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1. Introduction to Earley's Method. 

In a recent Berkeley Technical Report (High Level Iterators 

and a Method for Automatically Designing Data Structure 
Representation~ Memo ERL-M425, Feb. 1974) J. Earley has 
proposed an interesting optimization technique, which he 
calls 'iterator inversion'. This technique is applicable 
to languages of high level, and particularly to languages 
allowing explicit set-theoretical constructions. Iterator 
inversion is a method intermediate between the gathering of 
straightforward optimizations which can be applied routinely 
and an attempt to find recondite mathematical transformations 
of rare applicability. It is a general method, and suggests 
still further generalizations. In the present newsletter, 
we will describe Earley's method, discuss some of the problems 
bound to arise in its application, and explore a few of the 
generalizations which it suggests. 

Earley's technique may be regarded as an extension of 
John Cocke's method of'reduction in strength' to a set 
theoretic setting; for that reason we shall prefer to call 
it 'iterator reduction'. Suppose that a program P to be 
optimized contains an expression E = E(a1 , .•. ,an) involving 
n free parameters, and suppose that E represents an expensive 
enough calculation for it to be worth avoiding repeated 
evaluation of E. Suppose that E has the following property: 
if some of parameters of E, say for example a 1 , ... ,aj' are 
changed 'slightly' .or'differentially',then E changes slightly, 
in the sense that the new value of E can be obtained from 
its old value by some 'easy' calculation E = f (E ld) . new o 
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In this case,, .we shall say (suggestively though only 
heuristically and of course not in the standard technical sense) 
that E is con t1:nuous in the free parameters a 1 , .•. , aj. 
Suppose finally that, in some loop or more general program 
region R of interest, all the operations which change a 1 ... a. 

. J 
change them only slightly. Then we can: 

i. Keep E's current value C(aj+l'"""'an) = E(a1 , ... ,aj+l'"""an, 
available for appropriately chosen values of the parameters 
aj+ 1 , ... , an. (This means that some of the values C ( aj+ 1 , ... , an) 
must be stored; suppose for the moment that we store all 
previously calculated values C(aj+l'"" .,an), collecting these 
values together as a mapping C.) 

ii. Use C(aj+l'"""'an) ~ather than E(a1 , ... ,an) wherever 
the value of E(a1 , ... ,an) is required. 

iii. For all values aj+1 , ... ,an in the domain of the 

mapping C update C(aj+l'"""'an) using an appropriate rule 

Cnew = f(C01d) whenever one of the parameters a 1 , ... aj is 
changed (these parameters will only change differentially). 

iv. Update or calculate C(aj+1 , ... ,an) using the rule 

( 1) C (aj + 1 , •.• , ak- l, b, ak+ 1 , .•. , an) = 

if C ( a j + 1 , • • • , ak-1 ' b ' . ak + 1 , . • . , a ) is v a 1 n c n ,n 
then val 

else E(a1 , •.• ,ak-l' b, ak+ 1 , •.• ,an) 

/* obtained by evaluation of E */ 

whenever k > j and ak is changed by an assignment ak = b. 
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Note that considerable memory may be needed to store 
values of C; thus in some cases we maY: prefer_ ~o keep only 
a small section C' (aj, .•• ,ak) = C(aj 1 ••• ,ak ••• ,an)' k < n, 
of C(aj, ••. ,ak)available and to perform a full recalculation 
using the expression E each time one of the parameters 
ak+1 , •.. ,an is changed. In an extreme case, we may only 
keep one single value C' = C(a., •.• ,a) available and will then J n 
recalculate C' whenever any of aj+1 , •.• ,an is changed. 

Let us consider a few examples. The assignments 

(2) s = s +·{x} an~ s = s - {x} 

represent slight changes to the sets, as do 

( 2 I) s = s + t and s = s - t 

when the sett has only a few elements. If f is a set of pairs 
used as a mapping, then 

(3) f (x} = a 

causes f to change slightly. If f is a set of (n+l) - tuples 
used as a multi-parameter mapping, then 

( 3 ' ) f ( x 1 , . . • . , xn ) = a 

is a slight change to f. The set theoretical operations 

(4) and f[s] 
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are continuous in s,s1 , and f, as is shown by noting,for 
example,that before executing s = s - {x}, the expressions 
c1 = s + s 1 and c2 = f[s] can be updated by executing 

(5) c1 = c1 - if xEs and x nEs1 then {x} else nt; 

and 

(6) c2 = c2 - if xEs then f{x} else nt; 

respectively. 

The operation c4 = f-l [s], which can be written as 

(7) {x E hd [f]/f(x) Es} 

is continuous in f, and before encountering f(x) = y is updated by 

(8) c4 = c4 - if f(x) Es then {x}:else n9., 
+ if y Es then {x} else n9.,; 

However c4 is discontinuous ins. 
The operat~on f[s] is continuous ins even if f is a pro~ 
grammed function. The conditional expression 'if a then s 1 else 
is continuous in s 1 and s 2 , but is, of course, disc0ntinu0us 
in its boolean parameter a. 

The evaluation/retrieval operation f(x) is not continuous, 
since execution of f(x

0
) = y can give f(x) a completely 

new value. (On the other hand, if f is a programmed function 
and evaluation of c 3 = f(x) is expensive it may be appropriate 
to avoid re-evaluation where possible, and to update c 3 using 
the statement 

(9) c3 = if x
0 

ne x then c3 else f(x) .) 

S I 
2 
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Note that the. ordinary rule 'continuous functions of continuous 
functions are continuous' can be applied to the set theoretical 
operations we have been considering. 

As Earley has emphasized expressions involving set--formers 
provide more interesting examples of the phenomenon of 
'continuity' which we have been discussing. The expression 

{10} C' = {xEs I f(x) ·~ a} 

is a prototypical example. This expression is continuous in 
When sis changed by s ahd f, but discontinuous in a. 

addition of an element y
0

, then C' can be updated by executing 

and a similar rule applies for deletions. When f is changed 
by executing f(y

0
) = ·z, then C' can be updated by executing 

{12) C' = if y
0 

E s then C'-(if f(y
0
)~ a then {y0 } else ni.) 

+ if z ea a then {y} else nt; 
-=.:.i.. 0 -

(the update operation should be inserted just before the 
assignment f(y) = z). More insight is gained by writing (12) as 

0 

{ 13) C ' = C ' - { xE { uE s I u ·~ y O } I f ( x) a} "' 
t xE { uE s : t. ·~ y O } I z a} ; 

since (13) begins to suggest a rule for updating more general 
set-theoretical expressions than (10). For example, before 
chans~ng f by f(y

0
) = z the set 

(14) c1 = {xEs I g(f(x)) a} 
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can be updated by executing 

(15) c1 = c1 - {xE{uEsiu y
0

}Jg(f(x) a} 

+ { xE { uE s I u y O} I g ( z) eq a}: 

and the set 

(16) c2 = {xEs I f(g(x)) a} 

can be updated by executing 

(17) c2 = c2 - {xE{uEsJg(u) eq y
0

}lf(g(x)) a} 

+ hcE { uE s I g ( u) ·~ y 
O

} I z eq a} ; 

All the updating operations (13), (15), (17) are to be 
performed just prior to the change f(y

0
) = z for which they 

compe11·sate. Next consider the case of a set-theoretic 
expression in whose defining condition f appears twice with 
different arguments, as for example 

(18) c3 = {xEs I f(g(x))eq f(h(x})} 

or 

(19) c4 = {xEs I f(f(x)) a}. 

