.

SETL Newsletter # 151) J. T. Schwartz
- ; June 20, 1975

Aﬁditional'cchsiderations Concerning

Semi-Automatic Data Structure Choice

Thié:néwsletter returns to the theme of NL 39 (More Detailed
Suggestione Concerning 'Data Strategy' Elaboratione for SETL),
.namely to the idea of a declarative, programmer-assisted
approach to the problem of data structure choice. Since such an
approach is an alternative to and perhaps also a preparation
for fully automatic structure choice, it deserves investigation.
This newsletter will simplify and flesh out the suggestions
made in NL 39.

The foundamental technical idea with which we will work is
that of basing. A SETL quantity x is said to be represented
in pased form,,or to be based, if it is not kept in standard

form, but instead is kept in a special form which relates it
to some other set s called the base for the représentation of
X. A very wide collection of useful non-standard representations
could be devised; however, in the present newsletter we shall
concentrate oﬁ a modest but typical and probably adequate system

of representations.
For each of the basings which we admit, a symbolic notation

. will be introduced. The family of notations which thereby arises
(or perhaps some equivalent family of notations chosen for
greater syntactic convenience) constitutes a language of data
structures which can be used declaratively as a data structure
elaboration language. An example of such a notation is 'C s',
which we will use to describe sets which are subsets of s, re-
presented by bits stored locally with the individual elements
of s. To indicate that s; has this representation we will write

sl::E s, which may be read 'sl is represented as a subset based

SETL-151-2 . *

~
-
»

A full list of the 'based’ representations which will constitute
our vocabulary of data structures, together with the symbolic
notatioris which we shall use to designate them, is as follows:
8, Cs - the sgbset Sy of 3 is represented by & collection
of' bits stored locally with the individual elements
- of g, ‘

slzzkfg_s - The subset 8y of s is represented by a bitvector.
In this case, a generated serial number referencing
a particular bit position is stored locally with
each individual element of s.

8,::L C 8 - the subset sl'of s is represented using both a

collection of bits stored locally with the individual

elements of s and a list of pointers to elements of

‘8. This list serves to expedite iterations over s
slzzLR'E s ‘= the subset 8, of s is represented using both a

10

bitvector and a list of pointers to elements of s.
In this case, as in the slzzREs case, serial numbers (
are stored locally with the elements of s.

X:: € 8 - The object x is represented by a pointer to an
element of s.

X:: <81,...,Bn> - the object x is represented as an n-tuple,
whose components have the basings Bl""'sn respectively.
E.g., one might write x::<C s, € s, ICs'>.

x:: {B} - the object x is represented by a hash table with
locally stored overflow, whose entries point to
objects having the basing 8. E.g., one might write
© x:: {C s}. |
f:: M(s,B) - the set £ is a single~valued map defined on (a subset of;

's,!with map values (or pointers thereto) s;ored locally
Qith the individual elements of s. The map values
are represented using the basing B.

f:: RM(s,B) - f is a single-valued map defined on (a subset of) s,
with map values (or pointers thereto) stored
(remotely) in an array (i.e., tuple). 1In this case, (
as in the s,::R C s case, serial numbers are stored
locally with the elements of s. The map values are

represented using the basing 8.

SETL-151-3

. f£:: MM(s,B8) - £ is a multivalued map defined on (a subset of)s
the values constituting f£{x} being stored as a
. list referenced by an initial 1list element pointer
stored locally with each element x of s. The map
" “Vyalues are represented using the basing 8.
f:: RMMks,B) - £ i1s a multivalued map defined on (a subset of)
| s, the values constituting f{x} being stored as
| a list referenced by an initial list pointer stored
in an array (i.e., tuple). 1In this case, as in the
8,::R C s case, serial numbers are stored locally
with the elements of s. The map values are represented
using the basing 8.
x3:8 - the object x is represented in its standard SETL form.
x:: INT(k) - x is an integer of known size.
x:: STR(k) - x is a string of known maximum size
x:: BIT(k) - x is a bitstring of known maximum size.

The basings listed above can be compounded in obvious ways,
and combined as long as certain restrictions are observed. With
one exception, we will only allow a set to be used as a basis
if it is represented in a manner which implies that its elements
will be grouped together in some kind of list or array. For this
reason, the basing s;:: C s is illegal if s has the basing s::Cs, or
27 but legal if s:: L C 8y In this latter case, the
bits which flag membership/nonmembership in slwill be stored
with the elements .of the 'list of all members of s' that is
maintained. Similarly, the basing f:: M(s,B) is illegal if
s has the basing s:: C s .

s:: RC s

o OF Si: R C Ss, but legal if s:: L C Sor
in which case the values of the map f will be stored with the
elements of the list of all members of s. The cases in which we
allow basings like él::gﬁ and f::M(s ,8) are: S::L.E Syi s::LREsz,
s::{B}, s::Q, s::M(sz,B), s::RM(sz,B), s::MM(sz,B), s::RMM(sz,B).
That we should allow the basing.sl::gs even when s has the basing

(:::) s::M(sz,B) is somewhat exceptional, since the elements of s have

no representation of their own, but are merelv represented by

fields attached to the elements of 52.

ik

)
N m

SETL-151-4

However, this type of basing is useful for storinag submaps of (ffs
maps having a based representation, and is therefore allowed.
Using the fundamental basings which appear in the pre-

ceediﬁg list, and compounding them in ways conforming
to.the.rules just stated, we obtain a large family of possible
basings. Givéh a-SETL brogram and a variable x in it, we allow
any of these'baéings to be declared for x. Then, given a
typical SETL binary operation'il op i,, and assuming that
basings have been declared for its inputs il and 12, there

.will exist some standard way of performing the operation, and

the operation's result will have some standard basing. As an
example of this general remark, consider the operation 8y with x.
Suppose first that Sy has the representation slztgs. Then to
calculate sy with x- we first locate x as a member of s; if

this location operation is successful, we set the bit attached

~ to the member of s that has been located, and if this changes

the bit, we adjust the count and hash maintained with s, ‘ 4 <:fw
appropriately. On the other hand, if x cannot be located as ~
a member of s, we consider the basing declared forx S to be

in error, since in this case the calculation of S with x can

make necessary some very extensive reconstruction of Sy which

we do not wish to allow. All of this is shown in the following

code, which realises the operation 8, with x in the case sl::g S.

(4) if locate(x,s) is ¢x ne 2 then
if sl_bit (2x)} eq O then
s, bit {2x) = 1; /* set flag bit */
count(sl) = count(sl) + 1;
) /% adjust count field of $1 if necessary */
hash(sl) = hashplus(hash(sl), hash(x));
’ /* adjust hash field of Sy if necessary */

end if s . bit;

. 1
else
error (‘basing violation in s with x operation, x not ('
present in base')

end if locate;

-

SETL-151-5

In this code, locate(z,s) is a subprocedure that returns

a pointer &x to the item of s which is equal to x if such an
item exists, but R otherwise. Also, ccunt(s;) is a field of
8y in which the current number of elements of 8, is maintained
(if it is necessary to maintain such a count); and hash(s) is
a field of s, in which standard hash quantity calculated from
its elements is kept, if it is necessary to maintain such a
hash (the function hashplue adjusts the calculated hash of sy
in a standard way when the element x is added to sl). Finally,
the 1-bit field s; bit(2x) contains the bit which flags
membership/nonmembership of the item £x in the set s,.

