LETI, Newsletter & 137 J.T, Sonwarts
B R . : July 25, 1974
. . . ko . -4

Pata Structure Choice

1. Introduction. The Subpart Graph of A Program,

By exploring designs leading to efficient implementaticns

- of various of the abstract algorithms presented in 0.P. II,

cne can make oneself aware of the wide range of structural
facts which are exploited when data structures are chosen
manually. Some of the facts exploited ave of a type which
¢can be discovered in reasonably straightforward ways and
recur often: these are obvious candidates for incorportion
into an optimiser. Other facts are deep or of rare
occurence; these should be regarded as wathematical trans-
formations which can probably not be encompassed by a
reasonable optimisation algorithm at the present: time.
Hetween these two extremes liss a range of marginal facts:
their consideration suggest interesting possibilities for
zutomatic analysis, but possibilities whose actual profitability
remains subject tc question. In the present newsletter we
will discuss in interrelated groug of techniques having this
mzrginal characteir; later investigations may show how these

techniques or variants of them can b2 made practical.

ke begin by describing a technigue which in some cases
will allow us to “escribe the types of the objects appearing
ir a BETL program P more precisely than would be possible
if only Tenenbaum'sz typetfinder wers used. This is dene as
fnllows: We form a directed graph G caelled the subperi gropi
n% Po The nodss of this graph s:rs the ovarial
{far notation and terminclogy used ir this newzletier, ses

NLOLI30 and 131).

192]
3
-3
i
i
(¥
~od
N

The adges cf the are defined by the value-flow functions
vl

erthis, crmemb, ercomp, and ersomcomp introduced in NI 131.

We draw an m-edge from o' to o if ©0o'€ [+: i€ crmemb {o)lcrthis (i}

that is, if o' can create a value which at some

point in the execution of P becomes a member of the value of
o. Similarly, we draw an s-edge from o' to o if o' can create
a value which at some point in the execution of P becomes

& component{unknown pecsition) of the value of o, and an
(c,n)-edge if o' can create a value which at some point in
the execution of P become2s the n~th component of the value
of o. These last two conditions are equivalent to o'€
I +: i€somcomp (o)} erthisii) and o'€ [+: i€ comp{o,n)}crthis{i}
respactively. As an illustration of this graph, consider

the short program
(1) s =nf; (1 <YL <100) s =38 + {{s}};;

To show all the ovariables in this program, we expand it
and mark seperate ovariable occurences of s and i with

distinct subscripts. This gives

(2}

i
o=
1]
[
L

locop: x

it
il
ey
w 2
g
-+ ~e
I~

(]
o
4
—

@
NN

fte
h
[N

Lkt 200 then go to loop::

e

A

v

The subpart grarh fer this program may he diagrammed as

folinws (we mark m-edges with an m;s»edqes with an s; and

(c.n)-edges with the integer n):
L [r—""‘""ﬂ""—'-m-“%l $
X Y 2

~—
[
L
Bt
eed
frie
N
1]
[

This graph contains a loop; a fact which clearly reflescts
the recursive nature of the data structures built vp by the
program (i} (and by its equivalent(2)}.

To analyse the data objects generated by a prcgram whese
subpart graph G contains a loop; we procceed 2% fellows: Choose @
mininazl set of K of nodes in K. Each node in K is then regarded
the name of some (recurs.ve) opject type. Type descriptors
are - assigned to the remaining ovariables of G as follows:
The graph G-K has no loops, and consequently can be sorted
topologically. Sort it, and take its ovariables in decreasin
order. The type symbol T assigned to an o€G-¥K is calculated
as an alternation T = T] , l-s.]1, of type symbols T, which
are individually dpt@rmlped in the following way:

Lo If o has an incoming m -~ edge from a node of to
which the typs symbol & has been assigned, take Ty = {a}

as an alternands

ii. If © has an incoming (c;n)-edge Txcm a node o' o
which the type symbol a has beecn assigned, then the waluesg
0f o will be tuples of some known length L. In this case,

take 7. = €2, 4..:8,0..,t2> as an altermand. Here tz is the

wl\,d

‘errox' of ‘ovesrscecific' tvpe which functions as the uﬁity
element for alternation in the calculus of types; and the

& occur in the n-th of 2 comwenert positiors., If in addition
¢ has an incoming s-edge from a node o" %o which the iyvpe
symbol b has been assigned,.then take Tj, = <b,D,... 27 as

an alternand

«

SETL~1.37 4
SETL~13 (5}

s

iii, If the immediately preceediﬁg”rule does not apply.,
but if o has an incoming s-edge from o', take v, = 3] as

3
an alternand.

