()

SETL Newsletter § 138A ' J.7.Schwartz
. o c e : August 12, 1974
" Qptimigation by Set Suppression .

The 'lterator reduction'optimisation discussed in NL 138
i# one of a class of ‘algorithmic! optimisations; these are
thimisations_ot a level high enoggh‘to be confortably
expressible by SETL - SETL code transformations rather than
by transformations applied Quring the translation of a SETL
program into programs written in a less abstract language.
There undoubtedly exist many optimisations of this class,
and, even though many of them will occur too 1nfrequent1y
to justify their antomatic treatment, they are worth re-
cording, evern if only as hints to the algorithm designer.
Newsletter 138 initiated, and the present newsletter continues,
the task of recording these optimisations. In the,present
newsletter we focus our interest on situations in which a
set s is formed simply to support some subsequent iteration;
and where in fact the formation of s can be suppressed. |
iIf s 18 a large set, this may be quite advantageous.

A typical instance of this general situation might initially
appear as follows: Suppose that a set s is formed by a body
of code '

(1) ‘
& =3uk; "
(while ...)

« e

/* a quantity x has been calculated *

x in s;
end while;

and then used in an iteration



SETL=138R~2

@ _ :;.:' o o
_L¥xes | C(x)) Block end Y,

.08 e

Suppose also . .

a) that execution of the code (1) has no side effects
more precisely, that the only data item transmitted f£rom ;he
code (1) to the remainder of the program P in which (1) is
_.enbedded is the set sj |

b) That,aside from its use in the ite:atlon (2),s has
no other use in P; :

~¢) That the objects x sucessively added to s may be
shown to be distinct from each other;

d) That no data object used in the code (1) is modified
until after,the iteration (2) is complete.
Then (1) and (2) may be transformed into equivalent code which
does not require the. set s to be formed expkzﬁlxtly or stornd.
This. is done as follows-

i. Hove {1) to the position of (2), modifying both so
that together they read o -

(3} .‘ ' 8 @&
(while ...}
/* a quantlty x has been calculated v/
1f C(x} then block; /* replaces =z in 3 ¥/

—
v e e
L

end while;
Suppose next that s appears in several iterations

(4} t¥xee | C.(x)) block end ¥; (=1, ...,n),



SETL-~138A~3

- but that conditions (a) and (d)'xemaih true. Suppose also

that none of the iterations (4] mcdifies a variable used

_either by thg~code'(2) or in some other iteration (4); and

suppose that aside from its appearance in the iterations (4)
8 has no use. Then (1) may be combined together with all
the iterations (4) into a body of code which has the

-following appearance

{5) e
(while ...}
/% a quantity x has been calculated */
if cl(x) then beckz;
if.Cz(x) then bZockg;
if Cn(x) then blackn:
N end while;

. Loopse .having the form (S) commonly occur in compilers,
and may bé considered to have an origin like that which has
jost been described.