- Depending on the way in which x and s are represented, and
on the global context in which x and s appear, the code (*)
will represent a large or smaller amount of calculation; moreover
_in‘certain cases parts of this code can be elided. The most
drastic variations in the time needed to execute (*) will come
from variations in the time needed to calculate the function
locate(x,s). If x has the basing x::€s we are at one extreme,
since locate(x,s) simplQ.reduces to x. If x::Q and s has a
basing like s::1Cs; then we are at another extreme, since
locate(x,s) is calculated using what may be a long list search
and a'sequence of identity tests (which check x for identity
with successive elements of this list). In addition to the
execution-time variability involved in calculating locate, elision
of parts of the code (*) will speed (*) up in certain cases.

If the set Sy is never tested for equality with any other set
than n{ and never becomes a member of a collection of sets or
part of the domain of a function, then it is not necessary to

- maintain hash(sl), and the line in (*) which does so can be
elided. 1If sy is used only for membership testing, but is not
itself tested for equality with the null set, then no count need
be maintained for it, so that the line of (*) which does so

can be removed, and (*) elided to

\
N

_ SETL-@451-6

if locate(x,s) is ¢x ne @ then P
| sl_bit(mx) = 1;
else
error ('basing violation...etc');
end if;

?ina}l&, if global inclusion-membership analysis shows that x€s
must hold, then the test appearing in this last code is un-

necessary, and (*) reduces to
sl_pit(locate(x,s)) = 1;

' or even,if x has the basing x::€s8, to
s, bit(x) = 1.

In the preceeding example, we have assumed that the operation
s, with x can be performed destructively. If tis is not the case,
8, will have to be copied. If a copy operation must be performed,
it may be advantageous to change the representation of 84 while
copying it. This possibility will be explored in more detail
below.

In cases like those reviewed above, the manner in which
the result of a binary operation il op 12 is repreéented will be
determined by the representations of il and iz. For example,
unless a conversion is forced, the quantity s with x will have
the sames representation as s. Conversions will be forced if
a. The left-hand side of a simple assignment
X = expn
is specified to have a representation different from that which
the right hand side of the assignment would ordinarily have; or
b. The map f appearing as the left-hand side of an
indexed assignment
f(xl,...,xn) = expn
is specified to have a representation which makes it necessary
to convert either the tuple <$19»-~,&3{;ezpn> or the map-value
expr to some form different from which it would ordinarily have; or

‘.

SETL-151-7 <

c. a form different from that which it would ordinarily
have is directly specified for the value of an expression

-(this can be done using syntactic conventions that will be

described below.) ,
Except in these cases, assignments will be performed without

~conversion of their right hand sides. This rule can be used

to allow omission of declarations that would otherwise be required
for specification ©f the form in which the values of a variable x
will be represented. If all assignments to x have

right hand sides which possess the same representation, then

x wili. . - -automatically be assumed to have this re-
presentation. This rule applies also to variables x appearing

in set-theoretic iterators ¥€S...: e.g., if 8 is declared to

’have the basing S“LE§1' then x has the basing x::esl, while

if s::S(8), then x has the basing 8. The null set can be re-
presented in any basing and is therefore neutral with regard

to basings. A variable whose basing would otherwise be ambiguous
because it appears in several assignments which imply different
basings must have its basing specifically declared; if this
declaration is omitted, a diagnostic should be issued. A basing
declaration will force conversion operations to be inserted

at appropriate points in a caompiled code.

Since expressions in SETL can be quite rich, it will sometimes
be desirable to declare the way in which a particular sub-
expression of a larger expression is represented. In effect,
this declares a representation for the compiler-generated
temporary variable which corresponds to a:. subexpression, and may
insert some conversion operation into the code which is generated.

Once a representation has been declared for each (programmer
and compiler-generated) variable appearing in a binary or n-dry
operation, a crude but useful formula for the amount of time
required to perform the operation can be generated.

N

SETL~151-8

In writing such formulae, we will use the symbol E for one
'elementary operation time',essentially the time required to
perform an indexing or test operation; the symbol #S will be
used to denote the number of elements in a set § or the number
of componants;pf a tuple S. The symbols 35 will be used to
denote the typical number of elements in the members of a set
S and the typicél number of elements in the components of a
tuple 5, etc. .

We can illustrate the use of these notations by writing
a formula for the time required to calculate.. s, with x in
cases for which the formula (*) applies. This is (roughly)

3.5 E + TLOC;

where TLOC designates the time required to calculate the

auxiliary function location(x,s). The quantity TLOC can itself
be calculated given the representations of x and s. Suppose
for example that s has the basing s::Lgsz. Then locate(x,s)

is calculated by searching in the list which represents s

For a poihter to an element (of s,) equal to x. We can .
therefore offer the estimate

TLOC = %. ¢ 8 (2 E + TEQ),

where TEQ is the timebrequired to compare x and an element of

S, for quality. In a simple case (such as x::esz) TEQ will
have a simple estimate (e.g.,E); in more complex cases a formula
for TEQ will have to be developed recursively, using the known
representations of x and of the members of Sye

At -any rate, formulae estimating the execution time of
each primitive operation appearing in a SETL program P will
always be derivable once a representation has been specified for
each variable of F. These formulae can be printed as program
annotations which can help a programmer find an effective overall
set of representations. It may also be possible to base a
process of automatic data choice on these formulae. A plausible
technique is as follows. First, collect frequency information on
all the explicit loops and branches of a program.

L]

SETL-~151-9 . y

This will involve assigning a relative execution probability
to each of the parts of every if-then-else statement, an

. expected number of iterations to each while statement, and a
- relative probability to each boolean condition clause C(x)

- appearing in an iterator of the type (V&Eslc(x)) Using this
- information, an execution frequency can be assigned to each

primitive operation of the program P. Information on the sizes

" of each of the sets s and vectors v appearing in P should also

be collected. With all of this information in hand, data re-
presentations can be assigned to the objects of P in all
possible ways, the resulting execution time calculated, and
an optimal representation scheme chosen. For this purpose, a

- branch~and-bound method which examines the most frequently

performed operations of P before processing the other operations
of P can be used; such an approach can drastically reduce the

- number of cases which need to be considered. Branch-and-bound

algorithms always work most efficiently if the estimated

- solution with which they start is not too far from optimal.

For this reason, it may be worth providing a heuristic algorithm
which attempts to develop an advantageous initial set of re-
présentations. Such an algorithm might work by trying to set
up a 'highly advantageous' system of representations, i.e., a
system of representations which allow many of the high frequency
operations of P to be performed in particularly efficient ways.
Note for example that s'with x can be calculated with particular
efficiency if s::gs1 and x::Gsl, that £(x) can be calculated
efficiently if f::M(sl) and x::esl, that s+s' can be calculated
efficiently if s..RCsl and s' ::RCsl, etc.

When conversions are performed, either in response to some
relatively explicit request or in preparing to perform some
operation one of whose arguments must be converted, then two or more
representations of the same SETL value will come ‘into existence.
This value equivalence, if tracked globally, may make it poésible
to avoid subsequent conversion operations. A technique for
global tracking of equality relationships-is outlined in
section 5 below, |

A,
~

SETL-lSl-lO

\& 2, Disallowed operat1ons, copying conversions.

