor,

component insertion, and tuple .concatenation type, which
we designate by the predicates tfo~m(o), aompex(o),subtex{o),

tailex(o), inxa(o), and concat(o), appear in our schematised

programs P. These classes of operators have the following

typical fonns:

SETL-134

compex(o): 0 = il (i2) (il a tuple)

subtex(o): 0 = 11 (i2:i3) "
tailex(o): 0 = il Ci2:> "
inxa(o) . . 0 = [i1Ciz) +- i3J (o a tuple)

oonaat(o): 0 = il + i2 (il, i2 tuples).

Note that the component insertion.operation, which for

conforrnability with our general ovariable/ivariable conventions

we shall write as o = [i1 (i 2) +-i3], is ordinarily writtwn

as v(n) = c; vis both the o and the i
1

of our schematic

convention. In what follows, we shall make use of functions

argl(o), arg2(o),etc. which extract the first, second, etc.

components of the operator whose output ovariable is o.

It is also convenient for us to make use of two auxiliary

funct~ons ianycomp(o) and oanycomp(o). The set ianycomp(o)

designates the collection of ivariables i in which there
appears as argument a vector (of possibly unknown length)

paving as component (in a position which is either known or

unknown) an object created in evaluating o; by oanyaomp(o)

we designate the collection of ovariables at which such a

vector can appear. Note the distinct.ion between fso'71aomp(a)

and ianycomp(o) (and the parallel distinction between

oeomcomp(o) and oanycomp(o)): an ivariable belongs to

ianycomp(o) if its value can be a vector in which a certain

object appears in any component position whether known or

unknown, but belongs to isomcomp(o) only if this object appears

either in an unknown component position or in a vector whose

length is unknown. Thus ianycomp(o) always includes icomp(o,n),

while isomoomp(o) need not include icomp(o,n.). As in

Newsletter 131, we use functions known(o) and known(i), -;:.

which have the value Q if o {resp.i) is either. an integer

of unknown value or a vector of unknown lP.ngth, and have

20. ...

C')

the value n if o(resp.i) is either an integer of value

known at compile time to be n, or a vector of length U
known to be n.

' I

SETL-134

Using these conventions, we may state the following
revised equations for the functions iuees, iholdR, i~omco~p,

icomp, lan.ycomp, iueee, oho'Lds, oaomcomp, oaomp, and oanya,;;mp.

(4) iuses(o) = [+: o' E ouses(o)] du(o');
iholds(o) = [+: o' £ oholds(o)] du(o');

21

icomp(o,n) • [+: o' e: ocomp(o,n)]{i £ du(o')lknown(i) ne 0};
ianycomp(o) = [+: o' £ oanycomp(o)] du(o');
isomcomp(o) = [+: o' £ osomcomp(o)] du(o')+
+ [+: o' e: oanycomp(o)I (known(o') !!. k) ne n]

[+: 1 < n ~ k lo' £ ocomp(o,n)]
{it du(o')!known(i) ~ O};

The equations for ouses, oholds, ocomp, oanycomp, and oeomcomp

can be written most easily if we introduce the following macro:

(5) macro againextractions(o~;
({out(i), ie: iholds(o) lextr(out(i))}

+{out{i), ie: isomcomp(o) l~ompex(out(i))and

argpos (i) ~ l}

+{out(i1), i 1 £ ianycomp(o) lcompex(out(i1)) and

argpos(i1) ~ 1 and
if (known(arg2(out(i1))) !!_ n) 5 O then!

else if icomp(o,n) ~ 0 then f else i 1 e: icomp(o,n} }}

endm againextractions; /* which.marks the macro's end*/

The set againextraations(o) is the set of all o' in which the

object created by evaluating o re-'\ppears by extraction either

of an element from a set or of a component from a tuple.
Using this macro, we may write the following eq,jations:

SETL-134

(6) ouses (o} ::,: {out{i), iEiuses (o} j.transf {out(i))}

+ againextractions(o);

(7) oholds{o) = {out(i), iEiholds(d) I
setalgpls {out(i)) 2E. transf (out(i}) 2!.

copy(out(i))}

+{out(i), iEiholds(o) !setalgmns(out(i)) and

argpos{i) ~ l}
+{out(i) , iEi uses (o) i incl (out (i}) }

+ [+: o'Eoholds(o)] againextractions(o');

(8} ocomp{o,n) =/*here we assume known(o) ne n and

1 ~ n ~ known(o) */
{out(i), iEicomp(o,n) ltransf(out(i}) ~

copy(out(i}) 2.£,(concat(out(i)) and

argpos{i} ~ 1)}

..

