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This .·newsle-t;:ter returns to the theme of NL 39 (More Detai Zed 

~uggeetione Concerning 'Data St~ategy' Elaborations for SETL), 

-namely to the idea of a declarative, programmer-assisted 
approach to the problem of data structure choice. Since such an 

approach is an alternative to and perhaps also a preparation 

for fully automatic structure choice, it deserves investigation. 

This newsletter will simplify and flesh out the s~ggestions 

made in NL 39. 

The foundamenta1 technical idea with which we will work is 

that of basing. A SETL quantity x is said to be represented 
in based form,, or to be based, if it is not kept in standard 

fonn, but instead is kept in a special form which relates it 

to some other sets called the base for the representation of 

x. A very wide collection of _useful non-standard representations 

could be devised; however, in the present newsletter we shall 

concentrate on a modest but typical and probably adequate system 

of representations. 
For each of the basings which we admit, a symbolic notation 

will be introduced. The family of notations which thereby arises 

(or perhaps some equivalent family of notations chosen for 

greater syntactic convenience) constitutes a language of data 

structures which can be used declaratively as a data structure 

elaboration language. An example of such a notation is•~ s', 

which we will use to describe sets which are subsets of s, re

presented by bits stored locally with the individual elements 

of s. To indicate that s 1 has this representation we will· write 

s 1 ::~ s, which may be read •s1 is represented as a subset based 

on s'. 
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A full list of the 'based' representations which will constitute 

our vocabulary of data structures, togethe.r witJ1 the symbolic 

notatioris which we shall use to designate them, is as follows: 

- the subset s1 of s is represented by ai. collection 
of'bits·stored locally with the individual elements 
of '11. 

s1 ::a:s_ s - The subset s 1 of sis represented by a bitvector
In this case, a generated serlAl number referencing 

a particular bit position is stored locally with 

each individual element of s. 
s1 ::L c s - the subset s 1 of sis represented using both a 

collection of bits stored locally with the individual 
elements of sand a list of pointers to elements of 
-s. This list serves to expedite iterations over s 1 • 

s 1 ::LR ~ s·- the subset s 1 of sis represented using both a 
bitvector and a list of pointers to elements of s. 

In this case, as in the s1 ::RCs case, serial numbers ( 

are stored locally with the elements of s. 

x:: e s - The object x is represented by a pointer to an 
element of s. 

x:: <81 , .•. ,Bn> - the object x is represented as an n-tuple, 

whose components have the basings a1 , ••• ,6n respectively. 
E.g., one might write x::<~ s, Es, LCs'>. 

x:: {8} the object x is represented by a hash table with 

locally stored overflow, whose entries point to 
objects having the basing a. E.g., one might write 
x:: {C s}. 

f:: M(s, 13) - the set f is a single-valued map defined on (a subset of; 

·s, ·with map values (or pointers thereto) stored locally 
. . . 

with the individual elements of s. The map values 

are represented using the basing a. 
f:: RM(s,6) - f is a single-valued map defined on (a subset of) s, 

with map values (or pointers thereto) stored 

(remotely) in an array (i.e., tuple). In this case, l 
as in the s 1 ::R ~ s case, serial numbers are stored 

locally with the elements of s. The map values are 

represented using the basing a. 
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f:: MM(s,B) - f is a mult.ivalued map defined on (a subset of)s 

the values constituting f{x} being stored as a 

,. list referenced by an initial list element pointer 
stored locally with each element x of s. The map 

~valties are represented using the basing a. 
f:: RMM(s,a) - f is a multivalued map defined on (a subset of) 

s, the values constituting f{x} being stored as 

x:: n - the 
x· . . . INT(k) - X 

x· . . . STR(k) - X 

x· . . . BIT(k) - X 

a list referenced by an initial list pointer stored 
in an array (i.e., tuple). In this case, as in the 

s 1 :~R ~ s case, serial numbers are stored locally 
with the elements of s. The map values are represented 

using the basing B. 
object x is represented in its standard SETL form. 

is an integer of known size. 

is a string of known maximum size 

is a bitstri~g of known maximum size. 

The basings listed above can be compounded in obvious ways, 

and combined as long as certain restrictions are observed. With 

one exception, we will only allow a set to be used as a basis 

if it is represented in a manner which implies that its elements 

will be grouped together in some kind of list or array. For this 
reason, the basing s 1 :: ~sis illegal ifs has the_basing s::~s2 or 

s:: R c s 2 , but legal ifs:: L ~ s 2 • In this latter case, the 

bits which flag membership/nonmembership in s 1will be stored 

with the elements of the 'list of all members of s' that is 

maintained. Similarly, the basing f:: M(s,B) is illegal if 
s has the basing s:: c s

2 
ors:: R c s

2
, but legal ifs:: L c s 2 , 

in which case the values of the map f will be stored with the 
elements of the list of all members of s. The cases in which we 

allow basings like s 1 ::Cs and f::M(s,S) are: s::L_~ s 2 , s::LR~s2 , 

s::{a}, s:d1, s::M(s
2

,6), s::RM(s
2
,a), s::MM(s

2
,13), s::RMM(s2 ,B). 

That we should allow the basing_s1 ::~s even when s has the basing 

s::M(s
2

,6} is somewhat exceptional, since the elements of shave 

no representation of their own, but are merelv represented. by 

fields attached to the elements of s 2 . 
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However, this type of basing is useful for storing submaps of ~ 
maps having a based representation, and is therefore allowed. 

Using the fundamental basings which appear in the pre
ceedi~g list, and compounding them in ways conforming 

to the rules just.stated, we obtain a large family of possible 
' . . ,, . 

basings. Given a SETL program and a variable x in it, we allow . 
any of these basings to be declared for x. Then, given a 
typical SETL binary operation i 1 2£ i 2 6 and assuming that 

basings have been declared for its inputs i 1 and i 2 , there 
.will exist some standard way of performing the operation, and 

the operation's result will have some standard basing. As an 
example of this general remark, consider the operation s 1 with x. 

Suppose first that s 1 has the representation s 1 n~s. Then_ to 
calculate s1 ~ x· we first locate x as a member of s; if 

this location operation is successful, we set the bit attached 

to the member of s that has been located, and if this changes 

the bit, we adjust the count and hash maintained with s 1 C 
appropriately. On the other hand, if x cannot be located as· .· -

a member of s, we consider the basing declared for s 1 to be 
in error, since in this case the calculation of s 1 ~ x can 
make necessary some very extensive reconstruction of s1 , which 
we do not wish to allow. All of this is shown in the following 
code, which realises the operation s 1 with x in the case s 1 ::£ s. 

(4) if locate (x, s) !!!, .tx ~ n then 
if s1-bit (tx) ~ O then 

else 

s1-bit (tx) = l; /* set flag bit*/ 
count(s1) = count(s1) + 1; 

/* adjust count field of s1 if necessary*/ 
hash(s1) = hashplus(hash(s1), hash(x)); 

/* adjust hash field of s1 if necessary*/ 
end if s 1 bit; 

error ('basing violation ins with x operation, x not (, 
present in base') 

end if locate; 
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• In this code, tooate(z~•J is a subprocedure that returns 

• 

a pointer Lx to the item of s which is equal to x if such an 

item exil!Sts, but n otherwise. Also, oount(s1J is a field of 
s.