_ Certaim basings will be disallowed for variables which (:fi
' enter in particular ways into specific SETL primitives. Sets
) with- the basing s;::Cs, 8,::ICs,, 8::M(sy), S::MM(s;) have
what may be described as a ’'distributed' rather than a ‘grouped'
representatioﬁ, and..for this reason are not allowed to become
_elements of other sets or components of vectors.
~ As noted above, we do not allow a set which has the basing

8 :3C 8, or 8 :3R C s; to serve as a basig for any other object

X, since x can just as well be based on $;
if s has the basing & ::€ g, , we do not allow s to serve as
_ a basis, since this would i;troduce substantial complications
& _into some of the situations with which we will have to deal.

as on s. Moreover,

Operations which cannot be performed destructively will
force copies of one or more of their arguments to be made., In
some cases, as for example when an arqument x has the basing
::€8,the argument's representation will modified while it is
being cop:.ed. In this particular case, the way in which the '
copy xc of x is based will depend on the representation of s.
The rules which determine the representation of xc from that
of 8 are as follows:

(a) As noted in the preceeding section, neither s::Cs,
nor s::Rggz can occur,

(b) If s::LS_s2 or s:zLREsz, x will be converted to an
element x' with basing x::Esz, and then xc formed as if x had
this basing originally.

L (c) If s:: M(sz,s) then an object x with x::€s basing
is actually represented by a pointer to an element x' of Sy

r

-

SETL-151~-11 Py

We copy x by forming a copy c' of x' and a copy c" of the
element x" referenced by the s_field of x' , and then by
forming the pair <c',c">. Much the same procedure is used
if s::RM(s,.8), except that in this case the s_field of x'
is an index which locates s(x') rather than a pointer
to it. The copy of x has the basing <B',B>, where B' is the
basing of the copy c; of x'. : ‘

(a) If-s::MM(BZ'B) or sz:RMM(SZ'B), then x is a pair
p'.p" of pointers, where p' points to an element x' of S,
and p" points to a hash-table element, which in turn points
to an element x" having the basing B. We copy x by forming
a copy c' of x' and a copy c" of x" , and then by forming
- the pair <c¢',c">. This copy of x has the basing <8',B8>,
where B' is the basing of the copy c' of x'.

(e) If s::{B}, then x is a pointer to an itemy in the
hash table which represents s. To copY x we copy Y.
_ (f) If s::Q, and the value of x is not a tuple,
then we proceed as in case (e). But if the value of x is
an n-tuple, then x will be represented as a list of n-1
pointers yj + where) SERED AP will'point to hash table items
ZyreearZy o having the basing Q, while Yn-1 will point to a
pair whose components zZ _y12, have the basing Q. We copy
X by copying zl,...,zn'and forming a tuple of the copies.
The resulting object has the basing Q.

~

SETL-151-12

We shall now give a full account of the automatic con-~
versions which apply when an object x with a specified basing
is copied. It should be noted that time formulae like those
presented in section 3 below can be developed for each of
these copying operations; however, in the present section
we shall,for the sake of brevity, omit these formulae. Note
also that the copy operations which we describe copy only the
topmost level of a compound data item, not the subodjects of
these compound objects. In cases where a full copy is
necessary, the procedures described below can be extended
recursively from objects to their subobjects.

The basings which must be considered are as follows:

(cop.1) x::Cs. To copy x, we iterate over s, skipping
the elements which do not belong to x, and building up a
hash table of the elements which do. The copy x' of x that
is produced has the basing x' ::{€s}.

(cop.2) x::RCs. Here x is represented by a bitvector
which has only to be copied. The copy x' of x has the basing
x' 3::RCs,

{cop.3) x::ICs. This case is almost the same as case
(cop.l), except that using the list which forms part of the
representation of x we can iterate directly over x rather
than over the larger set s. The copy x' of x that is produced
has the basing x' ::{€s},.

{cop.4) x: :LRCs. Here x is represented by a bitvector
and a list which have only to be copied. The copy x' of x
has the basing x'::LRCs.

{(cop.5) x::€g., This case, which is particularly complex,
has been discussed at the beginning of the present section.
{cop.6) 'x::<81,...,6n>. To copy X,form a new vector x'

of equal length with the same components; this will also
have basing x'::<Bl,...,Bn>.

-

SETL-151- 13 | .

(cop.7) ::{B}. To copy x, copy the hashtable which
represents it. The copy x' which is formed still has the
basing ‘x'::{B}.

(cop.8) x::M(s,B8). To copy x we iterate over s, skipping
the elements’y for which x(y) eq 2, and building up a hashtable
of all the pairs <y, x(y)> for which x(y) ne 2. The copy x'
of x that is produced has the basing x'::{<€s,g>}.

(cop.9) x::RM(s,B8). Here x is represented by a vector
of values which has only to be copied. The copy x' of x has
the basing x'::RM(s,B).

(cop.lb) x::MM(8,B) To copy x, we iterate over s, skipping
the elements y for which x{y} eq nk. For each y such that
x{y} ne nt, we iterate over all the elements in the subsidiary
hashtable which represents x{y}. During this process we
build up a hashtable of all the pairs <y,z> for which z€x{y}.
The copy x' of x that is produced has the basing x'::{<€s{B}>}.

{(cop.11l) ° x::RMM(8,B). To copy ; we.cbpf the vectar &hich
represents it and all the lists at which this vector points.

The copy x' also has the basing x::RMM(s,B). .

. (cop.12) x::0. This uses the SRTL copy routine, which
resembles the code used in case (cop.7), but which is substantially
more complicated because of the special way in which tuples
are handled as members of Q-based set.

(cop.13) x::INT(k), x::STR(k), x::BIT(k). In these cases
the copying operation is elementary, and the copy x~ that is
formed has the same basing as x.

P

Porced conversions.

Whenever a conversion is forced, e.g., by explicit assignment
of a y having one basing to an x specified to have another,
a conversion procedure which produces the representation of x
from that of y will have to be executed. We shall now sketch
conversion procedures which»can be used in the various cases
that arise,

Note that time formulae like those presented in section 3
below can be developed for these conversion procedures; however,

- we shall not give these formulae now.

e

N »

SETL-151-14 -

The various basings that need to be considered are:

(conv.l) ::Cs8. To convert y, we iterate over its elements |
ey and ' for each such element calculate the function ex= locate(ey,s).

'?{c5. the discussion following (4) of section 1 above.) Then
the .x_bit of ‘the elemént of s at which ex points is set.

(conv.2) -x::RCs, The procedure used is similar to that
applied in case (conv.l), except that wa set a bitvéctor bit
whose index is found in the s-element at which ex points.

(conv.3)~ x::1Cs8. We proceed as in case (conv.l), also
building up a list fe of the elements ex=locate(ey,s) as we

~go along; this 1list becomes part of the representation of x.

