Gri he "Base Eorm" of AIgorithms

1. Introduction, Examples.

The 'base form' of an aigorithm is that 'simplest' representation which it cars be given if it is written in a. wey deliberately excluding all 'non-creative' or 'routine: optimizationsy we mean to exciude optimizations even if they Lie bayond the range of present-day automatic optimization rechnique, provided only that the manual application of these optimizations is a truly routine matter not involving any invention at the mathematical level. Of course, optimizations of this'essentially routine' class should ultimately become menabie to automatic treatm:nt. Among the optimizations to which we allude are almost all matters related to data structure choice, procedure integration, recursion removal, 'formá differentiation' (which Eaxley calls 'iterator inversion'), conversion of programs using various useful non-standard contuen atructure: (such as backtracking) to programs envolving ftandasa control striactuses only, use of 'memo functions' (cef NL 255), etc.

One rough bue plansible way of describing these optimizations th to gay that they can be characterised in a few words to a skilled programer, who can then apply them with little dount as to what is meant. Of course, the variant of any particular algorithm which we call its base form will change as our understanding of high level program structure and optimization becomes move profound. Moreover', an algorithm's base form wijl depend on the class of: operations which we are willing to regarc as "primitive'.
wn algomithm witcen in base form can and should nake ses of programed subprocedures or macros where these clarify tht logicai structare,

SETG-159-2
The following exangles of algorithms written in base form will clarify what is meant.
(a) Bublile sort of a vector v :
(whle $1 \leq \exists n<v(v(n)\rangle v(n+1))\langle v(n+1) ; v(n)\rangle=\langle v(n), v(n+1) \cdots:$

She more conventional foxm of bubble soxt is obtained Erca this by turnimg the existential into a search loop, and by Goting that during search the range of indices within which an 111 -ordured pair isan exist wili only decrease when a swap As perfommed, and then only by - ihis is essentially a type of foranal differenciation (as applied to vectors rather than sets.) (b) Ieap surt of a vector v :
$\left.\left(\frac{V}{3}\right)\right\rangle$ 1) makeheap $(c, n) ;\langle v(n), v(1)\rangle=\langle v(n), v(1)\rangle$; end \forall;
definaf makeheap(ven):
 xeturn
and rakeheap:
mois optinsed by noting that on all but the first (outer) dtexation, there ban be at most one $m / 2$ such that $v(m / 2)>v(m)$; to optimite the tabe iceration we keep track of the mor which $\because(m / 2)>v(m) \operatorname{con}$ boid (this is a ype of formal differentiation.)
(o) Rransformation of a gramar to Greibach nomal form.

A contart.reve geemrar G ia given as a set of pairs p with two componentiz the ard ris, where hes is a symol and rhs a Gupe of symole: tintramb denotes the set of all intermediate zumols whioh appeax as left-hand sides.

One way of transfoming G to an equivalent grammar is to take some production $x \rightarrow \ell_{1} \ell_{2} \ldots \ell_{n}$ of G such that $\ell \in$ intsymbs, and to seaplace it by all the productions $r \rightarrow m_{1} \ldots n_{k} \ell_{2} \ldots l_{n}$, where $t_{2} \rightarrow m_{1} \ldots n_{k}$ belongs to G. Another transformation is as follows:
 wher and α are strings of symbols, all the terminal strings genemated by x are all generated from the class of strings which are either a β or a β followed by a sequence of α 's. sence we cen replace the productions whose $2 h s$ is r by the following productions, in which r ' is a new intermediate symbol: $\because \rightarrow B=r+B x^{\prime}$, and $x^{\prime} \rightarrow \alpha r^{\prime}, r^{\prime}+\alpha$. As a formal algorithm En base form this is
define: susat (grata, p) ; $/ *$ replaces the production $p: r+\ell_{1} \ldots \ell_{n}$ by 'expanding' $\ell_{1} \quad * /$
 and subst:
$/ *$ and now the aloorithm proper.first number the elements of intsymbs $*$ '* in sone arbitraxy order
place $=$ al. (Vx \in intsymbs) place $(x)=\#$ place $+1 ;$;
(while $\exists p \in$ gram | place ((rhs p) (1)) <place (lhs p)) subst(gram, (i):;
(while $\exists p \in \operatorname{gran} \mid$ (rhs $p)(1)$ eq (lhs p is x))