1 
in which the current n\lltlber of elements of s1 is maintained 

(if it is nece~Sarf to ~intain such a count)1 and hash(s 1J is 
a field.of s 1 in.which standard hash quantity calculated from 
its elements is kept, if it is necessary to maintain such a 

hash fthe function hashptus adjusts the calculated hash of s 1 
in a standard way when the element x is added to s 1). Finally, 
the 1-bit field s 1_bit(tx) contains the bit which flags 

membership/nonmembership of the item ix in the set s 1 • 
Depending on the way in which x and s are represented, and 

on.the global context in which x and s appear, the code (*) 
will represent a large or smaller amount of calculation; moreover 
in certain cases parts of this code can be elided. The most 
drastic variations in the time needed to execute(*) will come 

from variations in the time needed to calculate the function 

locate(x,s). If x has the basing x::Es we are· at one extreme, .. 
since locate(x,s) simply reduces to x. If x::O and s has a 
basing like s::LCs1 then we are at another extreme, since 
locate(x,s) is calculated using what may be a long list search 
and a sequence of identity tests (which cheek x for identity 
with successive elements of this list). In addition to the 

execution-time variability involved in calculating locate, elision 
of parts of the code (*) will speed(*) up in certain cases. 
If the set s 1 is never tested for equality with any· other set 
than~ and never becomes a member of a collection of sets or 
part of the domain of a function, then it is not necessary to 
maintain hash(s

1
), and the line in(*) which does so can be 

elided. If s 1 is used only for membership testing, but is not 

itself tested for equality ~ith the null set, then no count need 

be maintained for it, so that the line of(*) which does so 
can be removed, and (*) elided to 
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if locate(x,s) is tx ne Q then - -
a1_bit(1x) = 11 

else 

. " 
./ 

error ( 'basing violation ••• etc'); 
end ifJ. .... ._ 

Pinally, if global inclusion-membership analysis shows that xEs 
must hold, then the test appearing in this last code is un

necessary, and(*) reduces to 

s1_bit(locate(x,s)) a 1: 

o~ even,if x has the basing x::Es, to 
s1_bit(x) = 1. 

r 

In the preceeding example, we have assumed that the operation 
s1 ~ x can be performed destructively. If ibis is n(!t the case, 
s 1 will have to be·copied. If a copy operation must be performed, 
it may be advantageous to change the representation of s1 while 
copying it. This possibility will be explored in more detail • 
below. 

In cases like those reviewed above, the manner in which 
the result of a binary operation i 1 ~ i 2 is represented will be 
determined by the representations of i 1 and i 2• For example, 
unless a conversion is forced, the quantity s with x will have 
the same representation ass. Conversions will be forced if 

a. The left-hand side of a simple assignment 
x = expn 

is specified to have a representation different from that which 
the r~g:nt hand side of the assignment would ordinarily haYe; or 

b. The map f appearing as the left-hand side of an 
indexed assignment 

f(x1 , .•. ,xn) • expn 
is specified to have a representation which makes it necessary 
to convert either the tuple <:c1 ~ ••• ,xr/i ezpn '> or the map-value 
e:cpn_to some form different from which it would ordinarily have1 orQ 
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c. a form different from that which it would ordinarily 

have is directly specified for the value of an expression 
0 (this ccµ1 be done using syntactic conventions that will be 

described below.) 

Except in. th~s~ ca_ses, assignments will be performed without 

conversion of ~eir right hand sides. This rule can be used 
to allow omission of declarations that would otherwise be required 

for specification of·the form in which the values of a variable x 
will be represented. If all assignments to x have 

right hand sides which possess the same representation, then 

x will. -automatically be assumed to have this re-

presentation. This rule applies also to variables x appearing 

in set-theoretic iterators Vxes ... : e.g., ifs is declared. to 
have the basing s::Lcs1 , then x has the basing x::Es1 , while 

if s::S(B), then x has the basing a. The null set can be re~ 
presented in any basing and is therefore neutral with regard 

to basings. A variable whose basing would otherwise be ambiguous 

because it appears in several assignments which imply different 

basi~gs must have its basing specifically declared; if this 

declaration is omitted, a diagnosr.ic should be issued. A basing 

declaration will force conversion operations to be inserted 
at appropriate points in a compiled code. 

Since expressions in SETL can be quite rich, it will sometimes 

be desirable to declare· the way in which a particular sub

expression of a larger expression is represented. In effect, 

this declares a representation for the compiler-generated 

temporary variable which corresponds to a:~ subexpression, and may 

insert some conversion operation into the code which is gene~ated~ 
Once a. representation has been declared for each (programmer 

and compiler-generated) variable appearing in a binary or n-ary 
operation, a crude but useful formula for the amount of time 

required to perform the operation can be generated. 
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In wri ti:ng such formulae, we will use the symbol E for one 
'eleme:ntaz:y operation time', essentially the time required to 
perfornt,an indexi~g or test operation, tha symbol fS will be 

used to denote the number of elements in a sets or the number 
of componc.mts . of a tuple s. The symbols f3S will be used to .. , . . ... 
denote the typical number of elements in the members of a set . 
Sand the typical number of elements in the components of a 

tuple S, etc. 

We can illustrate the use of these notations by writing 

a formula for the time required to calculate.~ s 1 ~ x in 
cases for which the formula(*) applies. This is (roughly) 

3.5 B + TLOC; 

where TLOC designates the time required to calculate the 

auxiliary function location(x,s). The quantity TLOC can itself 
be calculated given the representations of x and s. Suppose 
for example that s has the basing s::LSs2 • Then locate(x,s) 
is calculated by searching in the list which represents s 

For a pointer to an element (of s 2) equal to x. We can . 

therefore offer the estimate 

TLOC = ½. t s ( 2 E + TEO), 

where TEQ is the time required to compare x and an element of 
s 2 for quality. In a simple case (such as x::es2) TEQ will 

have a simple estimate (e.g.,E); in more complex cases a formula 
for TEQ will have to be developed recursively, using the known 
representations of x and of the members of s 2 • 

At-'any rate, formulae estimating the execution time of 

each primitive operation appearing in a SETL program P will 

always be derivable once a representation has been specified for 
each variable of P. These formulae can be printed as program 
annotations which can help a progranuner find an effective overall 
set of representations. It may also be possible to base a 
process of automatic data choice on these formulae. A plausible 
technique is as follows. First, collect frequency information on 
all the explicit loops and branches of a program. 

• 
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This will involve assigning a relative execution probability 

to each of the parts of every if-then-else statement, an 

. expected number of iterations to each while statement, and a 

: relative prpbability to each boolean condition clause C(x) 

- appearing i~ an iterator of the type c\lxesjc(x)). using this 

~" information, an·executi-on frequency can be assigned to each 
primitive operation of the program P. Information on the sizes 
of each of the sets sand vectors v appearing in P should also 

be collected. With all of this information in hand, data re

presentations can be assigned to the objects of Pin all 

possible ways, the resulting execution time calculated, and 

an optimal representation scheme chosen. For this purpose, a 

branch-and-bound method which examines the most frequently 
performed operations of P before processing the other operations 

of P can be used; such an approach can drastically reduce the 
number of cases which need to be considered. Branch-and-bound 

algorithms always work most efficiently if the estimated 

solution with which they start is not too far from optimal • 

For this reason, it may be worth providing .a heuristic algorithm 

which attempts to develop an advantageous initial set of re
presentations. Such an algorithm might work by trying to set 

up a 'highly advantageous' system of representations, i.e., a 

system of representations which allow many of the high frequency 
operations of P to be performed in particularly efficient ways. 

Note for example that s·~ x can be calculated with particular 

efficiency if s::~s1 and x::Es1 , that f(x) can be calculated 
efficiently if f::M(s1) and x::es1 , that s+s' can be calculated 
efficiently if s::Rcs1 and s'::RCs1 , etc. 

When conversions are performed, either in response to some 
relatively explicit request or in preparing to perform some 

operation one of whose arguments must be converted, then two or more 

representations of the·~ SETL value wi11 come ·into existence. 
~his value equivalence, if tracked globally, may make it possible 

to avoid subsequent conversion operations. A technique for 

global tracking of equality relationships-is outlined in 
section 5 below. 
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Disallowed operations, copying conversions. 

