
SETL Newsletter# 171

More on Basings

1. Introduction.

R. Dewar
J. Scrrwartz
E. Schonberg
April 29, 1976

This newsletter aims to clarify some of the questions

surrounding our based reprcsention scheme, and to prepare

for its implementation. The scheme to be outlined will be

one which is highly conservative and only modestly automatic;

~his shoul.d limit the complexity of the implementation problems

which must be faced. Experience with the outcome of this

first scheme should clarify rnany of the problems which a

more highly automatic scheme must face.

ABong the general principles which shape our design

approach, we note the following:

There must exist some way of using the basing scheme efficiently

(since otherwise it serves no purpose.) :Moreover, attained

efficiency must be predictable, i.e., the efficiency of a

program must not depend on subtle program details which guide

an optimizer's i~plicit decisions. In particular, we will

always insist that
1
our compiler annotate a program in a way

which indicates all points at which it has inserted potentially

expensive conversion or copy operations.

Some of the technical decisions which determine the

scheme to be outlined are as follows:

(a) W~ shall treat all declared basings as static,

strict mode determinations.

(b) A set of default r,1les determining the basing of

x op y from the basings of x ctnd y will be used.

(c) Not all basing declarations will.be accepted by

the compiler; i.e., certain semantic restrictions to be

stated below will apply, and bnsings violating these restrictions
. .

will ge~erate (fatal) dingnostics.

•

SETL-171-2

(d) Assign..ments x = y and f (x) == y may convert the value

y being assigned from one basing to another, depending on the

basing which has been declared for x (and/or f). The same

applies to assignments made using the is operator.

(e) The basing of external variables will have to be

declared in all detail. The binder will check to ensure that

these declarations are consistent throughout all the modules

of a program being bound together.

Basing must be supplied for procedure and function

parameters.

(f) We will use a combination of static and dymanic

techniques which together ensure that the based and unbased

versions of a SETL program can never give different results

if both run to completion. Ho1·1ever, a program with declared

basings can fail at run time where the same program with

basings deleted would not.

(g) To achieve efficient use of basings and conformity

with all restrictions, some modest degree of program restructuring

may be required. However, a program with acceptable basings

will always run giving the same result if the basings are

switched off.

(h) Pure SETL, i.e., SETL with no basings will operate

with a 'safe' ~ubset of the larger library of implementation

level data structures provided to support the full based system.

A program with declared basings will use a larger variety of

implementation-level structures than its unbased variant.

Any SETL operation can be applied to based objects, and if it

does not fail, the operation \•-1ill yield a result having the

same abstract value as if the objects were unbased.

SETL-171-3

Failure will never result if the restrictions stated below

are observed. The user of based SETL, familiar with these

restrictions, may anticipate basing failures at certain

program points, and to avoid such failure, may want to convert

a particular object x to its standard, safe, unbased SETL fol..--n

xx. For this purpose, we provide an elementary mode unbased.

Any value assigned to a variable of this mode is converted to

unbased form.

(i) A variable of declared mode is constrained to have

its declared basing; an undeclared variable can have a basing

which varies dynamically. Assignments to undeclared variables

will in principle never force a basing conversion, whereas an

assignment to a variable of declared mode will force such a

conversion if a basing discrepancy is detected (statically or

dynamically). All points at which such conversions are inserted

will be annotated appropriately by the compiler. Howeve~, in

the case of variables, such as compiler temporaries and local

procedure variables not passed between subprocedures, for which

the compiler might be able to deduce a basing strictly equivalent

to standard SETL form and demonstrably more efficient, we

allow compiler-chosen variations of basing as a possibility.

Whenever an undeclared x is assigned to a declared y, the mode of x

will be checked ·dynamically, and its conformity with the mode of y

will be established. If this check fails, a coercion will

be applied to force x into the form declared for y. Even
I

if no coercion is necessary, we will check to verify that

none of the bases implicit in x hasun<lergone any 'dmod'. (see below).

The conversion of a general variable x toy Es basing

will always be done by hashing.

(j) Sharing of a base will not be permitted, so that a

bases will be copied on every assignment t ~ s, f(x) = s, etc.,

which would otherwise have to set the shared bit of s. The

fact that assignments to a base and assignments from a base

are treated differently from other assignments means that we

will always need to know statically an object is a base.

SETL-171-4

(k} Note that a base sb can be erased or diminished

when no longer needed, without necessarily making objects

which are weakly (but not strongly) based on sb unusable. ~see below)

For example, suppose that we have made the following declaration:

declare sb:base set,

fb: smap (E sb) int,

s: base set (E sb),

f: smap (Es} int;

Then sand f remain usable even after an assignment sb

whereas fb becomes unusable.

