
SETL Nowsletter # 171A

'Bn.sinq Sc-'mcrnticf~' Rcv:isi.ted

1. Introduction

J. Schwartz
R. Dewar
December 9, 1976

This newsletter will outline what seems to be an improved

approach to the SETL basing concept. A fundamental idea of

the proposed semantic revision is not to allow bases to be used

directly as values; that is, all bases will be taken to be

'virtu~l' in the sense of our earlier terminology. (Of course,

this makes the explicit keyword 'virtual'unnecessary). In our

new sthcmc, bases are still declared, e.g. in the form

b: base(Eb');

but a variable declared to be a base cannot appear in any SETL

expression and cannot be an assignment target. (Our former use

of a buse b also as a set s is regarded as contoundiny- t-.;,,;o

tl1ings which are better kept separate; e.g. our former diction

r;: ~!_l_~c_: f:'.-:.!: (Cb ') is now handled by writing two ceclarations b:

!~.~_£ (Cb') ::rnd s: sub:;ot (b) •)

Vc1lucs of baser; will be represented in much the same way

an now cont~rnplatcd, but our new scheme abolishos the notion

of 'ghost element' and with it the firm need for an is deleted

bit. Each declared base corresponds to exactly one resolved

name in a total SETL program. For variables declared base

(which occur only in a repr setting) the qualifier sta~~-~d

cannot be stated. (However, bases will sometirnes be stacked;

but the rules which determine when this happens are implicit

and explained below.)

If a variable name b is declared base, the nodes Eb and

~ubsc1t (b} become available for use in other declarations.

In nddition to variable b declared base, our new system

will have 'base valu--:cs', v:hich can be the values of such vario.blcr-::.

Assig1uncnt of a new hnse valua v to bnsc variable b wjll not be

c<1llecl for. exp] ic:i tly, but will take r>] ;:we ,.,,hcn~ver such an

nsni9nrncnt makes conversion of associated non·-bc1se variables

unnecessary.

SETL-171A-2

Suppose that the variable v has a repr declaration, that

its declared repr is r, and that this rcer involves at least

one base variable b and is not simply the repr E b. Then the

extype field of each SETL object appearing as the value of v

will describe its repr fully except for the specific bases

appearing in this E!:Ef.i and a list of these base values, in

their left-to-right order of appearance within r, will be held

in a part of the run-time representation of v called its

base array. For example, if v hus the r~pr

v: smap (Eb) set (<Eb, subset(b') ,smap(t'..:b,Eb)>,

then the extype field of its value will convey as much information

as shown in

s1~:e_(*) set(<E *, subset(*), smap(* ,*) >), while 1..:he ba~0;c i.u:ray

associated with this value will contain the values of the bi1se
variables b 1 b 1 bib in order.

A variable v declared to have a given !:..<:.!2!::. will conform

precisely to this repr. When the value of vis assigned to

a general variable g, then its extype and base array will J;e

carried along as part of its value and will show the actual

structure of gin all detail. Then, if g is subsequently

assigned to a declared variable v', its structure can Le checked

quickly, and full examination of the details of g can h0 Rvoi<lu,l.

In making an incremental modification such as f(x)= y or

s with y of compound objects f, s with declared repr's, we

convert x and y (or y alone) to stand in suitable relation to

the full declared repr off (ors). If flacks a declaration,

it may be best simply to convert f to type qenernl if it is

incrementally modified. (Though as a matter of fact in some

cases, e.g., if f is a based map or smap, we can check to see

whether the actual repr of y matches the rc:mgc extype of f,

and if this is so can refrain from modifying the extyp<~ of f.)

Note that the proposed system of extypes. makes the

following approach to assignments d = g possible, where we

assume that d has a declared repr (other than E.::b) and g is

general: check the cxtypc field of the value ofg for equality

with the extype field required ford, and then check the bases

in the base array of the value of g for identity with the·

list of bases specified for d. The routine which performs··this

latter check can be passed the base array if g and an array of

symbol table pointers (defining the bases of d) as its arguments.