-(conv.4) ::LRCs. The procedure is similar to that
applied in case (conv.3), except that the bitvector bits which
we 8set are located by indices found in the elements ex of s,
and not directly in the elements ex themselves.
(conv.5) ::€g. Here we simply calculate x = locate(y,s).
(conv.6) x::<81....,8n>. The possible basings for y are @

y::<Bi,...,B;>, y::R, and y::€s. In the first case, we simply

convert the components of y individually to the basings Bj,

and build up a tuple of the converted components. Much the

same remark applies if y::Q. If y::€s, then the possible

basings for s are s::LCs', s::LRCs', . ss:{B}, s::Q,

::M(8,B), 8::RM(s,B), s::MM(s,B8), and s::RMM(s,B8). We treat

these cases separately as follows:

(conv.6.1) s::LCs', also s::LRCs” Here y points to a list-element,
which in turn points to an element of s8'. Thus a single indirect
reference transforms y to an element y' with the basing y::€8';
applying this transformation ?efeatedly if necessar¥,ye wi%l)

n y® n)

, with the basing 13€8 "

(n+l)

eventually reach an element y
where s(®! has some basing other than s(n)::Lgs

-

SETL-155.-15 o :

(ronv.6.2) s::{f}. Here y points to a hashtable item,
which in tarn points to an element with the basing 8. Thus
a single indirect reference transforms y to an element with
the basing 8. | _

o ‘(ébﬁvlﬁ 3) s8:1:Q. Here y, if it value is logically an
n~tup1a,'wili be - represented as a,list of n-1 pointers: %j
The quantities Y1°'°Yn-2 point to hash table items - Z;--+2,_,
having the basing 1, while Yp-1 points to a hash table item
which is a pair each of whose components Z,-17 2 have the
baging Q. By converting Zyreecrdy to the basings Bl,...B
we obtain the components x(1),...,x(n) of the desired n-tuple x.

(conv.6.4) s::M(8°,8). In this case y, which logically

. 18 a pair, points to an element z of 8', and the s_field of

z points to an element z' with the basing z'::8. We convert
z to the basing Bl' thereby obtaining the first component x(1)
of the desired element x, and convert z' to the basing 82,
thereby obtaining x(2).

(conv.6.5) s::RM(s',B). This case is much like case
(conv.6.4), except that y points to an element z whose s_field
contains an index i which defines the component v(i) (of an
s-representing vector v) which contains z'. We convert z to
the basing'sl, thereby obtaining the first component x(1) of
the desired element x, and convert z' to the basing 82, thereby
obtaining x(2).

(conv.6.6) s:sMM(s',8). In this case y is a pair of
pointers, the first one of which references an element y. of
8', and the second of which references a hash table entry
that cogtains or points to an element Yo having the basing 8.
By converting Y1 and Yo to the basinghsl and 82 respectively,
we obtain the first and second components of the converted
element x.

(conv.6.7) s::RMM(s',8). This case is identical with
case (conv.6.6). .

.
™~

SHPrL-151--16

“{conv.7) ::{B}. Here we iterate over the elements ey ("\
of y, converting each ey individually to the basing B, and
incorporating the converted elements into a hashtable.

(éouv:B) ::. If y is a tuple, we convert its components
individually to the basing @, and incorporate the converted
components into a new tuple. If y is a set, we proceed
essehtially as in case (conv.7) (however, tuple insertion in an
fl-based set is handled in a special way.)

(conv.9)x::M(s,8). We iterate over the elements ey of y,
converting each ey individually to the basing <€s,8>. The
first component of this pair p locates an element es of the
set s; we then set | the x_field of this element
equal to the second component of the pair p.

(conv.10) x::RM(s,B). The procedure used is similar to
that applied in case (conv.9), except that the x_field of the
element es contains an index i; we then set the i-th component
of an auxiliary vector to equal the second component of
the pair p whose first component is es. : m

(conv.11) x::MM(s,B). We iterate over the elements ey of
Y. converting each ey individually to a pvair p with the basing
<€g,B>. The first component of p locates an element es of the
set 8; the x_field of this element (is either nil or) points
to an auxiliary hash-table in which all the elements of x{es}
axe to be recorded. We insert p into this hash table, and
then continue our iteration. .

(conv,12) x::RMM(s,B). The procedure used is similar to
that applied in case (conv,.9), except that the x_field of the
elemené es contains an index i defining the component (of an
auxiliary vector) which contains a pointer to an x{esl}-representing
hash table. 'We insert p into this hash table, and then continue
our iteration. . ‘

{conv.13) x::INT(k), x::STR(k), x::BIT(k). Conversion will
only be required if y has the basing y::€s; in this case, y
points to an element of s which in turn points to an element -~
with the desired basing, so that conversion i effected simply by ‘:;'
passing from an indirect to a direct reference.

-

SETL-151~17

A number of special cases in which conversion can be
performed with particular efficiency are worth noting.
Suppose that y is to be converted to have the basing of
x. If y::LRCs and x::RCs, it is only necessary to copy
the bitvector part of y's representation (at high speed using
word-length operations) to obtain the representation of x.
(If v is dead after x is formed, we have only to drop the
list part of the existing representation of y.) A similar
remark applies in case y::RM(s,8) and x::RM(s,B), and also

if y::RM(s,B) and x::RM(s,B”).

Whenever an object y is converted to a form x having a
different basing, the object x will, immediately after its
formation,be a logical copy of y. If this logical copy will
come into existence anyhow, it may be unnecessary to copy y.
even if y is an operation argument which would ctherwise have
to be copied. A programmef should have no difficulty .in
signalling such a situation to the redundant-copy elimination
mechanisms of the SETL compiler by inserting explicit con-
version operations into SETL code with which he is working.

SETL-151~18

"

3. Code and execution-time formulae for various SETL praimitives.

In the present section, we will discuss a few typical SETL <7-
primitive operations,and will describe the code which will be used to
realise ti.se primitives. Of course, the code used depends on the way
in which the'arguments of a particular operation are represented. The
most crucial operations. are x€s and x eq Y, which enter as sub-
routines into many other operations and which call each other
recursively. But we shall begin our discussion with a simpler
operation, namely 1

(a) 5, with X.
(a.l)slzz-gg.. Code is as follows:
if locate(x,s) is x ne O then
 if & bit(2x) = 1; /* set flag bit */
. count?bl) = count(s,) + 1;
/* adjust count field of:s1 if necessary */
hash(sl)_=_hashplus(hash(sl),,hash(x));
' /* adjust hash field of 8y if necessary */
end if s; bit; ‘ ‘ ﬂ
else .
error('basing violation in s with x operation, x not
' ' ' present in base');
end if locate; ' -
Elisions have been listed in section 1.
Execution time formula (not-elided case) is

-

SETL-151-19 » | P

3.5E + TLOC,
‘where TLOC is the time needed to calculate the auxiliary function
locate(x,s). -
(a.2) s::RC8., Code and elieions similar to case (a.l),but
sl_pit(ix) ig differently located. 7PTime formula is

4 E.+ THOC.
(a.3) s,::ICs Code and elisione similar to case (a.l), but
Lx should be added to list that represents s, if s, bit (x) eq O.
Time formula is
) 4.5E + TLOC.
(a.4) s,::LRCs. Code and elisions similar to case (a.3), but
Bl_Pit (¢x) is differently located.

Trime formula is
5E + TLOC.

