
SETL Newsletter# 144 

Interprocedural Live-Dead Analysis 

1. Introduction 

J.T. Schwartz 
February 25, 1975 

Live-dead analysis is often carried out only intraprocedurally, 

in part because its principal ordinary application is to re-

gister allocation; to save a few store operations wili ordinarily 

reduce the cost of a subroutine return only slightly, and just 

to secure this modest gain the extra work qnd complication 

of an interprocedural live-dead analysis might be considered 

excessive. In SETL however live-dead analysis plays a more 

important role, in that live information enters into the 

'Destructive Use Condition' stated in Newsletter 131, so that 

the lack of accurate global live infor~a,,tion can force large 
'' I 

objects to be copied unnecessarily. Fo~ this reason, an 

interprocedural live-dead algorithm is useful in connection 

with SETL optimisation. Actually, we require information which 

is more detailed than that provided by customary live-dead 

algorithms; specifically, for each routine rout, and for each 

basic block of rout, we .want to know the set of all local and 

global variables which are live at the entrance to rout. The 

present newsletter will describe such an algorithm. 

2. Description of an Interprocedural Live-Dead Analysis Algorithm 

We assume that a program P is giyen, and that global data

flow information has been developed for P, in the usual form of 

two functions ud and du which link ivariahles (uses) to corresponding 

ovariables (definitions) and vice-versa. ;Using this information, . 
and applying what is essentially transitive closure, we develop 

a list of all the live ovariables of P; an ovariable is live 

if it is used in an operation other than a simple assignment, 

or if it is used in a simple assignment whose output ovariable 

is live. 



SETL-144-2 

(Note that we might say, somewhat more accurately, that an 

ovariable is live if its value is output, or if it is linked 

to a use in an operation whose output is known to be live. 

But as a matter of fact we give all operations other than 

simple assignments 'benefit of doubt', since the only operations 

we really suspect are those which transmit arguments to sub

procedures, and we assume that these operations are represented 

by (nominal) assignments.) 

Next, processing all the routines rout of Pin sequence, we 

build up a comprehensive pair of maps, the first sending each 

block B of Pinto the set Zive(B) of all variables live on 

entrance to B (but with flow paths that pass through a sub

procedure 'return' instruction ignored); the second defining 

the set globret(B) of all global variables which reach a return 
'l 

statement along an appropriately clear p~th starting at the 

entrance to B. These two maps are developed using what may be 

thought of as two calls to a flow-tracing routine reaches, of 

conventional construction. (For efficiency if not for clarity, 

it is possible to combine these two calls into one). As input 

parameters, reaches requires ·functions defining the variables 

killed by and the variables used within eachhlock of rout; and 

for blocks containing subprocedure calls, this information must 

reflect global variables used in, live (but only live) arguments 

used by, and global variables killed within the target routine 

of any such call. There is no problem about mak_ing this 

information available; indeed, the in~erprocedural data-flow 

tracing algorithm described in Newsletter 134 will provide 

it. On the second call to the routine readhes we transmit as 

parameter a dummy variable-use mapping wh~ch associates a null 

set of uses with every block of rout not ending in a 'return' 

statement, but associating with each such block a nominal 

('post return') use of every global variable; it is easily seen 

that reaches, called in this way,will develop the desired 

globret information. 



SETL-144-3 

The remaining part of our work is to expand our initial 

estimate of the set of variables live on entrance to each 

particular block, in a way taking 'post-return' uses of global 

variables into account. (Note that variables explicitly assigned 

to subroutine parameters from within the subroutine, even by 

simple assignments, are given 'benefit of doubt', i.e., assumed 

to be live prior to the point of assignment, since it is assumed 

that explicit assignments of this kind will not be inserted 

unnecessarily.) 

To take post-return uses into account, we invert globret, 

to get a mapping sending each global variable into the set of 

all blocks from which a return statement can be reached along 

a path clear for the variable in question. Using (essentially 

inverting) the map live, we also build up a map sending each 

global variable v into the set of all b~ll instructions on return .. ,,. : 

from which vis live. The set of pairs defining this map defines 

the initial state of a workpile; we process an item <v, block> 

from this workpile by adding v to live(block) if v E globret(block), 

and by generating new workpile items as necessary if some 

predecessor of block ends in·a call instruction. When this 

workpile-driven transitive closure process completes,Zive will 

have taken on the significance we desire. 