2. Base Assignments.

If the declared repr of a variable v contains the base

nume b, then vis said to be based on b. Suppose that immediately

prior to a given point in a program, all the objects based on

a set of base variables b 1 , ... ,bn are dead, andfuat the set of

variables is closed in that it contains b if it contains a b'

with the .E.S::.l?E. b': bas_E:_ (Eb) • Then we say that th2 bases h
1

, ••• ,bn

arc substitutable at that program point: we are free to

substitute new values for the current values of b 1 , •.• ,bn

without spoiling any basing relationship on which we might be

relying. In some cases, we will find it advantageous to

generate new null base values for b 1 , .•. ,bn; in other cas:s,

it can be advantageouR to assign existing base values to the

base variables b 1 , ... ,bn.

More precisely, consider a simple or multiple assignment

and suppose that the substitutable base variables at point of

occurence of (*) are b 1 , .•• ,bn. Let f 1 , •.• ,fk have the declared

EE_pr's rl, •.. ,rk. Let b 1 , .•. ,bn be the largest substitutable

subset of b 1 , .•. ,bn with the property that all bj' j <m appear

in at least one rk. Given a base name bin this list, let f.
J

be one of the first variables in (*) such that be appears in

r ..
J (Here we say 'one of the first' rather than 'the first'

since if rj is, e.g., 'smap(Eb)mode ',

will wish to use f. rather than f~ to
J .~

while r is 'Eb', we n

SETL-171A-4

determine the new value of b, even if k < j. Let g(j) be

the j-th component of the right hand side of (*). If the

extype of g(j) matches that implied by r., and if the actual
J

base value 13 occurs in g(j) where b occurs in bj' then(*) is

said to imply the base assignment b = 8. If this extype
match fails, then (*) is said to imply the base assignment b = nR.,

that is, to imply the creation of a ·new base value.

We execute (*) by first performing all the base assignments

which (*) implies, and then by going on to perform the in

dividual assignments fj = g(j), during which all necessary

conversions are made. (Note Rgain that the base assignments

(versus creations of new bases) to be performed are determined

dynamically, by examination of the right-hand side of (*),

except of course when by global analysis it becomes possible

to make this same determination statically.) It is also

important to note that the number of conversions which is

necessary will be diminished by the base assignments which we

perform in connection with (*) ~ indeed, in some cases, assignment

of new bases will make all conversion unnecessary. It is

precisely for this reason that we choose to associate one or

more base assignments with (*).

Note that the compiler may be able to detect sequences of

simple assignments which can be treated in the same way as a

multiple assignment(*), even though the syntax of a sequence

of simple assignments is less explicitly helpful than the

syntax of a single multiple assignment. The preceeding rule

can then be applied to such sequences of assignments.

Note also that the above rule applies even if the f 1 , ••. ,fn

appearing in (*} are fairly general sinister expressions,

provided that we agree that the sinister expression h(x) is to
be taken as having the declared E!:J2.E_ ·inode2 if h has the

declared repr map(mode1)rnode 2 , etc.

SE'l'L--17 lA-5

3. Parameter yassing, Recursion and Base Stacking.

Transmi.s~ion of arguments on procedure entry can be regarded

as n multiple il~:sj gnment <p
1

, .•. ,pn> = <a1 , .•. ,an>. Like any

other assignment, this will imply certain associated base

assignments, and certain conversions. If necessary, these conversions

will be performed in the called procedure. Similarly,

in the case of returned parameters the return operation can be

regarded as a multiple assignment <a
1

, .•. ,an> = <p1 , ••• ,pn>

which again implies certain base assignments end certain

convcrr:ions. If conversions are necessary after return, they

nre pr~rformed in the calling routine.