= nQ, • _,

SETL-171-5

2. Restrictions

Basing secures efficiency by using pointer mechanisms

internally; criteria which restrict these uses of pointers

to force compatibility with the value approach of SETL 'i·lill

therefore be required.

Several types of pointers can cause trouble:

(a) If x is based as an element of s, then x will point

to one of the element blocks in the representation of s; map

and attribute values f(x) will be held in this block. Ifs

is changed (e.g., by an assignments= expn), or replaced by

a copy of itself, or stacked or unstacked by a recursive

call, these pointers will not be changed; then if a subsequent

assignment f(y) = •. changes f(x), this change may not be

properly recorded. The same thing can happen if x is deleted

from sand then subsequently re-inserted (creating a new

element block, but leaving x pointing to the old element block).

(b) The same difficulties are connected with sets s 1
declared to be based as a set of elements of s, since in this

case each of the elements of s 1 will contain a pointer to an

element block of s. Moreover, if some based map g is declared

to have range values based as elements of s, then the same is

true for the elements of g.

(c) If g is a map, and is declared to be a map based on

the domains and is represented by a remote vector, then

(assuming that serial numbers of elements of s can be re-used)

we have the same difficulties. The same is true in connection

with attribute maps, sets represented by remote bitvectors,

sets of remote maps like g, etc.

The difficulties raised by case (c) are more severe than

those inherent in cases (a} and (b), since evaluation of

g(x) can involve hashing of x to locate an element block of

its bases. If an element x of the domain of g has been

deleted from·s, then hashed access to g(x) is bound to yield

the value n, which can be incorrect.

SETL-171-6

Moreover, we have no easy way of detecting that this value

is incorrect.

The path that we choose through this set of problems

will reflect an underlying view of the fundamental semantic

implication of a basing declaration. What do we wish to

imply when we declare x:E s, f:smap(Es) int? At least three

significantly different interpretations, each stricter than

its predecessor, are possible:

(a) We may imply only that the value of x is a member

of s, and that all values off can be located via information

stored with the elements of s, whenever x and/or fare

actually used.

(b) We may imply that these same relationships hold at

every moment during program e~ecution at which x and f have

values different from n.
(c) We may imply that x and fare dead whenever sis

changed or diminished.

Alternative (a) is attractive c priori, but does not

seem to be implementable. Assuming that x and fare declared

as above, consider the sequence

x = 3s; s less y; •.. ; s with y; z = f(x}.

If y = x, the operations less y will mark the element pointed

to by x as deleted; the subsequent s with y will re-insert

the element x into s, but, having no way of telling that f(x)

should still have some pr:tor value, will set up a news-list

element in which f(y} is shown as having the value n. If we

try to treat the subsequent operation f(x) as legal, e.g., by

rehashing when we find that the list element pointed to by x

has been marked deleted, we will get the incorrect value n
for f(x). It is not clear how this difficulty can be avoided.

In alternative (b), the operation f(x) will in principle

be illegal ifs has been diminished in such a way as to omit

an element x that belongs to the domain of f.

SETL-171- 7

However, we have no way of enforcing this rule statically,

nor does there exist any plausible combination of static

and dynamic checks which enforces it. Even if elements of

s are dynamically flagged as deleted when they are removed

frora s, we still have no good way of dealing with cases

like

x = 3s; s less (x + 1); ... s with (x +l); z = f(x+l);

in which the element of s from which the desired value off

is being retrieved is located by hashing.

These difficulties drive us to adopt something close

to a variant of (c). The restrictions that (c) implies can

be checked statically; however, we shi".ll prefer to take a

roughly equivalent dynamic approach as fundamental, and to

regard the competing static approach as an optimization.

For describing the details of our approach, it is useful to

introduce the following terms. A set, map or other object

is called a-dependent if it is based in such a way as to

contain pointers to elements of s, or if it is realized

either as a remote mapping or attribute mapping based ons

or by an object containing such a mapping. An object f

declared to have one of the basings

mag (Es) rmo!ie or smap (Es) 1'mode or subset (s),

or to be based in such a way as to contain any object with·

one of these basings is said to be strongly s-dependent.

An object which has ans-dependent basing but which is not

strongly s-dependent is said to be weakly s-dependent. We

call any operation which modifies sand may diminish it a dmod

(diminishing modification) of s. Any assionment to s other

than the assignments s = s with x and s = s +tare potentially

dmods. Drastic assignments, e.g., s = t, will be treated as

if they were written a= s - (s-t) + (t-s) i.e., elements ins will

be retained as long as they are not logically removed by

the assignments= t.