Before changing f by f(y) = z, we can update such sets using 
0 

the following formal device: treat all the separate occurrences 
off as if they were se:i;:arate functions £1 , £2 , •.. ; and 
regard the change f(y) = z as a series of modifications 

0 
affecting each of these seperate functions, i.e., treat 
it as if it were f 1 (y

0
) = z, £ 2 (y

0
) = z, etc. 
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In the case of c3 and c4 , this leads us to the following 
updating operations: 

,, 

(20) c3 = c3 -{xE{uEsJg(u)· eq y
0

}lf(g(x)) !=S_ f(h(x))} 

+ {xE{uEslg(u) ·~ y
0
}jz !=S_ f(h(x))} 

- {xE{uEsjh(ti)eq y }t.(if g(:xJeg Y0 then z else f(g(x)) 
. 0 · - · ·~ f (h(x))} 

+ {xE{uEsjh(u) y
0

}j (if g(x) y
0 

then z else · 
f(g(x))) ~z}; 

(21) {xE{uEslf(u) ·~ y
0
}lf(f(x)) Sa} 

+ { xE { uE s I f ( u) eq y 
O 

} I z !=S_ a} 

- {xE{uEsju y } I (if f (x) y0 then 
0 f(f(x)}1 a} 

+ {xE{uEslu y
0

}j (if z y
0 

then z 
a} 

Note that many of the updating operations shown above can 
I written in form~ which make more explicit the fact th,at 

they can be performed efficiently. For example, (21) can 
be written as 

z else 

else f(z)) 

{21') c 4 = c 4 - if f (y 
0

) a then· {xEs If (x) ·~ .i ,) else nt 

+ if z 5 a then {xEslf(x) y
0

} else nl 

if y Es ~nd · (if f(y0 ) ea y tnen z else f(f(y )) a l~en 0 _... 0 0 {y~f else nt 
+ if y0 E s and (_if z y 0 then z else f (z)) a . 'Il {y

0
} el~e nt • 

Next consider a set £ormed using a double iterato£, as 
for example 

( 2 2 ) C 5 = { e ( x , y) , xE s , y E t ( x) I f ( x) !:S. g ( y) }. 

If f is modified by f(x
0

) = z, then c 5 can be updated by 
executing 
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(23) c5 = c5 -·{e(x,y), xE{uEslu x
0

},yE t(x)lf(x) g(y)} 

+·{e(x,y), xE{uEslu x
0

},yE t(x)lz g(y)}; 

which is of course the same as 

(23') CS= if x 0 Es then c 5- {e(x
0

,y), yE t(x
0

) /f(x
0
)~ g(y)} 

+ {e (x0 ,y), ye t (x
0

) I z g (y) }else CS 

Similarly, if. g is modified by g(y
0

) = z, then c 5 can be 
updated by executing 

(24) c6 = c6 - {e(x,y), xEs, yE{uE t(x)lu ~y
0

}lf(x) eq g(y)} 

+ { e ( x , y) , xE s , yE { uE' · t ( x) I u y 
O

} I f ( x) £SI_ z } ; 

which can also be written as 

(25) ~ 6 = c6 - {e(x,y
0
), xE{uEsly

0 
E t(x)}lf(x) g(y

0
)} 

+ {e(x,y0 },xE{uEsly
0 

E t(x)}lf(x) (z )}. 

Note that a first application of iterator reduction 
often paves the way for and suggests other iterator re-
ductions. For example, after reducing (23) to (25), we 
may try to keep the current value of the set {uEsjy E t(x)} 

0 
available; and this may involve the insertion of additional 
updating operations. 

2. General rules for the continuity of set-theoretical expressions. 

We now formulate a few general rules concerning 'continuity' 
of set-theoretical expressions. We shall express these rules 
not in terms of the simple notion of continuity introduced 
in section 1, but in terms of the more detailed notion 
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'continuity relative to a particular, slight, modification of 
a given free parameter'. Note once more that for sets s we 
consider insertion, deletion, and addition,or subtraction of 
a small set s 1 to be slight modifications; and for mappings f 
consider indexed assignments f(x) = y or f(x 1 , ••• ,xn)? y to be 
slight modifications. If in a loop all changesio variables 
which are sets or mappings are slight modifications of the kind 
just described, then these variables will be called induction 
variables of the loop. It must also be observed that none of 
the transformations which we are studying can safely be applied 
to expressions containing operations which cause side effects 
that are used; for which reason we shall always assume such 
operations to be absent in the expressions we treat. We also 
assume that typefind.ing is applied prior to any attempt to optimize 
by iterator reduction; so that objectftypes are known during 
the analysis of a program for reduction. Consider the set-
theoretic expression 

( 1) C = { x E s I K ( x) } 

in which K(x) is any boolean-valued subexpression contQining 
only free occurrences of the bound variable x, and containing 
no free instance of the set, s. Suppose that the expression 
(1) is used in a strongly connected region and that the following 
conditions hold: 

i) The boolean valued su:b~:~t'.ression K (x) contains m free 
occurrence of an n-ary mapping f (in which each such occurrence 
has at least 1 parame~cr expression involving x, the bound 
variable of the set former); all other free variables occurring 
ink are loop invariant. 

ii) f and s are induction variables of the loop; i.e., 
inside the loops is only changed by slight modifications of 
the forms= s + s 1 , where s 1 is a small set in comparison with 
s, and f is only changed by indexed assignments of the form 
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Then we can reduce the expression (1) inside this loop. 
Let C be a compiler-generated variable, to be associated 
with the value of the set former expression (1) •. We will 
say that C is available on exit from a program point p if C 
is equal to the value which the expression (1) would have 
if evaluated immediately after the statement at p is executed; 
C is available on entrance top if C is available on exit· 
from all predecessor points of p. If C is available on en-
trance top, and if C is not available on exit from p (which 
will happen when execution of the statement at p changes the 
value of a parameter upon which the value of expression (1) 
depends), then we say that C is spoiled at P 

To reduce the expression (1) within a loop L, we begin 
by making it available on entrance to L. This is done by insert~ 
ing the assignment C = {x E~slK(x)} into the loop's initialization 
block. Then,at each point p inside L where the value of the 
induction variables s or f can change, the value of C (which 
could be spoiled at p) will be updated by inserting appropriate 
slight modifications C = C c1 , where c1 is a small set 
relative to C; this keeps C avctilable after exit from p. 

We shall now proceed systematically to discuss continuity 
properties of the expression (1) and associated update rules 
for C for two cases (illustrated by fragmentary examples in 
section i above) small changes in the sets, and changes to 
f which result from an indexed assignment. 

Rule 1 (small changes ins). At each point pin Lat which 
the sets is changed slightly (by addition or deletion of a set 
s 1 which is small in comparison with s) make the following 
program transformation: 
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Location original Code 

p 

After Reduction 

p s = s ± s 1 
p + 1 C = C + {x E s 1 I K(xJ} 

Then, if C is available on entrance top and if the 
instruction at p kills c, the instruction inserted at P + 1 
updates C and makes C available on exit from point P + 1. 
Moreover, since s 1 is small in comparison with sit will 
gererally be true that the modification to C is also small. 

