
SETL Newsletter# 147 J.T. Schwartz
March 8, 1975

A syntactic Construct Useful for Checking Parameters.

Central utility processes of an operating system must

consta~tly be on guard against bad parameters, whose careless

use might cause them to abort (in GYVE terminology, 'terminate').

Information preventing such parameters from being accepted

is supplied declaratively in GYVE, where as a matter of fact

this whole problem is somewhat less severe than it is in SETLG,

since the data objects being manipulated are not so totally

dynamic in size and type. In the present newsletter, we shall

suggest a syntactic mechanism facilitating checks on a variable's

structural form. It should be noted that, although this

mechanism is purely,y syntactic, and has no semantic implications,

it embodies a different rule for the handling of illegal cases

than SETL does; this permits large clumsy SETL test sequen9es

to be written very much more conveniently and succinctly.

Central to the proposed mechanism is a Boolean valued

'check' operator having the form

(1) var I pattern,

SETL-147-2

where var is a variable, and pattern is the new syntactic

construct which we aim to explain. It is helpful, before

launching on a formal explanation, to give an example. To

check that the value of a variable v is a set with not more

than 100 elements, each of which is a pair consisting of an

integer first component not exceeding 50 and a character­

string second component with not more than 10 characters, we

can write

{ 2) v I (# .) t t 10 O and { I < I in t. and. ,Q, t 5 0 , cstring.and{#.) it 10}

This is an expression of the form (1), which has the value

true if all the structural conditions listed above hold, false

otherwise. The general rules visible in this example are

as follows: patterns are built recursively out of subpatterns

using 'constructor operations'. Specifically, if p is a

pattern, then

{Ip}

is a pattern such that

and {VvE s I { v I P)) •

si{ip} is equivalent to (~ s) ~ set

Similarly,

<lp1 , .•. pn> is a pattern such that

to (~ s) ~ tupl and s{l) IP1 and

and (# s) ~ n. In addition:

if p1 , •.• ,pn are patterns,

si<jp1 , .•. ,pn> is equivalent

s (2) I p 2 and .•. s (n) I Pn

p1 and p 2 is a pattern, with sl {p1 and p 2) equivalent to

sip1 and sjp2

p1 ~ p 2 is a pattern, with sl (p1 or p 2) equivalent to

sjp1 or sip2 ,

and so forth for the other booleans. Any boolean expression

may be considered to be a pattern, since it returns a boolean

value.Within such an expression, when it occurs in a pattern

or subpattern, any SETL operator may be written with the

SETL-147-3

symbol '.' as argument, the missing argument being the

possibly implicit variable to which the pattern or subpattern

applies. Note in connection with this rule that the pattern

(3) (#.) it 50 and {I set.and(#.) it 100}

describes a set of at most 50 elements each of which i~ a

set of not more than 100 elements; the two occurences of ' '
I I refer to different quanties since the first occurence of

is bound to the outermost pattern level which the second

occurence of '.' is bound to a subpattern. Note also that

in both (2) and (3) we have used the name xxx of a SETL type

as a monadic operator, where 'xxx a ' abbreviates '(~ a) ~ xxx'.

In some cases it will be desirable to introduce an explicit

name for the quantity

We do this by writing

designated by ' ' in (2) and (3).

{name I p}

instead of {Ip}, and <name 1 I p 1 , name 2 I p 2 , ••• ,namen I pn>

instead of <lp1 , •.• ,pn>. In this second construct, any one

of the names name. may be omitted, in which case the immediately
J

following 'I' will be omitted also unless j = 1. As an example

of the use of this construct, note that

{<al!, bib ne a>}

designates a set of ordered pairs none of which has second

component equal to its first component.

If p is a pattern, then

(4) r I Pl

SETL-147-4

is a pattern such that s I [Ip] is equivalent to

(5) (~_ s) ~ tupl and (V v(n) E si (sjp)).

Within pin the construct (4), the symbol '.'maybe used as

a synonym for the 'v' of (5). If it is desired to introduce

explicit names for the 'v' and 'n' of (5), one can write

(6) [name
1

(name
2

) Ip]

instead of (4).

Patterns of the type <Jp1 , .•. ,pn> can be concatenated

with patterns of the type (4), yielding patterns

which impose n different conditions on the first n components

of a tuple, and a fixed condition on all remaining components.

We stress once more that in checking a value against a

pattern we proceed in a completely 'defensive' fashion, converting

any operation that would otherwise be an illegal error

termination into a check-operation value of false. It is this

convention which gives the pattern-check operation particular

utility.

Note finally that no operation invoked as part of a

pattern-check is allowed to have any side effect.