SETL-171-8

A use of a weakly s-depcndent object is legal if it makes

no use of any pointer to an element of s which was deleted

from s after the operation which created the pointer. A

use of a strongly s-dependent object x is legal only ifs

has not undergone any dmod since x was last used.

To enforce these rules, we will proceed as follows.

Whenever a dmod of a bases is performed, the elements deleted

from swill be flagged as having been deleted. Uses of

pointers to elements of swill always test this delete flag,

and execution will be terminated with a dynamic basi~g

violation diagnostic if a delete condition is detected

during pointer use. With each bases, we shall associate an

auxiliary cell c; swill always be accessed and referenced

indirectly through c. Whenever a drnod is applied to s, a

'dmod bit' will be set in the existing c, and a new c will be

allocated and assigned to s. Operations using s which assume

that no dmod of s has 6ccured will check this dmod bit, and

will fail if it has been set.

During garbage collection, all pointers to deleted set

elements will be changed to point to some standard deleted

element, allowing the deleted elements to be reclaimed.

The same treatment will be applied to 'bad' auxiliary cells c.

When the operations with x is performed, a quantity xx

logically equivalent to x but having Es basing will always

be calculated. This quantity can be ·stored, and implicitly

kept available as long as x is not changed and is not subject

to any dmod. '11 he availability of xx will sometimes allow a

later hashing operation to be avoided. A typical example

is the sequence

s with x; t with x;

~here we suppose that t has been declared.to have set (Es) basing.

SETL-171-9

The machine code sequence for the retrieval operation

f (x} in the case that f has local SP.',ap (Es} int and x has xEs

basing is approximately

load

load

test

blockref x(l}

blockref x (f}

deleteflag f- 0

ifsogoto error.

On the 6600 this would be 8 cycles, as compared to 2 for a

FORTRAN indexed load (without range checking). If flow analysis

shows that there can have been no dmod of s since the definition

of x or since its last preceeding use, then redundant check

elimination can reduce the number of machine cycles to 4.

If f has remote smap(Es)int basing, the code sequence

for the retrieval f(x} is approxinately

load blockref x(l}

load blockref f

test dmodflag ~ 0 or deleteflag f- 0

ifsogoto error

load vectref_f(index_x).

On the 6600 this would be 11 cycles, reducible by redundant

check elimination to 5. There is therefore real hope of bringing

based SETL to perform with something like 10% of the efficiency

of FORTRAN, even without special hardware assistance.

SETL-171-10

3. Procedure Parameters and Culls.

In the unbased SETL seT'.lantic environment, items are

handled on a pure 'value' basis, which means that no operation

applied to a variable y can have any effect on a different

value x. In the based situation this is not quite true, since

for example if x is based on y then an assignment y = nZ

can make x unusable (though if x remains usable, an assignment

toy can have no other effect). This is a mild kind of 'pointer'

effect, and reflects the fact that pointers are used more

intensively in the presence of basings than in their absence.

Effects of this kind will be particularly irritating within

subprocedures, since an assignment to a variable having no

obvious connection with a procedure parameter might make a

parameter unusable. A more serious procedure-parameter

related problem arises in connection with the fact that we

do not wish to have to perform large numbers of dynamic tests

in connection with basings (e.g., to determine how a given

quantity is based), since this could eat up the efficiency

advantages made available by the basing scheme. Thus, whenever

two or more quantities come together in a subprocedure, e.g.,

when we evaluate f{x) or make an assigl11'1ent f(y) = x, we

shall want to be sure that the relationship between the basings

of all of them is known statically, even though this forces

somewhat of a reduction of language level. Since we do not

wish to accept declarations on faith, systematic static methods

for checking the validity of parameter basings declared in

subprocedures are necessary.

To make this possible, we apply the following restrictions

to procedure calls. All variables accessed within a procedure,

including procedure parameters and global variables, can have

declared basings. The general rule concerning parameter

argument basing declaration consistency is that no conversion

of argument form may be implied by a procedure or function call.

SETL-171-11

Thus an argument value with any basing can become the value

of a read-only procedure parameter for which no mode is declarcJ;

but if a basing declaration is given for the parameter, or if

the parameter is read-write, essentially the same declaration

(or none) must be given for each argument passed to it.

If the manner in which a. para.meter is declared to be based

within a procedure is not implied by the basing information

available at point of call, then a basing violation exists,

and the program will be rejected. Often the parameters to be

passed to a subroutine will share some common base, and it

can be important to declare this fact within the subroutine.

