SETL Newslotter #0166 R. Dewar
J.T. Schwartsz
April 8, 1976
An Basy Scheme for Yncorporating Backtracking

into the New SETI Implementation.

This newsletter will outline an easy scheme allowing
backtracking to he incorporated in the presently planned
new (optimized) SLETI implementation. The scheme to be outlined
can handlec either simple ('PLANNER type') or full ('CONNIVER type')
backtracking. To simplify our initial exposition, we will

at first consider only simple backtracking.

Simple Backtracking: Let the two basic implementation level

data areas be called HEAP and STACK, We introduce two macros
HEEP and STAK which will always be used in writing stores
into these arrays (whereas in loads we will always write
HEAP and STACK directly.) In the non-backtracking case, these

macros are simply
+ * HERP = HEAP *#*; + * STAK = STACK **

In the simple backtracking case, the following macros are
used instead:

+* HEEP(I) = HEAP(H(I))**
+ * STAK(I) = STACK(H(I)) ** .

The routine H thereby introduced operates ss follows:

Two auxiliary data structures CELLINX and RESTORE will be
maintained by the routine H. CELLINX is a table of roughly
byte-size entries containing two fields. The first of these,
ENVNO, gives for each cell in the HEAP (equivalently, STACK), the
index of the last prior data environment in which the value of

the cell was changed.

SETL~166-2

The sccond, HASPOINT, indicates whether or not the cell has
Dewar's standard ‘speccifier' format. RESTORE is an array,
having entries somewhat in excess of WORDSIZE, divided into

threce fields:

OLDVAL: a WORDSTIZLE field, saving old-environment HEAP and
STACK walues;

OLDINX: a field approximately 1 byte in sice, saving the
old CELLINX value associated with the word held
in the OLDVAL field; |

PLACE: an INDEXSIZE field, giving the address in HEAP
(or equivalently, STACK) from which the word held
in the OLDVAL field comes.

The action of H(I) 1is as follows:

If ENVNO CELLINX (I) <CURRENTENVIRONMENTLEVEL THEN
OLDVAL RESTORE (RESTORETOP) HEAP (I);
PLACE RESTORE (RESTORETOP) I;
OLDINX RESTORE (RESTORETOP) CELLINX(I);
ENVNO CELLINX(I) = CURRENTENVIRONMENTLEVEL;
RESTORETOP = RESTORETOP + 1;

il

END IF;
RETURN I;

If necessary for efficiency, H can be made an in-line LITTLE
primitive.

The CELLINX table should be maintained packed, e.g., on
the 6600 we can pack 8 7-bit bytes to a word; thus only 12%
of the space otherwise available for HEAP + STACK will be

lost owing to the necessary to maintain the CELLINX table.

SETL-166-3

In this scheme, the ok and fail primitive of simple

backtracking have the following rcpresentations:

7. The ok primitive

OLDINX RESTORE (RESTORETOP) = OLDRESTORETORP;
$ ALSO SAVE THL CURRENT INSTRUCTION LOCATION COUNTER
OLDRESTORLETOP = RESTORETOP + 1;
RESTORETOP = OLDRESTORETOP;
IF CURRENTENVIRONMENTLEVEL > MAXLEVEL THEN
ERROR;
END IF;
CURRENTENVIRONMENTLEVLL =
CURRENTENVIRONMENTLEVEL + 1;
RETURN TRUE;

1. The fail primitive

DO J = OLDRESTORETOP TO RESTORETOP - 1;
HEAP (PLACE RESTORE (J)) = OLDVAL RESTORE (J);
CELLINX (PLACE RESTORE(J)) = OLDINX RESTORE (J) ;
END DO;
RESTORETOP = OLDRESTORETOP - 1;
OLDRESTORETOP = OLDINX RESTORE (RESTORETOP) ;
$ ALSO RESET THE INSTRUCTION LOCATION COUNTER TO ITS SAVED VALUE
RETURN FALSE;

The garbage collector must make appropriate adjustments
in the indices OLDINX RESTORE(J) and any pointers held in
PLACE RESTORE (J) when it moves words in memory. Moreover,
the occupied portion of RESTORE, i.e., the entries 1 thru
RESTORETOP - 1 must be treated by the garbage collector just
as if they were heap words, i.e., items referenced by pointers

held in these entries cannot be treated as garbage, and tracing

must proceed thru them.

SETL~-166-4

(Note: ecxcess trocing can be suppressed by Xeeping note of
the lowest RESTORE entry changed after each garbage collection,
which defines a part of RESTORE through which tracing need
not proceed. The same remark applies to the stack.)

