
SETL Newsletter# 176 

A Coarser,But Simpler and Considerably 

More Efficient Copy Optimization Technique 

J.T. Schwartz 
August 2, 1976 

The dynamic 'shared bit' copy elimination method envisioned 

for the new SETL compiler can be improved by adapting rather 

standard global optimization techniques. The present newsletter 

will outline these adapted techniques, which allow cases in 

which objects can be used destructively to be found by a highly 

efficient algorithm, although one that is not quite as precise 

as the 'valueflow function' method described in newsletter 164. 

The approach to be outlined in the present newsletter also 

allows us to detect cases in which copy optimizations can be 

moved out of loops, a question recently discussed by Schonberg 

and Liu in NL 175. 

In the currently envisaged dynamic method, every SETL 

value c will carry a share bit b, which will be set whenever 

c can be the value, or part of the value, of more than one 

variable. The following rules are used to maintain share-bit 

settings: 

i. On an assignment x = y for which y is not dead, 

set the share bit of the value of y before transmitting it to x. 

~~- When y is incorporated into a larger objects, e.g., 

by one of the operations s with y; s{x) = y; s(y)= x (ifs is 

a map); {y, ..• }; or < •• ,y, .• >, set the share bit of y (unless 

y is dead.) Moreover, let the copy of the specifier for y which 

becomes incorporated into the compound objects have its share 

bit set (so that when this same value is subsequently retrieved 

from y, the share bit of the retrieved variant will already 

be set) . 

iii. When y is transmitted to a subprocedure fas a 

read/write parameter, set the share bit of y if either Y is 

simultaneously transmitted a~ the value of some other parameter, 



SETL-176-2 

or if y is global and accessed by some procedure which might 

be called by f, or if y is static and local to the procedure 

g calling f, but g might be called directly or indirectly by f. 

iv. If y is transmitted to a subprocedure fas a read-

only parameter, set the share bit of y if either y is simultaneously 

transmitted as the value of a write parameter, or if y is writable, 

global and accessed for writing by some procedure which might be called 

by f, or if y is static and local to and writable within the procedure 

g calling f, but g might be called directly or indirectly by f. 

Suppose now that for each variable y we introduce an 

explicit logical 'shadow' variable yshare whose value is always 

'l' when the share bit of y is set. Then this variable undegoes 

the following assignments: 

i'. On a simple assignment x = y, set yshare = 1 unless 

y is dead, and xshare = 1. On an assignment x = expn, set 

xshare = 1 if expn is a value-retrieving expression like 3s or 

s(l), but set xshare = 0 if expn is a value creating expression 

like {y} or y + z. 

ii'. When y is incorporated into a compound objects, e.g. 

bys with y or s(x) = y, execute yshare = 1. 

iii'. When y is transmitted as an argument, execute 

yshare = 1 if this is indicated by rules (i-iv) above, and 

transmit yshare as a read-write argument to the shadow share-bit 

variable associated with the parameter to which the argument y 

is being transmitted. 

The logical assignments to the variables yshare introduced 

by the preceeding rules can be applied to calculate many of the 

values of this variable; for example, a standard constant 

propagation technique can be used. Every potentially destructive 

use of y should be regarded as a use of yshare (which needs to 

be tested at the point of destructive use); live/dead analysis, 

applied to the share-bit variables, can also reveal that 

certain assignments to these bits are dead. 



SETL-176-3 

The following additional possibility is particularly 

significant: 

If we use an interval-based technique to calculate share-bit 

values, we will be able to classify every use of a share-bit 

variable into one of the following four categories; definitely 

O; definitely l; inherently indefinite, indefinite but would 

definitely be O if it were O on entry to the interval containing 

the occurence. With every share-bit use of the fourth category, 

we can associate the entry block of the largest interval I 

(somewhere in a full program graph derivation sequence) such 

that the share-bit value would be zero within I if it were 0 

on entrance to I. Then the corresponding value can be copied 

before entrance to I, and need never be copied within I. 

The following example, which played a role in the 

evolution of the valueflow function method, illustrates the 

remarks made in the preceeding paragraph: 

s = t; /* sshare is 1 here */ 

. . . 
loop: 

/* sshare is indefinite here, 

/* would be zero if it were 

/* entrance */ 

s=s with x; 

/* sshare is 0 here */ 

Our analysis reveals that in this case the copy operation 

should be moved out of the loop. 

0 

but 

on 

*/ 

loop */ 


