
SETL Newsletter t 171B 

Remark on the Implementation 

of The Basing Scheme. 

J. Schwartz 
A. Grand 
December 14, 1976 

This newsletter will outline what seems to be an efficient 
scheme for implementation of the fundamental rules for basing 
semantics described in Newsletter 171A9 

Every object will contain two fields which collectively 

determine its basing. These are 

i. a FORM field, which contains an index to a table 

called the forms table. 
ii. a BASEARRAY field, which points to the start of 

an array of pointers to the va~ious bases of the object. 

The forms table entry indexed by an object's FORM field 

will_ give the length of the BASEARRAY for the object. 

The BASE.ARRAY pointer for a subobject X of an object 
O can point into the corresponding array for o. (For 
example, this _is likely to happen when O is a set and X 
one of its elements, or when O is a multi-valued map and 

X is one of i.ts domain sets.) This .• overl~pping' style 
of pointer use resembles a technique which can be used to handle 

long character strings, and is equally unproblematical • 
. Basearrays can be held in vectors of an appropriate 

special form, which the garbage collector can handle using 
a technique like that presently used for strings. New 
basearrays need only be built at those (relatively rare) 

points at which a base assignment takes place. Let 

b1 , ••• ,bn be the bases involved in a base assignment, and 

let m1 , ••• ,I.l;c be all -f:he declared (formal)· repr's in which 
these bases are invoived. Then at the poi~t of the base 
assignment the compiler can interpolate an operation which 

generates a new 'comprehensive base array' A, which is 
long enough for the base arrays requirai for every one of 



.,.,, .. 

SETL-171B-2 

the modes m1 , ••• ,11\: . to appear as ,:, can l:i0110us subarray 

of A. If we assume also that the curr11mt valut:is of all 

declared ~..E£_'s are held in an auxilia:::y 'declared ~.Er lis·~' 1 

so that m1 , ••• ,mk a:re represented by entxie11 in fuis list 

with indices r 1 , .•. , r:k, t.hen we muat al so update each of 

these entries by changing the BASEARRAY pointer which it 
contains. If this approach is used, th.en (decla.red) repr 's 

can passed to run-time routines which need them simply 

by passing an appropriate ~ep_~ index r. 

Let us used the term fu.ZZ form for a ~.EE. list entry, 

i.e., a pair (F',P) consistj_ng of a form index and a BASEARRAY 

pointer. Given the full form for a composite object 

(set, map, or tuple} the full form for any particular 

subobject (member, domain or range element, component) 

will be calculatable simply as (~(F), P + ~(F)), where 

~(F) and the offset w(F) are values held in appropriate 

fields in the forms array entry referenced by F. 

To test. the validity of an undeclared-to-declared 

assignment D = G, one checJ.~s the f9rm of G for equality 

with the known form of D, and the base-list pointer held 

in G for equality with the current base list pointer for 

the declared reE_r list known to the compiler. This check 

can be made rapidly by a 'convert nubbin' which calls the 
general convert routine when the. check fails. The first 

action of the con-vert routir.e can be to check for equality 

of form, and if this holds to compare the base array of 

the object to be converted \<d th the base array of the specj f ied 

target repr. If these twc1 arrays have identical c:orr:-s:,or.ents, 

then no conversion is necessary. 

In an oper;;.tion. like D = B :'fi th C, C will be converted 

by t.lie with routine to have the E.~£!, appropriate for elf.::ri1.ents 

of D. Again, conversjon c~n be avoided if C already has 

this form .. 

C 



C 

SETL-171B-3 

If D has general ~l::,f, then no conversion is necessary; 
but i ·; is well for the with routine to check the full form 

of C for agreement with the full form of elements of B, so 

that :form information is not unnecessar.ily lost when B is 

built A similar remark applies to other incorporation 

opera·:ions such as D (B) = C. 