For the above conditions to be met,.it must be known
for every HEAP word and RESTORE word whether the word contains
a pointer (in which case it will be in standard, typed
descriptor format) or whether it is pointer free (e.g., an
untyped real or an internal part of a hit or character string.)
This information can be kept in the.HASPOINT flag of CELLINX
(for HEAP + STACK words) and in the OLDINX field of RESTORE
(for OLDVAL RESTORE words). It is also necessary that the
length of each block that can be located by a 'LINK' pointer
should be available in the block itself. Since all 1link
pointers reference set elements, we can ensure this by including
a two bit field in each element descriptor: this field will
characterize the descriptor as being either a l-word block,
a two-word block, or a long block whose full 1éngth is shown
in a standard field within the immediately following word.

When a block of HEAP space is allocated,its length and
the distribution of pointers within it can always be made
known; thus CELLINX entries reflecting this factcan always
be set. When STACK space is allocated (always in initializing
the parameters ard irternal variakles of a recufsive call)
the same is true, and appropriate CELLINX modifications can
be made. Such modifications should always set ENVNO CELLINX
to CURRENTENVIRONMENTLEVEL.

Extended Backtracking (i.e., support of environment manipulation).

This can be provided by using a scheme closely related to the
schcme just outlined. As in NL 153 we assume an environment
tree ET. With cach environment we shall associate a restore
veeler having the fields OLDVAL, OLDINX, PLACE already explained.

SETL~166-5

We distinguish two cases dynamically. If an environment e
is momentarily not the ancesltor of the particular environment
that is execvting, then its associated RESTORE vector records
all the modifications that must be applied to e's immediate
ancestor environment to produce e. If e is the ancestor of
an executing environment, or is itself an executing environment,
then its associated RESTORE vector records the modifications
that must be applied to e in order to produce its immediate
ancestor.

The environment-manipulation primitives that we rropose

to support are the following:

1. env copy env'. Here env and env’ must be environments,
neither of which is the currently active environment. Moreover,
env must be an ancestor of env'. This introduces a new node
into the environment tree, as an immediate descendant of env,
The environment is a logical copy of env'’, and is returned as
the value of the copy operation.

11, destroy env. This operation will check that env is neither
the currently executing environment nor an ancestor of the
currently active environment. It will then detach env and all
its descendants from the environment tree, which will make
several RESTORE vectors, and possibly also many other objects
whose access chain leads through these restore Vectors,garbage
collectible. '

iti. fix env. This operation, which has the flavor of 'success',
checks that env is either the currently executing environment
or some ancestor thercof, and destroy all environments which
are not descendants of env; env becomes the root of the
environment tree.

tv. env try wval. This is a somewhat generalized version of the
cocall function of NIL 155. It transfers control to env , which,
like every environmoent other than thet which is currently

executing, is waiting 'halfway through' an earlier try operation.

SPETL~-166~6

The quantity val is received by env' as the value of this
carlier try operation. If env’ is not a twig of the environment
tree, then it is made a twig, specifically by destroving all
its descendant environments.

The try operation can also be used monadically; the
monadic operation try val creates a new environment env'f
which becomes an immediate descendant (in the environment tree)
of the currently executing environment; then env' try val is
executed at once.

v. The nulladic special quantity self has the currently
executing environment as its value. The monadic operator
parent env has the parent environment of env as its value.
The monadic operator descenvs env has the set of descendant
environments of env as its value.

The generalized backtracking primitives just introduced
will normally be used only within a few utility macros, functions,
and subroutines, which will be used to realize backtracking
control structures of somewhat higher level than the primitives
themselves. These utility macros and functions will have
access (probably exclusive access) to whatever auxiliary tables
are needed to realize any desired control regime. We give a
few significant examples to illustrate the style of programming

that can be used:

A, The simple backtracking primitives can be defined as follows:

nacro ok; try true endmacro;

macro fail; (parent seclf) try false endmacro;

B. Creating a sibling environment.

The monadic try primitive creates a descendant environment.
For creation of sibling environments, we shall introduce a
nulladic function sibling which when called will return a
pair <true, env'>, where env’ is a newly created sibling
environment that can be considered to be suspended within the

function sibling.