$$
\text { mpime }=\text { newat }
$$

g:am \{x\} $=\operatorname{gram}\{x\}-(\{v \in \operatorname{gram}\{x\}, v(1)$ eg $x\}$ is deleted) $+\{v+\langle x p r i m e\rangle v \in \operatorname{gram}\{x\}, v(1)$ ne $x\}$;
g:am (xprime $=\{v(2:)+\langle x p r i m e\rangle, v \in \operatorname{dejeted}\}+\{v(2:), v \in d e l e t e d ;$
sind whinle:
(when $\exists p \in \operatorname{gran} \mid(\underline{\underline{n} s} \mathrm{p})(1)$ not \in termsymbs) abst(gram,p); ;
This algoritum is optimized by conducting the search over nan implied by the three preceeding while loops in an ordered uanny: for the first two zoops upward according to placellhs pt: for the last loop, downward acocrding to place (ihs p). These inf ovemerts amount essentially to three applications of formal defarentiation.
(d) Decomposition of Erogyam graph into intervals. Whe program graph is defined by a set nodes, an entry node exit, and a node-to-node map ogsor.
definef inteaval (nodes, x) : / ${ }^{*}$ calculates the interval with head $x /$ int $=\langle x\rangle$;
(while $\exists y \in$ range (int) $\mid\{z \in(n o d e s-i n t) \mid y \in c e s o r\{z\}$) eg $n \ell$) int $=$ int $+\langle y\rangle$:
and while;
raturb int:
end interval:
definef intervals (nodes, ent): /* ent is the program graph entry rode ; ; ints $=\{$ interval (nodes, ent) \};
(while Jnd E cesor [[t: int \in ints]range(int) is intnds]-intnds) interval(nodes, nä) in ints:

return ints;

end intervals:
More efficient versions of this algorithm can be derived by formal differentiation and procedure integration.
(e) Ford-Johnson Tournament Sort. An informal explanation of this algorithon can be found in O.P.II, p. 66-67, with a SETL representation of it, unfortunately not in base form. A base form of the algorithm is as follows:
/* we are given a set of itemb to sigrt according to a transitive * /* Einary relation le.To exclude duplicates we suppose that the \% /* n elements of items axe pairs with integer second components, \% ${ }^{*}$ all of whis are distinct, and that le is aetermined from the *; "* first comporent of a pair only.
Eetinef fordt (items).
iff \#tems eg 1 then return <itenc>;:
themcopy $=$ if $(t \operatorname{lem} / / / 2\rangle$ ed 0 then items else items with

f this Forces somoopy to have an even nunber of elements */

```
map sent!
(whdle itencopy ne ne)
    x ErOm itcmoopy: y from itemcopy:
    1f le (Y,c) thun map(x) w elge map (Y) = x;:
cand while:
falfsoxted m frords (ha [map]) /* recursively sort half the elemerts &/
allsorted <map(halfsorted(1)), halfsorted(1)>;
                        halfsorted = halfsorted(2:);
yOW2=2;
fwhile halfmorted ne nult) /* until all elements digested */
    pow2 * 2 * pow2; /* double length for insertion */
        allsorted allsorted + halfsorted(1: (pow2 - # allsortec)
                                    min # halfsorted is ntaken);
                (ntaken > |fn \geq1)
                    mergein{allsorted, pow2 - I, map(halfsorted(n)));
end fn:
holfsorted s=hwlfsorted(ntaken + 1.:);
/* remove elements that have been passed to allsorted*/
end while:
*eturn if (娄 item/i2) eq 0 then allsorted else
    /* dxop added element */ [t: elt(n) \in allsorted elt(2) ne newcomp]
                                    <el.t\rangle;
end fordj:
define margein (vect, lem, elt):
f* this routine takes a sorted vector vest and merges the eiement elt *
/* into its proper position among the first lim elements of vect. *i
* after optimization,this.would be a 'binary search' based irsemtacom
must: = < < Jk\leq lim| if le (elt,v(l)) then k eg l else if
    le(v(lim), elt) the k eg lim else
    le(elt, v(k)) and de (v(k - 1), elt);
vact = vect(1: k - 1) +
    if le (elt, vect(k)) then <elt, vect(k)> else <vect(k), eit>
    + vect: (lo+ Ig):
sattrm:
enc margein:
is can be seen, this is a construction of nontrivial mathematical
-omplexity
```