Rule 2. Suppose that the boolean subexpression K of (1) 
contains m free occurrences of the n-ary mapping symbol f. 
Suppose also that these m occurrences off appear in r 
different terms, 

f (pll (x) ' ••• 'Pin (x) ) , f <P21 (x) ' .•. 'P2n (x)) ' ••• 'f (prl (x) , • •• , Prn (x)) ' 

where pij(x) represents the j-th parameter expression (involving 
x which is the bound variable of the set former) of the i-th term. 
Then at each point pin the loop in which the n-ary mapping f 
is changed slightly by an indexed assignment, ma 8 the following 
program transformation: 

Relative 
Position 

p 

P-2 

Original Code 

f(yl, ... ,yn) = z 

After Reduction 

~2 = {x e sjpll(x) Y1 & •.• &pln(x) c .In 
or •.• or 
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p-1 
p 
p+l 

C = C - {x E s 2 1K(x)} 
f(y1 , .•. ,yn) = z 
C = C + · { x E s2 I K ( x) } 

It can be shown that rule 2 is a corollary of rule 1. 
To see this, consider the set Df, = {<pi1 (x) , •.• ,pin(x)>lx Es} 

Let pi be the mapping whose domain is sand where 
p. (x) = <p. 1 (x) , •.• ,p. (x)>. Then for any n-tuple <y1 , ... ,vn>' we have 

l. l. in 

-1 Pi (y1 , ... ,yn) = {x E sjpi1 (x) y 1 &,,,& Pin(x) yn}. 
-1 Ifs changes by deletion of pi (y1 , .•. ,yn), then Df: changes 

by deletion 

modified by 

l. 
of the n-tuple <y1 , ... ,y >. Moreover ifs is . n 

r -1 deletion of U· p. (y1 , •.. ,y ) , then the n-tuple . 1 i n 
1.= 

is removed from the domain of all the f terms 

occurring in (1). Next we observe that if C is available on 

en.trance to p (i.e. , is available just prior to the modification 

to f by the indexed assignment f(y1 , ... ,yn) = z), and if 
r 

<y1,·••1Y > ¥ U Df; just before point p, then the statement n . 1 _,._ . 1.= 
f(y1 , .•. ,yn) = z does not change any of the occurrences off in 

(1). Consequently, C is not spoiled by the indexed assignment, 

and it remains available. Suppose now that in expression (1) 

C is available on entrance to the program point p. Then we 

would proceed as follows 1) at 
, r 

p-3, put s 2 equal to the set 

U -1 
. pi (Y11••·,Yn) 
i=l 

2) at p-2 delete s 2 from s; 3) at p--lupdate 

C in accordance with rule 1, 4) at p+l add s 2 back to s; 

and 5) at p+2, use rule 1 again to update c. This would give 

us the following code: 
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p-3 s2 = {x E s I P11Cx) Y1 & ••• & Pin (x) Yn or 

• • • or 

Prl(x) Y1 & ••• & Prn(x) !:.9. yn} 
(3) p-2 s = s - s2 

p-1 C = C - {x E S2 I K(x)} 

p f(y1,·••,Yn) = z 

p+l s = s + s2 
p+2 C = C + {x E s2 I K(x)} 

In this code C is not spoiled by the statement f(y1 ,~••,Yn) = z. 
Hence, if C is available on entrance to p-3, then by Rule.l we 
know that C remains available on exit from p+2. And now finally, 
since in (3) the value of the sets is the same before p-2 as 
after p+l, and because sis not used between p-2 and p+l, the 
code (3) is equivalent to that shown in Rule 2. 
The assumption that at least one of the parameters in each f 
term in K involves x (the bound variable of the set former) 
will usually cause the set s 2 to be small in comparison with s. 
Then,by the continuity properties stated in Rule 1, we cQn 
conclude that the modification to C appearing in Rule 2 is small 
compared with the set C itself. 

The code generated by Rule 2 can be improved · eliminating 

redundancies in the expression f s 2 I K(x)} which appears at 

locations p-1 and p+l. Suppose we know that s 2 = lJ R1 , where 
i=l 

R 1,.~.,Rr are disjoint sets. Then {xE s 2 I K(x)} can be rewritten 

as u {xE P.jK(x)}. Suppose also that in each set {xE R. IK~x)} 
i=l i i 

K(x) can be transformed (by elimination of redundant operations) 

into an equivalent but easier-to-evaluate expression K. {x). 
1 
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Then it may be worth while to work with the partition ·{Ri} of 

s 2 instead of s 2 and to rewrite 

{x E s 2 I K(x)} as 
r u 

i=l 
As an example of this, 

i-1 

{x E R, IK, (x)}. 
l. l. 

observe that if we let 

R. = {x E (s - u Rk) 1Pi1 (x) Y1 & ••• & Pin(x) yn}, where 
l. k=o 

Ro = 9J I then Rl, ••• 'Rr form a partition of s2. Moreover, on 

the set R. we can replace the term f(p. 1 (x) , •.• ,p. (x))which i i in 
appears in the expression K at location p-1 of the code generated 

by Rule 2 by f(y1 , ••• ,yn) (cf. (3) above) • This can lead to a 

version of line p-1 of (3) which is relatively easy to evaluate, 

and it is therefore tempting to apply the same transformation 

to line p+2 of (3). However, at iocation p+2 we cannot, even 
r 

after breaking up {x E s 2 1K(x)} into u {x E Ri!K(x)}, simply 
i=l 

replace each term f (p . 1 (x) , .•. , p. (x) ) in K by z. This is 
J. in 

because the indexed assignment appearing in line p of (3) 

changes f and may therefore cause some parameterpij(x) appearing 

in {x E R.IK(x)} within (3) and containing an occurrence off 
l. . 

to have a value different from yj. When dealing with cases 

complicated enough for this problem to arise, we can make use of 

a second, finer, partition R!, .•. ,R' of s 2 defined as follows: J r 
First set R' = 9J as before. Next find all f terms f. , ..• ,f. 

0 J.l 1 ro 
whose parameter expressions involve no f term, and put 
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R ... = {x £ s Ip. 1 (x)~y1 & ••• & Pi n(x) ~yn}' 
1 l.l 1 

R2 = {x £ (s-Ri) 1Pi2l(x) Y1 & .•. &pi2n'x) ·~ yn}, ••. , 

. r -1 
= {x £ (s - u0 Rk) !Pi 1 (x) 

k=O r
0 

After this, find all f terms fi 
ro+l 

eq Y 1 & • • • & Pi n <.x) Y n} • 
r 

0 

which do 

not belong to the set F1 = {f. , •.• ,f. } but whose parameter 
1 1 1 r 

expressions only contain f terms which 0 do belong to F1 . Define 

sets R;..l , • •• , R' by writing 
Q. rl 

t-1 
R ... = {x e: (s - u ~) IP. i <x> Y1 & ••• & p. (x) yn}. Jl k=o l. R, 1. Jl n 

Iterating this procedure sufficiently often we will obtain a 

partition {R1, ... ,R;} which can be used to eliminate redundant 

calculations of f(p. 1 (x) , ••. ,p. (x)) at both p-1 and p+l. l. in 

More specifically, if we let K (x) [t1 , ••• , tn] denote the 
sl' ... ,sn 

result of substituting the terms t 1 , ... ,tn for the terms 

s 1 ,• ..• ,sn occurring in K(x), we can replace the code occurring 

at location p-1 (in Rule 2} by 
r 

C = C - u {x £ R
1
~ IK(x) 

i=l Pil (x) '··•,Pin (x) 

and the code occurring at p+l by 
r 

C = C + U 
i=l 

(Not~ that the immediately preceeding formula describes two 

successive steps of substitution.) 
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This general method allows the code used to reduce 

various set former expressions in examples (13) - (25) of 

section 1 above to be generated automatically • 
.. 

As an example of the redundancy elimination method just 

outlined, consider the following example: 

( 4) C == { x e: s I f ( f ( f ( x+ 1) + 1) ) f ( f ( x+ 1) + 1) } • 

Suppose that the mapping f is changed slightly by an indexed 

assignment, f(y
0

) = Z which occurs at a program point p. 

Then to update th_e value of (4) we proceed as follows. First 

a partition R1 , R2 , R3 is computed. Observe that this partition 

contains three sets because only three different f terms occur 

in the boolean subexpression in (4): these are f(x + 1), 

f(f(x+l)+l), ~nd f(f(f(x+l) + 1)). Since f(x+l) is the only 

f term of (4) whose parameter expression involves no f term, we 

put R1 = {xe:s; (x+:;_) !::S y 
0
}. Since the parr1.meter part of 

f(f(x+l) + 1) involves f(x+l), we set ... 
R2 = {x e: (s-R1) f(x+l) + 1 y

0
} and 

R3 = {x e: (s-R1 UR2) I f (f (x+l) + 1) y 0}. 