(a.5) 8,::€s. This case will never arise, since it cannot
be performed destructively, but will force a copy of 8y to be
formed, which will convert 8, to have the representation used
for elements of s; see the discussion of this point given in
section 2.

(a.6) sy::{8}. The code here resembles the code for
the with operation found in the SETL run-time library (SRTL).
The hash-table representing glis entered using the hash of x.
This locates a list, estimated to be 2 elements long, which is
searched for an element equal to x. If such an element is found,
the with operation is.a no-op. Otherwise x is added to the hash
table; this may make rehashing necessary. For code, see the SRTL’
listing.

Elisions: Elide test if x known to be different from Q;

’ glide hash~value update if hash of sy not needed:
elide count update if count of S4 not needed;
elide equality tests if x€s, is known to be false.

A
nm

SETL-151~20

Time formula(assuming no elisions):7E + 2 * TEQ:
where TEQ is the time required to test x for equality with
an element having representation 8. ,
(a.?) sl..n. Assuning no conversions are necessary,
this uses the SRTL code. Elisions are possible if some
amount of global analysis, type determination, etc., is done.
Elzaiona. As in case (a.6) above, plus:
elide type test if sy is known to be a set:;
elide type test if x is not a tuple, or if 8,
is never used as a map.
Time formula: 9E + 2 * TEQ,
where TEQ is the time required to test for equality with an
Q_based element. _
(a.8) 1::M(s,8). Code is:
. if locate (x(1),s) is #x ne 9 then
if mapval(fx) eq 1 then
mapval (4x) = x(2); <::T
count(al) = count(sl) + 1;
_ /* adjust count field of s, if necessary */
hash(sl) = hashplus(hash(s), hash(x)):;
/* adijust hash field of 84 if necessary */
else if mapval (2x) ne x(2) then
_ error ('multiple definition error in s with x opérationv
end if mapval;
else
error(‘basing violation in s with x operation, x not
2 present in base'j:;
end if locate;
Elisions: Elide test if x(1) known to be different from Q;
‘ ' elide test if x(1) is known to be a member of s;
elide count update if not necessary;
- elide hash update if not necessary.
Time formula (assuming no elisions): 4F + TLOC + TCOMPl + TCOME2:
TLOC is the time needed to calculate the auxiliary function
locate(x(l), s); TCOMPl is the time necessary to calculate a
representation of x(1) from the representation of x, and TCOMP2

is the time necessary to calculate a representaticn of x(2),

SETL-151-21 s

(a.9) 31::RM(318). Code and elisions}similar to case
(a.8), but mapval(ix) is differently located. Time formula is

4.5E + TLOC + TCOMPl + TCOMP2,

where TLOC, TCOMPI,'ahd TCOMPZ are as in case (a.8).
(a.10) 81::MM(s,8). Code is:
if locate (x(1),8) is 2x ne 9 then
if. list_locate(x,x(2)) eq €
/* i.e., x(2) not € s{x(1)}*/ then
allocate (mapvalspace); /* allocate space for
storage .of new map value
next (mapvalspace) = mapval (&x);
item (mapvalspace) -= x(2);
mapval (£x) = mapvalspace;
end list_locate;

else
error (‘'basing violation in 8 with x operation,
x not present in base').
end if;

Eltstons: none
T7ime formula:

7E + TLOC + TLOC2 + TCOMPl + TCOMP2, where

TCOMP1 and TCOMP2 are as in case(a.8), TLOC is the time needed
to calculate the auxiliary function locate(x(1l),s), and TLOC2 is
the time needed to calculate the function list_locate(%x, x(2))
which searches the list whose head is referenced by mapval (2x)

for an item equal to x(2). The quantity TLOC2 can be estimated as

4

(# s{x(1)}) * (2E + TEQ), where

TEQ is the time required to test x(2) for equality with one
element of this list.

(a.11) s;::RMM(s,B8). Code and elisions similar to case
(a.10), but mapval (£x),used in list locate(2x,x(2))) is
differently placed. Time formula is

7.5E + TLOC + TLOC2 + TCOMPl + TCOMP2

where TLOC, TLOC2 TCOMPl and TCOMP2 are as in case (a.l0).

1
1N

SETL~151-22

Next we consider the related operation ,(‘“

(b) =x € 8,/ for which the following subcases arise:
(b.1) 8;::C 8. Code is as follows:
if locate (x,s) is &x ne 2 then
-~ return 8, bit (2x) ne 0
else
return'faise;
end if; | - .
Elieions: if x€s8 is known, the initial test can be elided.
ime formula (non-elided case) is ‘

~ +SE + TILOC,
-where TLOC is the time needed to calculate locate(x,s).
(b.2) s,::RC 8. C(Code and elisions similar to case (b.1),
but si_pit(Lx) is differently located. Time formula is

E + TLOC.
(b.3) s;::L C 8. Code, elisions, and time formula .
same as case (b.l). (i‘
(b.4) s8,::L RC 8. C(Code, elisions, and time formula

1l
same as case (b.2).

(b.5) 8,::€ s. If 2 is based in this way, the only
possible basings for s are L C 8', L RC s', {8}, and Q.
The procedures used to evaluate x € 8y in these separate cases,
and their analysis, is as follows: .

(b.5.1) s::L°C s'. Let actual (s,) denote the element
(of the list which represents s) to which 8, points; this
item has the basing €s'. Then x € 5y is implemented as
x € acfual'(sl), requiring a time g + T', where T' is the time
required to perform the test x € sa for an item sa having
the basing és'.

(b.5.2) s:: LR € s', The procedure used in this case,
and its analysis, is Xhe same as that used in case (h.5.1).

‘.

BETT~15L~.23

fh.5.3) s::{B}. Let aatudl(al) denote the element
(of the g-representing hash table) to which sy points; this
item has the basing . Then x € 3, is implemented as
x€ actusl(s;}, requiring a time E + Tg, Where T, is the time
required, to perform the test x€sa for an item sa having the
basing B. .

{(b.5.4) ®::Q. This case is handled in essentially the
same way as case (b.5.3), except that here 8 is Q.
‘ (b.6) '91::{8}q Here we use essentially the code for
the membership test found in the SETL run—time library (SRTL).
The hash table representing 8y is entered using the hash of x.
This locates a list, approximately 2 elements long, which is
searched for an element equal to x. If such an element is
found, true is returned; otherwise false is returned.

Elision: Elide test if x known to be different from Q.

Time formula (assuming no elision):

SE + TEQ,

where TEQ is the time required to test x for equality with

an element having representation 8.
(b.7) 81::9. Assuming no conversions are neceéssary,
this uses the SRTL code.
Flisions: Elide test if x is known to be different from Q;
elide type test if 51 is known to be a set;
elide tuple test if x is known not to be a tuple,
or if s is never used as a map.
Time formula: 7E + TEQ,
where TEQ is the time required to test for equality with an
fi-based element.
(b.8) slezM(s,B). Code 1is:
if locate (x(1),s) is 2&x eq 2 then return false
else return mapval (4x) eq x(2);;
Elsisions: Elide test if x(1)is known to be different from Q;

elide test if x(1) is known to be a member of s:

SETL-151-24

Time¢ formula: E + TILOC + TCOMPl + TCOMP2, (f-\
where TLOC is the time needed to calculate locate(x(l), s), and
TCOMPl (resp..TCOMP2) is the time needed to calculate a
representation of x(1) (resp. x(2)) from the representation of x.

