
SETL Newsletter 140 

Use-use Chaining as a •Technique in.Typefinding 

J. Schwartz 

Sept. 27, 1974 

1. Equations for type determination by Tenenbaum's 'backward' method. 

In his thesis (hereinafter cited as TT) A. Tenenbaum 

develops two methods of typefinding, a 'forward' and a 'backward' 

method, which supplemen± each other. The 'forward' method is 

based on conventional data-flow analysis. The 'backward' technique 

uses a rather ad hoa approach based upon a notion of 'program 

tree'. The efficiency of this latter method, especially when 

applied to large programs, seems questionable; for this reason, 

the present note will suggest an alternate technique which can 

be used in connection with 'backward' typefinding. The technique 

to be suggested lies closer to conventional data-flow analysis 

than does the 'tree' approach of TT. Moreover, our new technique 

seems easier to develop in a 'cross subroutine' version. 

In what follows, we use the terminology introduced in TT, 

except that we refer to 'ovariables' and 'ivariables' instead of 

(variable) 'defs' ('definitions') and 'uses'. 

Let P be a program, schematized into basic blocks in the 

usual way. We introduce a number of mappings. Let oi be an 

ivariable or ovariable occurrence of the variable v. Then 

bfrom(oi) is the set of all ivariable and ovariable occurrences 

of v from which oi can be reached along a path clear of 

occurrenc~s of v. The set bfromexit the union over v of the set 

set of all ovariable and ivariable occurrences of v from which 

a program exit or redefinition of v may be reached along a 

path clear of occurrences of v. The set ffrom(oi) is the set 

of all ivariable occurrences of v which can be reached from 

oi along a path free of occurrences of oi. ·Note that the 

respective functions bfrom and ffrom rather resemble the 

use-to-definition map ud and the definition-to-use map du 

of conventional data-flow analysis; they can be calculated 

by a similar method, to be described in more detail below. 



SETL 140-2 

Suppose now that the functions ffrom and bfrom have been 

calculated. Then in a typefinding algorithm (like that of 

TT, pp. 88-89) which uses both 'forward' and 'backward' informa

tion, the following relationships can be exploited: 

A: if oi is an ivariable occurrence of a variable v, then 

the type typ(oi) associated with oi is the conjunction of: 

Ai: the types associated with all ovariables which can 

supply the value of oi; and: 

Aii: the type backtype(oi) determined by the manner in which 

oi is used. This type is a function both of the operation op 

applied to oi and the type information available for the output 

variable of op, and: 

Aiii. if oi belongs to bfromexit, then nil; else the 

disjunction of the types associated with all the elements of 

ffrom(oi). 

B: if oi is an ovariable occurrence of v, then the type 

typ(oi) associated with oi is that determined by the types 

associated with the input arguments of oi. 

These relationships are summarized in the following equations: 

, (2a) for ovariables: typ(o) = forward(o); 

(2b) for ivariables: 

if i E bfromexit then 

[dis: o E ud(i)] typ(o) £2!!_ backtype (i) 

else[dis: oE ud(i)] typ(o) con backtyp(i) con 

[dis: iprimeE ffrom(i)] typ(iprime) 

This system of equations can readily be solved by a conven

tional 'workpile' method. we·begin with a 'forward only' pass 

in which all ivariables other than constants and ivariables 

for which auxiliary declarations are supplied are initialized 

to the 'minimum' type tz; during this pass, the simplified 

relationships 



SETL 140-3 

(3a) 

and 

typ(o) = forward(o) 

(3b) typ(i) = [dis: oEud(i)] typ(o) 

are used. At the beginning of the second pass, we initialize 

our workpile to the set 

(4) {<backt,i>, iEivars} + {<ffrm,i>, iEivarslin E bfromexit} . 

Here, ivars is the set of all ivariables of our program. Then 

we process the workpile elements. To process an element <backt,i>, 

we reduce typ(i) to typ(i) con backtype(i); to process 

<ffrom,i>, we reduce typ(i) to typ(i) £2!!. [dis: ipEffrom(i)]typ(ip). 

