
C)

l'

fETL Rcwsletter t 137

· ~ddi tional Thoughts Concertling Automatic

Data Structure Choice

~'f. •r, Sch1.;;,11:·tz
.July 2 ~ , 19 7 4

By exploring designs leading to effici<·rnt .i.mp1ementatic::1s

c1f various of the abstract algorithms presented in O. P. II,

cne can make oneself aware of the wide :r.ange of $tructural

facts which are exploited when data structures are chosen

.manually. Some of the facts exploited a.·ce of a type which

can be discovered in reasonably strai.ghtfo:rward ways and

recur often: these are obvious candidat f;S .for incorportiort

into an optimiser. Other facts are deep or of rare

occurence; tr-.ese should be regarded as i~:athematical trans­

formations which can probably not be encompassed by a

reanona.1>1e optimisation algorithm at the present time.

Between these two extremes lies a r,ange of marginal facts:

their consideration suggest interesting possibilities for

a.utomatic analysis, btlt possibilities whose actu&l profit.ability

1:-emains subject tc question. In the present newsletter we

w:Lll discuss in interrelated grcn.ip of techniques having this

rnc,rginal characte;~; later invest i 9ations may show how these

te:diniques or V;tr:Lant.s of them can ba made practical.

~;e beg in by describing a technique which in some case~

~ill allow us to ~ascribe the types of the objects appeari.ng

ir. a SE'l'L program P more precisely than wc,uld be possible

if only Tenenbaum's typefinder were used. This js done as

We form a directed 9ra.ph

l"1r ·-,ri'-..,t1'on ::,•-,d .I,. .' 'l •. c:•::,' .• J •. _ - "'- '-" •• • -~•- ~.er::tino. o_gy ,1 •. 1..a

NL 130 anJ 131).

SETL-137

Th8 ~dqe.s of trH:, are defined by the value-flow functions

crthiaJ crmemb, creomp, and areomoomp introduced in NL 131.

2

We draw an m-edfJe from 0 1 too if o'E [+: iE crmemb(o)]c::rthjs(i},·

that is, if o' can create a value which at some

poil~.t ~n the execution of P becomes a member of the value of

o. SirnilarJ.y, we draw an s-edge from o' to o if o' can create

a vi:l1ue which at some point in the execution of P become~'

, component{unknown position) of the value of o, and an

(c,n)-edge if o' can create a value which at some point in

the execution of P becomes the n-th component of the value

of o. 'l'hese last two conditions are equivalent to o'E
[+; iEsorncomp(o)Jcrthis(i) and o'E (+: iE comp(o,n)]crthi.s(j,}

respectively. As an illustration of this graph, consider

the short program

(1) s = .!1 t; c 1 < Vi < 1 o o > s = s + { { s J J ; ;

To show all the ovariables in this program, we expand it

and. mark sepc.::rate ovari.able occurences of s and i wi.th

distinct subsc:,:ipt s. 'l'his gives

'2\ \ .I

loop:

sl

il

X

~,')'
.'.!

s2

i.2

if

=

=

=
=

=
=

i

nt;

1,

{s},

{ ·~} . .n. I

s + y,

i + J:;

.tt 100 then go to loop:;

n

l

The :;1_).l)fU rt •?rarh fer tLi s progra~'!i may be dJ.agr: ainmcd as

follows (we mark m-edges with an m;s-edges with ans; and

(c _.n) --edges with the integer n) : r m

1
.

. . . - m "1,~--JJ!.
.. • -~-- m ➔• ';),.

(3) i 1 12 s 1 x y s 2

This gr.01p:b. contains a loop; a fact which clearly reflects

the recursive nature of the data structures built up by the

program (1) (and by its equivalent(2)}.

'.Po analyse the data objects generated by a program whc!::e

subpart graph G contains a loop; we proceed c.~, f?llows: Choo:-;e ;;,

minimal set of K of nodes in K. Each node in K is then rega.:cdec. as

the name of some (recurs.Lve) ooject type. Type descriptors

are· assigned to the remaining ovariables of Gas follows:

The graph G-K has no loops, and consequently can be sorted

topologically. Sort it, and take its ovariables in decreasing

order. The type symbol T assigned to· an oS:G-K is calculatee

as an al teJ:-nation T = T I T I . Q. IT of type symbols T. which
1 2 n J

arc individually determined in the following way:

1.. If o has an incoming· m - edge from a node o t to

which i::hf~ typ--= sy;nbol a has been assigned,. take T j - { a}

::ts an alternand~

i.i.. r f o ha.s an incorninq (c 1 n) -edgn .f:i:c-rn a node o 1 to

s1hich the type syirlbol a has been z..ssigned, then the va.lues

of o will be tuplos of some

i:aJce T ~ -·
.;

'err.or'

<tz, ••• ,a, •.• ,tz>

known length t,

as ,::.n c1l tern and.

