SETL Newsletter 135C
On the Genesis of Complex Programs

August 1, 1975
J. T. Schwart::

Certain classes of programs are very much more complicated than the direct statements of the problems which they so.ve; it is interesting to ask how and why this complexity arises. Let us begin by considexing optimizers; in many ways, this subclass of complex programs can typify the whole class. The problem which an optimizer 0 solves is: givea a program p (perhaps one written in an abstract language), transform it into an equivalent but more efficient progran $O\{P\}$; for example, we may want $O(p)$ to process a few typical data sets ten, or one-hundred, times as fast as P if this is possible. A akilled programmer will be able to solve this kind of problem without difficulty, if P is not too large. But naive calculation of $O(P)$ directly from the definition of $O(P)$ is completely out of the question in every case, since such calculation would involve a mathematically vast number of steps, e.g. might require generation of all programs provably equivaient to P, foliowed by numerous efficiency tests of the programs generated.

To overcome this difficulty one proceeds as follows. A collection of transformations t which send programs P into equivalent programs p ? is devised. The transformations t are chosen so as to map programs P into more efficient programs F; however, to be sure that $t P$ is more efficient than P one may have to be sure that some associated cordition $c_{t}^{\prime}(P)$ is satisfied. The applicability of a particular transformation t may only be guaranteed if some associcted boolean condition $C_{t}^{\prime \prime}(P)$ is satisfied, Ift $C_{t}=C_{t}^{\prime}, C_{t}^{\prime \prime}$; to optimize a program P one then wants to apply an appropriate sequerce $t_{n} \ldots t_{l}$ of the transformations to it; tris sequence must be chomen in such a way as to ensure that $c_{j+1}\left(t_{j} \ldots t_{1} P\right)$ is always satisfied. It is of course nct
feasible fo investigate all possible arrangements of all the transformations t. Instead, roughly the following scheme gan be wed: from p, precalculate a eeuqence $t_{\mathcal{L}}^{*} \ldots t_{m}^{\prime}$ of transformations t such that $c_{i_{1}}(P)=c_{i_{1}}\left(t_{i_{2}}^{\prime} \ldots t_{i_{k}}^{1}\right.$ p) for every subsequence $i_{1} \ldots i_{k}$ of $1_{\mathrm{k}} \ldots \mathrm{m}$. This allows the applicability of particular transformation t_{j}^{\prime} to be decided independently of what other transformations of the sequence $t_{1}^{\prime} \ldots t_{n}^{\prime}$ are applied. Then all t_{j}^{\prime} for which $c_{j}(P)$ is true can be applied to P .

The routine which precalculate . $亡_{1}^{\prime} \ldots t_{m}^{\prime}$ from P can appropriately be called an organizing framework for the optimimatin process.

The mass of transformations devised to ensure effectiveness of an optimizer process like that just sketched can and will grow unboundedly in size as optimizing transformations aimed at nev, ever finer aspects of programs are developed. Moreover, as one increases the number and variety of transformations which an organising framework must coordinate, the complexity of the framework itself will increase. This increase will be compounded by the fact that optimizer efficiency becomes steadily mere important as the number of allowed transformations is increased, since then more and more conditions $C_{j}(P)$ need to be calculated. Since P cannot be speeded up by more than a limiting constant factor, the amount of effort one is willing to expend on these calculations is limited. Thus as more and subtler transformations are admitted to considexation, one will feel compelled to calculate their associated conditions $C_{j}(P)$ in more ingenious and complex ways, e.g. by devising global program functions which can be calculated efficiently, and from which the conditions $C_{j}(p)$ can be celculated with special rapidity. One cannot expect to proceed very far along this complicating path before reaching an absolute limit of programmability. This makes it clear that
$\operatorname{SETL}-23906$
 the fortaitous discovery of ludry cases; more specificailio cases in whicn one can define olassee of paxticulariy simote tranformetions naving notably beneficial effecta on progarn efficiency, espeajally if the applicability of these tarasm formations cen be chected with exceptional eese.

The sitwetion that we have depicted arises in connection With paiograms other than ortimizers. For exanyle, error correction problems can be cast into the following fom: A string p (wind ray be 'incorcect' is given and one whaes to find the closeat conrect atring to F_{g}, or, at any rate, a correct string p ' whioh is not much further from p than tie closest correct string. Here the distance betwean two sininge can, e.g., be measured in tems of the namber of symbols in which they differ, and string correctness can be definec by use of some sort of formal gramar, to which additional programmed 'semantic sonditions" $C(P)=$ true may be aprevded. Comprehersinu exploxatior of the whole neighbochood of is infeasibie; instead of this che devises a set oit tranctomän tions t ("errox correctora') sach of which mape E inte $:$ string tr which is closer to betng cortect. Rech of thest transformations vill only be applicable and appropriste i. gome associated comdition $c_{i}(\mathrm{~F})$ is sataztied; so in forma terms this situation mesembles that aiscussed aiove. Another probiem wioch cars be cant into much the same tos ie that of algentat manspalation.

 classify the variont technques whioh phay an taportant role fin the tomatment of sone Excioulac clas of probleme. gad thon to devite a gemexal, programabie approach wiris
$6 \operatorname{can}_{2}-235 \mathrm{~cm}$
 Shis vexy powlem-gpesifie neprosin is open to an tmpontat etrusegic objection: it is tnextenable espectaliy since 2t amays nemda to operata near the boundary of programability. If shere te a iargar hope implicit: in this approach, it is thet signisicant simplificatisn in mary partionlar areas will Qventually come ont of ceparace tetailed problem solutione.
 together thto Yary broan anltimunctional Eyssens. By cortast: ©n "artificial intelligence' approach will instst from the
 Eroblemmpreffic mutarial be adritted. At ine possent eire. Whts appronch will amost always founder amist efficiency prondens. Ine hope impliatt in it fe that by devising particularly powexful generainzationes by discovering particalaty forvunate problem representakions, and by suilaing vely general mechanisms for the digestion of problem gpecsfionatexial this ineriiciengy nan be overcome.

