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~otion of Range Checks Out of Loops: 

Optimization of Integer Arithmetic 

Languages of the FORTRAN class given some of their efficiency 

simply by not checking indexed loads and stores for 'index out 

of range' conditions. In SETL we can certainly not afford to let 

all indexed accesses to tuples go without checking (if we did, 

pointers could be over-written) but the cost of systematic checking 

is sufficiently high for the elimination of checks by global 

analysis techniques to be well worth our while. The present 

newsletter will explore the cases in which ~ange-check operations 

can be moved out of loops. 

To begin with, it is worth examining the machine code 

sequence, say for the 6600, which represents the operation u = v(i) 

in the general case. We assume that vis represented by a 

word held in a register XV, and that this word contains a 

right-justified pointer to the body of v, plus an additional 

field LIMIT which will overflow (to become negative) if and only 

if an integer in access of the limit for vis added to its value 

(we suppose that the integer value i is known not to exceed 17 

bits). The access sequence, where here as throughout we assume 
:,_';_,dt i...he integer v is known to be no less than 1, is then as 

follows: 

SB4 Xl INTEGER VALUE TO RREG 

LXO XV, LIMITOFFS RIGHT-JUSTIFY LIMI'l.1 FIELD 

SB3 XO + B4 B3 NEGATIVE IF OVERFLOW 

NG B3, OK 

SAU OMEGADR LOAD OMEGA 

JP AROUND 

OK SAU XV+ B4 PERFORM LOAD. 

AROmm BSS 0 
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In numerous cases e.g. in the context u = v(i) + 1, 'backwards' 

type analysis will show that the value n is unacceptable for 

v(i), so that an out of range load can be treated as a fatal 

error. In this case we can test the out of range condition by 

forcing a fatal error, and the preceeding sequence simplified to 

SB4 

LXO 

SA4 

SAU 

XI 

LIMITOFFS 

XO+ B4 

XV+ B4 

GENERATE INTERRUPT IF OVERFLOW 

This four-instruction sequence is not bad, but FORTRAN would 

generate a considerably better sequence consisting of not 

more than the first and last instructions of this sequence. 

The two middle instructions, i.e., 

LXO 

SA4 

LIMITOFFS 

XO+ B4 

can be considered to assign the value 1 to an auxiliary shadow 

variable associated with the pair i,v and named iokasvindex. 

This observation makes it plain that some of the checks that 

would otherwise be necessary can be eliminated using standard 

redundancy analysis. 

If the value being retriev~d by the operation v(i) is 

known to be an arithmetic quantity, and if this quantity will be used 

only arithmetically, so that its misuse cannot cause endless looping 

or lead to any pointer failure in SETL's garbage-collected environment, 
thon a substantially more effective treatment becomes possible. 

Specifically, we can allow out-of-range references to occur 

within loops, and attempt to check them only on loop exit. 

For this to be allowable, we must insist that an out-of-range 

condition can never occur within the loop unless an out of ransc 

condition is detected on loop exit, and conversely that an 

out-of-range condition must never occur on exit from a loop L 

unless such a condition also occurs within the loop. 
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Endless looping aside, the conditions that have just been stated 

will be implied by the following mo~e easily checked conditions: 

i. The length of the tuple vis not changed within the loop L; 

ii. The index i is only increased within L; 

iii. Any path in L from an instruction which changes the 

value of i to an exit of L passes through at least one use of 

i as an index of the tuple v. 

As an example of this, consider the loop 

(1 2 Vi 2 # v) c(i) = u(i) + v(i);; 

where we suppose that u and v are known by declaration to be 

real vectors. This expands as 

loop: 

i = l. 
lim = # V 

c(i) = u (i) + v(i); 

if i ~ lim then go to out;; 

i = i + 1; 

go to loop; 

Here our conditions (i - iii) are satisfied, and hence the 

suitability of i as an index of ii and v need not be checked 

until after loop exit. Note also that the loop-terminator 

sequence 

if i ~ lim then go out; 

i = i + 1; 

go to loop; 

can immediately be optimized to 

i = i + l; 

if i < lim then go to loop; 

provided that it is remembered that the value of i upon exit from 

the first sequence is one less than upon exit from the second 

sequence. 
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The matrj~ multiply loop 