In this case,

Here t:t is the

unity

elen-lent for al te.rnation in the cal':'.ulus of types; and the

c! occur in the n-th o:c l con3:)on0:r:t positioLs. If h: ;:'.dd:i.t:i.,)n

c, has an incordng s-edge f:r.om a node c" to whj_ch thfr -;•ypl"':

f;ymbo:t b hc1s been ;-::..ssi_gned, then take

SE'l'L·~ J. 3 7

i.:Li. If tb.e immediately p.receeding rule do,~s not apply,

but if o has an incorni.ng s-edg~ from o' ! take t'j = Ja,] as

an alt.ernand.

Once these rules have been applied to all the nodes in

0. 1 ·:K, they can be applied to the nodes K, and when so applied

will ganera.te .recursive descriptions <Jf the type symbols

ori9inally ge11era1ted for the nodes of k. For example, if

ix-~ connection with the graph (3) we take K = · {s2}, then the

typ(1 description

{4) s1 '"' n1
X

y
'°'' · t!!.!.1 s2J
"'{xl

s2 ~. {{!!!,j s2}}

results. Note that we can always disrupt. the cycles of G

by remo~,ing a set K of programmer defined (rather than compiler

specified} ovaria.bles; and will generally prefer t.o do so.

The subpart graph of a program P repr·esents certain

coarse aspects of the data structures bu.ilt up by P. It

is possible that this 9raph can be used to guide the activity

c,f an :iutomatic proq:ram analyser. At the very least, the

type description gem:r2. t(~d by use of the subpart. graph of

a proq:ram will reta:i.n E;ome of the. inf.:orma.tion lost in Tenenbaum 1 s

typefinding algorithm because of the restricted way in which

nt'sted types are ha.nd h!d in that algorithm.

0

. - .

0

2 ,, ~-~~ple · Basic se~and ar:..._automat.ic m~tho~d f<?E

introduci•ng them~ · · PFer:manentl y' ·a·n:a- ·' tern12orarilx'

~~·ied operators. 'ua·rm1ess' Tran·sto·rmation of data

structure·s.. Case·s in• which a basic• set bec·ome·s· dead.

As an additional example illustrating certain interesting

i~flues which arise in data-st:ructure choice, consider the

interval-finder routines given on pp. 269-272 of O.P.Il;

I:. .,,

which routines we now repeat {with some rather small modifications)

for the readers convenience.

definef interval (nodes ;::t) ;

/* npreds, foZZ01.£ez>a and oeao:r are assumed to be global */
/* count the number of predcessors of every node*/

npreds = {<x,O>, x E nodes};

<Vx E nodes, y E cesor(x))

npreds(y) = npreds{y) + 1;;

int = nult; followers= {x}; count•· {<y,O>,y E nodes};

connt{x) = npreds(x);

/* 1 count' will be a count of the nv.allber of predecessors of

a node which belong to the interval being constructed*/

(while {y E followers I npreds (y) ~ count (y)} is newin ~ nR.)

<Vz E newin)

int{#int+l) = z;

z ~~ followers;

<VY E ceBor {z) br ne x) count (y) == count (y) +l;: y in follo\vers;

end Vz;

,:ind while;

return int;

E.'nd. interval;

6

n
/* .fol.Zowera~ follow, intov are all asswu.ed to be global

ints ::;; ~; seen = {entry}, follow = !!!; .in.tov = n:t;

(while seen ~ !_!!)
node- ·from seen;

interval(nodes,node) •!!, i" !.!!. ints1

follow(i) = followers;

(l -~ Vk ~ #i} intov(i (k)) • i;;

seen~ seen+ followers;
end while;

return ints;

end intervals;

definef dg{nodes,entry);