(b.9)- 8,t:RM(8,8) . Code and elisions similar to case
(b.8) , but mapval(ix) is differently located.. Time formula is

2E + TLOC + TCOMPl + TCOMP2,

where TLOC, TCOMPl, and TCOMP2 are as in case (b.8).
(bolO) . 81: :MM(S,B) . COde iS
if locate (x(1l),s) is &x eq 7 then return false ; ’

else return list_locate(2x,x(2)) eq Ri:;
Eligions: none

Time formula:
2 E + TLOC + TLOC2 + TCOMPl + TCOMP2,
where TLOC, TCOMPl, and TCOMP2 are as in case (b.8), and where
TLOC2 is the time needed to calculate the function
list locate(2x,x(2)). For a description of this function, see
(a.10) above.
(b.11) slzzRMM(s,B). Code and elisions similar to
case (b.10), but mapval(2x) (used in list locate(fx, x(2)))
is differently placed. 7Time formula is
2.5 E + TLOC + TLOC2 + TCOMP1 + TCOMP2,
where TLOC, TLOC2, TCOMPl, and TCOMP2 are as in case (b.10).
The equality testing operation occurs frequently in the
preceeding discussion, and we now proceed to consider the way
in which it will be implemented in the various cases which

can arise, The operation in guestion is:

]

(¢} '.x'gg Y. We consider various subcases reflecting the
different possible basings for y.

SETL-151-25 ’

(c.l) y::Cs. Code is as follows:
if type x ne set or (# x) ne # y or hash(x) ne hash(y) then
. . o X return false else
(V 2 € s | y_bit(z')‘ eq 1)
~ 4f not =z€x then return false;;

end VQ:
return true;
end if;

Elisions: If the type of x is known, a test can be omitted.
Titme formula: the average time required for this

operation depends very strongly‘on the probability PEQ that
R

‘% and y are equal:

8E+ (6E* # s+ #y * TMEMB) * PEQ,
where TMEMB is the time required for the membership test 2 € x.

Note that an estimate can be supplied for PEQ in case
the equality test x eq Y with whose running time we are con-
cerned = is being executed repeatedly as part of a search
over some compound object, since in this case one can assume
that, with probability roughly one-half, x will be to equal
to one of the items v of 8 and different from all the others,

(c.2) Y::RC s. Code and elisions are similar to case
(c.1), but y bit(z) is differently located. Time formula is:

B E+ (7E*x § s + # y * TMEMB) * PEO,
where TMEMB and PEQ are as in case (c.l).

Special case: If x and y both have the basing RC s,
then detailed comparison of x and y in the case of suspected
equality can be done using bitvector operations. In this
case, the ttme formula becomes

8 E + «(2 E/NBPW) * PEQ * § s,
where NBPW is the number of bits per word for the machine
supporting a given implementation.

(c.3) y:: L C s. Code is as follows:
if ‘type x ne set or (# x) ne # y or hash({x) ne hash(y) then

return false;
else

Nm

SETL-151-26

pointer = first (y); /* the representation of y includes */(-k
/*a pointer to the first element of its*/
. ‘ /* associated list */
(whiie pointer ne 0) 4 ,
if element. (pcinter) not € x then return false;;
/* element(pointer) retrieves the element of y.aséociated */
/* with a particular pointer */
pointer = next (pointer); /% advance in list */
end while;
return true;
end if;
Elisions: 1If the type of x is known, a test can be omitted.
Time formula:
8E+ (# s) * (TMEMB + 3 E) * PEQ,
where as in case (c.2) PEQ is the probability that x and y are
equal, and TMEMB is the time required for the membership test
element (pointer) € x. - C‘
(c.4) y::L RC 8. C(Code,elisions, and time formula =
identical to case (c.3).
- 8pecial case: If x and y both have one of the basings R
R C s or LRC s, then detailed comparison in the case of
suspected equality can be done using bitvector operations,
See (c.2) for the time formula applicable in this case.
(c.5) y::€s. Here the way in which we proceed depends
on the basing of s. The possible basings are s::LCs', s::LRCs',
s::{B8}, s::0Q, s::M(s',B), s::RM(s',B), s::MM(s',B8), and s::RMM(s8',B).
The treatments appropriate in these various subcases are
as follows:
(c.5.1) s::1Cs'. The quantity y is a pointer to an item
ttm in the list s, and Z¢tm points to an element actuall(y) in s'.
Then x eq y is calculated as x eq actual(y).
Elietons: none
Time formula: 2 E + TEQ,

-

SETL-151- 27 ‘.

vhere TEQ is the time require to calculate x eq y for an
element y having the basing y::€s'.)

(c.5.2) 8::LRC 8'., C(Coderelisions, and time formula
identical with case (¢.5.1).

(c.5.3) s::{B}. The quantity y is a pointer to an item
actual(y) in the hashtable representing s; x eq y is
calculated as'x eq actual(y).

Elieiong: none

Time formula: " E + TEQ,
where TEQ is the time required to calculate x eq ¥y for an
element y having the basing 8.

(c.5.4) s8:: Q. The quantity y is a p01nter to an item
actual{y) having the basing {.

Elisions and time formula: as in case (c¢.5.3).

(Note however that if actual(y) is a tuple the procedure will
be more complex and the time formula different.)

(c.5.5) 8::M(8,B8). The quantity y is a pointer to an
element ¥ of s8'; x eq y is calculated as

x(1) eq ¥ and x(2) eq mapval(y).

Elistons: none

Time formula: E + TEQl + TCOMPl + .5 (TEQ2 + TCOMP2),
where TEQl (resp. TEQ2) is the time needed to test x(1l) for
equality with an element of s8' (resp. to testx(2) for equality
with an element having the basing 8), and TCOMPl(resp. TCOMP2)
is the time needed to calculate x(1l) (resp. x(2)) from the
representation of x.

(c.5.6) s::RM(8',B). Code and elisions are the same as
in case (c.5.5), but mapval(y) is differently located.Time formula is

1.5 E + TEQl + TCOMP1l + .5(TEQ2 + TCOMP2).

(c.5.7) s::MM(s‘,B). The quantity y is a pair consisting
of a poinfer to an element Y' of s'. and a pointer to an
element y" of the hash table representing s{y'}. The quantlty
X eq y is calculated as

x(1) eq vy" and x(2) eq mapval(y").

s,
~

SETL-151-28

Eli{sions and Time formula are as in case (c.5.5). ‘r.!
(0.5.8) 8::RMM(8',B). Code and elisions are the

same as in case (c.5.7); time formula is the same as in
case kc.S.C). X

Special case (of case (c.5.6)): If y::€s and x has the
same basing: then xigg ybcan be tested simply by comparing
the pdinters x and y for equality. For this important special
case, the time formula is simply

| . 2 E.

(c.6) y::{B8)}. Code is as follows:
if type x ne set or (#x) ne # y or hash(x) ne hash(y) then

return false;

else
(1 < V%‘i table_length(y) | element(table(start(y) + n)) ne 0)
if element (table(start(y) + n)) not € x then
;' return false;;
end.V%fl
retufn true; _ .
end if;

Elisions: 1If the type of x is known, a test can be omitted.
Time formula:
8E+ (9E+ TMEMB) * (% y) * PFQ,
where TMEMB and PEQ are as in case (c.3).