Certair-l basin9s will be disallowed for variables which 

ente:t· in :particul,ar ways into specific SETL primitives. Sets 

with, the,.basing s 1 : :£_s, _ s 1 : :L£s1 , s: :M(s1 ), s: :.MM(s1) have 

what may be described as a 'distributed' rather than a 'grouped• 

representation·~ and,.for this reason are not allowed to become 

. _elements of otl~er st!ts or components_ of vectors. 

As noted above, 'lfe do not allOtf a set which has the basing 

a s a£ s 2 or • : ::R £ s 1 to serve as a basis for any other object 
x, since x. can just as well be based on s 1 as on s. Moreover, 

if s has the basing e : ;E s 1 , we do not allow s to serve as ... 
a basis, since this would J.ntrod.uce substantial complications 

into some of the situations with which we will have to deal. 

Operations which c,mnot be performed destructively will 

force copies of ona or more of their arguments to be made. In 

some :cases, as for eY.ample when an argument x has the basing 

x::es,the argument's representation will modified while it is 

being'copied. In this particular case, the way in which the 

copy xc of x is based will depend on the representation of s. 

The rules which determine the representation of xc from that 

of s are as follows: 

(a) As noted in the preceeding section, neither s: :~s2 
nor s::R£s2 can occur. 

(b) If s::LCs2 or s:zLRCs2 , x will be converted to an 

element x' with basing x::es2 , and then xc formed as if x had 

this-basing originally. 
·' (c) If s:: M(s2 , B) then an object x with x: :Es basing 

is actually represented by a pointer to an element x' of s 2_. 

' r 

• 
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We copy x by forming a copy c' of x' and a copy en of the 
element xn referenced by the s_field of x' , and then by 
forming. the pair <c' ,c">. Much the same procedure is used 

if s: :RM(s2 ,B), except that in this case the s_field of x' 
is an index which locates s (x') rather than a pointer 
to it. The copy of x has the basing <S' ,s·>, where S' is the 
basing of the copy c' of x'. 

(d) If.s1:MM(s2 ,S) or s::RMM(s2 ,S), then x is a pair 
p•,p• of pointers, where p' points to an element x' of s 2 , 

and p• points to a hash-table element, which in turn points 

to an element xn having the basing a. We copy x by fonning 

a copy c' of x' and a copy c" of x• , and then by forming 
· the pair <c' ,c•>. This copy of x ha.s the basing <S', S>, 

where B' is the basing of the copy c' of x'. 
(e) If s::{S}, then x is a pointer to an itemy in the 

hash table which represents s. To copy x we copy y. 
(£) If s::n, and the value of x is not a tuple, 

then we proceed as in case (e) • But if the value of x is 

an n-tuple, then x will be represented as a list of n-1 
pointers Yj, where y1 ••• yn_ 2 will point to hash table items 
z1 , •.• ,zn_2 having the basing n, while yn-l will point to a 

pair whose components zn-l'zn have the basing n. We copy 
·x by copying z1 , ••• ,z

0 
and forming a tuple of the copies. 

The resulting object has the basing n. 

I 
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We shall now give a full account of the automatic con

versions which apply when an object x with a specified basing 

is copied. It should be noted that time formulae like those 

presented in section 3 below can be developedfbr each of 

these copying operations; however, in the present section 

we shall,for tl).e sake of brevity, omit these formulae. Note 
also that the copy operations which we describe copy only the 

topmost level of a compound data item, not the subojec_ts of 

these compound objects. In cases where a full copy is 

necessary, the procedures described below can be extended 

recursively from objects to their subobjects. 

The basings which must be considered are as follows: 

(cop.I) x::£s. To copy x, we iterate overs, skipping 

the elements which do not belong to x, and building up a 

hash table of the elements which do. The copy x' of x that 

is produced has the basing x' : :{Es}. · 

(cop.2) x::RCs. Here x is represented by a bitvector 

which has only to be copied. The copy x' of x has the basing 

x' ::RCs. 
(cop.3) x::If_s. This case is almost the same as case 

(cop.l), except that using the list which forms part of the 

representation of x we can iterate directly over x rather 
than over the larger sets. The copy x' of x that is produced 

has the basing x' .: : {Es}. 

(cop.4) x::LRCs. Here x is represented by a bitvector 
and a list which have only to be copied. The copy x' of x 

has the basing x'::L~s. 
(cop.5) x::Es. This case, which is particularly complex, 

has been discussed at the b~ginning of the present section. 

{cop.6) x::<B1 , ••• ,Bn>. To copy x,form a new vector x' 

of equal length with the same components1 this will also 

have basing x'::<81 , ••• ,Bn>. 

• 

-
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represents it. 

basing · x • : :. { B } • 

, 
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x::{B}. To copy x, copy the hashtable which 

The copy x' which is formed still.has the 

(cop. 8) x_: :M(s, 8). To copy x we iterate over s, skipping 
the elements·y for·whi-ch x(y) ~ n, and building up a hashtable 
of all the pairs <y, x(y)> for which x(y) !!!. n. The copy x' 
of x that is produced has the basing x•::{<Es,a>}. 

(cop.9) x::RM(s,B). Here x is represented by a vector 
of values.which has only to be copied. The copy x' of x has 
the basing x'::RM(s,S). 

(cop.10) x::MM(s,S) To copy x, we iterate overs, skipping 
the elements y for which x{y} ~!!!• For each y such that 
x{y} !!!, nt, we iterate over all the elements in the subsidiary 
hashtable which represents x{y}. During this process we 

build up a hashtable of all the pairs <y,z> for which zEx{y}. 

The copy x' of x that is produced has the basing x'::{<EsJa}>}. 

( cop .11) ' x: : RMM, s, 8) • To copy >. we cop:/ the vector which 
represents it and_ a11 ·_the lists at wh:.ch this vector points. 
'l'he copy x' also- has i.he basing x: : Rffl-1 ( s, B) • . 

(cop.12) x::n. This uses the SRTL copy routine, which 
resembles the code used in case (cop.7), but which is substantially 

more complicated because of the special way in which tuples 
are handled as members of 0-based set. 

(cop.13) x: :INT(k), x: :STR(~), x: :BIT(k). In these cases 
the copying operation is elementary, and the copy x' that is 

formed has the same basing as x • 
.: 

Forced conversions. 
Whenever a conversion is forced, e.g., by explicit assignment 

of a y having one basing to an x specified to have another, 
a conversion procedure which produces the representation of x 
from that of y will have to be executed. We shall now sketch 
conversion procedures which can be used in the various cases 
that arise, 

Note that time formulae like those presented in section 3 

below can be developed for these conversion procedures; however, 

we shall not give these formulae now. 
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The various basings that need to be considered are: 
(conv.1) x::cs. To convert y, we iterate over its elements -

r 
ey and'for·each such element calculate the function ex• locate(ey,s). 

: · cct. the discussion followi~g (4) of section l above.) Then 
the.x bit of'"the·e1ement of sat which ex points is set • 

. -
(conv.2) ·x1:~s, ~he procedure used is similar to that 

applied in case (conv.l), except that we set a bitvector bit 
whose index is found in the a-element at which ex points. 

(conv.3) x::LCs. We proceed as in 4ase (conv.1), also 

building up a list Le of the elements exalocate(ey,s) as we 

_go along1 this list becomes part of the representation of x. 

-(conv.4) x::L~s. The procedure is similar to that 

applied in case (conv.3), except that the bitvector bits which 
we set are located by indices found in the elements ex of s, 
and not directly in the elements ex themselves. 

(conv.S) x::es. Here we simply calculate x = locate(y,s). 