* ·' I

/* aesor"' follow, intov, dent, pi-ed are all assumed to be global"/
ints = intervals (nodes ,entry) 1 dent = intov(entry); c·-
CVi E ints) cesor(i) = intov [follow(i)] ;;

return in t.s;

end dg;

define£ dseq{nodes,entry, graphcesor); /*dent and aeeor are gl:)bal*/

seq = <<nodes,entry>>: <n,e> = <nodes,entry>: cesor=:graphcesor;

(while ff {dg (n, e) .is_ der) 11:_ #n doing <n ,e> = <der ,dent>;)

seq(lseq+l) = <der,dent>;;

return seqi

end dseq;

One of t.he things at which an efficient. implementation

the inb?.rval-fi.naing code. shown above w.i.11 aim is the

re,;::,:resentation of the maps fo Z l~t..'.t ~:n tov, and c,~.fia:r- ,.

Efficieut automa·.':5.c representation of a map f w.i th tlo:ma.ins

of complex st:cll::..'.t:ure i.s like;1ly to depend cm t.he ,~xiste.nce

of: a basic set for £,i.e., of a sets such tha.t

{i'.1 the notatio~ of NL 130 wb:ich trw ncu he9in ·::o \HH ht:'.ci"vi 1.y'i .

,_

, - r

0

(_ I

SE'l'L-· 13 7

l:n the intr:.1rv?l-finding code tb.<tu:·:e afp<::ars no set wz-,!ch

:i.ncludes the domz:i.ins of all three maps follow,/; intov.,, and

ceeor. However, one ca.n easily be introduced: we ha'\."'6 only

to insert the instruction at. lnodes = no.dee after the first
Ji.ne of the routine dg, and insert i• in tiZ.Z.nodes after the

... -
line interval (nodes ,node}· is 1· 'in ints (~rhich is line 6)

. - ·-
of the routine intervals. Once this set is introduced: the
following relationships will be found:

7

follow c 1 ~llnodes 1 follow 3 2 3 allnodes 1 intov c 1 allnodes;
. t c 11 d c 11 d ~-' 2 '.'.::I. allnodes ,w in ov __

2
a no es 1 cesor _

1
a no es; cesor J

In addition, the following relationships are found for

subsidiary variables occuring in the interval finder~

npreds c1 allnodes; followers~ allnodes; count c.1allnodes,
newin c allnodes~ x e allnodes; y E allnodes; z E allnodes; etc. - .

The set alZr.odes might be gene~ated automatically in the

following w2.y: if we ignore destructive object uses (cf .. NL 131"

section 2) and examine the suhparts graph of our program

then we see that elements belonging to the domain o:E lo i Zotu,1;

1.:n tov J, cesor (and also npreds and count) are generated in

only two wayf:: from the parameter nodes when the principal

rcutine dg is en·::ered, and by the instruction -ln t = nul t

appearing in the seventh line of the routine inte·J•vaZ..

'?his suggests the utility of forming a set into which all

the elements of the nodeG paramet.er, as WE!l·l as all the

obj~!cts generated by the instruction int =: nult •,-;ill be placed.

However" an inst:r.uction placing an ,)bject x ir. a basic Sc!t

should be pla.ced along a minimal collect.i-:;n of pc.t.h:3 which

seperate the destructive uses of x f,~om the or,erc:0 t:i.ons

~•hi.eh make. ;-.:: pz;;rt of an explicit progr-31:1 <,bject.

tiE'l'L-137

For the cod~ show·:n abc-ve, thiB means that in t should be

ineerted into all.nodes after exit from the whi.l.e loop c,f

·lnterval and before t.he statement (5) of the routine ir t:e :rr::: z •· ;.

which is just wha.t we have proposed.

:rt is fairly typical for the objects in SETL program

to be generated, used destr1.1ctively at first, cmd used r,c,fr•

destructively thereaftera This usage pattern iB seen fer

several of the objects appeari.ng in the above code; in

particular, for foll.ob1el'B and ints 1 and for oesor in the

larger optimisation context of which the interval-findir)q

routines shown above from a part. Given an object x

generated at an ovariable o, call an appearance of x at

a point not leading to any destructive use of x an appearance

of x in per-manent fo~m, and call an appearance of x at

0

a point leading to a destructive use of x an appearance of

x in temporai•y fo1 .. m. Operations to which a permanent form Q
of x is an argument we call operations permanently appZied

to x; if either e,. permanent or temporary form of x is an

argument of an operator ~' we say that ~ is an operator

applied to 1c. For this purpose, iteration is reckoned as

an operator, whicl1 is by definition applied to any object

which in one of its appearances supports iteration. Ob:Jec+:.s

must be maintained in forms which ef.fect.ively support all

the operations applied to them, but one can distinguish

between oper,:1.tions permanently applied and the larger class

of operations applied either permanently or temporarily ..