Once these rules have been applied to all the nodes in
@-K, they can be applisd to the nodes K, and when sc applied
will generate recursive descriptions of the type symbols ;
originally generated for the nodes of k. For example, if
in connection with the graph (2) we take K ='{52}, then the
tvpe descripticn ;

27N
18
Raas

Sl v g&

x @"(g&lsz}
y ~ {x}
{{ngjs,}}

& -

results. Note that we can always disrupt the cycles of G
by removing a set X of programmer defined (rather than compiler
specified) ovariables; and will generally prefer to do so.

The subpart graph of a program P represents certain
coarse aspects of the data structures built up by P. It
is possible that this graph can be used to guide the activity
&7 an auteomatic program analyser, At the very least, the
tvpe description generzted by use of the subpart graph of
a program will retain some of the information lost in Tenenbaum's
typefinding algorithm because of the restricted way in which

nested types are handled in that algorithm. §

Frin s

O e A

O

b
3
2
’-—l
w
~3
in

[3]
5
o
x
o
=
yol
—
)
v
o
il
7
L
%)
t
L
&
n
o
W
5]
)
I
o
g.
&
o
P
o)
=i
6]
(-1-
o n
3}
o
’-ﬁ
0
i~

applied operators. 'Harmless' Transformation of data

" structures. Cases in which a basic set becomes dead.

As an additional example jillustrating certain interesting
issues which arise in data-structure choice, consider the
interval~finder routines given on pp. 269%~272 cf O.P.II;
which routires we now repeat {with some rather small modifications)

for the readers convenience.

definef interval(nodes,x);
/* npreds, follouers and cesor are assumed to be global */
/* count the number of predcessors of every node®/
npreds = {<x,0>, x € nodes};
{¥x € nodes, y € cesor(x))
npreds(y) = npreds(y) + 1;;
int = nult; folluwers = {x}; count = {<y,(>,y € nodes};
count {x) = npreds(x); _
/% 'count' will be a count of the number of predecessors of
a node which belong to ths interval being constructed */
(while {y € followers|npreds(y) eg count(y)} is newin ne n#)
(Vz € newin)
int(#int+l) = z;
z out followers;
(Yy & cesoriz)|y ne x) court(y) = count(y)+l: y in followers:
end Vz; B
end while

H
return int;

_end interval;

BEYL-137 . 6

deiined intervals(nodes,entry);
ol

/* fellowers, follow, intov axe all assumed to be global */
ints = n&; seen = {entryl; follow = nf; intov = ni;

fwhile seen ne ni)
node fggg seen;
interval (nodes,ncde) is i in ints;
follow{(i} = followers;
(1 2 Vk < #1) intov(i(k)) = i;;
seen = seen + followers;
end while:
return ints;
end intervals;

definef dg(nodes,entry);

/* cesor, follow, intov, denmt, pred are all assumed to be global®/
ints = intervals(nodes,entry): dent = intov(entry):; (*
(Vi € ints) cesor(i) = intov [follow(i)l];:
raturn ints:

end dg;

definef dseq{nrnodes.,entxy, graphcescr); /*dent and cesor ars global*/

seq = <<nodes.entrv>>: <n,e> = <nodes,entry>; cesor=graphcesocr;

(vhile #{dg{n,e) is der) lt #n doing <n,e> = <der,dent>;)
seq({feeg+l) = <der,dent>;;

return seq;

end dseq;

One of the things at which an effic nt implementation
of the interval-finding code shown above will aim is the
esresentation of the maps follow, intov, and czsor.
Efficient automatic representation of a map f with domains
of complex struciure ig likely to depend on the axistence
0f & basic set for f,i.e., of 2 set s such that f C:. s N

-

{in the notaticn of NL 130 which we now begin o uss heawily),

In the interval-finding code there agpears nc set wnich
includes the domains of all three maps follow, intov, and
cegor. Hcowever, one can easily be introduced: we have only
to insert the instruction allnodes = nodes after the first
dine of the routine dg, and insert i in alinodes after the
lipe interval (nodes,node) is { in ints (vhich is line 6)

oFf the routine intervals. Once this set is introduced, the
following relationships will be found:

follow S—l allnodes; follow D 2 3 allnodes; intov g:_lallnodes;

intov €, allnodes; cesor C; 2llnodes; cesox 22 3 allnodes;

In addition, the following relationships are found for
subsidiary variables occuring in the interval finder:

npreds C, allnocdes; followers C allnodes; count G)allnodes;
newin € allnodes; x € allnodes; y € allncdes; z € zllnodes;

The set allrnodes might be generated automatically in the

following way: if we ignore destructiwve object uses {cf.NL 131,

Section 2) and examine the subparts graph of our progran
then we see that elements belonging to the domain of follow,
intov, cegor (and also npreds and count) are generated in
cnly two ways: from the parameter nodes when the principal
cutine dg is entered, and by the instruction int = nult
appearirng in the seventh line of the routine interval.