(conv.6) x::<81, ••• ,Bn>. The possible basings for y are 

y::<B1, ... ,s;>, y::n, and y::Es. In the first case, we simply 
convert the components of y individually to the basings aj, 
and build up a tuple of the converted components. Much the 
same remark applies if y::Q. If y::Es, then the possible 
basings for s are s::L£s', s::LRCs', . s::{B}, s::O, 
s::M(s,~), s1:RM(s,8), s:1.MM(s,B), and s::RMM(s,B). We treat 
these cases separately as follows: 

C 

(conv.6.1) s: :L£s', also s::LJlSs' Here y points to a list-element, 
which in turn points to an element of s'. Thus a single indirect 
reference transfonns y to an element y' with the basing y::Es': 
applying this transformation repeatedly if necessary,we will 
eventually reach an element y(n) with the basing y<n>::Es~n), 
where s(n) has some basing other than s<n>::LCs(n+l). 
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(,Jonv .. 6.2) s: :{B}. .Here y points to a hashtable item, 

• which :t.n t'.u.rn ·points to an element with the basing a. Thus 
a •~gle .indirect ref erenc:e transforms y to an element with 

the balling fj. 

• 

. . 
(cionv:6.3) s::Q.. Here y, if it value is logically an 

n--tuple, wil:f:, be ·.. ~ep~esented as a list: of n-1 pointers ~. 

The quantities :'i···Yn_2 point to hash table items. z1 ••• zn_2 
having the basing n, while Yn-l points to a hash table item 
which is a pair each of whose ccmponents zn-l' zn have the 
basing n. By converting z1 , ••• ,zn to the basings B1 , ••• Bn 
we obtain the components x(l), ••• ,x(n) of the desired n-tuple x. 

(conv. 6.-4) i,: :M(s •,a). In this case y, which logically 
is a pair, points to an element z of s', and the s _field of 
z points to an element z' with the basing z'::B. Y1e convert 
z to the basing s1 ,_ thereby obtaining the first component x(l) 

of 1:he desired element x, and convert z' to the basing a2 , 

thereby obtaining x(2). 
(conv.6.5) s::RM(a',B). This case is much like case 

(CQnv.6.4), except that y points to an element z whose s_field 

contains an index i which defines the component v(i) (of an 
•-~epresenting vector v) which contains z'. We convert z to 
the basing s1 , thereby obtaining the first component x(l) of 
the desired element x, and convert z' to the basing a2 , thereby 
obtaini~g x(2). 

(conv.6.6) s::MM(s',B). In this case y is a pair of 
pointers, the first one of which references an element y

1 
of 

a', and the second of which references a hash table entry 

that co?tains or points to an element y2 having the basing 8. 

By converting y1 and y2 to the basingsa1 and $2 respectively, 
we obtain the first and second components of the converted , 
element x. 

(conv.6.7) s::RMM(s',a). This case is identical with 
case (conv.6.6). 
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. (conv. 7) x;: {8}: Here we iterate over the elements ey r 
,,:,f y, converting each ey individually to the basing a, and 

incorpo1:11ti~g the converted elements into a hashtable. 

(co-nv~·B) x:: n •· If y is a tuple, we convert its components 

individually to ~e basi~g n, and incorporate the converted 
components i~to a new'tuple. If y is a set, we proceed 

esse~tially as'in case (conv.7) (however, tuple insertion in an 

n-based. set is handled in a special way.) 

(conv.9)x::M(s,a). We iterate over the elements ey of y, 

converting each ey individually to the basing <es,a>. The 

first component ?f this pair p locates an element es of the 
sets; we then set the x field of this element -
equal to the second component of the pair p. 

(conv.10) x::RM(s,a). The procedure used is similar to 

that applied in case (conv.9), except that the x_field of the 

element es contains an index i1 we then set the i-th component 

of an auxiliary vector to equal the second component of 
the pair p whose first component is es. 

(conv.11) x::MM(s,a). We iterate over the elements ey of 

y, converting each ey individually to a 9air p with the basing 

<Es,S>. The first component of p locates an element es of the 

sets; the x_field of this element (is either nil or) points 
to an auxiliary hash~table in which all the elements of x{es} 

a~e to be recordecl. We insert p into this hash table, and 

then continue our iteration. 
(conv.12) x: :RMM(s,8). The procedure used is similar to 

that applied in case (conv.9 ) , except that the X field of the 
; 

element es contains an index i defining the component (of an 
auxiliary vector) which contains a pointer to an x{es}-representing· 

I 

hash table_. We insert p into this hash table, and then continue 

our iteration. 

{conv.13) x::INT(k), x::STR(k), x::BIT{k). Conversion will 

only be required if y has the basing y::Es; in this case, y 

points to an element of s which in turn points to an element 

with the desired basing, so that conversion is effected simply by 

passing from an indirect to a direct reference. 

C 
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A number of special cases in which conversion can be 
performed with particular efficiency are worth noti~g. 
Suppoue that y is to be converted to have the basi~g of 
x. It y::LRCs and x::R£s, it is only necessary to copy 
the bitvector part of y's representation (at high speed using 
word-length oper~tions) to obtain the representation of x. 
(If y J.s dead after x is formed, we have only to drop the 

list part of the existing representation of y.) A similar 
remark applies in case y::RM(s,B) and x::RM(s,B), and also 
if y: : RM ( s , 8) and x: : RM ( s , 8 ... ) • 

Whenever an object y is converted to a form x having a 
different basing, the object x will,immediately after its 
formcLtion.,be a l'ogical copy of y. If this logical copy will 
come into existence anyhow, it may be unnecessary to copy y, 
even if y is an operation argument which wouldd:herwise have 
to be copied. A programmer should have no difficulty _in 
signalling such a situation to the redundant-copy elimination 
mechanisms of the SETL compiler by inserting explicit con
version operations into SETL code with which he is working. 
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J. Code and execution-time formulae for various SETL pr1m1t1ves. 

In the present section, we will discuss a few typical SETL 
primitive operations,a~d will describe the code which will be used to 

realise tl .sse pr.imi ti ves. Of course, the code used depends on the way 

in which the arguments of a ·parti~lar operation are represented. The 
most crucial operations._are xEs and x ~ y, which enter as sub
routines into Jnal'.lY other operations and which call each other 
recursively. But we shall begin our discussion with a simpler 
operation, namely 

(a) s1 ~ x. 

(a.l)s1 ::· ss .. Cod• is as follows: 
if locate(x,s) is 1x ne O then 

. - -

.if _s1_bi t ( !x) • l 1 /* set £ l~g bit * / 
countTs1} • count(s1) + 11 

/* adjust count field of :s1 if necessary*/ 
hash(s1) _ = hashplus(-hash(s.1), _hash(x)); 

/* adjust hash field of s1 if necessary */ 
end if s1_bit; 

else 

error('basing violation ins with x operation, x not 

present in base'); 
end if locate; 

BZisions have been listed in section 1. 
Execution time formula (not-elided case) is 

• 

C 
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3.SE + 'l'LOC, 

, 
./ 

• ·where TLOC is the time needed to calculate the auxiliary function 

• 

-

locate{x,s). 

(a.2) s::RCs. Cod• and etisione similar to case (a.l)1but . -
s1_bit(1x) is differently located. !'ime formula is 

. 4 E-i- TL.<>q. ... 
(a.3) s1 ::LSa Cods and sZisione similar to case (a.1), but 

tx should be added to list that represents s1 if s 1_bit (tx) 5 o. 
!'im• formula is 

4.SE + TLOC. 
(a~4) s 1 ::LR~s. Code and sZisiona similar to case (a.3), but 

a1_bit (tx) is differently located~ 

!"imB formula is 

SE+ TLOC. 

(a·.s) s1 : :Es. This case will never arise, since it cannot 

be performed destructively, but will force a copy of s1 to be 
formed, which will convert s1 to have the representation used 

for elements of s1 see the discussion of this point given in 

section 2. 

(a.6) s1 ::{S}. The code here resembles the code for 

the with operation found in the SETL run-time library (SRTL). 