(c.7) :1:. Code in this case is the equality test code
presently in the SRTL run time library. The set-theoretic case
of this code rather resembles that of case (c.6), except that a
more complex iteration over y is necessary if y is a set which
can contain tuples., Flisitomeg are possible after type deter-
mination;type determination is also necessary if a precise
time formula is to be stated. Some approximate time formulae
for a few cases in which y is a set are as follows: '
if y is known to contain ﬁo tuples;

8 E+ (9 E+ TMEMB) * (# y) * PEQ
if y can contain tuples, but need not contain any: @
8 E+ (12 F + TMEMB) * (# y) * PEQ
where TMEMB and PEQ are as in case {(c.3).

-

SETL~151-29

‘ (c.8)y:sM(8,B). Code 1is:
if typex 'ne set or (# x) ne # y or hash(x) nelash(y) then
' return false;
else))
(Yees |.y_field(z) ne)
if not <z, y_field(z)> € x then return false;:
end’Vé;
return true;
end if type:
Elistons: 1If the type of x is known, a test can be omitted.
If x is known to be defined everywhere on 8, a test can be
omitted inside a loop.
Time formula (assuming no elisions)
8E+ (BE* #s + #y* (TMEMB + E)) * PEQ,
where #y denotes the number of elements in y, TMEMB the time
required for the membership test <z, y_field(z)> € x, -and PEQ
. the probability that x and y are actually equal.
(c.9) y::RM(8,B8). Code and elistons are similar to
case (c.8), but y field(z) is differently located. Time: formula
8E+ (9E * #s + §y * (TMEMB + E)) * PEQ
(c.10) y::MM(s, B). Code is
if t _xg_ x ne set or (# x) ne # y or hash(x) ne hash(y) then
return false;
else
(Yzes)
pointer = y first(z); /* the representation of each 2€s */
/¥* includes a pointer to the first entry of a hashed table */
/* of the elements of y{z} */
if pointer eg O then continue VE
(1< Vh < numberfield(table(pointer))]
elementfield(table(pointer + n)) ne 0)
/* numberfield gives the size of the hashed table referenced */
/* by pointer, elementfield gives the element stored in */
/* a particular table position */
if <z, elementfield (table (pointer + n))>
not € x then return false;;

JEQ 3.: 15 1“3 i
end Vh;

end Vz :
return true;

end if; '

Eltaions. If the type of x is known, a test can be elided

If x is known to be defined everywhere on s, a test can be
' omitted inside a loop.
T7ime formula (assuming no elisions):

8E+ (10 E * (#8) + (5 E + TMEMB) * (# y)) * PEQ,
where PEQ is the probability that x and y are equal.

(c.11) vy::RMM(s,B). Code and elisions are much as in
casge (a.l0), but one additional level of indirection is re-
quired to access pointer. Time formula is

8E+ (11 E* (# s) + (5E + TMEMB) * (§ y)) * PEQ.

To complete the design of an automatic or even semi-
automatic system, we would have to extend the preceeding list
to cover every SETL primitive operation. We shall not attempt
this now. Instead we will let the preceeding discussion stand
as an indication of what a full system would require. However,
to round out this discussion a little more, we shall sketch
out the implementation of the locate(x,s) primitive which
appears in several of the preceeding insertion and membership
test codes. Here the various cases which can arise are as
fellows:

(d.1) s=:¢ C s'. Code is:

| s _bitl(y) eq 1)
if x eq y then return y;;

return Q;
Flisions: none.
7ime formila: X (Cadv E * (# s!') + (E + TEQ) (#s)),
where TEQ is the time required to make the test x eq v, and

where C.qv E is the time required to advance in the iteration

Yyes".

SETL-151-31

(d.2) ::RC 8'. C(Code and elisfions are the same as in
case (d.l), but s;pit(y) is differently located. Time formula is:
,k((Cadv + 1)*E* (§ 8') + (E+ TEQ) * (¢ s8)),
where C, . and TEQ are as in (4.1). '
(d.3) .s::L C s'. (ode is: _
pointer = first(s); /* the representation of s includes */
/* a pointer to the first element */
/* of its associated list */
(while pointer ne)
if element (pointer) eq x then return pointer;;
/* elament(pointer) retrieves the element of s associated with*/
/% a partigular'pointer */
pointer = next(pointer); /* advance in list */

end while;
return Q;

Elisione none.
Time formula:
3 (4 E + TEQ) * (¢ 8), .

where TEQ is the time required to test an element of s' for
equality with x.

(d.4) s::LRC s8'. C(ode, eliaione and time formula
are the same as in case (d.3).

(d.5) s:: € s'., Here the way in which we proceed depends
upon the basing of s'. The possible basings are: g::L C s”,
s::L RC 8%, s'::{B}, and s'::Q. The treatments appropriate
in these various subcases are as follows:)

(d.5.1) s'::L € s". The quantity s is a pointer to an
item Z¢tm’ in the 1list s', and i¢m' points to an element
actual(s) 1in s™. Then locate (x,s) is calculated as
locate({x, actual(s)).

Elisions: none.

Time formula: 2 E 4+ TLOC",
where TLOC" is the time required to calculate 1locate(x, s) for

an s having the basing s:: € s".

SETL-151-32

(d.5.2) 8'::L RC 8", Code, elisions, and time formula
identical with case (d.5.1).

(d.5.3) s'::{8}. The quantity s is a pointer to an
item actual(s) in the hashtable representing s', and
locate (x,sl\islcalcQ;ated as locate(x,actual{s))

Elistons: none. '

Time forﬁula: E + TLOC,
where TLOC is the time required to calculate locate(x s) for
an element s having the basing 8.

(d.5.4) s'::Q. The quantity s is a pointer to an item
of s8'; let actual(s) be the item of s' which s references.
Then locate(x,s) is calculated as locate(x, actual(s)).

Elisione: none

Time formula: E + TLOC,
where TLOC is the time required to calculate locate(x s) for
an Q-based set s. -

(d.6) s::{8}. To locate x within s, we enter the
hash table representing s using a hash calculated from x.
This locates a list, estimated to be 2 elements long, which
is searched for an element equal to x.

Elisions: none.

Time formula: 3 E + 2 * TEQ,
where TEQ is the time required to test x for equality with an
element having the representation 8.

(a.7) ::Q0, We divide this case into the following
subcases, depending on the way in which x is based.

(d.7.1) x::Q. This uses code like that presently appearing
in the SRTL library. First x is tested to see if it is a
tuple of length at least 2. If not, code very much like
that of éase (d.6) is used; if x is a tuple, then we use its
sucessive components to enter a series of hash tables, each
item of which points to a successor hash table , until the
desired element is located in a final hashtable.

Eligions. If the type of x is known, a test can be elided.

(‘hn

- Time formula: 2 * (6 E + 2 * TEQ) * (PNM 4+ NCX * (1 - PNM)) (:;y

. . SETL-151-33

where TEQ is the time needed to test x (or, if x is a tuple,

‘ a component of x) for equality with an Q}-based element, PNM
is an estimate of the probability that x is a member of s,
and NCX is the number of components of x if x is a tuple, or
is 1 otherwise. ' .