The code generated to update (4) is then as follows: 

Rl = 
R2 = 

R3 = 

C = C 

f (yo) 

{x E S I X + 1 y0 } i 

{x e: ( s-R1 ) I f(x+l) + 1 ~yo}; 

{ X £ (s-R1UR2) I f ( f ( x+ 1) +· 1) · y 
O

} ; 

- {X E 

- { X e; 

- {x e; 

= Z; 

Rl 

R2 

R3 

f(f(f(y
0

) + 1)) f(f(y
0

) + 1)} 

f(f(y
0

)) f(y
0
)} 

f(yo) yo}; 

C = C + {x E Rl f ( f ( z+ 1) ) f ( z+ 1) } 

+ {x e; R2 f(Z) !:.9. Z} + {x e: R3 1z y0 }; 



Note that computing the partition, R1 , R2 , R3 is about as 

expensive as computing the set 

of Rule 2. Thus, the use of partitions in the manner just 

described can be expected to improve the code produced by 

direct application of Rule 2. 

The method of reduction which has been described can be 

extended in a useful way to apply to various SETL expressions 

that implicitly contain set formers. Amoung these are the forall 

iterator (i.e., cV x E sjK(x)) ,~bloak), the existential and 

universal quantif ers (i.e., ::J xe:s I K (x) and Vx£s I K (x) ) ,. 
and the compund operator (i.e. 

[ <binop>: x £ s I K (x) ] e (.x) .) • 

To apply the method of reduction to these expressions, we 

rewrite them by replacing the implicit set former subpart, x£s!K(x), 

which they contain with x £ { u £ s I K(u)}. The set former 

subexpression thus exposed can then be reduced using ~ules 1 and 2. 

We will now discuss the compound operator 

(5) C = [<binop>: x £ s I K(x)] e (x) 

which, like the set former, has relevance to vari~~s other SETL 

operators. 

Here we require that the binary operator, 'binop', have an 

appropriate 'inver3~• (which we will call 'inverse binop'). 

The ari~hmetic binary operator+ (with - as its inverse) is an 

example. (5) is then continuous ins and f, and the following 

reduction rules which parallel rules 1 and 2 apply: Rule 3. at 

each point pin the loop at which the sets is changed slightly 

( by addition or deletion of a set s 1 that is small in comparison 

with s) make the following program transformations: 
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Relative Location Original Code 

p s = s - s 1 

· After Reduction 

p-1 s 3 = s 1 ns 

p s = s - s 1 

p+l C = C <inverse binop> [<binop>: -XEs 3 jK(x)] e (x) 

where <inverse binop> is the appropriate inverse binary operator 

of <binop>. If C is available on entrance top in the original 

code, then after reduction takes place C is restored and is available 

on exit from p+l. A similar rule applies for updates after s=s+s1 . 

Rule 4. (Analogous to Rule 2). Suppose that the Boolean 
expression K(x) of (5) contains m free occurrences of the n-ary 
mapping f. Let us use the same notation as in Rule 2. Then at 
each point pin the loop at which f is changed by an indexed 
assignment, the following code transformation should be made: 

Relative Position 

p 

p-2 

p-1 

p 

Original Code 

f(y1,·••,Yn) = Z 

After Reduction 

s = 2 {x E sjpll(x) Y1 

pln (x) ~Y. or n- ... 
Prl(x) ~yl& .•. & 

C = C <inverse binop> 

& ••• & 

or 

Prn(x) yn} 

[<binop>: xEs 2 jK(x)] e (x) 
µ(y1 , ... ,yn) = Z 
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p+l C = C <binop> [<binop>: x£s 2 IK(x)J e(x) 

It is easily seen that Rule 4 follows from Rule 3 in much the 
same way that Rule 2 follows from Rule 1. 

We can extend the applicability of reduction rules 3 and 4 
by treating the counting operation 
applied to a set former, # {x£slK(x)}, as [+: xEs!K(x)j 1. 
Code transformation can be especially profitable in this case 
since two operations, set former and counting, can be eliminated. 
We can treat the existential and universal quantifiers for 
the case when 'locating' or other side effects of these quantifiers 
can be ignored similarly. (This observation, like much of the other 
content of this newsletter,is due to Earley £E_ cit.) Specifically, 
an existential expression 3 xe:s I K (x) can be rewritten as 
#{x£s!K(x)} O, and then the size operation #{xEslK(x)} can be 
handled in the manner described just above. A universal 
expression '1x£s!K(x) can be transformed first into the 
equivalent not 3 xEs I K (x) which can then be treated as 
an existential, specifically as not #{x e: s I~ K(x)} O which 
can at once be reduced to 

([+: xEs I not K(x)J 1) O. 

3. Set-formers containing parameters on which they depend 
discontinuously. 

We continue to consider set-formers 

(1) C = {x E s ! i<(x) } 

involving one bound variable x and a number of free variables. 
Suppose that the expression (1) appears within a loop Lin 
which one free variable q upon which (1) depends discontinuously 
is changed. 
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Then to avoid re-evaluating (1) within L, we can keep the 
value C = C(q) of (1) available for every value that the free 
variable q can assume inside L (we will refer to this set as 
Dq). Although such an approach is often feasible, it can 
easily be made infeasible by one of three factors 

(a) Storage of all the sets C(q)can require too much space. 
{b) Updating all the sets C(q) whenever a:p3.rameter on 

which C depends continuously is modified may waste more time 
than is saved by avoiding the calculation of (1). 

(c) Storage of the set Dq may require too much space. 
As an example of objection (a), consider 

(2) C(q) = {x Es I f(x,q) q}. 

For a 'randomly' chosen f some large percentage of all the 
x Es will belong to the set (2) for many q. Hence, the sets 
C(q) will be large for many q. These sets will often overlap, 
and storing them will undoubtedly require much more space 
than is required bys. On the other hand, whenfue sets C(q) 
are disjoint, as in 

(3) C(q) = {x Es I f(x) q} 

it is possible that no extra space will be required for storing C(q). 
This will be true when explicit representation of scan be 
suppressed, and when scan be represented by a partition that 
includes the collection of sets C(q). 

Objection (a) to storage of the values C(q) becomes weaker 
under the following 3 conditions: 

1) When the amount of overlapping of the C(q) is small, 
_2) When the number of stored sets C(q) is small, 
~) When the size of each stored set is small. 



SETL-138-21 

Note that when C is discontinuous in more than one free 
variable and a map C(q1 , .•• ,qt} is maintained then the number 

t 
of sets maintained (in addition to s} is TT # D • . 1 q. l.= -i 

Thus, if there is any overlapping at all among the stored 
sets it can easily be quite costly to reduce 
(1) if there are several parameters upon which (1) depends 
discontinuously. One way of diminishing the number of sets 
C(q1 , •.• ,qt) that must be stored in such cases is to group 
the parameters q 1 , ... , qt into subexpressions. For exa.mple, 
to deal with an expression 

(3} 

we can make use of the substitution b = q1 + q 2 and store only 

( 3 ') C(b) = {x Es I f(x} b} 

where Db = {ql + q2, ql ED, q2 ED }. Since the inequality 
ql q2 

# Db < ( # D } x (:ff: D } always holds, .the number of sets 
ql q2 

C(b} needed will never be greater than the number of sets C(q1 ,q2}. 

Let us now go on to consider objection (b} and certain 
methods for ameliorating it. Suppose we want to reduce the 
set former (1) and suppose that the value of (1) i~ kept in 
the map C(q1 , ... ,qt), where ql, •. ,qt are parameters upon which 
(1) depends discontinuously. Then whenever a variable upon which 
(1) depends continuously undergoes a small change in L, it may 
be neces~ary to update all the values C(q1 , .•. ,qt) for all 
necessary values of q 1 E Dq , ••• ,qt E 

). 
D , by making appropriate 
qt 

small changes. The code generated by application of Rule 1 of 

the preceeding section to (1} could for example be the following: 

(4) /* after the operation*/ s =.s + s · - 1' 
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and the code generated by the corresponding Rule 2 could 

be as follows: 

( 4 I) 

f(y1 , ••• ,yn) = z; 

<Vql E Dq1' ••• ,qt E Dqt} C(ql, •.• ,qt} = C(ql, ••. ,qt) + 

{x E s 2 (ql' •.• ,qt) I K(x)};; 

Observe from (4) and (4') above that the cost of updating 

the sets C(q1 , •.• ,qt) is directly proportional to the number of 

these sets stored. Hence, the technique of reducing the number 
of stored sets by regrouping (discussed previously as a way of 
avoiding objection (a)) will ·also be useful in ameliorating 
objection (b). 

