J.T. Schwarty Februaty 3, 3\%e
'Arguments from Use' in the Proof of
Relationships of Inclusion and Membership

The methods for establishing relationships of inclusion and membership which are outlinea in Newletter 130 are 'arguments from definition', i.e. start by asserting thot the output of an operation has certain inciusion/membership propertias if the inputs are assumed to have certain corresponding properties of the same kind. It is well worth noting that, in addition to arguments of this general sort, there exists a sionificant "argment from use" or 'backward agrument' which can be used to refine an analysis of inclusion and membership in SETL programs, The prototypical case is shown in the code line

$$
\begin{equation*}
f(x(x))=f(x(x))+1 \tag{1}
\end{equation*}
$$

Which we assume to appear in some SETL progran in which f is known to be a tabulated integer-valued mapping, and where r is an expression without side effects. If only forward analysis were used, the statement (1) might be assumed to enlarge the domain of f; but as a matter of fact it does not. This may be sean as follows:
Since the integer 1 is added to $f(x(x))$, presumably without error, the value $f(r(x))$ must be different from Ω; thus $r(x)$ must belong to the domain of f.

A related case is seen in the iteration

$$
\text { (V) } x \in s) f(x)=f(x)+I ;
$$

if this code is correct, s must be contained in the domain of f.

The general axgment is finte if an iveriable x appears as

$$
0=f(x):
$$

and if it is known (presumabiy from type analysis) thet Ω is not: an accoptable value for o, ther must definitely belone to the comein of f.

This property can then be carrien over to o- and ivariahles Of the same progran P by the followtig line of reasoning: properties known for ivariables i " can be propagated back to source guariables ot if ali the wentiable ocourences jinked to ot Sby the interocmurare itinking function wilol) have the property in question, and if 0^{\prime} in not linker (by un(0^{\prime}) elther to a redefinition of its variable or to a program axit. In the case of properties inke i ' $E V_{1} f$ and $D^{\prime} \in V_{1} f_{i}$ we must also be sure that no path fano of to one of its uses in intersects an operation which can add to the domain $\eta_{i} f$. This argument may most often be employed when i' has oc as its only definition, and when the collewtion of pathe connecing f" and o' is especially simple.