_ (d.7.2) b:4<81,...,6n>. The successive components of
x are used to.enter successive hash tables, the items of
which point to successor tables,until the desired element
is located in a final hashtable. ’

Elisionse: none.

Time formula: 2 * (6 E + 2 * TEQI) * PNM

' +2* (6 E+ 2 * TEQ) * RCX * (1-PNM),

where PNM is an estimate of the probability that x is a member
of S, NCX is the number of components of x, TEQl is the time
needed to test a Bl-based element for equality with an n-basgd
element, and TEQ is the average time needed to test a Bj-based
element, 1<j<n, for equality with an Q-based element.

. ' (d.7.3) s:: € 8,. Here x is either a pointer to an
item actual(x) belonging to the representation of Sy and
representing x directly, or, if S has one of the representations
M(sz,B), RM(sz,B), MM(sz,B), RMM(sz,B), x is a pointer or
pair of pointers,using which representations of x(1)} and x(2)
can separétely be recovered. If x is a pointer to actual(x),
then locate(x,s) is implemented as locate(actual(x),s), and
the time formula is E + TLOC, where TLOC is the time required
to calculate 1locate(x,s) for an Q-based set s and an element
X with the basing that belong to elements of Sy. In the re-
maining four cases x::M(sl,B) etc., we use x(1l) to enter a
first hash table, the items of which point to a second hash
table in which we search for x(2). In these cases, the time
formula is ‘

E + 2 * (TEQl1 + TCOMPl) + (TCOMP2 + TEQ2).
Here, TCOMP1l (resp. TCOMP2) is the time needed to reconstruct
a represeptation of x(1) (resp. %{(2)) from x, and TEQL (resp. TEQ2)

. is the time needed td test x(1) for eguality with an element

Xy having the basing Xyt € 854 (resp. x(2) for equality with an

X, having the basing B).

SETL-151-34

(d.7;4) Cases other than (d.7.1-3): in these cases, Cfm
code, eliaions, and time formula are the same as in case (d.6).
| {a. 8) s::M(sl,B). Code 1is
. if locate(x(l),sl) is &x ne Q andd x(2) eq mapval (2x) then
o return £x:
else return Q;; o
Eliéions: If x(1) €s, is known,a test can be omitted;
if x € s is known, two tests can be omitted.
rime formula: 3 E + TLOC + TCOMPl + TCOMP2,
where TLOC is the time needed to calculate the auxiliary
function locate(x(l),s), and TCOMPl (resp. TCOMP2)
is the time needed to calculate a representation of x(1),
(resp. x(2)) from the representation of x.
(a.9) s::RM(sl,B) Code and elisions are as in case
(d. 8), but mapval(2x) is differently located. Time formula is
4 E + TLOC + TCOMPl + TCOMP2,)
where TLOC, TCOMPl, and TCOMP2 are as in case. (d.8),.
(a.10) s::MM(sl,B). Code is as follows: ‘E:r
if locate(x(1),s;) is ix eq 9 Athen
return Q;
else /* search for x(2) in the list to which &£x points */
pointer = s_first(2x); /* the representation of each */
/% item &x of Sy includes a pointer to the first */
/* entry of a hashed table of the elements of y{z}. */
hashquant = hash(x(2)) // numberfield (table(pointer)):;
/* numberfield gives the size of the hashed table */
. /* referenced by pointer; elementfield gives the */
/* element stored in a particular table position. */

; /¥ next gives the position of the next element in */
/* a particular hash clash list. */
pointer2 = pointer + hashquant + 1;
(while pointer2 ne 0) /* search down the hash chain */
if elementfield(table(pointer + pointer2)) eq x(2) then
return <pointer, pointer2>;; (::;

SETL-151-35)

poiﬁterl = next (pointer2); /* advance in hash chain */
end while ;
return Q; /* element cannot be located */
end if; ‘
Elisions: fo x(1) is known to be in s, a test can be elided.
v Time formula: 110 E + TLOC + TCOMPl + .5 * TCOMP2,
where TLOC is the time needed to calculate the auxiliary
function 1ocate(x(l),sl), and TCOMPl (resp. TCOMP2) is the
time needed to calculate a representation of x(1l) (resp. x(2))
from the representation of x.. .
(da.11) é::RMM(sl, B) . Code and elisione are as in
case (d.10), but the quantity s_first(fz) is differently located.
Time formula is:

11 E + TLOC + TCOMP1l + .5 * TCOMP2,
where TLOC, TCOMPl, and TCOMP2 are as in case (4.10).

s,
o

Y g 2

SETL~151-36

o

There exist various special situations in which the equality
test x eq y can be performed with particular efficiency.
Some of these have been noted in connection with the in-
dividual cases ({(c.l) thru (c.11) described abhove. Others
are as follows:

i. Since the equality test x eg y is symmetrical in

Additional Special Casee.

its two arguments, either x or y can be decompcsed in the
manner described in {c.1l)-(c.il) above. A reasonable way
to proceed is to work out two complete time formulae, one
for the case in which x is decompcsed, the other for the
case in which y is decomposed, and to use whichever one of
these decompositions has the most advantagecus time formula.
Note that this symmetry can be used to avoid certain particularly
troublesome cases, e.d., in making the test x eg y when y has
the basing y::Q we can assume that v wiil never be decompesed
unless x also has I basing (in which case the existing ESRTL .
equality test routine can be used.) This avoids complications
concerning tuples in sets that would otherwise have to be faced.

ii. If x::RM(s,B) and y::®PM{s5,B) then {if x and y have
the same number of elements and identical hashcodes) their
elements can be checked for equality by a loop over the hitvectors
which represent x and y. This leads to a zime formula

§ E+ (S E* #5 + (# x) * TEQ) * PEQ,

where TEQ is the time needed to test an element of the ranage
of y for equality with an element of the range of x, and where
PEQ is the probability that x and y are equal.

A similar remark applies tc the case in which x::RMM(s,B)
and y::RMM{s,3).

An important special case for the locate(x,s) function
is that in which s has one of the basings s::L C Sy s::LREsl,
s::{B}, s::Q, s::M(3y,8), etc., and in which x has the basing
x31€5. In this case, lncatelx,s) is eimnlv x, “

L ATEY

K €9

determine calculaticn redundancy can he emplnysd.)

SETL-151~ 37 o ;

.
’

¢

5. Global Tracing of equality relationships.

We observed in section 1 that when conversions are performed
two or more. representations of the same SETL value can came in<to
existence, and that by tracking the identity of these two re-
wresantations we may be able to avoid subsequent conversions
rerations. Thia can be dene as follows:

O

a. Whenavey an assignment X = y or x = cenvert(y) appears,
surnise the relationship x eg y and prepare to track it glohally
thy assigning a positicn in a bitvector #o represent it.7

b. The equﬁlity relationship is restored by each assignment
x=y or x=convertiy), and killed by any ather assignment tno x cr v.
This rule defines the acticn,on the relationships x eg vy that
will be tracked, of each basic blecck.

a. lse stendard technigues to 'globhalige' the local

facts defined by zrule b (the same technigue thot is used to
A

