
SETL Newsletter# 136 

A Framework for Certain Kinds of 

High-Level Optimisation 

:J. T. Schwartz 
July 16, 1974 

The optimisation techniques used in Newsletters 130 and 

131 suggest the outline of a general framework for optimisation. 

The present newsletter will sketch this framework. Hopefully, 

our crude sketch can serve as a useful guide for later more 

detailed work. 

1. In the scheme to be described, we try to regard 

global optimisation processes as beginning with the formation 

of a set IH of hypotheses concerning a code C to be optimised, 

and as going on to select one or more mutually confirming 

subsets from among these hypotheses. The initial set of 

hypotheses can either be chosen in some a priori manner 

relatively independent of the details of C and then quickly 

pruned to eliminate implausible hypotheses, or it can be 

generated by some process of transitive closure which star~s 

by examining c and collecting salient features which suggest 

hypotheses.The initially formed hypothesis set IH.should not 

be so narrow as to exclude plausible facts of potential 

interest from consideration; neither should it be so broad 

as to include facts unlikely to be of reasonably common use. 

2. Once an initial set IH of statements is chosen, 

a maximal subset MC of mutually confirming statements can 

be found by discarding statements which conflict with 0bserved 

features of C,and then recursively descarding all statements 

which have a discarded hypothesis as precondition. This rule 

.. applies to what may be called secondary statements, i.e. 

statements whose truth/falsity depends entirely on the 

truth/falsity of other statements belonging to the same 

statement set. 



SETL-136 

Statements of another type, which we ·shall call primary, can 

also appear in our statement sets IH and MC. A primary 

statement represents either an internal decision to be made 

at compile time or a fact concerning the data objects_ appearing 

in C but not decideable by compile-time analysis. The 

statements 'x will be represented by a list', 'x will be 

represented by auxiliary bits attached to the representation 

of y', 'x will be represented by a hash table' are examples 

of primary statements of the first kind. The statements 's 

is a set containing few elements', 'sis a subset of s 1 and 

a substantial part of s
1

1
, •s

1 
is a set containing many 

elements' are examples of primary statements of the second 

kind. As these examp~es show, primary statements will 

normally belong to small statement groups, the statements of 

2 

a group being mutually incompatible. Such a group 0£ primary 

statements represents a choice that must be made by an optimiser 

either autonomously or under interactive guidance. 

In reducing an initial set 0£ plausible secondary 

statements to a mutually confirming subset MC, we will find 

that certain of the statements in MC depend on hypotheses 

which are primary statements, and conversely that the truth/ 

falsity of certain primary statements determines whether 

particular secondary statements will be admitted into MC 

or not. Primary statements for which this is true will be 

called reievant primary statements. 

Relevant primary statements representing facts concerning 

the objects of C not decidable by compile-time analysis can 

be put, perhaps interactively, as questions to a programmer. 

Programmer denial of· h:x·potheses required to justify some 

otherwise self-consistent system of assertions will drop 

certain such assertions out of consideration. If a relevant 

primary statement represents a decision to be made internally 

at compile time, the opti"miser can explore all the alternatives 

which grow out of possible truth values for this statement. 



SETL-136 

This will generate several, hopefully not many, plausible 

alternative realisations of a given program; then these 

can either be described to a programmer who has the right 

of final choice of one of these approaches, or 'rated' 

internally in some quantitative way for the automatic 

choice of a 'best•· approach. 

3. It may be possible to force the treatment of the 

type of optimisation proposed by Jay Earley ('iterator inversion' 

or .' generalised reduction in strength') into the framework 

proposed in the preceeding paragraphs. This optimisation 

takes an expression E whose evaluation would involve ex-

tensive calculations but whose parameters are changed 

incrementally by some body of code, and maintains its current 

value V rather than recalculating Veach time Eis encountered. 

The value Vis kept current by attaching appropriate updating 

operations to each statement which modifies a parameter of E. 

To force this type of optimisation into our suggested framework, 

one would introduce a type of symbolic statement cr with the 

heuristic interpration 'Eis to be maintained as a current 

value' into the analytic framework •. Statements of this kind 

would have secondary statements such as 'all (or some) of 

the parameters of E are modified differentially' as necessary 

preconditions; moreover, pirmary statements such as 'it is 

expensive to evaluate E' might also be attached to cr as 

necessary preconditions. 

It is significant that any application of the technique 

of optimisation by_ generalised strength reduction opens the 

way for additional applications of the same technique, since 

each such application ensures that some additional expression 

Eis only modified differentially. 

3 



SETL-136 

This makes chains of successive optimisations possible 

and allows rather extensive transformation of an initially 

given program text. The individual transformations Tin such 

a chain will be easy to apply, and it will be easy to de

termine when application of any spec"ific T is plausible. 

However, to determine whether all the detailed conditions 

required for T's application to be fully valid may require 

more ext~nsive calculations •. For this reason, it might be 

appropriate to use the following technique. Explore chains 

of plausible optimising transformations rather broadly; 

then determine the expected efficiency of the programs which 

result. From this set S of programs choose the program P of 

greatest efficiency and only then attempt full validation of 

the chain of transformations leading to P. If this chain 

is validated, accept Pas the optimal element of s. If 

validation fails, choose the next most efficient program:in 

Sand attempt its validation, etc. 

4 