Elements <frmo,i> and <frmi,o> can also appear on the workpile. 

To process <frmo,i>, we reduce typ(i) to 

typ(i) £2.!!_ [dis: oEud(i)] typ(o); to process <frmi,o>, we reduce 

typ(o) to typ(o) .£2!!_ forward(o). Whenever typ(o) changes, we put 

<backt,i> on the workpile for each argument ivariable i of·o, 

and put <frmo,i> on the workpile for each iEdu(o). Whenever 

typ(i) changes, we put <ffrm,ii> on the workpile for each 

ii E bfrom(i) (actually, it is better to ignore those ii which 

belong to bfromexit) and put <frmi,o> on the workpile, where 

o is the ovariable to which i is argument. 

2. Calculation of [from, bfrom, and bfromexit. 
Interprocedural considerations. 

As compared to the corresponding approach to the exploitation 

of 'backwards' type relations outlined in TT, the technique 

outlined in the prceding pages has the advanrage of being 

'flow free', and hence adaptable without particular difficulty 

to interprocedural use. To calculate ffrom, bfrom, and bfromexit 
we adopt the technique used to calculate ud and du. It is 

conyeninent to introduce a dununy variable o and insert a dummy 

argument too at each program exit, and to allow the set 



SETL 140-4 

ffrom(oi) to include both ovariable and ivariable occurrences 

of oi. Then bfrom is essentially the inverse of ffrom, and 

bfromexit is [+: o E ovars] bfro~(o), where ovars is the set 

of all ovariables (including the dummy o) of our program. 

Thus only £from need be calculated. To calculate ffrom(oi), 

we make use of an auxiliary function reaches(b), which tells 

us which ovariable and ivariable occurrences of any variable 

v can reach the entrance to a block b along a path free of 

occurrences to b. Once reaches(b) is available, ffrom(i) can 

be calculated in a fairly evident way. The basic equation for 

the calculation of reaches(b) is 

(5) reaches (b) = [+: p E pred(b)] (reaches(p) * thru(p)+ 

+ occurrences(p)) , 

where pred(b) is the set of predecessor blocks of b. Here, 

thru(p) is the collection of all ovariables and ivariables 

whose corresponding variables do not occur in p, and 

occurrences(p) is the set of all ovariables/ivariables which 

occur in p but which are not followed in p by any ovariable/ 

,ivariable occurrence involving the same variable. 

The values thru(b) and occurrences(b) are calculated 

much in the manner explained in Newsletter 134, p. 11. 

Much as in NL 134, we must ascribe functions thru(sr) and 

occurrences(sr) to each subprocedure sr. Then thru(b) is 

calculated as the intersection of the sets thru(x) associated 

with each 0£ the individual statements x of p. If x is a 

statement other than a function or subprocedure call, then 

thru(x) consists of all ivariables/ovariables whose variables 

do not occur in x. If x is a call to a subprocedure sr, then 

thru(x) consists of all ivariables/ovariables which belong 

to thru(sr). If ·x is a call to a subprocedure which is 

· somewhat indeterminate and might be either sr
1
,sr2 , ••• , then 

thru(x) consists of all ivariables/ovariables which belong 

to thru(sr.) for some j. Related rules, which we leave it 
J 

to the reader to elaborate, hold in calculating occurrences(x). 



SETL 140-5 

To calculate thru(sr) for a subprocedure sr, we prefix 

the entry block of sr by a dummy code block which makes an 

assignment to each global variable referenced in sr and each 

· parameter in sr. Denote the set of ovariables corresponding 

to these assignments by EXOV, and let returnstats be the 

,· 

set of all return statements in sr. Then:thru(sr) and 

occurrences(sr) are equal to 

(6a) 

and 

(6b) 

respectively. 

[+:be returnstats] reaches(b) * EXOV 

[+: b E returnstats] reaches(b) - EXOV 