However, since in general the base of a based SETL object can be

located through the object,it is not necessary to pass all these

bases to the subroutine explicitly. If a base sb of a

sbbroutine parameter is not passed to the subroutine explicitly,

we call sb a virtual base within the subroutine. Mode de

clarations for base sets must include the keyword base. For

declaration of virtual bases, we provide the keyword virtual.

The following procedure illustrates the use of this facility:

define

declare

s with x;

return;

end inout;

inout(s =, x, y);

sb:virtual base,

s:· base set (Esb), x:E sb, y:E s;

s less y;

The value returned by a function can be declared; for this

purpose, we provide the keyword returns; the mode declared for

this pseudo-variable within a function is the mode of the value

returned by the function. An example of its use is

define sizeof(f,x);

declare sb :· virtual bc1se,

f: _smc1p{Esb) set, x: E sb,

· ret.urns: int;

return # f (x) ;

end sizeof;

SETL-171-12

The parameter and return-value mode declaration used

with procedure variables and external procedures is syntactically

the same as the body of a declare statement appearing within

the procedure, except that non-base names are omitted and

virtual bases preceed the parenthesis surrounding the other

parameter declarations while the declaration of the type of

value returned follows the parameter list. Thu~ corresponding

to the two preceeding examples, we might have

declare inout: proc sh virtual (s: set (Esb) =, Esb, Es),

sizeof:fnct sb virtual(f:smap(Esb) int, Esb) int; --·-- --

Since assignments to and from bases must be treated

differently fro::n other assignments, we shall insist that a base

be declared as such whenever it is passed to a subprocedure.

An example is

define

declare

t = s;

·returri;

assignbase(s,t =);

s:base;

end assiqnbase;

Procedure entries and exits cause stacking and unstacking

of variables v, and both of these actions are.m effect assignments

to v. (When vis stacked, it gets the value n unless it is an

argument; when unstacked, it is restored to some prior value.)

In order to ensure that the use of bases is semantically transparent,

we need to be sure that when a base sb is stacked no element

based on it is live, and that when sb is unstacked all elements

based on it are simultaneously returned to values which they had

just before sb was stacked. Accordingly, we impose the following

r-ulP: a variable v can only be based on a stacked sb if. either

v and sb are stacked by the same procedure p, or if vis local

to some othc~ procedure p' and is stc.cked by p'.

SETL-171-13

Note that in the second of these cases we can be sure that

(on stacking) v will be re-initialized (e.g., to Q) before

it is accessed, and also that each unstacking of sb corresponds

to one or more unstackings of v.

In regard to parameters vp of p, we insist that they be

based either on other parameters or on bases sb not stacked by

p. The same rule applies to the implicit returns parameter

of a function. Note that we allow procedure parameters to be

declared global; this is essential if a base passed to one of

the procedures of a group is to be made available to the others

(e.g, for basing of local variables) without either repeated

redundant parameter passing or expensive copying.

A base cannot be assigned without copyihq, since there will

generally exist multiple references to its elements. For this reason

we will not allow sharing of bases; for example, a bases will
always be copied at each assignment t = s which would otherwise

set its shared bit. More generally, we shall use techniques

which (except in connection with the use of basepak, see below)

prevent the invalid use of multiple references to a base.

It is not clear that this can be done easily by purely

static means. A simplified 'difficult' case is

define recrout(s};

declare s base,

os base static;

••• ; recrout(os); $ recursive self-call

. . .
x = s; os less something; y = s;

end recrou t;

After the indicated recursive call of rearout, there exist two

references,s and os, to the same base object (which for the

sake of efficiency we do not wish to copy.) Thus x and y might

get different values.

SETL-171-14

To suppress this difficulty, we impose a number of

restrictive rules, which are enforced using a partly static,

partly dynamic technique. Our rules, which make possible

an efficient, essentially pointer-oriented treatment of bases

without violating the SETL semantic rules,are as follows:

i. A bases can be passed multiply to a function or

subprocedure provided that it is passed as a 'read only'

parameter. If it is passed as a parameter which

can be both read and written, then it can be passed

only as the value of this parameter, and Dot in

any other parameter position.

ii. Let sb be a local or global base variable available

for writing, and suppose that it is passed to a

procedure pas a read-write argument, where it

becomes known as sbb. Then sb becomes mavailable

for reading or writing until return from the

outermost such p,though of course sbb can be both

written and read. If sb is passed as

a read only argument, it remains available for

reading, but will become unavailable for writing.

In all cases, the parameter sbb can be declared global.

Note that an operation which accesses an object x bas~d

on sb is not considered to read sb in the sense of the preceedinJ

paragraph; we shall call uses of sb which are required

to support a reference to x vi~tual use of sb. Of course, a

reference to x which makes virtual use of sb can fail if.sb

has been reduced since x became a member of sb.