Since conversion on call and return can lead to particularly

elusive forms of time-wasting,statements which might generate

such conversions should always be noted in emphatic compiler

warnin~r messages. Of course, we will also want the compiler

to note aJ 1 conversions, even those not associated wi.. th procedure

callfl.) If a pu.rticular subprocedure is never used as the

value of a procedure variable, then it will be possible to

locate all its points of call, and it may be possible to

prccnlculate the _r.c~F?_.!.::_' s of all the variables passed to it

und thus to determine all the conversions which take place

on call (and pc:!.d1c1ps, with some additional difficulty, on return

as well.) If available,information of this sort can be used

to suppress some call-conversion messages and to increase

the precision arid severity of others. Warning messages should

also he given t~1cn the value of a procedure variable is invoked.

It is also quite important to provide good histogram of a

program's run-time behavior.

If a simple or multiple assignment (*) has a right-hand

side g which is either nult or some other constant which is

not associated with any particular base, then the general rule

stated in the prccccding subsection implies that every substitutable

base variable b nssociated with the assignment (*) is to be

given the value -~~., i.e., that a new base is to be created

and made the value of the variable v. (However, values v

SETL-171A-6

actually based on the former value bv of b do not cause

trouble, since they retain pointers to bv, which amonq other

things implies that bv is preserved from ruin by the garbage

collector.) By giving b the value n~ in such cases, we

shorten the length of the vectors needed for storage of objects

remotely based on b, and also cut down on the time needed for

iteration over subset's of band map's locally or remotely

based on b. {Of course, this way of proceeding can generate

indefinitely many base values bv.)

A related case is that in which all the variables £1 , .•. ,fn

of (*) are stacked by a call to a given procedure (and unstacked

on return) , in which case the assignment (*) f_:imply represents

the operation of re-initalising all the stacked variables

£1 , •.• ,fn ton. Clearly in this case all the substitutable

base variables associated with (*) can be assigned new~~

values; but the old value of each of these basemriables should

be stacked when this happens, and then unstacked on retnrn,

so that the current values of f 1 , .•• ,fn alway::. stand in proper

relationship to the current values of thef;o b<1se variable!:.

4. Repr determination for temporics, impliP-d convcri:,io11s.

The repr of a temporary variable will where possibll~ be

determined from the use to which the temporary is put, but

where this is not possible from the expression defining the

temporary. For example, consider the assignment

(**) s = u + v with x - y.

in which the set s has the declared repr r. •rhen the tcmporar5.c)S

t 1 = u + v and t 2 = u + v with x will both inherit the repr r.

Before performing the operation (**) u and v will be converted

to the repr r, while x will be converted to the E..~~ r' naturally

associated with elements of sets having the !:...epr r. 'l'he olcmcml

y requires no conversion. If there exist one or more base

variables b which are substitutable (in the sense cbfincd in

section 2) at the point (**), then u will be examined to

determine what the new value of bis to be. If the actual rc2~~

of u is at least as specific as the declared !"cpr of s, then

SWl'L·-17 lA-7

new v,..11 ue of b wil 1 be a base obtained from an cppropriate

field of u; otherwise the new value of b will be a new,

initi~lly null, base.

As an example of the code defined by the preceeding rules,

consider the case in which we have declared

repr s: subset(b);

and compile the code fragment

s ='{x + 1, x E u lc(x)};

this expands jnto the sequence

9, 1: t = ni;

,Q, 2: (\/xEu)

£.3: if not C (x)· then continue;; --
,Q, 4: t = t with (x + 1) ; --
£5: end V;
9, 6: s = t;

Since the (necessarily unique) programmer-defined variable to

which the compiler temporary t is assigned is s, t inherits

the !::QJ2!, t:subsc~t(b). Thus th0 quantity x + 1 formed in line

9,4 will be converted to the clement representation Eb before

the ~Lth operation is performed. 'l'his leads to an efficient

treatment of the original code sequence; in particular, un

necessary conversion operations are avoided.