There is another technique which is worth mentioning 
despite the difficulties its use can involve, because it is 
likely to accomplish the same aim more effectively than the 
method just described. Instead of iterating over the cross 
product of all the sets D as in (4) and (4'), we can consider 

qi, 
the set Dq of all t-tuples q = <q1 , .•. ,qt> of values that the 
parameters q 1 , ••• ,qt can collectively have, and can 
then iterate over this set. However, predetermination of the 
set Dq would in most cases not be easy. 
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Execution of the general update code (4) and (4') can be quite 
costly, and the methods presented so far for avoiding objection 
(b) are not terribly powerful. For general expressions (1) 
that depend discontinuously on several parameters we would 
expect objection {b) to make reduction infeasible. Nevertheless, 
a few important special cases of common occurrence in SETL 
programs can be reduced profitably by supplementing the methods 
just described with a few additional techniques. 

To discuss one such special case we consider 
example (3) once more. Applying Rule 1 to (3), we see that 
the computation required to update 
{x Es I f(x) q} afters= s + s 1 is 

( 5) 

As noted in the preceeding discussion of objection (b), we 
know that if # D is too large the computation (5) will be q 
costlier than a full recalculation of (3). However, it is only 
nec~ssary to apply Rule 1 to those sets C(q) that actually change. 

! 

But 1 C(q) will not change if {x E s 1 1 f(x) q} is empty. 
Thus the set Dq appearing in (5) can be replaced by 

(6} 1 C' = {q E Dq I ( 3 x E s 1 I f (x} q)}, 

which is usually smaller. The set C' can be rewritten as 

( 6 ') C' = {f(x), X E sl 

Note that (6') is continuous in both the parameters s 1 and f 
{we assume that D is a region constant), and that when it is q 
profitable to reduce {6') or when Dq is large in comparison 
with s 1 it becomes profitable to replace (5) by 
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If the map f of (3) is changed within L by an indexed 
assignment 

(7) 

then Rule 2 of the previous section applies to the sets C(q) 
in the following way: 

f(x) q};; 

f(x
0

) = z; 

(\Jq e Dq) C(q) = C(q) + {x E s 2 I f(x). q};; 
. 

Since s 2 (q) does not_change within the iterations (8), it is 
better to rew~ite this as 

(8') s2 =. {x Es I x x 0 }; 

<Vq Dq) C(q) = C(q) - {x E s 2 1 f(x) q}; 

f(x
0

) = z; 

(\/q e Dq) C(q) = C(q) + {x E s 2 I f(x) q}; 

Applying the same transformation that was used to derive (5') 
from (5), we can transform (8') still further into 

(8 ") { E I } s 2 = X S X x 0 ; 

cV b E {f(x), x E s2 !f(x) E Dq})C(b) = 
C (b) -{y E s 2 I f (y) b};; 

f(x
0

) = z; 

cV b E {f(x), x E s2 !f(x) E Dq}) C(b) = 

C(b)+{yE s 2 f(y) £9. b};; 
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Finally, because s 2 contains either no or one element, we can 
eliminate the iterations of (8") completely, writing (8") as 

( 8 11 I ) if X E s & f(x) E D then C(f(x
0

)) = C (f..(.x
0
)) - {x } .. 

0 0 q O I I 

f (x
0

) = z; 

if X E 
0 

s & z E D then C ( z} = C (z} + {x } .• 
q O II 

which shows that objection (b) does not apply to example (3). 
This example typifies the treatment of .a somewhat broader 
class of expressions in which the objection (b} can be avoided. 
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One such expression is 

(9) C = {x E s I f (x) g (q)}; 

more generally, we can consider 

(10) c = {x Es IK1 (x) K2(q1 , ••• ,qt)}, 

where q 1 , ••• ,qt are free variables upon which C depends di.s•·· 
continuously. We assume that K1 of (10) is a subexpresaiun 
only involving x, parameters upon whi eh ( l O) ,'k•pends 
continuously, and maps fi upon which C .can dep,~nd discont1m.touely 
but whose occurrences in K1 all have paramet(;0rr1 .. depand.ing, un ,{. 
K2 of (10) is assumed to be a subexpression only .1.nvol vi.ny tlH0~ 

parameters q 1 , •.• , qt on which c depends di,:icontinuously, ,:inc.1 

also on the m~p.s fj, 
' ·:.i;• '"(' ,, ''j, t 

We assume · that expressions estimating oq
1

, •.• ,Dqt ar.·e 

available at compile time. We can eimpl:1,fy ( 10) by ,rnbst.t tut.ili9 
a new free variable b for K2(q1 , ••• ,qt): then we compute 
Db and keep the value c = c (b) available for eve.r.:·y Vtllu,i b e: Ob. 
A reduction procedur~ for (10) which incor.·pnrat£1a th,-H.1a .i ,1<:-H'lB 

•Can be described as follows: 

1) On entrance to L define initial values for D0 and C(b) i 

(11) 

2) changes of q1 , ••• ,qt inside L do not require updatos of C or Db. 
3) After a change to s (as in ( 4) ) perform the fc,11,,w.i 111:r up1..lut.1? 

computation, 

(12) cV u e {Kl(x), x E s1IK1(x): Db}) C(u) • 

c ( u) ±. { y e rJ l I Kl ( y) £!,',;{ u} ; , 

4) Suppose that the subexpressions I<1 and K2 of (10) rospwJtl•rnJ.y 
contain r 1 and r 2,free occurrences of the n-ory mapping f. 
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Using the same notation as was used in Rule 2 of section (ii), 
we denote the r 2 different occurrences off in K1 by 

and denote all the r 2 different occurences off in K2 by 

fr
1
+1 (u11<q1 1 ••• 1 qt), ••• , uln (q1,•••,qt)), ••• , 

f rl+r2 (ur 1<q1,··· 1 qt) , ••• ,ur n<q1 1 ·•· 1 qt)) · 
2 2 

Then at each point pin Lat which f is changed by an indexed 
assignment 

( 13) 

the code to update the value C = C(b) appearing in (10) is 
as follows; 

••• · or -
Pr 1 (x) 

l 
.!S. Y1 & ••• & Pr n (x) 

l 
yn}; 

cV b E {Kl(x)~ X E s 21 K1 (x) E Db}) C (b) == 

C (b) - {y E s 21K1 (y) bh; 

••• or -
ur 1 (ql, •.• ,qt) !.S. Y1 & ••• &urn (ql'"""'qt)h 

2 2 
f ( y l' • .. , Yn) • z : 

<V be {K1 (x), x e s 2!K1 (x) e Db}) C(b) = C(b) + 
{ye s 2 I K1 (y) b};; 
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cV b E {K2 (q(l), ••. ,q(t)) ,q E D2 I not b E Db}) 

C(b) = {x Es I K1 (x) !:.SI b}; Db = Db + {b};; 

If any of the restrictions we have imposed on (10) are 
lifted, the profitablity of reducing (10) will generally be 
lowered. Suppose,for example, that we allow variables q 1 , •.. ,qt 
on which K1 depends discontinuously to occur in K1 of (10). 
Suppose that b

0 
is substituted for K2 and that b 1 , •.• ,bv 

arise from q 1 , ... ,qt by appropriate reg_rouping and substitution. Then 
the value C = -c·(b

0
,b1 , .•. ,bv) would have, to be kept available 

for every value b 0 E Db , ••. ,bv E Db. The number of stored 
0 V V 

sets C(b , •.• ,b) equals TI # Db, and this many steps will 0 V , , 
1=0 1 

be required for each iteration occurring in (11), (12), and (14). 
Moreover, the set s 2 appearing in the first line of (14) can 
now depend on b 1 , .•. ,bv, so that it may have to be defined 
as a map s 2 (b1 , •.. ,bv). 