Rule (ii) is enforced by incorporating two bits, a read

permit bit and a write permit-bit, into the 'value specifier'

through which each variable declared to be a base is referenced

(see 'SETLX data structures'). When sb is passed for reading,

and assuming that before passage sb is available for writing,

-we drop the read and write bits in the value specifier of sb,

and reallocate a new value specifier, which continues the old

values of these bits and which is passed.

SETL-171-15

Bit-dropping and reallocation are unnecessary if sb is local

stacked, since in this case it will in any case be unavailable

until return. If sb is passed for reading only, we drop the

write bit and reallocate a new value specifier, which contains

the old value of these bits. In both cases, after return, the

newly allocated value specifier is substituted for the modified

one. The read permit bit is checked on every use of sb

(resp.assignment to sb) and the use (resp. assignment) fails

if this bit is set.

iii. As we have noted, a parameter of a procedure can

only be based on a static global variable or another

parameter. However, a local variable based ons can

be assigned as the value of an undeclared parameter

y and then returned. To prevent misuse of values y

generated in this way, we set the dmod bit associated

with every base stacked by a procedure on returning

from the procedure.

Read-write procedure parameters can be used when one

wishes to use a subprocedure to build up a base together with

an item based on it, and then to return both items together.

That is, we allow read-write parameters (like other parameters)

to be declared as bases {for local propedure variables and

for other procedure parameters.) As usual,the arguments with

which a procedure is called must have declarations which

correspond to the declarations of its parameters.

SE'I'L-1 71-:-16

4. Basepaks.

A deficiency in the basing scheme outlined till now is

that bases cannot be assigned and remain bases, which in

particular makes it impossible to use a function to generate

both a bases and an object f based ons, and then to return

a pair consisting of <s,f> for use elsewhere. Nor can such

pairs be saved and restored or otherwise manipulated. The

essential difficulty in trying to do this is that we generally

wish at most one reference to a base to exist at any one time.

To overcome the deficiency which rigorous imposition of this

rule would create, we propose to introduce an additional

semantic notion, that of a basepaks. A basepak is a tuple

t = <v1 , ... ,vk> of values, some of which can be based on

other variables oft (as well as on variables external tot).
I

however, the f~;r-mation and .use of basepaks will be severely

restricted. The rules wh,ich apply are as follows:

i. A basepak is formed by assigning a tuple

<v 1' ... 'vk>,

as the value of a variable of type basepak. (see below) Basepaks are

objec~s which can be sets members, tuple components, and which can be

passed between subprocedures. Like blank atoms, basepaks can

be compared for equality and inequality (but are generally not

equal), and can also be compared (comparison yields orderly

but implementation-defined results.) A basepak bp can be

decomposed into its components only by a multiple assignment

(1)

this is the only operation which examines the internals of a

basepak.

ii. A basepak is declared using a structure of the form

<name 1 : mode 1, .•. ,namek: modek>

where the component names name. are optional. If J a name name .

basepu.k

is omitted, the following colon should be omitted also. '
7

SEl'L-171-17

A sample basepak declaration is

· declare hp:basepak

In this example, the first component of the basepaJ: is narned

sand serves as a base for the second component, which is a

set of single-valued maps each having domain based ons and

range based on some other sett. We shall call the sett an

exterior base of the basepak bp, whereas swill be called an

interior base.

iii. The basepak bp described in the preceeding paragraph

can be formed by executing an operation

(2) bp = <sl, ss2>.

In such a case, we require that the declaration of bp correspond

precisely to that of sl and ss2; i.e., in our example sl and

ss2 would have to be declared as

declare sl: b2s~ ~(char),

ss2: set (smap (Esl) Et) ;

Execution of the operation (2) involves formation of new copies

of sl and ss2, which during the copy operation are made to

contain corresponding pointers and which become components of

the basepak vector that (2) creates. We generaterew logical

copies of sl and s2 to ensure that at most one reference to a

base can exist at any one time; actually, it is only the

components of bp which serve as interior bases that need to be

copied immediately, and even these need not be copied if the

variables that reference them are dead immediately following

the operation (2).

iv. If the basepak bp appearing in (1) has its 'shared'

bit set, or if bp is not dead inimediately after the execution

of (1), then execution of (1) may cause yet another copy of

bp to be generated. This technique allows basepaks to be

'unpacked' more than once.

SETL-171-18

v. If a basepak value bpx is assigne<l to a variable y,

or included in a set sy, then bpx will be converted to standard

SETL form unless the declaration of y (or sy) is such as to

anticipate the appearance of an element of precisely the form

of bpx. For example, if bpx is of the basepak mode bp~, then

the operation sy with bpx will convert bpx to standard SETL

form unless sy has been declared to be of mode set(bpm).