If this distinct.ion is made, th1;n two seperate object re­

presentations can be maintained at all program points hiading to de ...

structi ve uses of an object, arid one of these ~an be thxowr. away

when destructi Vf! use becomes impossible. Opera.tor applic,Iticns

) in the interval-fin ding code shown above are as .follows;

0

SE'fL-137

Th.~~ object 1:nt i:;: a vector f w:l.th which .3. prel::alcu.lated ha..s3h

should be associated; aeem can. be represented by a list.

Since fo i lotJere, i.nts_, seen, and temporary must support

insertion operations, four bits should be reserved in each
of the elements of allnodee to indicate membership/non­
membership in these three setso

A basis set like aZlnod~s, which is used only as a
means for representing other sets and maps, will only be
consulted explicitly if one of its elements is a composite
whose inner details need to be retrieved, or if an object
not directly represented in terms of the basic set must be

combined with a set or map represented in terms of the basic

set, or if an object which may be new (but need not be new)

needs to be added to the basis set. Once one has reache4

a program location at which all such operations.have become
impossible, the basis set is useless and can be dropped.
This remark applied to allnodes, which becomes useless and

can be suppressed on return from the routine dseq.

In some cases, the remark that has just been made will

apply to'-tell us that a particular basis set need not be

generated at all. Such cases, the basis set serves merely

as a conceptual device; essentially it imposes an encoding
on its nominal ro,;;rnbers, converting them from explicitly re­

presented objects, and making them pointers or integers.

A suitably powerful program-analysis/structure-choice

algorithm should be c;1pable of generating the data-structure

design outlirn::d in th,~ paragraph following table I. The

quality of this design begins to approach that of good

manually developt~d design. However, a good manual design

for the algorithni we have been considering will exploit a

few special obse,~vations which allow some si g~fica,1t savings

to be made.

ir,. 1.:h,2, List (.">f. vt,.riables appe.aring 'Ln our tahle; this is the

·t.Bmoor~~rv ·1.hich stores the v·aluEJ intov f follow(i} J calculated
.~. c. •

i:,:1 t.hc. fourth line of the ro.utine dg. This temporar-y plays

a1:1 eE:pec.i.ally important role in ou.r analysis: other temporaries,
whon:!! role is lass significant, we el.ide in order to avoid

-exc-icssive deta:.i.l.)

npr~ds
nodes

cesor

i.nt

coun1::

intov

S·eq

tempo ra.ry

permane?t.!Y...3?R!J:~d.
· 02erator~

indexing
i.teration

indexing

·o·tne·r ~~operatioI.::!
!,'ePl~d

indexed assignmer.1 t

iteration, map application

iteration; union(nondestructive)

indexed assignment

concatenation

insertion, deletioi1

indexing, indexed assi,:rnm~nt

iterationv map.. application . +. l.nservion

selection, deletion, union(destructive)

indexing
inde:.cing

iteration

indexed assignment, ind2xing

indexed a.ssig:iT[11e::1t

concat.enaticm

1nsertiori

~i:'he info:r:r.,a·'.".:Lon shown in this table m.iqht: J ear:1 ar:

alg::-ri thm t·.:i i:hf, f o1 lowin r:J choic\"?. of date, s'l:ructures: Each

(-~lemen.t of aZ !:o-1c;d£ .'J can b;.;• tre::.ted as an poin-te·r. The maps

nzn~r;1rls.., cnmt, cei0 .?r., follow and ir.i;a·:; ea:'! be kept in fields

~·: ta,:.]ed i .. o ::::1e el, ::-:ment.:~ of al- lnodP-s, :I'he pen.wnent form of

SE'fL-137

should be associated; seen ca..'l be represented by a list~

Since fol lower-a, i.nts_, seen, and temporary must support

insertion operations, four bits should-be reserved in each

of the elements of aZtnodes to indicate membership/non­

membership in these three sets.