This suggests the utility of forming a set into which all
the elements of the nodes parameter, as well as all the
objscts generated by the instruction int = nult will be placed.
However. an instruction placing an object x ir a basic set
should be placed aleng a minimal cceilection of paths which
seperate the destructive uses of ¥ from the oreraztions

which make » part of an explicit program obiject.

etc.

SETL-137

- Foy the code shown above, this means that int should be
inserted into gllnodes after exit from the while loop ¢f
interval and before the statement (5) of the routine friervals:

“which is just what we have proposed.

It is fairly typical for the objects in SETL program
to be generated, used destructively at first, and used non-

seen for

i

destructively thereafter. This usage pattern is se
" several of the cbjects appearing in the above cods; in
particular, for followers and ints, and for cesor in the
larger optimisation context of which the interval-finding
routines shown above from a part. Given an object x
generated at an ovariable o, call an appearance of x at
a point not leading to any destructive use of x an appearance
of x in permanent form, and call an appearance of x at
a point leading to a destructive use of x an appearance of
X in temporary form. Operations to which a permanent form (:)
of x is an argument we call operations permanenily applied
to x; if either 2 permanent or temporary form of x is an
argument of an operator op, we say that op is an operator
applied to x. For this purpose, iteration is reckoned as
an operator, which is by definition applied to any object
which in one of its appearances supports iteration. Obljscts
must be maintzined in forms which effectively support al
the operations applied to them, but one can distinguish
between operations permanently applied and the larger class
of operations applied either permanently or temporarily.
If this distinction is made, then two sepefate object re-
presentations can be maintained at all program points leading to de-
structive uses of an object, and one of these can be thrown away
when destructive use becomes impossible. Operator applications

>in the intervali-firding code shown above are as follows:

O

SETL~137 24

B

Tha object int iz a wvector, with which 2 precalculated hash
should be associated;‘aeen can be represented by a list.
8ince followers, ints, seen, and temporary must support
insertion operations, four bits should be reserved in each
of the elements of allmodees to indicate membership/non-
membership in these three sets.

A basis set like qllnodes, which is used only as a

" means for representing other sets and maps, wiil only be
consulted explicitly if one of its elements is a composite
whose inner details need to be retrieved, or if an object
not directly represented in terms of the basic set must be
combined with a set or map represented in terms of the basic
set, or if an object which may be new (but need not be new)
neeﬁs to be added to the basis set. Once one has reached

a program location at which all such operations. have become
impossible, the basis set is useless and can be dropped. (»b
This remark applied to allnodes, whiéh becomes useless and
can be suppressed on return from the routine dseq.

In some cases, the remark that has just been made will
apply to tell us that a particular basis set need not be
generated at all. Such cases, the basis set sexrves merely
as a conceptuval device; essentially it imposes an encceding
on its nominal members, converting them from explicitly re-

presented oblects, and making them pointers cr integers.

A suitably powerful program-analysis/structure-choice
algorithm should be capable of generating the data~structure
design outiined in the paragraph following table I. The
guality cf this design begins to apprecach that of good
manually develcped design. However, a good manual design
for the algorithm we have been considering will exploit a
few special observations whish allow some signficant savings N

1o be made,.