5. Public and External Variables.

The basing of all external variables must be declared,

but the bases themselves may not be declared virtual.

Basing information declared for all public and external variables,

and of all variables on which public or external variables

are based, will be saved in appropriate tabular format as

part of the compiled form of a module passed to the binder.

Then, when all the modules of a program are bound together,

the consistency of these declarations will be checked, and

a fatal diagnostic will be given if any inconsistency is

detected.

The compiler will have to take the attitude that any

public global variable, and any global variable that could

be modified in consequence of a call to any of the procedures

of a module which can be reached by a call fPom an external

procedure, might be modified by a call to any external

procedure. For this reason, we shall prefer to restrict

the external accessibility of the procedures of a module by

insisting that a procedure resident in one module ma can only be

accessed for use by another module mb if it has been declared

public in ma.

SETL-171-19

6. Summary of Language Changes Propos·ed in Connection with Basinas.

i. Additional elementary mode descriptors.

base used to declare bases within subprocedure.

· general - used to declare components of unknown

basing within tuple, e.g.

<int, general, smap(s)int> - ---
unbased - used to declare the values of a variable unbased.

ii. Basepak mode descriptor.

base·pak

where all the namej are variable names, and all the modek are

mode descriptors. The various name. can be used as bases in
J

forming the mode. within the basepak. Any name. which is not
J J

used can be omitted with its following colon.

iii.· Declaration o·f r.lode returned by ·function.

Uses the keyword returns in a declaration statement

appearing within the function.

iv. Declaration of public functions of a module.

Not all the functions and procedures defined within a

module, but only those to whose header line the keyword public

has been affixed, are available for inclusion in other modules.

v. Virtual declaration.

A variable may be declared virtual. Variables thus declared

cannot be read, except to form virtual components of basepnks

(see section 4.) Virtual bases of procedure parameters cannot

be modified.

SETL-171-20

Summary of restrictions:

vi. Rules ·for dmods.

A pointer p into a sets can only be used if the object

at which it points has remained ins since p was established.

An object f strongly based ons can only be used ifs has

not undergone any drnod since the last preceeding use or

redefinition of f.

vii. Procedures and Parameters.

a. A base available globally cannot be passed as a parameter.

b. A base can be passed multiply to a function or

subprocedure only if it is passed asa 'read only'

parameter.

c. Procedure constants· or variables y can only be

assigned to a variable x if x is either undeclared

or has the same declaration as y.

d. The actual arguments passed to a procedure p must

have declarations which correspond precisely to the

declaration of p's parameters, unless the parameters

are undeclared.

e. . A parameter cannot be strongly based on a 'local

variable of a routine.

f. If a base is passed to a ~ubprocedure it must be

declared base if it might be a basee.ren if it is

not used as a base within the subprocedure. However,

in this case the parameter value passed need not be

a base on every call.

g. Read-only parameters of a procedure p may not be

passed as read-write parameters to a subprocedure

called by p.

viii. Miscellaneous.

a. Global variables c~n be based only on global variables.

b. The use of virt~al variables is restricted in the

manner described in vi, above.

SE'rL-171-21

7. Example of the Use of Basings.

~e begin this section by writing out a based version of

the Huffman-table generating routines of O.P.II, pp.149 ff.as

an example of the use of basings. We shall suppose these

routines to be part of a library module called hufrouts.

module

declare

hufrouts; $ huffman table generator, decoder routines

allnodes: base set, $base set: all nodes of the huffman tree

work:set(Eallnodes), $workpile during tree construction

wfreq:srnap(Eallnodes)real, $frequency function

top: E allnodes, $ ·top of decoding tree

i, r: smap(Eallnodes)Eallnodes, $descendant map in tree

seq: bool; $auxiliary boolean string

chars: base set(char) $ the set of characters; global parameter.

code: smap (E chars) bool, $ maps characters to their codes

define£ huftables(chars, freq) public; $huffman table_ generator routine

declare freq: srnap(E chars) real, $ frequency function for characters

n, cl, c2_: E allnodes $ various auxiliary nodes

· ·returns: smap(E chars) ~;

allnodes = chars; wfreg = freq; $initialization

$initialization R. = nR.; r = nR.; work= allnodes;

(while # work g_! 1)

ehd while;

work less ((wfreq getmin work) is cl) ;

work less((wfreq getmin work) is c2);

allnodes with (newat is nn); $use general variable, since

$ nn is initially not in the

$ base aZ Znodes.