The preceeding results apply in an interesting way to 
a class of set formers typified by 

(15) C = {x Es I f(x) E q}, 

where the free variable q is a set. Recall from section (1) 
that (15) is continuous relative to small changes ins and 
relative to indexed assignments to f. If q is changed by a 
computation q = q + q 1 where# q 1 << # q, then the corresponding 
update correction 

(Jj 

(16) 

will often represent a small change to C. However, because (16) 
still requires an iteration overs, this update computation will 
often be too exp~nsive to allow profitable reduction of (15). 
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For this reason, it is appropriate in handling (15) to 
use the identity 

{x E s I f (x) E q } = U {x E s I f (x) b}. 
1 b E ql 

The sets C' = { x Es I f(x) b} which then appear can be 
treated by the methods sketched earlier in the present section, 
which require that we store a map C'(b) for all bin an 
appropriate domain set Db .. Then the update operation (16) can 

be replaced by the less expensive code 

( 16 ') 

Set formers involving boolean valued subexpressions based 
on comparison operations such as 

(17) c 1 = {x Es I f(x) < q} 

cary 5rometimes be trea}e~ as special cases of (15) • To see 1

' 

thjs, let M be the largest q value that needs to be considered, 
and let m be the minimum value of {f(x), x Es} over all f 
an~ s, that can appear •. Putting sq = {b, 

1
m < b < q}, we see 

tha:t 1(17) is equivalent to {x E s I f(x) 'E sq}. 

:If q changes slightly by q = q + ql, then sq c11anges, 
I -

also ;slightly ,by 
sq = sq + [• q < b < q + gl} I -

or by! 
'1 i 

I {b, < b < q}. Sy = sq - g - ql -
Thus Ito update c1 we eaµ simply execute 

( 18) 

or 
ii 

as ap~ropriate. 
I I I 

I 
I 

= c1 - [+: q - q < b < q] C'(b) 1-
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Another class of special cases derives from 

(19) C = {x Es I q E f(x)} 

a se~ former which despite its close resemblance to (15) must 
be handled very differently. While (15) is continuous in 
all of its parameters, (19) is discontinuous in q. Thus 
we must save the value of Cina map C(q) defined for all 
values q ED • Applying Rule 1 of the last section to (19) . q 

we derive the update computation 
(20) cV q ED) C(q) = C(q) + {x E sl I q E f(x)}. 

q -

When D is small, (20) can be expected to be inexpensive. When q 
D is 1arge, we may wish to extend the iteration (20) not over q -
all of Dq but only over the smaller set 

(21) C' = {qE Dq l<:JxE s 1 I qE f(x))} 

which can be rewritten equivalently as 

( 21') 



SETL-138-31 

The techniques and concepts described in this section 
can be used to extend the basic continuity Rules 1 and 2 to 
generalized set formers involving multiple iterators, i.e. 

(22) C = {e(X11•••1Xq), xl E tl,x2 E t2<x1), .•• ,xq E tq(xl' •.• ,xq-1) 

K(x1 , ••• ,xq)}. 

Here we assume that K does not contain any free occurrences 
of any free parameters appearing in the set expressions 
t 1 , .•. ,tq. In order to reduce the total expression (22), 
we must first be able to reduce all the subexpressions tj upon 
which (22) depends. Let us suppose for the sake of simplicity 
that each expression tj in (22) is continuous in all of its 
parameters other than x 1 , ••• ,xj-l (which we will treat as 
'discontinuity parameters'). Then if the parameters on which 
tj depends continuously undergo only small changes in L, we 
know from preceeding analysis that t. is reducible; to reduce 

- J it we store its values as a map t.(x1 , •.• ,x. 1). Since for J J-
2 < j < q, the range of values of x. depends on the values of 

- - J 
x 1 , .•. ,xj-l' it is convenient to consider the set 

D< > = {<x11•••rX•_1>, xl E t1,·••1X· lE t. 1<x1,··-X· 2' x 1 , ... ,xi-l 1 1- 1- 1-

as the domain of the map i. (x1 , ... ,x. 1 ). Whenever a paramete. 
l. I.-

in which t. is continuous changes differentially, the values of 
l. 

f. (x1 , ... ,x. 1 ) must be updated for all necessar 1 ,alues of 1 · 1-
<x 1 , ... ,x1._1 > ED< , 

X11•••1X• , 1-.,_ 
::..hese sets of values are 

aefined by rules like those discussed earlier in the present section); 

the actual update operations to be employed will be defined by 

rules like those of section 2. Moreover, since any change to 

D for <x1 , .•• ,xj> 
j > i, and in particular can cause them to increase, it will 

sometimes be necessary to calculate additional map values 
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ti+l (x1 , ••• ,xi) , .•. , tq (x1 , ••• ,xq_1 ) when ti (x1 , .• -. ,xi_1 ) 

changes. (Note that similar recalculations appear in the 

final lines of (14) .) Once the t 1 , .•. ,tq(x1 , .•. ,xq-l) are 

known to be reducible, then (22) can be reduced by replacing 

the subexpressions t 1 , .•• ,tq(x1 , .•. ,xq-l) by the maps 

t 1 , ••. ,tq(x1 , ••• ,xq-l) and evaluating the result on entrance 

to loop L. Then directly after any of the maps ti(x1 , •.• ,xi_1 ) 

are updated within L we can insert code (derived in part 

from the code to update ti) which updates (22). 

As an example, suppose that t 1 , .•. ,tq(x1 , .•• ,xq-l) are 

all reducible to maps t 1 , .•. ,tq(x1 , •.• ,xq-l), all these maps 

having domains as described just above, and suppose that a 

particular set expression tI has the form 

{x Es I K'(x,x1 , ... ,xI_1 )}. Ifs is 

changed slightly within L by an assignments= s - ~, then 

the appropriate updating opera~ions are 

(23) cV xl E t.1,···,VxI-lE tr-1<x1,---,Xr-2» tr<x1,--·,xr-1> = 

t 1 (x1 , •.• ,x1 _1 ) - {xE 6IK'(x,x1 , .•. ,x1 _1 )};; 

C = C - {e(x1,·••1Xq),xl E t1,-·;,xI-l E tr-1<x1,---,Xr-2>, 

xI E {x E 6IK'(x,x1 , •.• ,x1 _1 )}, xI+l E tI+l(x1 , ... ,x1 ) , .•. , 

xq E tq(x1 , ... ,xq_1 ) I K(x1 , •.• ,xq)}; 

However in the case of a differential modifications= s +~of s, 

the situation is not so fortunate. In this case the necessary 

update operations are described by the following much more 

complicated nested loop which updates old values of t 1 and 
- -calculates new values of t 1 +1 , ..• ,tq: 
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(24) C = C ± {e(x1,·••1Xq)' xl E tl,_ • .,xI-1 E tr-1<x1,·••1Xr-2>, 

xI e·{x E b. I K'(x,x1 , •.• ,xI+l)}, xI+l E tI+l<x1 , .•. ,xI), .•• , 

xq E tq(x1 , ••• ,xq_1 ) I K(x1 , .•• ,xq)}; 

to be executed within L after s = s ± b.. Note that this code will 

often be int0rior to (23) and/or (23') for cases ir. which (23)/(23') 
can be used, since in (24) the expression tj must be recalculated 
repeatedly; however, since the set {x E b.lK'(x,x1 , ••• ,x1_1)} 
will generally be much smaller and easier to calculate than 

· {x E s :f. K' (x, x1 , .•. ,x1_1 }, the update operation ( 24) may be 
much less burdensome than the full calculation (22). 