(1 ~ Vn ~ k, 1 ~ Ym ~ 1) a(n,m) = [+: 1 ~ j ~ n] b(n,j)*c(j,m} ;; 

furnishes another signficant example. After expansion, reduction 

of two-dimensional matrix macros to corresponding one-dimensional 

form, and strength reduction of integer arithmetic, this loop 

can become 

loopn: 

looprn: 

loopj: 

outj: 

outm: 

outn: 

(copy a} 

n = l; 

dimc.n = 0; 

dirnbn = O; 

rn = 1; 

nj = dimbn + 1; 

s = O; 

nm = dirr,cn + m; 

jm = m; 

j = l; 

s = s + bb(nj) * cc(jm); 

if j ~ r then go to outj;; 

j = j + l; 

jm = jm + dime; 

nj = nj + l; 

go to loopj; 

aa ( nr,, = s; 

if m > t then go to outrn;; 

m = m + l; 

run = nm + l; 

jm = jm + 1; 

go to loopn; 

if n > k then go to outn;; 

n = n + l; 

dime~= dimcn + dime; 

dimbn - dirnbn + dimb; 

nm = nm + dima; 

nj -- n_j + dimb; 

90 to loopm; 
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The integers which appear in the preceeding code are all 

initialized using quantities which we_may assume to have been 

declared to be of a size reasonable for vector indices; none 

of them can be incremented inordinately often. Using these facts 
its follows readily (by arguments which will be given in additional 

detail later in the present newsletter) that none of the integers 

appearing in the preceeding code can be larger than machine 

word size. Thus all can be carried in machine format, and all 

integer arithmetic can be done at machine speeds without any 
special necessity for integer overflow checking. None of the 

loops shown in the preceeding code change the size of the tuples 

bb or cc, or diminish any of the indices nj, jm, or nm. Moreover, 

neither nj nor jm is ever incremented without being used as an 

index of bb (resp. cc) subsequently, and before exit from the 

preceeding nest of loops. Hence all range checks for the indices 

nj and jm can be moved entirely out of this nest of loops. 

Range checks for indices appearing in indexed store 

operations can also be moved, but the justifying arguments needed 

in this case are somewhat more complex than in the indexed load 

case. Even though we may not be able to run the risk of 

overwriting any area that contains pointers, tuples containing 

untyped reals and integers only can be segregated at the top of 
memory, so that an out-of-range indexed store cannot destroy 

any pointer. However, still more serious problems arise in connection 
with out-of-range indexed stores. In SETL, an out-of-range 

store (with a non-negative index} is legal, since it can be used 

legitimately to extend the size of a tuple. Moreover, in 

making such a store, we may have to check a tuple's share bit, 
and to perform a copy operation if this share bit is on. (Note 
that repeated share-bit checking within an important loop can 

ultimately put one to considerably more expanse than occasional 

copy operations, which will tend to take place before loops are 

entered, or on the first iteration of a loop.) 
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Especially if applied interproeedurally,the technique outlined 

in newsletter 176 should eliminate most unnecessary share-bit 

checking (especially by moving copy operations out of loops at 

compile time.} 
Cases in which an out-of-range index store operation can be 

treated as (movable} error can be defined in the following way. 

When we write a declaration such as 

v: tuple (real} (100) , 
we mean to assert that no value other than a real tuple, and 

no value in which there exists a non-n component with index in 

excess of 100, can ever be assigned to v. This clearly excludes 

out-of-range stores except in situation in which v has been 

passed as a parameter. Now suppose that vis passed as a 

parameter to a procedure p, and that 

(a) no indexed assignment v(i} = x to v can have an n 
right hand side. Thus no such assignment can diminish the 
length of v. 

(b) Neither p, nor any procedure called directly or 

indirectly by p, can exit normally,i.e., by a non-error-exit. 