i(nn is n) = cl; r(n) = c2;
wfreq(n) = wfreq(cl)+ wfreq(c2);

work with n;

code= nt; seq = nulb;

walk (3 work is top, code=);

ret_~ code;

end huftables;

SETL-171-22

definef wfreq getmin set;

declare keep, x: E allnodes,

least: real,

$ auxiliary node quantities

$ temporary minimum

wfreq: smap (Eallnodes) real,

set: set (E allnoc-:es),

returns: E allnodes;

<keep, least>=< 3 set is x,wfreq(x}>;

(\/ x E set)

if wfreq(x) tt least then <keep, least>= <x, freq(x}>;;

end Vx;
return keep;

end getmin;

define walk(tap}; $ tree-walk routine

declare tap: E allnodes,

if t (tap) ne n then

else

end if;

seq I I f; walk(t(tap));

seq I I t; walk(r~ap)l;

code(tap} = seq;

seq = seq (1: # seq - 1);

end walk;

definef cseq (bitseq) public;

declare output: char,

node: E allnodes,

bitseq: bool,

b: bool,

returns: char;

output=~; node= top;

(\/b = bitseq(n))

if t(node) !:s. n then

$ huffman recoding routine

$ decoded string

$ auxiliary node

$ input: a bit string

$ auxiliary: current bit

$ initialization

output II node; node= top;

else

SETL-171-23

node= if b then r(node) else t(node);

end

end

return output;

end cseq;

end hufrouts;

if;

The following declarations would be required at the point

of use of the Huffman routines:

external (hufrouts) · $ to reference the hufrouts module

declare

huftables:fnct(cbase: base set(char), smap(Ecbase) real)

~ (Ecbase) bool;

cseq:fnct (bool) char;

chars: base set ----
freq:smap(Echars) real,

code:smap(E-::hars) bool

bitcode: bool;

$ decoder function.

$ these declarations are necessary

$ to allow parameter passage

In the presence of these declarations, the encoding and

decoding processes appear simply as follows:

charcodes = huftables0hars, freq); $ set up for encoding & decoding

bitcode = [II: c = input{n)] charcodes{c); $ encoding operation

...
decode= cseq(bitcode); $ decoding operation.

Next we show a based variant of the maxflow procedure of

O.P. II, pp. 123 ff. These appear as a library module called
maxfZowrouts.

SETL-171-24

module

macro

macro

macro

declare

definef

declare

maxflowrouts;

r(e); <e(2), e(l)>; endmacro r; $ edge reversal

start(re); re(2) (if rc(l) then 1 else 2); endmacro start;

$ starting point of 'reversible' edge

finish(re); re(2) (if re(l) then 2 else 1); endmacro finish;

nodes: base set, $ global parameter: graph nodes

mode edqe: <E nodes, E nodes>,

grb: base set (edge), $ global parameter, set of edges

mode redge: <bool, E grb>, $ edge with 'reversal' flag

grm: map (E nodes) redge, $ only this is regenerated from

$ parameters on call

f, fcap: smap (E grb) real; $ fcap is global capacity paramet,.

maxflow (nodes, grb, x,y,fcap) public;

x, y: nodes, $ auxiliary nodes

p: set (redge), $ set of edges constituting path

e: E grb,

er: redge,

auxflowv:

tval:

$ auxiliary edge

$ auxiliary, possibly reversed edges

real, $ capacity added by path reversal flag

returns: srnap (E grb) real;

grm .= {<x(l), <true, x>>, x E grb} + {<x{2), <·false, x>>, x Egrb};

CV x E grb) f(x) = O.;
(while path(x,y) is p E!:_ &1)

auxflowv = [min: er E p] cap(er);

<V <tval, e> E p)

f(e) = f(e) + if tval then auxflowv else - auxflowv;

end\/;

end while;

return f;

end maxflow;

definef cap(re): $ yields present capacity of possibly reversed edge

declare re: redge, $ parameter: a reversible edge.

returns: real;

return

end cap;

if re(l) then fcap(re(2)) - f(re(2)) else f(re(2));

done:

SETL-171-25

definef

declare

path(x,y); $ transitive~closure path construction

x,y,u,v,pt: e nodes, $ auxiliary nodes

re: redge, $ auxiliary reversible edge

new, newer, prior: set(E nodes), $ auxiliary sets

pth: set(redge}, $ path to be returned

set: subset(nodes), $ nodes already examined

pre: smap(E nodes) redge, $ maps each node to edge

leading into it.

returns: ~(redge); $ path will be returned

new= {x}; set= new; next= ni;

(while new~ n9,, doing new= ;newer;)

newer = n9,,;

end while;

return n;

CV v E new)

(.\/reEgrm{v}jfinish(re) is u notin-set and cap(re) ~ 0)

pre (u) = re;

end

end Vv;

if u ~ y then go to done;

set with u;

newer with u;

Vre;

$ fallout means no path exists

pth = ni; pt= y;

(while pre(pt) is re ne n doing pt= start(re);)

pth with re;

end while;

return pth;

end path;

end maxflowrouts;

SETL-171-26

8. A Survey of Opportunities for Global Optimization.

a. El~,ination of dmod testing, dmod test motion.