Rule 2 generalizes to (22) much more smoothly· than Rule 1. 

Whenever an n-ary map f(all of whose occurrences in K of (22) 

have at least one parameter involving a bound variable xi) is 

changed within L by an indexed assignment f(y y) z 1, ••• , n = , 

. the code required to update the value of (22) is 

(25) s 2 =·{<x1 , .... ,x4 >, x1 t 1 , ••. ,xq E tq (x1 , ••• ,xq:--l) 

I P11<x1,_ • .,xq)· Y1 ~---&Pin (xl, .•• ,xq)· Yn or 

• • • ·~ Prl (xl' .. • ,xq) ·~ Y1 & • • .& Prn (xl,. • .,xq)· yn}; 

C = C - {e(x(l), ••• ,x(q)), X E s21 K(x(l), ••• ,x(q))}; 

f(y1,•·•,Yn) = z; 

C = C + {e(x(l), •.• ,x(q)), x E s 2 I K(x(l), ••• ,x(q))}; 

where the notation used is like that which we have employed in 

the preceeding discu~sion of Rule 2. Much the same technique 
/ 

suffices to handle cases in which f can o·ccur in the expression 

e of (22) as well as in K. 
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4. A Few Preliminary Remarks on Implementation 

To implement set-theoretic strength reduction, we 'rJJ L: 

need to perform the following steps: 

1) develop an algorithm which, given parsed SE'I'L c,:x,e 

P plus possible additional information including use definition 
chains, type analysis, declarations describing the relative 
sizes of sets and maps, etc., finds all the expressions 
E = E (x1 , ... ,xn) in P which can be reduced; 

2) formalize rules (as we began to do in section 2 and 

3) for updating all basic reducible formi of SETL expressions. 

3) program the transformations (of parsed code P) which 
apply these update rules in several possible ways, one of whic}1 
is not to apply reduction at all. These transformations must 
in effect match nonelementary SETL expressions to basic 
elementary reducible patterns, and must then carry out appropriate 
'symbolic calculations'. 

. ' 
To avoid involvement with unprofitable cc1s 2s _, v,'0. suggest 

the following heuristic: 
only if either 

reduce an expressio~ ;_~ = E ( x 1 , ••• , x ; . r1 

a) i.t is continuous in all the pararneters changc•ct ,-r· u, J 
some important loop L; or 

b) it is discontinuous in some parameters which varv 
within L, but the map E needed to store its valu· is c::,ntinuou:3 
in all the parameters xj in whir:h i.S cc," +-L,.,ou~;; i .. e", only 
a few values of~ need to h~ changed when x. is ctanaet ci~iqhtlv J . -
(recall the discussior of reduction objections 1 and 2 of the 
previous section). (Since the reducing transformations which 

are 2r~ually applied leave behind large numbers of expressions which 

can be simplified very gieatly by the application of constant 
folding, dead code and redundant expression elimination etc., 
it is important to incorporate these cleanup optimizations into 
any generalized strength reduction program. 
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4) select the most profitable of the program versions 
which result from application of the transformations (3). 
Work is currently in progress on implementing generalized 
reduction in strength as part of an experimental_ SETL optimizer 
system. While we do not intend to give details now, in the 
next section some of our implementation ideas will be implicit 
in our manual reduction of a simple program. 

s.· Is Set Theoretical Strength Reduction Apt to be Practical? 

To come to terms with this question we consider a simple 
example - Knuth's Topological Sort (this example is also studied 
in Earley, op.cit). The input assumed by this 
algorithm is a sets and a set of pairs SP representing an 
irreflexive transitive relation defined ons; as output, 
it produces a tuple tin which the elements of s are arranged 
in a total order consistent with the partial order sp. A concise 
SETL form of the algorithm is as follows: 

(1) t = nult; 
(while 3 A E s I sp {A} * s nR.) 

t = t + <A>; 
s = s - {A}; 

end while; 

The while loop L of (1) contains only one non-embedded expression, 
the existential quantifier 

( 2) 3 A E s I sp {A} nR. 

which is not already in a 'most reduced' form which might be 
found in a table of such forms. Since use-definition analysis 
will reveal that A, the bound variable of the quantifier, is 
used within L, we transform (2) into 

(3) 3 A E {x E s I sp {x} !:S. nR.}. 



This prepares for an attempt to reduce the setformer exprsssion 
{x E s I sp {x} n9-}, whose value we will call ZRCOUN'I'. ,'he 
elementary reducible form to \•1hich ZRCOUNT belongB is {x E s / K (:x, 

where K(x) is a boolean valued map defined 
sis already in reduced form, but matching 
to be taken as the subexpression sp {x} n 

on s. In ZRCOUNT 
shows us that K(x)is 
sea n£; for the -

expression ZRCOUNT to be reducible, we require that its sub-
expression K(x) should be reducible to a map K(x) continuous 
-·ith respect to differential changes in all the parameters 
,~esides x) upon which K(x) depends continuously. To reduce X(x) 

we firf'.t rewrite it as ( (sp {x} ns) c n£) & (n9, '.:. (sp {x} ns)), 

which simplifies to (sp {x} ns) c nt. This last expression is 
in turn transformed into [+: y E (sp {x} ns) not y E nil ,1 eq 0, 
and then again into [+: y Esp {x} ns] 1 o. To reduce integer 
equalities, we will always require that both arguments of~ 
be reducible. The parameter O of the preceding expression is 
elementary; the second parameter K2 = [+: y Esp {x} ns) 1 of the 
immediately preceeding equality is reducible only if the sub-
expression K3 = sp {x} ns is reducible. We observe that K3 is 
continuous with respect to the induction parameters but not 
with respect to x or sp. However, K3 reduces to a map i 3 (x) 
which is continuous relative to small ch~ngcs to sp (note here 
that sp is a region constant of L). Furthe1more K3 i~ continuous 
relative to small chang£s ins; i.e. , before or after perfor..«i n9 

s = s+ 6, K3 can be updated by executing the code 

( 4) 

where 
cV y E [+: x E 6) succ (x)) i~(y) = -3 YJ sp {y} n 6;: 
succ (x) = {y E D Ix "' ""P {y}} is an auxilliary .,lap 

): 

(defined for all e 1 ~;- _nts of D ) which, as part of our general 
X 

reduction ?rocedtue, we introduce in making the reduction (4). In 
(4) it can be seen that the domain D over which x varies is 

X 
simply the sets. 

Once this re<luction has been applied to K3 , we can go back 
and attempt reduction of the expression K2 = [+: y E K3 (x)) 1 
which led us to consideration of K3 . 
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The expression K2 is discontinuous with respect to changes to x 
and indexed assignments to K3 , but continuous .(cf. Rule 3 of 
section 2) with respect to differential changes to each set K3 (x). 
However, K2 can be reduced to a map K2 (x) (defined over all x Es) 
which is continuous with respect to indexed assignments to K 3 , 
and also with respect to differential changes in the sets 
i 3 (y). The update rules that must be applied to· K2 (y) when 
K3 (y) = K3 (yj 6 is executed are as follows: 

(5) i 2 (y) = i 2 (y) + [+: w E (6 - i 3 (y))] 1 and 

R2 (y) = i 2 (y) - [+: w E (6 n-K.3(y))] 1 respectively. 

From this it can be seen that the boolean quantity K = K2 (x) O 
reduces to a map K(x) (defined ons) which is continuous with 
respect to small changes to i 2 • Using this last fact, we can 
then go on to note that, ZRCOUNT = { x e s I K(x)} is continuous 
with respect to small changes to the induction parameters sand K, 
and to derive an update rule for ZRCOUNT. 