The hash-table representing 6:i.is entered using the hash of x. 
This locates a list, estimated to be 2 elements long, which is 
searched for an element equal to x. If such an element is found, 
the~ operation is.a no-op. Otherwise x is added to the hash 
table1 this may make rehashing necessary. For code, see the SRTL· 
listing~ 

Elisions: Elide test if x known to be different from 0; 

elide hash-value update if hash of s1 not needec'l; 
elide count update if count of s 1 not needecl; 

elide equality tests if xes1 is known to he false. 
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Ti.me formula(assuming no elisionS): 7E + 2 * TEO; 
where TEO is the time required to test x for equality with 

an element_having representation a. 
(a. 7) s 1 : :n. Assuming no conversions are necessary,;, 

this uses the SRTL. code. Elisions are possible if some 

amount of global analysis, type determination, etc., is done. 
Etisions: As in case (a.6) above, plus: 

elide type test if s 1 is known to be a set; 

elide type test if x is not a tuple, or if s 1 
is never used as a map. 

Tims formula: 9E + 2 * TEQ, 

where TEO is the time required to test for equality with an 
n based element. -

(a.8) s 1 ::M(s,13). Cod• is: 
if locate (x(l) ,s) ·!!_ .tx- !!.! O then 

if mapval (tx)· ~ 0 then 

mapval(tx) = x(2) 1 

count(s1) = count(s1) + l; 

r 

C 
/* adjust count field of s1 if necessary*/ 

hash(s1) = hashplus{hash(s), hash(x)}; 

else 

/* adjust hash field of s 1 if necessary*/ 

if mapval(1x)· ~ x(2) then 

error( 'multiple definition error in s· -with x operation 1 

end if mapval; 
else 

error('basing violation ins with x operation, x not 
present in base'); 

end if locate; 

E'tisi.ons: Elide test if x(l) known to be different from n: 
elide test if x(l) is known to be a mem.ber of s; 

elide count update if not necessary: 

elide hash update if not necessary. 

Time formula (asswning no elision~): 4F + TL0C + TCOMPl + TCOMP2; 

TLOC is the time needed to calculate the auxiliary function C 
locate(x(l), s); TCOMPl is the time necessary to calculate a 
representation of x(l) from the representation of x, and TCOMP2 

is the time necessary to calculate a representati0n of x(2). 
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(a.9) s 1 ::RM(s1a). Code and elisions similar to case 

(a.8), but mapval(tx) is differently located. Time formula is 

4.SE + TLOC + TCOMPl + TCOMP2, 

where •TLOG_, TCOMPl, and TCOMP2 are as in case (a.8) • 
(a.10) s 1 ::MM(s,B). Code is: 
if locate ·(x (l)·)s)· !!. f.x· ne O then 

if. list_locate(tx,x(2)) !S. O 

/* i.e., x(2) note s{x(l)}*/ then 
allocate (mapvalspace); /* allocate space for 

j 

storage .of new map value 

next (mapvalspace) = mapval(ix); 
item (mapvalspace ) -• x ("2) ; 

mapval(tx) = mapvalspace; 

end list_locate, 

else 

error ( 'basing violation ins· with x operation, 
x not present in base') • 

end if; 

Etisions: none 

Time formula: 

7E + TLOC + TLOC2 + TCOMPl + TCOMP2, where 

TCOMPl and TCOMP2 are as in case(a.8), TLOC is the time needed 

to calculate the auxiliary function locate(x(l) ,s), and TLOC2 is 
the time needed to calculate the function list_locate(ix, x(2)) 
which searches the list whose head is referenced by rnapva1(1x) 

for an i tern equal to x (.2) • The quantity TLOC2 can be estimated as 

( f s { x ( 1) } ) * ( 2E + TEQ) , where 

TEO is the time required to test x(2) for equality with one 
_. 

element of this list. 

(a.11) s 1 : :RMM(s,S) ._ Code and elisions similar to case 

(a.10), but rnapval(tx),used in list_locate(tx,x(2))) is 
differently placed. Time formula is 

7.SE + TLOC + TLOC2 + TCOMPl + TCOMP2 

where TLOC, TLOC2 TCOMPl and TCOMP2 ~re as in case (a.10). 
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Next we consider the related operation 

(b) x e s1 , for which the following suhcases arise: 

(b.1) s 1 ::£ s. Code is as follows: 

if locate '(x, s) !.!, 1x '!!!_ 0 then 

return ~1_b~t. (1~)· .!!!. O 
else . 

return false1 

e~d if; 

Elisions: if xEs is known, the initial tent can be elided. 

~ime formula (non~elided case) is 

.SE+ TLOC, 

-where TLOC is the time needed to calculate locate(x,s). 

(b.2) s 1 ::R Ca. Code and eiisions similar to case (b.l), 
but s·1_bit (9.x) is differently located. Pi.me formula is 

(b. 3) s1 : :L ~ s. 
same as case {b.l). 

(b.4) s 1 ::L R ~ s. 

same as case C-b. 2) • 

E + TLOC. 

Code~ •"Lisi.ons~ and timf!, formula 

Code, et.isions# and time formula 

(b. 5) s
1 

: :E s . 

possible basings for s 

The procedures used to 

If s 1 is based in this way, the only 

are L Cs', L R Cs', {8}, and O. 

evaluate x e s 1 in these separate cases, 

and their analysis, is as follows: 

(b.Sal) s::t-c s'. Let actuat (s
1

) denote the element 

(of the list which represents s) to which s 1 points; this 

item has the basing Es'. Then x E s 1 is implemented as 

x E actual {s1 ), requiring a time E + T', where T' is the time 
required to perform the test x E sa for an item sa having 

the basing Es'. 

(b.5.2) s:: LR c s'. The procedure used in this case, .-
and its analysis, is the same as that used in case (b.5.1). 

l 
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fbt Sv :l) s: :: { B}. Let aatual (s 
1

) denote the element 

(of the. a-representing hash table) to which s1 points, this 
item ha.s t.J~e ·basing 13. Then x e s 1 is implemented as 

xE aetual(s1}, r~quiring a time R + TS, where Ta is the time 
required, to perform the test x:Esa for an item sa having the 

basing-J3. 
(b.5.·0 snO. This ca~e is handled in essentially the 

same way as case (b.5.3), excep't that here Bis '2. 

(b.6) s 1 ::{a}Q Here we use essentially the code for 
the membership test found in the SETL run-time library (SRTL). 

The hash table 1:·epresenti11g s 1 is entered using the hash of x. 

This locates a list,_ approximately 2 elements long, which is 

searched for an element equal to x. If such an element is 

found, true is returned: otherwise false is returned. 
Elision: Elide test if x known to be different from O. 

~ims formula (assuming no elision): 

SE+ TEQ, 

where TEQ is the time required to test x for equality with 

an element having representation B. 
(b.7) s1 ::n. Assuming no conversions are necessary, 

this uses the SRTL code. 
Elisions: Elide test if x is known to be different from n; 

elide type test if s1 is known to be a set: 
elide tuple test if x is known not to be a tuple, 

or if s 1 is never used as a map. 
Time formula: 7E + TEQ, 

where TEQ is the time required to test for equality with an 
0-based element. 

(b'. 8) s
1

·: :M ( s, fH • Code is: 
if locate (x (1), s) is tx· ~ n then return false 

else return mapval(R.x) ~ x(2)J; 

Elsisions: Elide test if x(l)is known to be different from n; 
elide test if x(l) is known to be a rne.mber of s; 



• 
' 

SETL-151-24 

'l'ims formula: E + 'l'LOC + TCOMPl + TCOMP2, r 
where TLOC is the time needed to calculate locate(x(l), s), and 

'l'COMPl (resp •. TCOMP2) is the time needed to calculate a 
representation of x(l) (resp. x(2)) from the representation of x. 