A h

feota that we include one compiler-generated femporary variszble

: of veriables appexying in oux table; this 1s the
tamporcry which stores the value intgv’{f@llaw(i}] calculated
ia the fourth line of the routine dg. This femporary plays

an especially important role in our analysis; other temparéries,
whos: role is leass significant, we elide in orxrder to avoid
wpysagive detail,)

" Tahle I.

chiect permanently applied other operations

' operators applied
npreda indexing indexed assignment
nodes iteration ’

cesor indexing indaxec¢ assignment
int iteration, map application concatenation
followars iteration; union(nondestructive) ingsertion, deletion
count: indexing, indexed assiynment
irts iteration, maﬂ\applicaticn insertion
£E2N selection, deletion, union(destructive;
foliow . indexed assignment, indexing
intov indexing indexed assignment
saq indexing concatenation
temporary itersation insertion

The information shown in this table wight iead ar
algonrithm to the [ollowing choice of data structuras: Each
slement of allnedes can be treated as an pointer. The maps
npreds, ecunt, cesor
zttataed Lo the eiments of allnedes. The perwenent form of
nodes, foilowewms, inta, and temporary can bs lists: follovers
gheald be ’ two-way list hecausz celetions are N

IS SRR . - . 9 e
curing i1te construstion,

SETL~137 16

Tha obiject int iz & vector, wlth which 2 rrecelculated hash
should be associated; seen can be represented by a list.
Eince followers, ints, aeen,‘and temporary must support
ingsertion operations, four bits should be reserved in each
of the elements of allmodes to indicate membexship/non-
membership in these three sets.

A basis set like allnmodes, which is used only a= a

" means for representing other sets and maps, will only be
consulted explicitly if one of its elements is a composite
whose inner details need to be retrieved, or if an object
not directly represented in terms of the basic set must be
combined with a set or map represented in terms of the basic
set, or if an object which may be new (but need not be new)
needs to be added to the basis set. Once one has reached
a program location at which all such operations. have become
impossible, the basis set is useless and can be dropped.
This remark applied to allnodee, which becomes useless and
can be suppressed on return from the routine dseq.

In some cases, the remark that has just been made will
apply to tell us that a particular basis set need not be
generated at all. Such cases, the basis set serves merely
as a conceptural device; essentially it imposes an enccding
on its nominal members, converting them from explicitly re-

presented oblects, and making them pointers cr integers.

A suitably powerful program-analysis/structure-choice
algorithm should be capable of generating the data-structure
design outlined in the paragraph following table I. The
guality cf this design begins to approach that of good
manvally develcped design. However, a goeod manual design
for the algorithm we have been considering will exploit a
few special cbservations which allow some sicrficant savings

to be made.

Srecifically: all ths menbers of the nodes paramszter of deeqg
zre 2ot o be atoms; and if they are no ncde will be insert.d
more than once into the set followers of the routine intervai:
and thus no node or imterval will be generated mcre than
once, It is therefore totally unnecessary to maintain the
zet gllnodcs; one need only generate a serial number for
each element which would be added to this set if it werae
waintained. The maps npreds and count are cnly defined on

the subset nodea of allnodes; and the map followere is only
defined on the subset ints. Moreover, if the elements of
alinodee are numbered in their order of generation, nodes

and inte are always contiguous collections of integers within
alinodes. Thus these sets need not be maintained as iists,
but can be represented simply by a pair of integers. one
representing & first set member in serial order, the other

a last set member. The maps npreds and count can bes re-
presented by vectors v of integers,the i-th component of
these vectors representing the value of npreds(x) or countiz)
i-th smallest member of nodee. Much the same device can he
applied to the representation of follows. These concrere
desigrn improvements should reduce by a factor of approximately
4 the amount of s*orage sgpace required by an implemented
versinn of the interval findex algorithm: speed should
increase only slightly above that attained by use of the
automatically chozen data structures described a few

raragraphs above.

It is worth noting that all of the concrete desiga inm-
provements presented in the!preceeding parsgraph rest on
the single fact that no interval is ever gsnerated twice
by the routina Zntervel. Thie fact is probably of too great
2 logical depth to be uncovered bv presentl

_x -m"\:! ldx)‘a

pnkomatie analysis technigques.

A
~d

S SAI I, I
PRSI S]

cavwer, it 18 easily surmised, and in a suitably intexactiva

"

crgtem an inguiry as to its truth might be generated. Once
wile fact bacomes krown, it is easily seen that the rembers
of inte must form a continuous range within allnodes: indced,
ints is initialised ¢o nf, no deletions are ever made from
iz, and members 0f «llnodes, once generated, are inevitably
ingexted into intg. Since nodes is always set from inte,
nrodes has this same property.

If an optimiser system undertakes to choose data structures

satomatically, it is importent that it report its choices

in some comprehensible foxm to the system user. It is also
impcrtant that circumstances preventing substantially superior
zhoices from being made shcould be reported. This can make

the user aware of code details which he may regzrd as innocent
and could easily change but to which the data structure choice
mechanism reacts strongly. Then, by modifying these details,

he may be able to chtain & substantially better implementation,