+{out(i), iEiuses(o) !tform(out(i)} and argpos(i) ~ n}

+{out(i}, iEiuses (o) I inxa(out_(i)) and argpos (i) ~ 3 (

and known(arg2 (out(i)}) .§_q n}

+{out Ci
1
), i 1 Eicomp (o, n) I inxa (out (i 1)) and

argpos{i1) £5. 1 and

known (arg2 (out (il))) ~ n}

+{out(i1),i
1
Eianycomp(o) !taile.>dout(i

1
}) ~nd

argpos(i
1

) ~ 1 and

i 1E(icomp(o,known(arg2(out(i
1
)))+n) o~ n.t)}

+{out(i1), iEianycomp(o) lsubtex(out(i1)) and

argpos <i 1) ~ 1 and
i 1 E (icomp (o ,known {arg2 (out (il))) +n) or~ !l3:_}

+{out(i 2), i 2Eianycomp{o) lconcat(out(i 2))_and argpost_:i. 2)~ 2

and i
2

E(icomp(o ,n-known(argl(out(i
2
)}) o~ !}£_)}

+ [+: o'Eocomp(o,n} J againextractions(o');

L'·

0

SBTL-134.

(g} oanycomp(o) =

{out(i), iEoanycomp(o) ltransf~out(i)) or

copy (out{i.)) £E. concat{o1Jt (i)) ~~!-: (tai lex (out(i.) or.

subtex(ot,t-(i)) ?n9. argpos (i) ~ 1) ~

(inxa (out(i)} f!.f'-d argpos (j_) ~ 1))}

+{out(i), iEiuses(o) ltfo:r."In(out(i
1
))9r

(inxa(out(i)) an~ argpos(i) ~ 3)}
+ [+: o•Eoauycomp(o}] again.extractions(o');

II•

{10) osomcomp{o) =

{out(i), iEisomcomp(o) ltransf{out(i}) £!_ copy(out(i)) ~-:

concat(out(l)) 2E,(tailex(out{i)) and argpos(i) eg.} or

{subtex(out(i)) and argpos(i) ~ 1)}
+ {out(i), iEianycomp(o) lconcat(out(i)) and known(out(i)) .~ n anc,

if(known(i) is k) ~ n then f else

1 ~ 3 n ~ k I i e (i comp (o , n) £!!!! n .e.) }

+ {out(i), iEianycomp(o) l(tailex(out(i)) 2E.

subtex(out(i))) ~ argpos(i) !s. land

.known(out(i)) ~ n and if(known(i) is k) ~ J then_t

else l ~Jn.::_ kliEicorop(o,n) ~ nR.}

+ {out(i), i.Eiuses(o) linxa(out(i)) and argpos(i) ~;. 3

and(known (arg2 (out (i})) ~ Q 2!. known (out {i)) ~.3. rt)\

+ {out(i), iEisomcomp (o) I inxa(out {i)) and argpos (.U ~ 1}

+ {+: o'Eosom;:;omp(o)] ,againextract:i.ons(o')

+ [+: o'Eoanycomp(o) !if(known(o') is k) ~ n then f

else 1 .::_ 3n 2 klo'Eocomp(o,n)]

o"Eagainextractions(o') !known(o") ~:l n};

i,

In order not to complicate the preceding equations

rmnecesB-3riJy, we ha~,e at a few pnints w·ritten l~ss precise

xestrictj.ons than could actually be applied. Most 0f th~sc

elhdons .:relate to cases jn which opE:>r.,1t0rs trar,sform turles

vf known length to tup1es o.f unknow·n length.

24