(l>.9)-, s1-z :RM(•s,B). Code and etisions similar to case 

(b.8), but mapva1(1x) is differently located •. Time formula is 

2E + 'l'LOC + TCOMPl + TCOMP2, 

where TLOC, TCOMPl, and TCOMP2 are as in case (b.8). 

(b.10) s1 : :MM(s,a.). Code is 

if locate (x (1) ,s) · is 1x 5 f2 then return· false ; 
else return lis•t_locate (1x, x(2)) ~ 0 ; ; 

Elisions: none 

'l'ime formula: 

2 E + TLOC + TLOC2 + TCOMPl + TCOMP2, 

where TLOC, TCOMPl, and TCOMP2 are as in case (b.8), and where 

TLOC2 is the time needed to calculate the function· 
list_locate{1x,x(2)). For a description of this function, see 
(a.10) above. 

(b.11) s 1 ::RMM(s,B). Code and elisions similar to 
case (b.10), but rnapva1(1x) (used in list_locate(1x, x(2))) 

is differently placed. Time formula is 
2.5 E + TLOC + TLOC2 + TCOMPl + TCOMP2, 

where TLOC, TLOC2, TCOMPl, and TCOMP2 are as in case (b.10). 
The equality testing operation occurs frequently in the 

preceeding discussion, and we now proceed to consider the way 
in which it will be implemented in the various cases which· 
can·arise. The operation in question is: 

(c) . x_!:S, Y. We consider various subcases reflecting the 
different possible basings for y. 

• 
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(c.1) yncs. Cods is as follows: 

if~ x ~ !!,!: 2!. (t x)" !!!_ t y -~ hash(x) ~ hash(y} then 
return ·false else 

'· W z e • I y_bit (z.)· ~ l) · 

,. :if no.t zex then return false 1 ; 

end v~.-. y: , 

return: ·true 1 -
end if1 

Etisions: If the type of x is known, a test can be omitted. 
~ime formula: the average time required for this 

operation depends very strongly on the probability PEQ that , 
·x and y are equal: 

8 E + (6 E * f s + t y * TMRMB) * PEO, 
where TMEMB is the time required for the membership test z Ex. 

Note that an estimate can be supplied for PEQ in case 

the equality test x ,!g Y.with whose running time we are con
cerned is being executed repeatedly as part of a search 
over some compound object, since in this case one can assume 

that, with probability roughly one-half, x will be to equal 

to one of the items y of s and different from all the others. 

(c.2) Y::R Cs. Code and etisions are similar to case 
(c.l), but y_bit(z) is differently located. Time formula is: 

8 E + (7 E *· t s + # y * TMEMB) * PEQ, 

where TMEMB and PEQ are as in case (c.l). 
Spec·ial aase: If x and y both have the basing R ~ s , 

tlien detailed comparison of x and yin the case of suspected 

equality can be done using bitvector operations. In this 
case, the time formula becomes 

8 E, + ~(2 E/NBPW) * PEQ * # s, 
where NBPW is the number of bits per word for the machine 
supporting a given implementation. 

(c.3) y:: L c s. Code is as follows: 

if -~ x ne set~ (t x) ne # y ~ hash(x) !!!:. hash(y) then 

return false; 

else 
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pointer= first (y); /* the representation of y includes */r 
pointer to the first element of its*/ /*a 

/* ~ssociated list */ 

(while pointer·!!.!. O) 

if element. (pointer) ·not e x then return false;; 
/* element(pointer) retrieves the element of y associated*/ 

/* with a particular pointe~ */ 
pointer= next (pointer)1 /* advance in list*/ 

end while; 
return tru·e; 

end if 1 

Elisions: If the type of x is known,· a test can be omitted. 
Time formula: 

8 E + (t s) * (TMP~ + 3 E) * PEQ, 

w.here as in case (c.2) PEQ is the probability that x and y are 

equal, and TMEMB is the time required for the membership test 

element{pointer) ex. 
(c.4) y::L R c s. Code,elisions, and time formula 

identical to case (c.3). 
Special case: If x and y both have one of the basings R 

R c s or LR ~ s, then detailed comparison in the case of ·_ 

suspected equality can be done using bitvector operations. 
See (c.2) for the time fonnula applicable in this case. 

(c.5) y::Es. Here the way in which we proceed depends 

C 

on the basing of s. The possible basings are s::LCs', s::LRCs', 

s : :{ CH I s : : n f s : : M ( s I I B) I s : : RM ( s ' I a> I s : : MM ( s ' f B) f and s : : RMM ( s I f e) 0 

The treatments appropriate in these various subcases are 
as follows: 

(c.5.1·) s~:LCs'. The .quantity y is a pointer to an item 

i.tm in the list s, and i. tm points to an element actual ( y) in s' • 
Then x ·~ y is calculated as x ~ actual (y}. 

E"lie·ions: none 

Time formula: 2 E + TEQ, 

C 
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-where TEO is the time require to calculate x ,!g. y for an 
element y having the basi~g y::es•. 

(c.5.2) s::LR£ s'. Cods,stisions~ and time formula 
identlcal with case (c.5.1). 

(c.5.3) s::{a}. The quantity y is a pointer to an item 

actual(y) in the ·hasntable representing s1 x ~ y is 

calculated as·x 5 actual(y). 
Btisi.ons: none 
2'ims formula: E + TEO, 

-where TEQ is the time required to calculate x _!g y for an 
element y having the basing e. 

(c.5.4) s:: n. The quantity y is a pointer to an item 
actual(y) havi~g the basing n. 

Etisions and time formula: as in case (c.5.3). 

(Mote however that if actual(y) is a tuple the procedure will 
be more complex and the time formula different.) 

(c.5.5) s::M(s,8). The quantity y is a pointer to an 
element y of s'1 x 5 y is calculated as 

x(l_) ~ y ~ x(2) !g mapval(y). 
Btisions: none 
Time formula: E + TEQl + TCOMPl + .S (TEQ2 + TCOMP2), 

where TEQl (resp. TEQ2) is the time needed to test x(l) for 
equality with an element of s 1 (resp. to testx(2) for equality 
with an element having the basing 8), and TCOMPl{resp. TCOMP2) 
is the time needed to calculate x(l) (resp. x(2)) from the 
representation of x. 

(c.5.6) s::RM(s',8). Code and elisions are the same as 

in case (c.5.5), but mapval(y) is differently located.Time fonnula h: 

1.5 E + TEQl + TCOMPl + .S(TEQ2 + TCOMP2). 
(c.5.7) s::MM(s',B). The quantity y is a pair consisting 

of a pointer to an element y' of s' .. and a pointer to an 
element y" of the hash table representing s{y'l. The quantity 
x !s. y is calculated as 

x(l) ~ y•· ~ x(2) "!S, mapval(y"). 
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Elisions and Time formula are as in case {c.5.5). 

(c.5.8) s: :RMM.(s' ,f3). Code and eZisions are the 

same as in case (c.5.7)1 time formula is the same as in 

case (c.5.6). 

Special case (of case (c.5.~)): If y::Es and x has the 
... ,_ . ... ... 

same basi~g, then x ·!!l y can b'e tested simply by comparing 

the pointers x and y for equality. For this important special 

case, the time formula is simply 

2 E. 
(c.6) y::{B}. Code is as follows: 

if -~ x· ~ -~ .2E. (fx)· ~ I y ~ hash(x) ~ hash{y) then 

return ·false; 
else 

(1 ~ Vn ~ table_length(y) I elexnent(table(start(y) + n)) ne 0) 

if element ( table ( start (y) + n) ) not e x then 

return false;; 
end \/n; · 
return~; 

end if; 

Elisions: If the type of x is known, a test can be omitted. 