Some subexpressions among the 5 reducible expressions and 
subexpressions, ZRCOUNT, K, K2 , K3 , and succ can be reduced 
together with their outer expressions in order to conserve space. 
Starting with the innermost expressions, we see that K3 and K2 
both reduce to maps defined over the domain of the same 
discontinuity parameter, and hence that they can be condensed 
into a single map COUNT(x) = [+: y e·sp {x} n s] 1. Indeed, 
since K3 depends only on K2 , we need only combine update rules (4) 
and (5) to derive this fact. When sis changed bys= s - 6, 
COUNT can be updated by executing the following statement just 
prior to this change: 
(6) cV y E [+: x E 6) succ(x))COUN7(y)=COUNT(y)-[+: w E(sp{y}n6 ns)] 1;; 

· Here succ is a map whose reduction is governed by the discontinuity 
rule (4) above. More specifically, succ depends continuously 
ons, and rule (20, 21') of section 3 states that succ is to be 
updated afters= s - 6 by executing 

(7) c\/ be [+: x e .6) sp {x} ns) succ(b) = succ(b) - {x E 6lx E sp{x}};; 
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Once COUNT is reduced, we can reduce ZRCOUNT = {x E sl COUN'I (x) O} 
by immediate application of Rules 1 and 2 of sect.ion 2. nc::-ice, 

we can entirely avoid involve~ent with the auxiliary map K. 
The transformations that have been applied leadtd the following 
much improved form of the topological sort (1) 

(8) 

( 9) 

t = nult; 
cV A~) COUNT(A) = [+: y Esp {A}* s] l; 

succ (A) = {y Es I A Esp {y}};; 
ZRCOUNT = {x Es I COUNT(x) o}; 
(while :J A E ZRCOUNT) 

t = t + <A>; 

('t/y E succ{A)) COUNT(y) = COUNT{y) 
- [+: w E(sp {y} *{A}* s)] l; 

ZRCOUNT = ZRCOUNT 
+ if COUNT (y) !::S_ 0 then {y} else 

s = s - {A}; 

cVb Esp {A}* s) succ{b) = succ{b)-{x E {A.} 

n Q, • • 
_, I 

x E sp {x}};; 

( 10) ZRCOUNT = ZRCOUNT - {x E {A}j COUNT{x) O}; 
end while; 

A very good optimizer might determine thac the expressi,'n 

[+: w E (sp {y} * {A} * s)] 1 of (8) is just the 
constant 1, that sp{A} * s of (9) is nt, and that {x E {A} I 
COUNT (x) O} of (10) is simply {A}. Also, s cc~ be eliminated 
as a dead variable inside L. Ni th thP-2 irnpr0v-::,rr .. ~nt.3, a final 
version of the toplogical sort· ~uld be written as foll~w~: 

t = nult; 
cV A~, couNT <A> = r+:. y E 

succ(A) = {y Es I 
ZRCOUNT = {x Es I COUNT(x) 
(while A E ZRCOUNT) 

t = t + <A>; 

sp {A} * s] 1 ; 

A E sp { y}};; 

eq o}; --
<VY E succ(A)) COUNT(y) = COUNT(y) - l; 

ZRCOUNT = ZRCOUNT + if COUNT{y) 0 then 



SETL-138-40 

·{x} else nt;; 
ZRCOUNT = ZRCOUNT - {A}; 
end while; 

If properly implemented, this final version of the topological 
sort algorithm will run in a number of cycles proportional to 
the number nsp of elements in the map sp. The original form (1) 
of the algorithm will require something li~e nsp * (# e) * (# e) 
cycles, which can be much larger. However, the chain of symbolic 
transformations which leads from (1) to (4) is quite long, and 
it appears doubtful that an automatic optimizer will be able to 
traverse this chain unguided, especially since in this case, and 

., 
still more so in more general cases, there exist competing 
transformations whose application an automatic system would have 
to consider. Thus it appears likely that the answer to the 
question prefixed to the present section is 'probably not'. 
However, it may be practical to design a semi-automatic system, 
whose user may interatively signify that he wishes a 
particular subexpression of a program 
to be reduced in one of several possible ways. This may make it 
possible to derive efficient program v rsions with more certainty 
and less labor than would'be typical if the final program version 
had to be worked out in an entirely manual way . 

• 



SE'I'L--138 ~-41 

6. A few General Remarks on 'Continuity 1 in High-Level Prog~·"_!~!Tling 

Something close to the heuristic notion of 'continuity' 
suggested in section 1 of the present newsletter often seems 
to play an important role in algorithm design. In newsletter 
135A, we noted that programs will commonly be structured as 
nests of loops; many of the loops in such a structure 
-~ ·alise some set-theoretical expression E = E (a) by applying 

map M = M repeatedly until E emerges as a fixed point 
a 

of M. The efficiency of programs having this structure can 
often be improved by noting that within an 'outer' loop Lout 
which contains an 'inner' loop L. producing the value E(a), 

J.n 
the parameters a of E(a) are varied only slightly. An observation 
of this kind often allows one to restructure L. for efficiency in 
by calculating E using its available previous value, which 
calculation can of course be substantially more rapid than 
calculation of E 'from scratch' would be. This line of 
thought makes it clear that an algorithm for evaluating E = E(a} 
wjll be of particular interest if it has good continuity 
properties. Suppose for example that E(a) is calculated as 
the fixed point of a transformation Ma. There will in general 
be many transformations M M', M", ... all of which have the a a a 
value E(a) as fixed point; among these transformations will 
often be particularly interested in those M for which the a 
sequence E(a), Ma(E_(a)), Ma (Ma (F(a))) , .•. leads ~fter 
comparatively few iterations to the ~.;_xed poi_nt E (.:1) of M-a 
(where we assume that the par.=,· .;er values a and a dif .fer 
only slightly). This line of thought points up problem area 
in algorithmic an2~:sis which has not yet been explored 
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It is instructive to consider one or two cases in which 
algorithms or data structures having useful properties of 
continuity are known or can be devised. First consider 
sorting, and the problem of maintaining the sorted form of 
a sets to which modifications are continually being made 
by addition and deletion. If there are n elements ins, 
the bubble sort will correct for an insertion or deletion 
in approximately n/2 steps. However, if the sorted form 
of sis kept as a balanced tree, one can connect for an 
insertion or deletion in log n steps. 

Next consider the minimum min of a sets of integers. 
After an insertions= s + {x} one can update min by executing 

min = if x it min then x else min; 

and after a deletions= s - {x} by executing 

min = if x ne min then min else (~ x) (1). 

Since in many situations the minimum of swill rarely be deleted, it 
will rarely be necessary in using this procedure to generate 
the sorted form of x. On the other hand, if the minimum of 
sis used in a process, as for example a selection 
sort, which invariably de:.etes the minimum, then one wants 
an algorithm which has good 'worst case' rather good'typical 
case'continuity properties. In such a situation, it is 
reasonable to arrange ·s as a vector v =trees having the 
implicit tree property, i.e. v(n) < v(2*n) and v(n)<v(2*n+l). 
Then the minimum of sis necessarily v(l), i.e. can be 
expressed as (~ s) (1). Note that in approaching the quantity 
min sin this way, we have essentially factored the function 
min into the product of two functions,of which the first, 
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tree, is continuous, while the second (indexing) can be 
performed rapidly. 

Algorithm continuity becomes particularly important in 
connection with procedures which attempt to optimize large 
combinatorial structures S by applying local transformations 
to them,especially if the transformations to be applied 
interact in a way which makes the applicability of each 
transformation depend on the effects of the transformation 
which preceeds it. Interaction of this kind quite typically 
occurs when we apply optimizing transformation to programs, .. 
since in this case the analysis which must be carried out to 
determine whether a given transformation can be applied is 

complex and expensive. It is therefore important to find methods which 
allow the results of a prior analysis to be updated rapidly 
to give a new analysis when a program structure Sis modified. 
If available, such techniques would make it possible for an 
optimization algorithm to explore spaces of program trans-
formations as freely as a manual programmer does; until such 
techniques are developed, our approach to optim~ation is 
bound to remain 'stiff' and somewhat cautious. 


