
SETL Newsletter# 150 

What Constitutes Progress in Programming? 

J.T. Schwartz 
May 10, 1975 

Donald Knuth has called programming an 'art', and has 

argued the appropriateness of this designation at some·length. 1 

In this short essay I should like to argue (though of course 

terms are not necessarily matters of great consequence) that 

programming is not an art but a nascent science. The dis

tinction that I see is this: art, though ever changing and 

fresh, does not and cannot progress, since it lacks any real 

criterion of progress; but science does progress. 

To establish programming as a science is therefore to 

propose a convincing criterion of progress for it. To this 

end a comparison with mathematics is enlightening. MathemaLics 

is the search for interesting proofs, and for general frameworks 

which allow interesting proofs to be found. A proof is defined 

by its target theorem T, but nonrecursively; even after T is 

conjectured (which may itself be a significant event) its 

proof can be arbitrarily difficult to find. Thus the moments 

of progress in mathematics (typically they are discrete and 

sharply defined) are (simplifying somewhat) the moments at 

which proofs are found. Note also that once T is proved, and 

assuming that T is truly interesting, it will illuminate some 

broader area, and in particular will ease one's approach to 

other interesting theorems. 



SETL-150-2 

There certainly is a side to programming, namely the 

invention of algorithms meeting efficiency constraints whose 

satisfiability is non-obvious, which has just this flavor, 

and which is therefore as much a science as mathematics. (Knuth 

is of course one of the main developers of this 'single-algorithm' 

oriented part of programming science.) The Fast Fourier 

Transform is no less an invention than the Pythagorean Theorem. 

But should the other side of programming, namely its in

tegrative side, i.e., the growing collection of techniques 

used to organise large systems of algorithms into coherently 

functioning wholes, be considered as an infant science also, 

or must it remain an art? 

I argue that this part of programming is a science also, 

albeit a science only in its infancy. To see that it is, one 

must observe that the crucial obstacle to the integration of 

systems of programs providing very advanced function, which 

will genera·lly be large systems of programs, is met when their 

complexity rises above the very finite thresholdl:Eyond which 

the mind can no longer grasp them totally. Those who have had 

the experience of working with systems of this level of complexity 

will realise that one's ability to cope with them is quite 

limited, and always threatens to founder entirely. 2 With the 

active help of a computer, by assembling multi-person groups 

(less prone to fatigue than individuals), and by concentrating 

on one system portion at a time one can cope with such systems. 



SETL-150-3 

But even while being successfully developed and maintained they 

remain elusive and largely inexplicable; in a manner never fully 

comprehended or controlled, they evolve. In contrast, a 

system which remains below the threshold critical for full 

comprehensibility can be designed with assurance and implemented 

with a firm grasp. Those who have dealt with systems of both 

sorts will realise that systems of the latter kind can be an 

order of magnitude easier to deal with than structure which 

lie beyond the comprehensibility threshold. 

Thus programming progresses when schemes which make it 

possible to realise significant function without overstepping 

this critical threshold are invented. Each such scheme will 

address some more or less broad application area, and will 

provide objects, operations, and also a semantic framework 

within which these objects and operations can be combined to

gether into large structures, the whole allowing significantly 

many functions which formerly would have required super-threshold 

realisations to be written out completely without the critical 

threshold of complexity being crossed. Proof of the success 

of such a scheme comes when, by approaching a major application 

in a way comforming to the rules of the scheme, one finds that 

it has become comprehensible, though it was not so before. 

A framework of the kind envisaged is of course a language, 

and another proof of its success will lie in the fact that 

this language allows one to speak clearly and directly about 

important matters which previously could only be depicted in 

roundabout and clumsy ways. 



SETL-150-4 

(In mathematics, major definitions have the same effect.) 

Note also that the restrictions which such a framework embodies 

can, if they prevent complexity from rising rapidly,be just as 

important as the flexibility it provides. 3 

Once such a framework has been invented, and when some 

process or function has been specified in it, it will generally 

not be hard, though of course it may be tedious, to take this 

specification and transcribe it, perhaps to gain efficiency, 

into some available and appropriate programming language. 

Because numerous errors are bound to infest any lengthy or 

co~plicated process of transcription, it is generally useful 

to implement languages which realise the framework or something 

close to it in a polished, succint, and helpful a form as 

possible. Among, other things, this can call for the develop

ment of elaborate program analysis methods, which for example 

may be used to support rich systems of explicit or implicit 

declaration, to provide sophisticated d;iagnostics, or to perform 

optimisation which the user of a language of very high semantic 

level is expected to omit. But such development is 

tool-building rather than fundamental progress. In this sense, 

I consider that SNOBOL and SIMSCRIPT, for all their lack of 

polish, embody very significant inventions: SNOBOL the_ 

string/pattern algebra and a natural framework for organising 

operations in that algebra; SIMSCRIPT the event and scheduling 

notions so helpful for simulation. 



SETL-150-5 

Similarly, I would say that the interest of ALGOL 68 lies not 

in its syntactic polish, but in the way it handles object types 

and coercions, and in the fact that the kind of systematic 

approach to declarations which it embodies promises to reduce 

levels of run-time error very decidedly. 

Footnotes: 

1 See Knuth, Computer Programming as an Art. CACM 17, 11 

(November 1974), p. 667. 

2 This point is central to Dijkstra's essay Concerning 

Our Inability To Do Much. p. 1 in Structured Programming, 

O.J. Dahl et al, Academic Press 1972. 

See also Schwartz, On Programming, Installment I, Item 1: On 

the Sources of Difficulty in Programming. Courant Institute 

of Mathematical Sciences, 1973. 

3 This point lies at the heart of Dijkstra's celebrated note 

Go-To Considered Harmful, CACM 11, 3(March 1968), and of various 

of Hoare's interesting comments on programming technique, e.g., 

Monitors: An Operating System Structuring Concept, CACM 17, 

(October 1974) p. 261. 


