
SETL Newsletter# 164A.

'Copy on Assignment' Optimization in SETL.

J.T. Schwartz
April 7, 1976

This newsletter responds to NL 164 (by R. Dewar) in

which it is observed that

a. A shared bit is useful even in the presence of

global copy analysis, and inexpensively implementable;

b. The shared bit mechanism essentially dominates the

copy optimization scheme presently under development, reducing

its effect to a modest 'eliminate tests' level;

c. More useful information can be gathered 'by calculating

assignment~ related (or, more generally, 'incorporation'

related, see below) information.

We shall sketch a method for gathering this information.

Definitions: A, simple assigiw'~:o.t a= x, or a use of x , .

which makes its value part of a larger composite object

(e.g. a= {x}, or a= <x,y>, or a(i) = x) is called an

incorporation of x. A potentially destructive use of x, e.g.

a= x with y, is called a (potential) modification of x.

Any incorporation of x (other than the a~ypical case of

a simple assignment) forms a new object a almost any of whose

subsequent uses is likely either to reference the object x or

to create a reference to x. Thus the shared bit of x will

have to be set on incorporation unless x is close to being

dead at its point of incorporation. Actually, only a some

what weaker condition needs to be imposed, namelyfuat no

incorporation or modification of x can be reached by going

forward from this point, without a reassignment of x being

encountered first.

SETL-164A-2

This condition can be calculated using essentially the

standard 'live variable' technique. Call a use of x an

m~use (modifying or incorporating use) if it is either a

modification or an incorporation of x; and callxmilive

at a point p if there exists a path forward from p to an

miuse which goes through no assignment to x. Then if we

apply a standard 'live' algorithm simply ignoring uses of

x other than miuses, milive information will be obtained.

For the case of a simple assignment, which is symrretric

in its left and right sides, the condition that both right and

left hand variables are live should be used.

In NL 164, an aAditional distinction is suggested.

If at one of its incorporations the variable x is not only

live but lively, in the sense that every path forward from

the incorporation must encounter an miuse before an assignment

to x or a program exit, then it is b~~ter to copy x at the
~ .. 1

incorporation point than to set the shared bit, since copying

is inevitable and by not setting the shared bit we avoid

creation of an object that may force multiple subsequent

copying. The condition that x be lively can be computed by

an easy algorithm, having exactly the live variable structure,

but dual to it, in the following sense: treat assignment to

x and program exits as if they were uses of x, and miuses of

x as if they were assignments; then apply a standard 'live'

algorithm which will calculate a condition cat each p~ogram

point. The boolean negative of this condition c is the

condition that x be lively.

The test-elisions on modification suggested in NL 164

can be made available using the crthis fupctions in the

following way. Suppose that every assignment has already

been classified as a 'set shared bit' o~ a 'dont set bit'

assignment.

SETL-164A-3

Suppose also that immediately following ·each incorporation,

e.g., a= {x}, at which the shared bit must be set, we insert

an auxiliary'special assignment' x = x, and that the crthis

function is computed after these auxiliary assignments have

been inserted. Then, given any ivariable occurence i of x

which may be a modification of x, we look back to all the

ovariables 1n crthis(i). If all of these will have set the

shared bit of their ovariable, then x needs to be copied

unconditionally; if none of them will have set the $hared

bit of their ovariable, the copying can be avoided unconditionally;

and if some but not all of them will have setfue shared bit,

then the shared bit must be tested.

Variations in the Presence of Basing.

A set that has been declared as a base cannot be copied
'(

when modified, since all the other ohjects declared to be

based on it must always point to the current copy of the base.

Thus a set declared as a base can never be shared. If a base

set bis incorporated into another object, then copying can

only be avoided if all the objects based on bare dead at

the point of incorporatibn: It should also be noted that

since the pattern of incorporations which set share bits is

changed(more specifically, diminished) when some of the sets

in a program are declared to be bases, such declarations

can also diminish the set of ivariable uses at which copies

are necessary.