The use of a quantity f strongly based on a bases will

in principle involve a test to make sure that s has not been

subject to any dmod since the last use of f. However, this

test can be elided if all paths to the use off pass thru

uses of other quantities strongly based ons after passing

through the last preceeding dmod of s. This is essentially

the redundancy condition for a hypothetical quantity wasd(s),

which is killed by every dmod of s, and calculated by any use

of a quantity strongly based ons. Moreover, a dmod test,

like a calculation, can be moved outside a loop if a base

used in the loop is not diminished within the loop.

If x is a pointer to an element of a bases, then the

use of x will involve a test to verify that this element has

not been deleted. But if every path to the use passes thru

other uses of the same x not followed by any dmod of s, this

test can be elided. Moreover, in this case, the index of x

within scan be kept available (provided that no garbage

collection can intervene between the calculation of this index

and its use.)

b. Elimination of unnecessary conversion operations.

Whenever an object x is used in a way making it necessary

to convert x from its current basing to some other basing ob,

a logical copy xx of x, having ob as its basing, will be

generated. Then if x is again required in a context requiring

an ob-based representation, xx can be used in place of x.

The logical equivalence of x and xx will persist along any path

on which there occurs no dmod of a base appearing in the basing ob.

SETL-171-27

This remark enables replacement of x by xx to be handled by

the ordinary techniques of redundant calculation elimination.

Similar techniques can be used to move the conversion

operation which generates xx out of a loop.

c. Choice of local vs. remote representation.

A map f represented locally can never be shared, but must

be copied at every point at which its shared bit would be set.

On the other hand, reference to a locally stored map will be

somewhat faster than reference to a remotely stored map, since

at least one level of indirection, and probably also an

out-of-bounds check, can be avoided. Thus the choice of the

particular representation, local or remote, to use for a given

variable f (which we assume to be declared as map or smap)

depends on the relative frequency of accessq>erations and 0£

operations which would want to set the shared bit of f. This

is not something which can be discerned statically in all cases.

In doubtful cases it is probably better to use the remote

representationi since a single copy operation can be of very

large cost, while the cost of a single remote access operation

will remain bounded. However, if global analysis reveals that

it is never necessary to set the shared bit off, and that

the value off is never assigned to any variable f2 whose value

might need to have its shared bit set, then local map re

presentation off is certainly better and should be chosen.

d. Generation of warning or fatal diagnostics.

In some cases situations likely to lead to program failure

can be detected at compile time. When this is the case,

either fatal disgnostics or warning diagnostics of an appropriate

level of severity can be generated.

SETL-171-28

The cases which need to be caught are

i. Violation of a basing rule associated with procedure-

parameter passing. (Fatal)

ii. Loader-detected incompatibility between declarations

in different program modules. (Fatal)

iii. Objects which are obviously sMaos declared simply as

maps. (Warnlng)

iv. An object weakly based ons live at a rea.ssignrnent

of s. (Warning)

v. An object strongly based ons live at a dmod of

s. {Severe warning)

In addition, the places at which the compiler has inserted

conversions should be flagged.

e. Copy optimization ·of bases.

A base can never be· shared. To avoid the forrna tion of

some unnecessary copies, the following techniques can be used.

If a base is dead at the point at which it is assigned to

another variable or incorporated into some more compound operation,

then it need not be copied. Since it ceases to be a base when

so assigned or incorporated, it then becomes subject to the

normal copy rules. If a base is dead immediately after it is

incorporated as an interior base of a

basepak, then it can be incorporated wi•thout copying. If a

basepak is dead immediately after it is unpacked, then its

interior bases can be unpacked without copying. Jh applying

this last rule, one may wish to treat the from operator and

an iteration over a set of basepaks in some special way.

Note hcwever, that a base can only be considered dead if

no object based on it is live.

SE'I'L-171-29

If all the objects based ons are known to be dead at a

certain point, then 2,ssignments from s at this p:>int can be

handled normally, i.e., the shared-bit of scan be treated in

the normal way. However, if this has been done, a new copy

of s must be generated at any subsequent point at which an

object based on sis formed •

•