2. A. Ccment on correctess proofs.

When an algorithm BE in hase form is redeveloped in some more highy optimized form, acditional code details will appeat. Slnce the optiaizations applied to BF will generally be of some relatirely stereotyped form, the details which appear after optimization will themselves tend to be stereotyped. For this reason, it will generally be the case that, whereas the 'Floyd assextions' needed to prove the correctness of $B F$ can only be derived by a relatively deep anaiysis of algo:ithm semantics, the maditional assertions needed to prove the correctness of we ontimized form of $B F$ can be set up in a stercotypea way, given that the optimizations applied to $3 F$ a.se known: We may aiso hope to prove generai lemas characterisirg the mannar in which the optimising transformations applied to By trans: B ore the assertions associated with BF 's original form. Because of the importance of these possibilities, it seems reanonable to assert thet proofs of algorithm correctress shound begin with the base form of an algorithm rather than with any more highly detailed algorithm form.

Exanination of a few of the algorithms considered above will conficy this view.
(a) Bubble Sort. It is apparent that if the bubble sort temmiates then the vector v will satisty $v(n) \leq v(n+1)$ for ain n. The fact that the components of v are not being changed can be exprassen by stating that the algorithm leaves every
 fact chat each af ha elamentary'swap' oparations applied to what thin aremeray.
as poeqionsp roted, the buble-sort algorithm can be ondinzed by twond the existential into a search loop, and by
 egiscs horsase when a propely ordered peir is examinen, and dacyenses by at most one wher a sway is performed.

The optimized algorithm is then the familas:

$$
x=1 ;
$$

(while n lt ∇)
if $v(n)<v(n+1)$ then
$\langle v(n), v(n+1)\rangle=\langle v(n+1), v(n)\rangle ;$
$n=1 f n e g 1$ then 2 else $\mathrm{n}-1$;
else
$n=n+1 ;$
and iffy:
and while;
(b) Heap sort. It is evident from the $\therefore: \mathrm{rm}$ of the makeheap subroutine that on return from makeheap the assertion $1<$ 保 $\leq n \mid v(m / 2) \geq v(m)$ must hold. From this it follows mathematically that $i \leq \forall m \leq n \mid v(1) \geq v(m)$. Moreover, makeheap (v, n) leaves invariant all components of v with indices larger than n. Hence the following assertions can be aided to the main loop of heapsort:
$\left(\frac{8}{6} v \geq \forall n>1\right)$
assert $n \leq \forall_{k} \leq A_{i}: 1 \leq \forall_{j} \leq n \mid v(j) \leq v(k)$
and $n \leq W_{k}<\vec{W} \mid v(k) \leq v(k+1)$;
makeheap (v, n); $\langle v(n), v(1)\rangle=\langle v(1), v(n)\rangle$;
bend V
The assertion holds initially because it is vacuous; at the end of the Jook, we have $I \leq \forall_{m \leq n} \leq \mathrm{n} \mid \mathrm{v}(\mathrm{n}) \geq \mathrm{v}(\mathrm{m})$ and $n \leq f n \leq v \mid v(n) \leq v(m)$, confirming the assertion on the loop path. It follows that on exit from the loop we have $1<\forall k<\psi v \mid v(k) \leq v(k+1)$ and $1<\forall k \leq \# v \mid v(1) \leq v(k)$, 30 that on loop exit v is sorted. The fact that during sorting the components of v are not changed can be shown as in the mable sort case.
(c) Greverb nomat form of a eramar Let I (gram) be the languege generated by gram. Then L (gram) $=$ L(subst(gram,p)) ity one of the two fundemental mathematical facts on which the correctneas of algorithm (c)rests. This assertion concerning the two Lnfinite sets L(gram) and L(subst(gram,p)) is not really decomposable intc more elementary facts at the algorithmtheoretic level, since the body of the subst procedure is simply one singie eftotheoretical assignment. The equality ori these two sets is rather to be regarded as a directly wethematical. faset. The fact that transformation of gram by
mprims: mewat:

$$
\text { grana }\{p\{1\} \Rightarrow \operatorname{gram}\{p(1)\}-\{v \in \operatorname{gxam}\{p(1)\} \mid v(1) \text { eg } p(1)\}\}
$$

$$
\{\{v+\langle x p r i n e\rangle, v \in \operatorname{gram}\{p(1)\}, v(1) \text { ne } p(1)\}
$$

grasu \{xprime $\}=\{v(2 s)+\langle x p r i m e\rangle, v \in \operatorname{gram}\{p(1)\} \mid$. v(1) eq $E(I))$.
23 in the gecond while loop of algorithm (c), is in much the same sense primitive and set-theoretic. Given these facts, tise fact that aloorithm (c) does not change L (gram) is clear. It is alao clear that the transformations of gram effected by elgorithm (c) never enlarge the set $s=\{$ (rhs p) (l) $p \in g r a m\}$. drus, jf we set temmombs $=s-$ intsymbs at the beginning of the alccrithe it is clear from the form of the final white Soop of ajouritum $\{c\}$ that $\{($ rhs $p)(1), p \in$ gram $\}$ termsumbs att the ema of the algorithm.
(a) Decomposition of a program graph into intervals. It is clear: from the fom of the white loop in the intervals function Ehat on ritman fron intompois chat the set
 s P rumge(inturvi(nocies, ent)). The white loop in the routine interval dearly never diminishes the set range(int): and since fin at de antially (x); follows that $x \in$ interval (nodes, x) atways hads. whe we wan mornde that ent $\in \leq$ Since t \#. aluays assmed of program graphs that the transitive ciosure of ent mader netco sucindes all rodes; we may deduce that If: int a intsj ance(tnt) = nodes.

The assertion

assert $\forall x(n) \in \operatorname{int} \mid n$ eq 1 or $(x \in$ cesar $\{z\}$ implies

$$
1<\exists m<n|z=\operatorname{int}(m)|:
$$

can ba inserted mediately following the while statement of the interval procedure. Indeed, it holds on the first iteration of the while loos since int is of length (1); and in virtue of the while condition it is clearly preserved during subsequent Iteration. Therefore any tuple returned by the interval function will only admit forward branches (except to its first component) and can only be entered through its first component. We can show in the same way that each int returned by intervals satisfies
(*) assert $\forall x(n) \in \operatorname{int} \mid n$ eg 1 or $(1 \leq \exists m<n \mid x \in \operatorname{cesor}\{\operatorname{lnt}(m)\}$

It follows mathematically that if int ${ }_{1}=$ interval(nodes, x_{1}) and $\operatorname{sint}_{2}=$ interval (nodes, x_{2}), then range (int ${ }_{1}$) and range (int ${ }_{2}$) are disjoint unless $x_{1} \in$ range (int $)_{2}$) or $x_{2} \in$ range (int ${ }_{1}$). We mo x therefore attach the assertions
 range(int $) \quad *$ range $\left(i n t_{2}\right)$) ed $n t$
(8) $V x \in[+:$ int \in ants $)$ range (int $\mid x$ eg int or

$$
\mathcal{H} Y \in[+; \text { int hints }] \text { range (int) } \mid x \in \operatorname{cescr}\{y\}
$$

to the write loop of the interval routine. These assertions hold by initialisation when the loop is first entered. The escond assertion is preserved by (*) since the first component of each int adds to int belongs to censor[[+: $x \in$ incs] rangs!xi].
It $\dot{i} s$ clear that for each int added to int we have $W_{x} \in$ incs \mid inti not \in range (x) ; moreover, by ($*$) and (β), $y \in$ [range(int) $*[+x \in \operatorname{ints}]$ range $(x))$ implies y eq ant. IE as is customary we assume that ont has no predecessor in the program graph, it follows that the assertion (B) is true for all dremelons of the white loop of the intervale routine.
(e) Poxamghnara Some Because of the Essumption that the elements of stemis are integers it follows that
 to inems, 80 that itencopy must have an even number of elements. whus after the axecution of the firgt while-loop of the forde algorithm, we will have
(o) (domain (map) + range (map)) eq itemcopy, and al.so
(B) HoE domain(nap) l de (map $(x), x)$. woreower, map ls easily seen to be $1-1$. raking

$$
\text { (y) (veg fordj (items)) } \begin{aligned}
& \left.\frac{\text { implies range }(v)}{} \quad \frac{\text { eq items and }}{} \quad \forall j<\# v \right\rvert\, \text { le }(v(n), v(n+1))
\end{aligned}
$$

an an inductive assertion, it follows that after the first recursive call to fordj we have
(0) jange(halfsorted) eg domain(map) and

$$
1 \leq \forall j<\# \text { halfsorted } \mid \text { 2e (halfsorted (n),halfsorted (n+l)). }
$$