Time formula: 

8 E + (9 E + TMEMB) * (J y) * PEQ, 

where TMEMB and PEO are as in case (c.3). 

(c.7) y::n. Code in this ca~e is the equality test code 

presently in the SRTL run time library. The set-theoretic case 
of this code rather resembles that of case (c.6}, except that a 
more complex iteration over y is necessary if y is a set which 
can contain tuples. F-Zieions are possible after type deter

mination;typ~ determination is also necessary if a precise. 

time formula is to be stated. Some approximate time formulae 

for a few cases in which y is a set are as follows: 

if y is known to contain no tuples; 

8 E + (9 E + TMEMB) * {f y) * PEQ 

if y can contain tuples, but need not contain any: 

8 E + (12 E + TMEMB) * {f y) * PEQ 

where TMEMB and PEQ are as in case (c.3). 

• 
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(c.8) y: :M(s,B}. Code is: 

if ~ -~ ~ ·2:, (t x)· !!_! t Y' £!, hash(x)· !!!:,l"ash(y} then 

return ·false; 
else 

cVzes i. y field(i)· ·n~ '1) - . -
if ~Gt <z, y_field(z)> ex then return false;; 

end Vz; -
return~; 

end if~; 

Elisions: If the type of x is known, a test can be omitted. 

If x is known i:o be defined everywhere ons, a test can be 
anitted inside a loop. 

Time formula (assuming no elisions) 

8 E _+ (8 E * t s + t y * (T.MEMB + E)) * PEQ, 
where fy denotes the number of elements in y, TMEMB the time 

required for the membership test <z, y_field (z} > e x, ·and PEQ 

the probability that x and y are actually equal. 
(c.9) y::RM(s,B). Code and eiisions are similar to 

case (c.8), but y_field(z) is differently located. Time:formula 

8 E + (9 E * ts + ty * (TMF.MB + E)) * PEQ 

(c.10) y::MM(s, B). Code is 
if ~ X'. !!.! set ~ U x) ~ t y 2!: hash (x) -~ hash (y) . then 

return £a1se; 

else 

cVzes> 
pointer= y_first(z); /* the representation of each zEs */ 

/* includes a pointer to the first entry of a hashed table*/ 
/* of the elements of y{z} */ 

if pointer ~q O then continue 'tfz;; 

( 1 < Vn ~ ~erfield(table{p~inter)) I 
elementfield{table(pointer + n )) !!!:. 0) 

/* numberfield gives the size of the hashed table referenced*/ 
/* by pointer, elementfieid gives the element stored in */ 

/* a particular table position */ 
if <z, elementfield {table (pointer+ n))> 

not E x then return false;; 



end \fn; 
end V2; 
ret.urn ~} . 

end if1 
Etisiona: -If the type of x is known, a test can be elided .. _ . ...... 

If x is knOWJ., to be defined everywhere ons, a test can be 
omitted inside a loop. 

Tims formula (assuming no elisions): 

8 E + (10 E * (Is) + (5 E + TMEMB) * {i y)) * PEQ, 

where PEQ is the probability that x and y are equal. 

(c.11) y::: RMM(s,a). Code and elisions are much as in 
case (a.10), but one additional level of .:i.ndirection is re

quired to access pointer. Time formula is 

8 E + (11 E * (f s) + (5 E + TMEMB) * (t y)) * PEQ. 

To complete the design of an automatic or even semi

automatic system, we would have to extend the preceeding list 

to cover every SETL primitive operation. We shall not attempt 

this now. Instead we will let the preceeding discussion stand 

as an indication of what a full systeM would require. However, 

to round out this discussion a little more, we shall sketch 

out the implementation of the Zocate(~,s) primitive which 

appears in several of the preceeding insertion and membership 

tes:t codes. Here the various cases which can arise are as 
follows: 

(d.l) s:: Cs'. Code is: 

(\/yEs I s _bit (y) -~ 1) 

if x ~ y then return y;; 
end Vy; 
return n; 

!~7,is.f,ons: none. 

Time formula: ½ (Cadv E * (# sn + (E + TEQ) (f s)), 

wb.ere TEQ is the time required to make the.test x·~ y, and 

where C d Eis the time required to advance in the iteration 

V' a V 
(yes•). 

• 

• 
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(d.2) s::R ~ s'. Cods and ellsions are the same as in 

case (d.1), buts bit(Y) is differently located. Time formula is: -.~((Cadv + l)* E * (f s') + (E + TEO) * (f s)), 
where cadv and TEO are as in (d.l). 

(d.3) .s::t c st~ Cod• is: --poi~ter = first{s); /* the representation of s includes*/ 

/* a pointer to the first element*/ 

/* of its associated list */ 
(while pointer-~ p) 

if element (pointer) s x then return pointer;; 

/* elsment(pointeP) retrieves the element of s associated with*/ 

/*·a particul~r·pointer */ 

pointer c next(pointer); /* advance in list*/ 

end while, 
return n, 

Elisions none. 

Pi.me formula: 
~ (4 E + TEQ) * (t s), 

where TEO is the time required to test an element of s' for 

equality with x. 
(d.4) s::LR Cs'. Codea elisions and time formula 

are the same as in case (d.3). 

(d.S) s:: e s'. Here the way in which we proceed depends 

upon the basing of s'. The possible basings are: s: :L c s", 
s::L R ~ s•, s'::{a}, and s'::n. The treatments appropriate 

in these various subcases are as follows: 

{d.5.1) s 1 ::L c s". The quantity sis a pointer to an 

item itm' in the lists', and itm' points to an element 

actual(s) ins•. Then locate (x,s) is calculated as 
locate(x, actual(s)}. 

Elisions: none. 

Time formula: 2 E + TLOC", 

where TLoc• is the time required to calculate locate(x, s) for 

an shaving the basing s:: e s". 
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(d.5.2) s'::L R c s". Code, elisions, and time formula 

identical with case (d.5.1). 

(d. 5. 3) s •·:: {a}. The quantity s is a pointer to an 

item actual(s) in the hashtable representing s', and 

locate (x,s) is.calculated as locate(x,actual(s)) 
' ' . . ..... 

Bti.si-one: none. 

rime formula: E + TLOC, 

where TLOC is the time required to calculate locate(x s) for 
an elements having the basing a. 

(d.5.4) s'::n. The quantity sis a pointer to an item 

of s'; let actual(s) be the item of s' which s references. 

Then locate(x,s) is calculated as locate(x, actual(s}). 

Etisione: none 

Time formula: E + TLOC, 
where TLOC is the time required to calculate locate(x s) for 

-an Q...based sets. 

{d.6) s::{a}. To locate x within s, we enter the 

hash table representing s using a hash calculated from x. 

This locates a list, estimated to be 2 elements long, which 

is searched for an element equal to x. 
Elisions: none. 

Time formula: 3 E + 2 * TEO, 

where TEO is the time required to test x for equality with an 
element having the representation 8. 

(d.7} s::O. We divide this case into the following 

subcases, depending on the way in which x is based. 

Jd.7.1) x::n. This uses code like that presently appearing 

in the SRTL library. First x is tested to see if it is a 

tuple of length at least 2. If not, code very much like 

that of case (d.6} is used: if x is a tuple, then we use its 
sucessive components to enter a series of hash tables, each 

item of which points to a successor hash table, until the 

desired element is located in a final hashtable. 

Elisions. If the type of x is known, a test can be elided. 
Time formula: 2 * (6 E + 2 * TEQ) * (PNM+ NCX * (1 - PNM)) 

C 

C: 
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where TEO is the time needed to test x (or, if x is a tuple, 

a component of x) for equality with an 0-based element, PNM 

is an estimate of the probability that x is a member of s, 

and NCX is the number of components of x if x is a tuple, or 
is 1 otherwise. . ... · 

(d.7.2)- ·s:-:<81, ... ,Bn>. The successive components of 

x are used to-ent.er successive hash tables, the items of 
which point to successor tables,until the desired element 
is located in a final hashtable. 

