
•

•

0

SETL Newsletter t 160

· !,n Aliebra of· Pro~ram E,1en_;~

!'Otentia11·y usefttl· •in ·a Debuggj:!!9'.._L'an<3'Ua5r~-.

1.· I'ntroduction.

J ~ 'l'. Schwartz
Nc.n:e~ber 13, 1975

In d~u.9ging and also in reasoning about program beha"',Tior

and correctness, one needs to use ~anguagB describing program

events, and of course if one proceed~ informally this is no

problem. But to make such language availab1(> either within

an implemented debugging system or in a correctness-proving

system, formalisation is necessary. This short newsietter

will sketch the (rather simple) semant~cs and syntax of a

formal language of program events, and will then go on to

indicate the use which such a language might have in systematic

debugging •
We choose to represent events by boolean-valued functions

of two parameters: .

f (now, prev),

~ where the parameters not.> and prev are both cycles (moments)
. during the e:,,xec:ution of a particular program, :1.nd where we

always have prev ~ nott> (in the sense that p-::"ev is .=in earlier

moment than now;. If, speaking heuristicall~/ f f represents
an event·-E (in general 1 E will have some certain tine

durationr which may however be as short as one cycle; a:n.d

E can occur repeatedly) then f{now, prev} will have the value

_ ~ for all moments p1•ev prior to now at wh:tch the event E

transpires.

An event can either be· a primit-(,-ve p;;.•ogram event or a

oompos-it:3. An example of a primitive program event is'at R.."",

where t is a label or program point more generally; this

event transpires when control reachel the label t.

SETL-160-2

An example of a ccnnposite event is f 1 !!!:! ·t2 • where f 1 ,

t 2 are both events ... This transpires when both events occur

rdmul tm1eously.
If it were always true that f(n1,p) • f(n2,p) when

n1 ! n2 ! p., then si~gle-parameter boolean-va.li.ted functions
inatead of two-parameter functions could be u,sed to :represent

events-. As an example showing that this is not always the

ca•e, consider the composite event

~here f is an event. This has the definition

:g(n~p) ~-f{ngp) ~ (n ~ Vp' > p I!!£!:, f(n,p>)).

Other useful elementary and composite events a1:e a$ follows.

control i.s at the progra.."ll point 1.

c:ontzol enter:s -the routin~ r ~

!,!..~£!! r;- control returns from the routine r.

e: e is an cccurence of a boolean expression. As an
event, it transp:h:es when this ey,:prest::ion, evaluat•~d

in. it~ cm: rently active envirt'Snment, :bas the valoe !_~.

£.-l.~!}9'E!!!_ e: e is ar'. occurr:nca of a boolean exprsssion.. This

event. transpi.r·es when the value of e, evaluated ,~i.t.hin

its currer,.tly active environment, chan9es.

ir• ~.!!! rb~ control. ls within .rb (a routin~ or bJock}

e1v.luated e:: e is an •:Jccurence of a.n express:icn. '!'his ev•~nt
---- ·------,-·

t.ranapires whenever e is evaluated.

~:~.:J!l~ v: v is an O<:curence of a· var;iable.. 'I'his event

OCCl.!r.s when~ver an assiqnmant with v ar, tnrge t is

exeicruted.

0

0

• ~!!~_events_~~- tl!_eiE._ def~~

•

g ~ !!2!, f: _g(n,p) = £0~ f{n,p)

9 • f 1 ~ f 2:: g(n,p) •.1\ Cn,p)· ~ f 2 (n,p}

g ~ f 1 -,~X: _ £2 , etc: g(nip) = f 2 Cn.rp)· ~- f 2 (nep), etc •

. g ,. !:!!9. f:· . g(n,p) r.s f (nvp} an0:_ (n ~ \Jp,. > p I not f (n,p ...)}

. g 1111 start£: g(n,p} :: f (n,p) -~ {p > '\Jp"' .:, O.j not f (n,p)}

g • !fte_:I f: g(n,p) =· ~ (n ~ 3P.,._ ~ P I f(:o.,p))

g • ending!__ f:
g = startings. £:

. 9 - !!!1 f:

g • first

f:

{!;: ~ f i•~· .:at f: ___ -......_,,..,.,.

g (n,p) Ill! .•

P ! 3 q1,P,2rq2," • •Pk, qk! ql.::_ P2. ~ q2.::_. • •;'.

Pk~ qk and

f (n,q1)· ~ ~ f (n,p2) -~d. f (n,q2) ~r19: ~o.!_

f(n,p2)· -~ ••• not f (n,pk.} ~~ f(n~qk).

n,. • if n > '3p > 0 I (~f(n,p) an<!

P >_ Vr, > o l Q.9t f 2 < n, P > >

then p else if f(n,n) then O else n;
g(n,p) = f(n,p);

g(n,p} s f(n,p)· !E1d ~f(n,p + 1)

g{n,p} = f(n,p) a·nd !!£!: f{n,p - 1) •

g (n,p) = f{n,p) ~

(~ n > ;]p" > p I f(n,p ... } ~ ~ f(n"p ... - 1))

g(n,p} = f(n,p) and

·(!!2! p > _3p ... > 0 lf(n,p ...) ~nd :not f{n,p' +li

g hi, p) ,.. f (n , p) and

(I {p .. r n .?:. ~ .. > p l f (n,p'") _an<!. E:ot

-g(n,p) = f(n,p). and
(j{p ... l n ~ p~ > O

first

f(n,p~ - 1)}) le k-1 -
f(n.,p') a~d not:

f{n,p.., -i- 1\ l) 1:e ~-·-:.