(We leave open the possibility that these procedures may call 

an error exit.} 

Then if the length of vis increased by p or some procedure 

called directly or indirectly, an error is inevitable, and will 
take place no later than upon return from p. Hence we are free 

to consider such an assignment as an error at its moment of 

occurence, and to diagnose it as an error at any subsequent 

moment prior to program exit. This observation allows out of 

range checks for indexed checks to be moved in much the same 
way as load checks. Note that an argument much like that which 
we have just given can also be used to exclude stores of quantities 
of the wrong type into tuples originally declared ·to have 

members of some other type, e.g., to exclude stores of non-real 

quantities into at initially declared to be tuple(real). 
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However, in moving a store check we inevitably permit a 

store to a somewhat unpredictable heap location. If an upper 

memory area is reserved for tuples (especially tuples containing 
untyped reals and integers exclusively} then we can be sure 
that an out of range store can only affect either a component 
of a tuple or the stated size, length, or hashcode/hashokbit 

of a tuple. Call a quantity tuple-dependent if it is obtained 

either by accessing a component, or the length of some tuple ~ 

which might have been declared to contain untyped quantities 
only, or is obtained by performing a set theoretical operation involving 

t either as a member, number of member, component, etc. Then 
if none of the quantities appearing in tests within a loop L 

are tuple-dependent, it follows that the gross features of 

the flow of control within L cannot be influenced by out-of-range 

indexed stores, and consequently range checks for these store 

can be moved out of L. Out of range indexed store operations 

occuring within L can therefore be tolerated temporarily, 

since they cannot prevent exit from the loop L, and a check 

for the occurence of such a store, with appropriate diagnostic 

action if one has occured, will in any case take place irnrnediat~ly 

after exit from L. 

Note in particular that all tests occuring in the loops given 

as examples above are tuple independent; thus for these loops 
all range checking of tuple indices, whether for loads or 
stores, can be postponed until loop exit. 

In addition to the check-elimination techniques that have 

been suggested, other methods, based on global analysis, which 

exploit available facts concerning relative extent of tuples 

and size of indices can be devised and used to eliminate 

redundant checks. By combining available approaches in 

suitable fashion, it should be possible to eliminate almost all 
of the checks which the SETL tuple semantics would seem to 

demand, at least in dealing with tuplcs known a priori not to 

contain any pointers. 
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2. O{?timization of Integer Arithmetic. 

If a SETL quantity i is an integer we will generally know 

this fact, since either typefinding or direct declaration will 

reveal it. In some cases, we will know upper and lower bounds 

for i since these bounds can be declared. Of course, declared 

bounds must occasionally be checked; however techniques like 

those used in the preceeding section can often be used to move 

such checks out of loops. An important possibility that arises 

in connection with the optimization of integer arithmetic is to 

keep integers i in their standard machine format ~p to 59 bits 

of absolute value in the 6600). For this to be possible, we 

need to be sure a priori that none of the integers to be kept 

in this format can exceed 259 - 1 in absolute value. We shall 

now describe techniques which can be used to establish this fact. 

Our procedure is as follows: 

(1) First, we establish that certain integers do not 

exceed 2n - 1 in absolute value ('n-bit' integers). We can 

know that this is true for i either because it is declared, in 

which case the checks that we apply to i will in any case have 

to validate the declaration, or because every assignment to i 

has the form i = canst, where canst is not too large, or i = j + k, 

where j and k are both known to be integers of n - 1 bits at 

most, or i = j/k, where j is at most n bits, or i = j * k, where 

the sum of the lengths of j and k do not exceed n - 1 bits. 

{2) Next, we find groups of integers i 1 , i 2 , ••• all 
assignments to which have either one of the forms considered 

above, or have the form i 1 = i 2 + j, where the 'increment integer' 

j has already been shown to have at most n bits. Suppose also 

that, if assignments of the form i 1 = i 2 + j were left out of 

consideration, the integers i 1 , i 2 , ••• could themselves be 

shown (by application of the arguments of paragraph (1) above) 
to be of at mo~t n bits. 
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37 
Then, if we assume that no SETL program executes more than 2 

incrementation operations (which would require at least six 

hours running time on the 6600 and probably much more},at most 

237 incrementation could have intervened before all the integers 

ik were set by operations other than an incrementation; hence 

each ik consists of at most n + 37 bits. 