E1,i.aions: none. 
Time formula: 2 * (6 E + 2 * TEQl) * PNM 

+ 2 * (6 E + 2 * TEQ) * NCX * (1-PNM), 

where PNM is an estimate of the probability that x is a member 
of S, NCX is the number of components of x, TEQ1 is the time 
needed to test a a1-based element for equality with an n-bas~d 

element, and TEQ is the average time needed to test a aj-based 
element, l<j~n, for equality with an 0-based element • 

(d.7.3) s:: e s1 • Here x is either a pointer to an 

item actual(x) belonging to the representation of s1 and 
representing x directly, or, if s1 has one of the representations 

M(s2,a>, RM(s2,a>, MM(s2,a>, RMM(s2,B>, x is a pointer or 
pair of pointers,using which representations of x(l) and x(2) 

can separately be recovered. If x is a pointer to actual(x), 
then locate(x,s) is implemented as locate(actual(x) ,s), and 

the time f onnula is E + TLOC, where TLOC is the time required 

to calculate locate(x,s) for an n-based sets and an element 

x with the basing that belong to elements of s 1 • In the re
maining four cases x: :M{s1 ,a) etc., we use x(l) to enter a 
first hash table, the items of which point to a second hash 
table in which we search for x{2). In these cases, the time 

formula is 
E + 2 * (TEQl + TCOMPl) + (TCOMP2 + TEQ2). 

Here, TCOMPl (resp. TCOMP2} is the time needed to reconstruct 
a representation of x(l) (resp. x(2)) from x, and TEQl (resp. TEQ2) 
is the time needed to test x(l) for equality with an element 
x1 having the basing x1 :: e s 1 (resp. x(2) for equality with an 

x2 having the basing B). 
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Cases other than (d.7.1-3): in these cases, 

oode, elisions, and timB 

,(d".8? s::M(s1 ,6). 
if locate (x (1) ,s

1
) is tx· 

r.~t~r~ . _1x: .. 
else return G;; 

formula are the same as in case (d.6). 

Code is 
ne n andd x(2) ~ mapval (tx) then 

Elisions; _If x{l) es1 is known,a test can be omitted; 

if x e sis known, two tests can be omitted. 

Time fOZ'IDUla: 3 E + TLOC + TCOMPl + TCOMP2, 

where TLOC is the time needed to calculate the auxiliary 

function locate(x(l),s), and TCOMPl (resp. TCOMP2) 

is the time needed to calculate a representation of x(l), 

(resp. x(2)) from the representation of x. 

(d.9) s::RM(s1 ,a). Code and elisions are as in case 

(d.8), but mapval(.9.x) is differently located. Time formula is 

4 E + TLOC + TCOMPl + TCOMP2, 

where TLOC, TCOMPl, and TCOMP2 are as in case. {d.8). 

(d.10) s::MM(s1 ,a). Code is as follows: 

if locate(x(l} ,s1 ) ~ R.x -~ n then 

return S'l; 

. , 

r 

C 

else/* search for x{2) in the list to which ix points*/ 

pointer= s_first(tx)1 /* the representation of each*/ 

/* item tx of s 1 includes a pointer to the first*/. 

/* entry of a hashed table of the elements of y{z}. */ 

hashquant = hash(x(2)) // nurnberfield (table(pointer}); 

/* numberfield gives the size of the hashed table*/ 

/* referenced by pointer; eZementfield gives the*/ 

/* element stored in a particular table position.*/ 

~/*next gives the position of the next element in*/ 
/* a particular hash clash list. */ 

pointer2 =pointer+ hashquant + 1: 

(while pointer2 ne O) /* search down the hash chain*/ 
. -

if elementfield (table (pointer + pointer2)) -~ x (2) then 

return <pointer, pointer2>;; C 
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pointerl ~ next (pointer2); /* advance in hash chain*/ 

end while; 

retur_n O; /* element cannot be located */ 
end ifJ 

EZisi.onB: ·-1£ x (-1) is known to be in s 1 a test can be elided. 
Tims formula: 10 E + TLOC + TCOMPl + .5 * TCOMP2, 

where TLOC is the time needed to calculate the auxiliary 

function locate(x(l) ,s1), and TCOMPl (resp. 'l'COMP2) is the 
time needed to calculate a representation of x{l) (resp. x(2)) 
from the representation of x •. 

(d.11) s::RMM(s1 , B). Code and elisions are as in 

case (d.10}, but the quantity sJirst(t~) is differently located. 
Time formula is: 

11 E + TLOC + TCOMPl + .5 * ~COMP2, 

where TLOC, TCOMPl, and TCOMP2 are as in case (d.10) • 
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Additional Special Casee. 

There exist various special situations in which the 

test x. ~ y can be performed with particular efficiency. 

Some of these have been noted in connection with tne in

dividual cas(;!s (c.1) th.ru (c.11} d.escribed above. Others 

are as follows: 

equality 

i. Since the equality test x $ y is syrrrnetrical in 
its two arguments, either x or y can be decomposed in the 

manner described in (c.l)-(c.11) above. A reasonable way 

to proceed is to work out two complete time formulae, one 

for the caae in which x is decomposed, the other for the 

case in which y is decomposed, and to use whichever one of 

these decompositions has the most advantageous time formula. 

Note that this symmetry can be used to avoid certain particularly 

troublesome cases, e.g., in making the test x ~ y when y has 

the basing y::n we can assume that y will never be decomposed 

unless x also has n basing (in which case the existing BRTL • 

equality test routine can be used.) This avoids complications 

concerning tuples in sets that would otherwise have to be faced. 

ii. If x::RM(s,8) and y::Y..M(s,B) then {if x and y have 

the same number of elements and identical hashcodes} their. 

elements can be checked for equality by a loop over the bitvectors 
which represent x and y. This leads to a timt~ formula 

6 E + (5 E *is+ (Ix) * TEQ) * PEQ, 

where TEQ is the time needed to test an element of the rang~ 

of y for equality with an element of the range of x, and where 

PEQ is_ the probability that x and y are equal. 

A similar remark applies to the case in which x::RMM(s,S) 

and y : : P.Ml"1 { s , S ) • 

A.., important speclal case for the locate(x,s_1 function 

is that in which s has one of the basinqs s::L ~ s 1 , s::LR~s1 , 

s: :{B}, s: :n, s: :M(s1 ,B), etc., and in which. x h?.s the bc\sinq 

x::Es. I~ this case: Jnca~e(x:R~ iq ~imply x. • 
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• 5. Global Tra.cing of eguali t~ rela~i~::mships:. 

• 

C) 

We observed in section l that when conversions are performed 

twi:, or more. represent~ticn.s of the same SETL value can come in ·:.o 

existence, and th_at by tracklng -the identity of these two r.e

~-r,e5e:ritat.::.cns we n-.ay be able to avoid S'i.lbsequent conversions 

or-,erations. '!'his can be done as follow!J: 

a.. Whenever an asslgnment x • y or x = convert{y)appears, 

surmise the relationship x ~ y and prepare to treick it globa:;.1y 
thy assigning a position 1n a bitvector to .r.~pr.·esent it. i 

b. The equality relationship is restored by each asRign.ment 

x-y or x•conve.rt(y)~ and killed by any ~t..her assignment to x or y. 

Thia rule defines the action,on the relationshins x ea v·that 
- _ __., J. 

rill be tracked,. of e~ch basic block. 
o, Use sta.ndard techniques to 'globalise' the local 

facts def:tned by :rule b {the same tech.n.iq-.){? t~;)t is 1.;sed. to 

d;,:,,te~l.ne chJ culaticn redt;ndancy can he employsd.) 