ST L~-166-7

Any value val except its own parent can subsequently be

passcd to env’! using the try primitive, at which time env'
will receive <false, val> as the value of the function s<bling
within which it has been suspended. A typicél use of this

function might be in the combination
if nd(sibling() is sib) then go to label; else <junk,val>=sib;;
the code for sibling is as follows:
definef sibling;

X ='self; /* remember originally calling process */
if try self is sib eg (parent self ig par)

$ this condition will be satisfied only in a strictly
temporary auxiliary
$ descendant environment created by the monadic trv
then ‘
junk = par try (parent par) cooy par ,
$ the copy creates the sibling environment; the binary
$ try return to the environment in which sibling
$ was originally called
end if; if x eq self then return <true,sib>; ; /* else */
return <false, sib>; §$ this return is taken when the
$ sibling environment is entered
end sibling;
C. An 'estimate' primitive. The estimate primitive replaces

the simple backtracking fail with a more flexible estimate t,
which estimates the amount of work needed to attain success (in
some appropriate sense) by continuing calculation in the
current environment. It is used in combination with a nulladic
function ok. The definitions of these two functions are as

follows:

define estiqggg t;

estimates (self) = t;
$ cotimales is a map which records the estimated time to
S completion of all existing environments

mist = Jestc estimates (env) |

est eq [max: est' = estimates(env')] est’

SETL-166-8

junk = env try false;

return;

end estimate;

definef ok;
if try true is val then $ create copy of parent as sibling

sib = (parent self) copy (parent self is par);

estimates (self) = estimates (par);

estimates (sib) estimates (par);

estimatee (par) = Q; $ since par can no longer execute
end if; '
return val;

end ok;

3. Additional details concerning implementation.

Implementation of most of the primitives described
in the preceeding section is unproblematical. The

self, parent,and descenvs primitives simply deliver informaticn

about the environment tree. The destroy primitive merely
removes a portion of this tree. The fix primitive is almost
as unproblematical, except that it may have the effect of giving
the root of the environment tree a level different from 1.
This is essentially harmless, but one wants to avoid an un-
controlled rise in environment level numbers. These numbers
can be kept under control by lowering them systematically
within CELLINX during garbage collection. Whenever the
current environment level number would otherwise rise above
the limit of acceptability, this same lowering operation can
be applied.

To exccute env’ try val, which is potentially the most
expensive of our primitives, we proceed as follows. Suppose
that the current environment is env. Then we locate env'! in
the cnvironment tree, giving an appropriate diagnostic if it

cannot be located (e.g., if it has been destroyed).

SETIL-166-9

Otherwise we determine the (highest level) common ancestor

enva of env and anv’ by a chain-back process. Let the chain

off ancestors leading back from env to enva be env = env,,...,env, =enva.
Then the RESTORE information. associated with each of these
environments is used in turn, to rebuild the environment

associated with enva. Following this, the chain of environments
leading from env' to enva is traversed in the reverse direction

to reconstruct the environment env'’,and execution continues

with env'., If env' is not an environment-tree twig, then all

its descendant environments must first be erased.

The monadic try operation has a simpler and more efficient
implcementation.. A new environment env’, with an initially
empty RISTORE vector, is created and made an environment-tree
descendant of the currently executing env; then execution
continues with env.

Store and load operations are treated in the same way
as the simple backtracking case, with levels contained in
CELLINX being checked on each store operation. Information
that nceds to be added to RESTORE should always be appended to
the RIESTORE vector associated with the currently executing
environment. The environment-switching costs associated
with generalized backtracking are plainly higher than those
associated with simple backtracking, but the intra-environment
running costs are the same. |

To implement the primitive env copy env' we can proceed

as follows. Let the chain of environment tree nodes leading
from env to env' be env=env,,...,env, = env'. First suppose
that cnv'! is not an ancestor of the currently active environment.

Then we make a bhackward pass over @RV s e v ey CND building

or
up a RHESTORE vecior v, for the new environment to be created,

from the separatce RESTORE vectors vj of these environments.

SETL-166-10

This is done by toking all items from v \Y in

k' Vk-17"""'V2
turn, and installing them into v. Each time an item X is
about to be made part of v, the PLACE field of x will be
extracted,yielding an integer I, and an auxiliary quantity
AUX (1) calculated using a hash table built up temporarily
during execution of copy operations. If J = AUX(I) is
undcfined, then x is appended to the end of the vector v,
and AUX(I) is set equal to the component position of x
within v. If J is defined, then we simply set the OLDINX
field of v(J) equal to the OLDINX field of x. When all of
vk,...,v2 have been processed, we create a new node in the
environment tree; v becomes its.RESTORE vector.