• I SETL-160-4

Note th~t last f is true dn:dng th.e 1.:.-•st cant.inuous ?ericd --~··-·~ ..
i,it..h.i.n whi.ch f is steadity J-.::.:1':.~~.: thr.~t L~~.: k) f is ~ in ? 1£:;:ic•d

p if -there do not ftx.ist ~ore i:hl;~, k cr.mttm~ous tirn~" pt"..r.iod!,

i.neluding and tn.ti~~equ9nt to ? (hut prior t~:·. n} ,du:cing \.h.:ch f

ia true, and that (k) }a~_! p ir; t:he k-·1:h frmn the lnst tjr:·e

period prior tc n during wh.ict, f is .!:E.~, if t:.hl?:re exif: t. k

en .. ch pE-r.ic1dg; otherwise (k)J,i:!l f dt~;;elie1.·,2,h=,1 to .L!:..1·s!-. f. The

operation.s if~~!/ £~~ (k) , and

a.im.ilar w,-s.y.

If t.he operation cycle n is s1.1ch that f (n, n) is _!,r'-:!.£_,

t.h.en we shall ~ay that f c-ccur.s at n.,

The clictj()ns that have been introdu-::;e(1 can be corrpo:::'!1-:!ed

in cbvi.c,'>u~~ ways.. 'J.'h11R e,.g., wr: can ,,:r.i.::-.e

to descri.be•: r11oment~ at whi.ch ~cnt.r-ol retu~:ns t.o ~-- .1f te.r. having

entered and left the blcclc b at lec1st thr'?~,. t.irncs sinc,3 Q ;vas

last visited.

Dictions of this type sre bound t:.-, b-s us,-_:-ful Jn i nfcrr'.\al

debuggi.ng. They enable m; tr, ~a.:n for dyrv.rr.ic r,h<c~c'ks: pr:J?ra.m

<'h.1mps$etc. r at c.ar•:?fully Eipec:ifierl pro9-ram ;"11orn_r~x,.ts 1 ns E>,CJ.

hy writing.

!.!!!..~!:! {~_!. f and not ~.:.~!:.f (.i.n b

~'.,P)ies

follnvi~q (2)last
___ _,_ • --···.,o-.--r- ~----'"•----

etc~ In the remainder of this newsletter, 'I-·':? =;hal~. outli:-:-J .1

0

in-:,re syste1natic app.roach to this w:~y of usi -~1' the evert··cl'.':~ented .. 0
dictions that havE'! jur;t been intrndnc:ed.

if:\. _J

0

l

SETL-160-5

'Syatematio debugging' may be defined as debugging which

aima to make some substantial. part of a full program co~rectness .
proof manifest, and which then goes on to check the Floyd

assertions which thereby appear. A reasonal;le pr(:icedurc to use

in. systematic d~ugging is B.e follows:_

(a) 'Write out & careful but informal correctness proof

f~r the program PR being examined. Th~ following example

(culled from Newsletter 155) illustrates the dictions which

can be expected to appear in such. a proof:; ~ Note that. one

statement af~er the po.int at which we ~xit from the \ln-iter3tion,
assertion (k) reduces to (E} • · On t2.ntry to the Vn-i terat..ion., c~.-)

. .

follows from (E) ,since allsorted = allsorted + haJ.fsorted {1.~:ntaken)

will just have been executed. Only the last statement of the .
· m•rg11i.11 routine changes its i 1eot argumen.t, and from the form

of this statement it is evidP..nt that on exit range(vect) has

beoorae the union of the entry of range{vect), plus {elt} •.•.
•

• (b) Using the program event languag~ described in the

preceeding pages, produce formal phrases •-:°!escrihinq each of

the events alluded to explicitly or inplicitly in the informal

proof ~eveloped as step (°a), and add thes•-= event descriptions

t.o a 'significant events 11.st' • Each significant e'-rent cescri.ption

should be accompanied by an auxiliaey 1 iF-t of conditi•)ns to be

checked when the event occurs.

(c) A program debugging r:;ystem shm.11.d be able to accept

the significant events list. and the attachen condi ticn :. ists

built up during step (b) • It shouJ a b~ ~bJe to use +-... hese 1..i sts

during debug runs .r:>f the program PR, sp.,.~if:i.ca.lly tc.produce

both diagnostic statements whert?ve-c any -~ond i tion belc_mg'i.r.g

to an auxtliar~.{ list ig nc:,t met., and al sl'.', n.ft.er. a :nln to produce

a list of all significant program event:s which hav-P. never occu~r.ed.

The debugging sy~tem should be capable of passing list~ of

occurrences from one debugging run to another; then when a
final listing is generated, only signif .icant a.rents that have
never occurred in an~v of a series of debugging runs neee to

be printed.

..