As arsextions fo: the while loop which Eollows we use
(E) thmopy eq (ramge(allsurted) + range(halfsorted) +

$$
\operatorname{map}(r a n g e(h a l f s o r t e a):
$$

aiso
 and the assertions

Lmmedateiy tefore tree atetement just preceeding the white lop, and
(T") ntaken at halfsortec implies $\forall x \in$ range (allsorted! |及e in, hajfsorted(ntainea 子 M) -

Anvediately after this statemerc; we also use
assertion (β) and the second clause of assertion (6) within cha loop. Assextion (B) is invariant, and the second clause of (8) will continue to hold since hatfsorted is only being tindisished. It is clear that $\left(\eta^{\prime}\right)$ follows from (n), and (n) srom $\left\{\eta^{\circ}\right.$) on the next iteration.

Within the \forall_{n}-iteration imbedded in this while loop we continue to make use of assertions (ϕ), (n) and (B), but replace (ϵ) by
(k) Itemcopy eq (range (alisorted) + range (halfsorted (ntaken +1 it)
$+\operatorname{map}$ (range(halfsorted(n:)))

+ range(allsorted (\# allsorted-ntaken + n:));
ana

Note that one statement after the point at which we exit from the ∇_{n}^{\prime}-iteration assertion (k) reduces to (ϵ). on entry to the iteration (x) follows from (ϵ), since allsorted $=$ allsorted + halfsorted (1: ntaken) will just have been executed. Only the xast. statement of the mergein routine changes its vect argument, and from the form of this statement it is evident that on exit range (yect) has become the union of the entry value of range(vect), plua \{elt\}, i.e., allsorted has become allsorted + \{map(halfsorted (m)) \}. Thus ((C) holds during every cycle of the $\forall n$-iteration. For the saree reason, (n°) holds during every cycle. It is clear from the statement immediately preceeding the V-iterator that on antry to the \forall_{n}-iteration \# allsorted is pow 2 , and that range (allsonted) inclucies halfsorted (ntaken). Thus assertion (λ holes on entry to the fitexation. Each time we iterate at most one element is added to range (allsorted), but for ary given value of E at least ntaken-n+1 elemerits of range (allsorted). Nancly range (halfsorted (n: ntaken-n+1)), belong to the component of the set appearing in assertion (λ).. Hence (λ) holds furoughove the V binteration.

3y (ϕ) the veot argument to mergein is in sorted cracx when mergain is cithed. Ey (A), on each subsequent iteration every component x of alzsorted such that not le (map (ralfsorted (n) in in has an incex less than powa. Hence the k found by the existentian.
in the firit statement of mergein will satisfy le (elt, $v(\lambda+1)$) each time mergein 2 g calied (with $v=$ allsorted and elt $=$ zap(balfsorted (n)) and thus since only the second statement of: mergein modxfien ita tirst argument $v=a l l$ sorted, it is apparent that this argment: ramsins sorted after return from mergein. Fe can now concluce that (ϕ) remains true for all iterations st the $V_{n}-100 p$.

Within the wite-loop wL containing the V_{n}-loop, assertion (E) cen be seen fion (α), (($)$, and the way in which alleortea anc halfsorted are initialised just before the loop to hold on inttial loop entry? since (k) reduces to (\mathcal{E}) on exit from the Yn-loof (\in) holds aturing every iteration of WL. Assertion (ϕ) holas by initialisetion on entry to WL. Using (n) and the second clause of ($\}$), it follows that (ϕ) holds immedictely after allsoxtod fs modified by the second statement of Wh. since we hage seel that whe (n-loop preserves (ϕ). it follows that (o) holds throsghout wh. It is also clear that (B) and the second clanse of (S) hold throughout WL, since map is not modified and hatfazned is only decreased.