Next sdppose that env'’ is an ancestor of the currently
executing environment enveur. Then, by processing the
RESTORE vectors VoreeorVy in forward sequence in the manner
just indicated, but ignoring all fields other than PLACE,
we can obtain a vector v which shows all the corrections
that need to be applied to env' to yield the value env.
By traversing the path from enveur to env’, we can reconstruct
env', Next, we make a pass over all the components x of v.
Let J be the PLACE field of such an x; then we set OLDVAL
and OLDINX of x to the current values of the J-th cell of
memory and of CELLINX(J) respectively. This builds up the
RESTORE vector associated with env copv env’. Once this is
done, we traverse the path from ewveur to env'’ in the re-
verse direction, to restore the current environment enveur, and
create a new environment tree node as an immediate descendant
of env!'.

4. How to imitate some of the facilities of SNOBOL.

Griswold has remarked, and indeed it is not hard to see,
that a language providing strings, a good set of string
primitives, and bocktracking can easily imitate the string
matching facilitics of SNOBOL. The following conventions

accomplish exactly this imitation in a convenient way.

SETL-166-11

(a) A patiern P is a procedure,function or code sequence
which accesses a public global variable (call it globstring)
and ecither succedsfully performs some sort of (primitive or
non-primitive) matching operation, or executes fail. If p
does not fail, it modifies globstring, changing it from its
original value to whatever part of globstring remains unmatched.

(b) GiVen a collection of patterns Pyre--/P s We can
combine them in various useful ways:

z. sequentially: bqyi Poi

7. as alternatives;

if ok then Py elscif ok then Pyi elseif gk_then Py else fgil;;
syntactically, it is better to introduce the macros
eo (p) = if ok then p; o(p) = elseif ok then .p;
oe = else fail;
and write this as
eo (py) olpy)...olp) oe;
another useful construction is:

1711, repetition:

arbno(p) = (while not ok) pi:»

Patterns may have explicit parameters in addition to the
implicit quantity globstring which they all access. This enables
us to write patterns such as length(n), exactly('string'),
approximately ('string') (which allows for some degree of
misspelling), etc. Note that any executable statement can be
inserted into a sequence of patterns, making it easy to
determine if subparts of a string occur repeatedly, if a
string subpart matches two or more separate patterns, etc.
Morcover, by grouping the parts of a composite pattern together
and making a procedure or function out of them, we can create
new pattern objects, which can then be passed to other

patterns as paramcters.

SETL-166-12

For integrating all this into the SETL system, the
following conventions might be appropriate: define a 'system'
module called, e.g., stringproc, to which the public variable
globslring belongs. Provide a library of string primitives,
treating them as procedures which access this variable, and
which only become available within another module m if globstring
is included into m; in which case it may also be appropriate
to make the macros o, and oe available in m.

Since in addition to the unmatched string portions which
patterns will return (in globstring) we will often wish to
make use of a matched string portion, it may be worth in-
troducing the abbreviation stringl - string2 fqr

stringl (1: # stringl - # string2).

5. Some remarks on optimization.

Any store to a variable that must necessarily have been
written in the current environment can be performed in a
specially efficient way, since its CELLINX field need not be
checked. Since environments are always entered (and exited)
at try operators, this remark will always apply to a store I =...
if there is no path from a try to the store operation which
does not pass thru another I =.... This remark shows that
assignments I =... can sometimes be made more efficient
within loops not containing any try operation by prefixing
I =1 to the loop entry.

In the simple backtracking case, the criterion for
suppressing CELLINX checks that we have just stated can be
relaxed significantly. Consider an assignment a of the form
I =..., and let S' be the sect of all ok operations with a
true outcome that can prececd this assignment without some
other assignment to the same variable I intervening. This
set can be calculated by the standard dataflow technique used
to calculate the 'reaches' function,except that forward tracing
should begin with occurences of ok, and that in addition to

the 'kills' which naturally occur at each occurence of an

SETL-166-13

assignment I =..., we insert a 'kill' immediately.following

cach test "if ok then..." along the ok = false branch. Then

if I is decad along the ok = false branch forward from each
occurcnce of ok in the set S, the assignment x can be executed
without checking CELLINX. The proof is as follows: any
environment to which one can return after fail is executed
will have been generated at some ok yielding the value true;
after executing fail, this environment will beire—entered
with an ok value of false. Thus it is clear from our assumption
that since the moment at which we generated any stacked
environment in which I will not be dead after return, some
other assignment must have updated CELLINX.

This remark applies in a useful way to a Wide variety

of selection iterators of the form

if H1 € 1list | ok then a else b;;
whose expansion is
I = first(list);
(while I ne Q)
if ok then
a; quit;
else
I = next(I);
end if; ' | ' !

end while;

The Optihization principle that we have encountered shows
that CELLINX(I) need not be checked at the assignment to I
within the loop. '