A basis set like aZZnod•s, which is used only as a

means for representing other sets and maps, will only be

consulted explicitly if one of its elements is a composite

whose inner details need to be retrieved, or if an object

not directly represented in terms of the basic set must be

combined with a set or map represented in terms of the basic

set, or if an object which may be new (but need not be new)

needs to be added to the basis set. Once one has reache4
a program location at which all such operations.have become

impossible, the basis set is useless and can be dropped.
This remark applied to aZZnodee, which becomes useless and

can be suppressed on return from the routine dseq.

In some cases, the remark that has just been made will

apply to tell us that a particular basis set need not be
generateid at all. Such cases, the basis set serves merely
as a conceph,al device; essentially it imposes an encoding

on its nominal m,:;rrcbers, converting them from explicitly re­

presented objects, and making them pointers or integers.

A suite-ibly powerful program-an3.lysis/structure-choice

algorithm should be capable of generating the data-structure

design outlin(.:d in th.e paragraph following table I. The

quality of this design begins to approach that of good

manually df.!Velopi~d desig-n. However, a good manual design

for the algori thw we have been consideri nq wi1. 1 exploit a

few special obse;-va.t ions whi.ch a.lJ.o,~.,1 some si 9r· fica:..:it ~:2vin,:1s

to be made.

(_)

rp,:.:,:,,ixic,l1Y.:;/: a:t __ th,:, members of the nodes parant~:ter of dl~eq

;;.:r·,;;_ !!.:pt to be atoms; and if they are no node will be i1iscrtd1

rnoz,e tha.n once into the set folloi.,e:rs of the routine -lntePvat;

ar.d thus no node or interval will be generated more than
on,~e. It is therefore totally unnecessary to maintain the

Jr~t alln.odoa; one need only generate a serial number for
ea•~h element which would be added to this _set. if it werr~

maintained., The maps npl'eds and count are only defined or1

thE~ subset node a of a'l 1.nodes; ru1d the map fa Z lowezoo i.s only

det:ined on the subset inte. Moreover, if the elements of

aZ7,nodes are numbered in their order of generation, n.odee

and in.ts are always contiguous collections of integers within

aZZnodeB. Thus these sets need not be maintained as lists,

but can be represented simply by a pair of integers: one

representing a first set member in serial order, the other

a last Eet member. The maps np~eds and aount can be re­

presented by V€:ctors v of integers,th~ i-th component of

t.hese vectors representing the value of npreds(:r) or count(:r:J

:i.-th sn,allest member of nodes.. Much the same dev:',.ce can be

applied to the representation of foZ.1,ou1e. These conc::.:-ete

design improvements should reduce by a factor of approximately

4 the amount of s~orage space required by an implemented

version of the interval finder algorithm, .$peed should

increase only· sJ.iqhtly above that attained by use of the

n.utc,matically cho:;en data structm:-es described a few

paragraphs above.

It is worth .noting that a.lJ of the concrete design in1,.

;~ovements presented in the~preceedlng paragraph rest on

thr.! sin9le fact that no interval is ever gc:1erateu. tw.ict::

by the routine interval. This fact is probably of too great

-~ 109.ical depth tc· b~· :.mcover.ed i:;y presently ava.i.lab1.e

Ul½.:.01t,2t':::'.C a.naly,::;if:, techn:i.quesc

HC~Q~er, it is easily surmised, and in a suitably interactiv0

~ystem an inquiry as to its truth might be generated. Oricc

-c{1i.£; fact. b,s;co:les known, it is easily seen that the merrJJers

nf ·t::1t;s must. form a con~~nuous range within aZ Znodee r indeed,,

ints is initialised to :n.t,, no deletions are ever made frc,m

it., nn.d mf!Illbe:i:s of aZ.lnodee, once generated, are inevitably

inse.rt.ed into ·f'..vd;s,, Since node.a is always set from inte.,

nodee has this same property.

If an optimiser system undertakes to choose data structures

automatica.lly, it ia impoI"tarat that it report its choices

tn s,:>me comprehe.nsible fo:.1n to the system user. It is alSi.)

important that circumstances preventing substantially superior

choices from being ~de should be reported. This can make

the user aware of code details which he may regc:rd ·as innoccmt

and could easily change but to r,hich the data structure choice

:mechanism react:3 strongly. Then, by modifying these deta.i. ls,

hE: m,1.y be able to e,btain a substantially better implernentat.i<.)!~,