We mat thexelore conclube that (ϕ) holds on exit from wh: note also hav on axit from N halisorted eq nult, so that (E) reancer to iteanoy en range (allsorted). Because of (ϕ) it is aletry that v [t: edt(n) \in alleorted | elt(2) ne newompl satisfises
(4)

$$
\left.0 \leq \sqrt[V]{n}<\frac{z v}{z}\right) \text { le }(v(n), v(n+1))
$$

mornovex it is cecm that
 are. that:

$$
\text { rance (aisorem }=\text { range }(v)+i E(\text { items } / / 2) \text { eq } 0 \text { then } n
$$

We have alreary ncted that newcomp not \in items. Thus in all coseas range (vy eq Itemcopy; so that inductive assertion (s) is verified.

3. Debugging of Proofe.

To devalop a verified correctness proof for an alyorithm in base form we will ordinarily have to
(a) Attach assertions to the formal text T of the aigorithm, and verify a number of relationships which tie these agsertiong to the statements of T and which have the form Uf λ_{j} can be asserted it point P_{j} of a program $P R$, then A can be wserted at point p^{\prime}. The verification of propositions of thit sort will generally be rather routine, as the relationships kefing verified are all recursive. All that will ordinarily be involved is symbolic manipulation of a conventional sort, which must however be guided by a semantic knowledge of the programming language which is employed.
(b) Step (a) will yield a family of set-theoretic propositions $\overrightarrow{A_{1}}$ one such proposition bsing attached to each (significant) point In PR. These propositions \bar{A} will have the form 'if A (winch by ateg (a) is a consequence of assertions attached to other points © $\mathbb{E R}$) holds, ther (B (Floyd productior directly attached to this point of PR) is implied!. The propositions \bar{A} are of \#tandan set-theoretic form, toe.e are mathematical objects wo longer having any explicit tie to the details of $\mathrm{PR}^{\prime} \mathrm{s}$ 6tetemsate, To verify Pr one must then prove all of the rropositions A. The proof which here becomes necessary should ftecli be checker by an abtomatic proof-checker (if inceed it is rot constructed by an autonatic theorem prover), since hercly manual procf elaboration (in something like the style L1catcatea in section 2 abovel leaves open the possibility that a crucial (if gexaaps marginal) case is being glossed svex erroneous.y.

Of the reps just outlined, it is the last one, construction of Rios checker, that ia apt to be the most onerous. Two reasons futures this expectation. In the first place, proof-checker euchology is still only weakly developed; proof checkers can take only very small steps themselvea, and must therefore ba milled in great detail. Moreover, ster (a) above will generally transform the assertions P originally attached to a program kia such a way as to obscure any intuitive limo r which these assertions wight originally have possensed,

For tine reason, it will be quite important in developing proofs of program correctness to ensure that the Floyd assertions th which guck a roof begins are in Fact correct. However, an originally set up these assertions, which will often be roughly equivalent in hulk to the programs to which they tach, are just as likely to attract numerous small ercora as yrogxans are. Of course, this objection falls away for any get of assertions to which we are ultimately able to give a mechanically verified proof. However, in most cases we will met want even so tag generating a formal proof until the set: of assertions to be proved has been subjected to a preliminary hen for plausibility. Thus we expect informal techniques \therefore Ka these preaentry used in debugging to be useful in the wat" wages of development of fully detailed program correctness 2006 Ts.

One tempting way of checking a set of Floyd assertions Mapmoting to constitute the beginning of a correctness proof 4. Hopi to verify that the assertions do in fact remain tyre
 assertion cheating car be gate expensive in the not uncommon End in which the assertion beng checked contains cue or mae yanticiers.

Wha grocusding considerations suggest that the foliowing phojact nigit be usefus: Buila up a paxtial proof system within which step (a) of formal correctness proof system is metully implementad, and which also incorporates faciljties 2iovimg pxogama te which Floyd assextions have been sttached to ba run une the assertions to be checked at rurntime. Where
 gheturaxtions of tine kaxley type. then use this system to wastate a eafyy actenave libraxy of base-form SETL algorithms nith debuggex sloyd asmextions. An exfort of this kind would throw food deel ot light on the fromal proof-checking task which is lefteam residue。