In the matrix multiply example shown in the preceeding 

section of this newsletter, this argument suffices to establish 

that all the quantities nj, dimbn, nm, dimcn, and jm are of 

54 bits at most. Thus,on the 6600, all these quantities can 

be carried in their 'hardware' form. Note that (nj, dimbn) 

and (run, dimcn) form 'groups' in the sense of the preceeding 

paragraph. 

Within-loop checks of the size of an integer (of declared 

size) are only necessary if the integer appears as an incrementation 

constant; and, in the example all such checks can be moved 

out of all loops. 

In some cases it will be important to us to know a priori 

that a positive integer is 'short' in the sense of the SETL 

run-time data structures. There may also be significant machine­

dependent size limits n, such that integers of n bits or less 

can be handled with special efficiency. (For example, lengths 

of 17 and 18 bits can be significant on the 6600). There do 

exist a few simple cases in which this can be assumed a priori. 

Programmer defined integers will often be supplied with range 

declarations.When we form the sum or difference of two integers, 

both supplied with declared limits, then limits will be available 

for the result. Some operations, and in particular division by 

constants known to be positive, will reduce an integer's range 

of variation, and this can be exploited. 

Each time a value is assigned to an integer declared to 

lie in a certain range,we must in principle check the value to 

ensure that it belongs to this range. In some cases, the fastest 

way of doing this on the 6600 will be to use an operation which 

generates a machine exception for integers out of range; in 
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in other cases, a slower sequence containing a conditional 

branch operation will have to be used. Note ~lso that in some 

cases the techniques for moving range checks out of loops 

that were described earlier in the present newsletter can be 

adapted and will allow integer range checks to be moved out 

of loops. This remark applies in particular to range-checking 

of integers which steadily increase or decrease within a loop. 

3. An additional remark concerning 'covariant integers'. 

Two integers i,j are said to be 'covariant' in a loop if 

every basic block within the loop increments each of i, j by 

the same loop-invariant amount. In this case, the difference 

of the two integers is loop invariant, and only one,say j~ 

of the integers needs to be carried in the loop. The other, 

i, can be derived from j by addition. Moreover, if all the 

contexts in which i is used within the relate i to a loop 

invariant context, we will often be able to obtain the same 

information by relating j to a somewhat different, but still 

loop-invariant context, thus making it unnecessary to culculate 

i at all. In such situations we will always want to carry the 

variable, i or j, which it is most difficult to eliminate; and 

to eliminate the other. By applying this observation ·(which 

slightly generalizes the classical technigue of 'linear test 

replacement' described some years ago by Frances Allen) to the 

matrix multiplication routine shown in section 1, we can obtain 

the following improved code: 

loopn: 

(copy aa) 

dimcn = 0; 

dimbn = O; 

dimcnlirn = k * dim,:: + 2 * dime; 

nj = dimbn + l; 

nmlirn = 9, + dimcn; 

nm= dimcn +_l; 
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loopm: 

loopj: 

s = 0; 

jm = run - dimcn; 

njlim = nj - l + r; 

s = s + bb(nj) * cc(jm); 
nj = nj + l; 

jm = jm + dime; 

if nj < njlim then go to 

a (nm) = s; 

nm = nm + l; 
nj = nj - l; 

if nm < nmlim then go to 

dimcn = dimcn + dime; 

dimbn = dimbn + dimb; 

nm = nm + (dima - 1) ; 

jm = jm + dime; 

loopj;; 

loopm;; 

if dimcn < dimcnlim then go to loopm;; 
nj = nj - 1;· /* these instructions prepare .J,;/ 

nm = nm -dima; /* for the application of 01
: I 

/* out-of :range tests * / 

It is less obvious in this code version than in the preeeeding 

version of the same code that the array indices increase steadily 
between successive indexing operations; but since this code 

is equivalent to the preceeding version, it is still true. 

Hence, it is also true that in-range checks only need to be 
performed on loop exit. 