Hopefully, it will not be hard to define efficient basings

by exploiting the rules stated above. As an illustration of

some of the effects that can be achieved, consider the following

repr declarations and associated code:

b:base, c:base,
s:set,

x:Eb, f: ~map(Eb) Eb, g:subset(b),

xx:Ec, ff: smap (Ee) Ee, gg:subset(c);

SETL-171A-8

Jll:

Jl2:

Jl 3:

X = ••• ; f = { •.• }; g =·{. .• };

s· with <x, f, g>;

•••
<xx, ff, gg> = 3 s;

In this example, conversions to the declared basings of x,f,

and g take place in line tl, at which point a new base value

may be generated; no conversion is implied by £2, since s has

been described as a set of general objects; and no conversion

is implied by i3, since it will be discovered dynamically that

the object 3s is a tuple, and that nfter a base assi9nment

the components of this tUplc can be assigned to xx, ff, gg

respectively without any conversion.

5. A Remark Concernin~ Local Objects.

The possible kinds of local objects are locnl subs~t,

local mae,and local smap. Local objects can Le used somewhat:

more efficiently than the corresponding remote object types,

but a substantial part of this benefit may be dissipated if

it is not known statically whether the objectjs local or remote.

Since the likely fate of an object whose shared bit is set

is to be garbage collected (this is illustra tcd by the r,:cquence

f = g; f(x} = y; g(u} = v;} we will not want to allow slwring

of local objects (even though remote copies of these objects

could in principle be created when copies wererecessary}. On

the other hand, we would like to be able to pass local objects

to procedures as parameters. Finally, we wish to avoid situationn

in which a local object would have to be converted to remote

form, but where the corresponding remote object could be used

without copying.

To meet this complex of requirements, the followin~J approach

is suggested.

(a} A variable f will be called potenti~~!_!y ±-°-~-~.! if it

has a declared or inferred repr of the form sunset,~~, or

smap, and if it never appears in a context in which :i.ts

share-bit would be set, or in which its value \vould be in

corporated into a composite object without copying.

SE'rL-1"/ 17\-9

In pnrt.i.cular, this means t.hat at each simple assignment g = f

either the value off J.s dcnd, or the value off is not dead

and will certainly be modified, so that copying of f would be

required even if f were represented remotely. Similarly, at

an indexed assiqnrnent g (x) == f or v1ith operation s with f

we rc-~quirc that f be live and certain to undergo modification,

so that f would have to be copied even if its representation

were remote.

(b) If the varicible f might have subset ,:repr and appears

as an argument Lo one of the operations f + g, f -g, f * g

we do not consjd,T it potentially local, since for these

operations the u:1c~ of bit-r_,trings in their rernote form may

have clc1c.i.sivc ,Hlvzu1tagcs.

(c) If Hie voria.bl e f appeaxs in a simple assignment

statement. g = f, and g is not part of the collection of all

potent:L,lly local variables, then f should be dropped from

this collcctio unless f is live and certain to be modified.

(d) If f :is accessible::~ outside a sin<Jlerrocedure p and

is transmitted ~s a paramet.er, or if f is accessible only within

p, is not stacl:<~c·; by p, and is tra.nsmi tted as il parameter, then

f should be cxcl m1cd from the collection of potentially local

varic1bl0~,. Morvovcr, if f is i tsclf a parameter to which a

value ol hr;r l:b.:,11 tl1c v,1ltw of a potentially local variable

is pas:;c;cl, or if f is passed as an argument to become the

valuo of a parzunc:tcr which is not potentially local then f

should also be excluded from this collection.

The variables which survive these various exclusions can

be designated a □ definitely local, an4 the values of these

variables can b~ represcntod by values of type local subset,

local m~, or local smap as appropriate.

.SETL-171A-10

6. A Remark on Subprocedure and Function repr's.

By providing suitable Eepr declaration for subroutines

and function, we could in principle reduce the number of

dynamic checks required in the treatment of procedure variables.

On the other hand, the necessity for conversion or procedure

call return is more often determined by the consistency with

which arguments are based than on the preciselnses used.

Since we have no way of expressing relationships of this type

without substantial extension of our current basing syntax,

and since procedure variables to not seem to be of very

common use in SE'I'L programs, we shall not use the extype

of subr or function to represent anything else than the

number of arguments it expects and the pattern of arguments

which it modifies.

