
SETL Newsletter# 178 J.T. Schwartz
August 6, 1976

~otion of Range Checks Out of Loops:

Optimization of Integer Arithmetic

Languages of the FORTRAN class given some of their efficiency

simply by not checking indexed loads and stores for 'index out

of range' conditions. In SETL we can certainly not afford to let

all indexed accesses to tuples go without checking (if we did,

pointers could be over-written) but the cost of systematic checking

is sufficiently high for the elimination of checks by global

analysis techniques to be well worth our while. The present

newsletter will explore the cases in which ~ange-check operations

can be moved out of loops.

To begin with, it is worth examining the machine code

sequence, say for the 6600, which represents the operation u = v(i)

in the general case. We assume that vis represented by a

word held in a register XV, and that this word contains a

right-justified pointer to the body of v, plus an additional

field LIMIT which will overflow (to become negative) if and only

if an integer in access of the limit for vis added to its value

(we suppose that the integer value i is known not to exceed 17

bits). The access sequence, where here as throughout we assume
:,_';_,dt i...he integer v is known to be no less than 1, is then as

follows:

SB4 Xl INTEGER VALUE TO RREG

LXO XV, LIMITOFFS RIGHT-JUSTIFY LIMI'l.1 FIELD

SB3 XO + B4 B3 NEGATIVE IF OVERFLOW

NG B3, OK

SAU OMEGADR LOAD OMEGA

JP AROUND

OK SAU XV+ B4 PERFORM LOAD.

AROmm BSS 0

SE'l'L-178-2

In numerous cases e.g. in the context u = v(i) + 1, 'backwards'

type analysis will show that the value n is unacceptable for

v(i), so that an out of range load can be treated as a fatal

error. In this case we can test the out of range condition by

forcing a fatal error, and the preceeding sequence simplified to

SB4

LXO

SA4

SAU

XI

LIMITOFFS

XO+ B4

XV+ B4

GENERATE INTERRUPT IF OVERFLOW

This four-instruction sequence is not bad, but FORTRAN would

generate a considerably better sequence consisting of not

more than the first and last instructions of this sequence.

The two middle instructions, i.e.,

LXO

SA4

LIMITOFFS

XO+ B4

can be considered to assign the value 1 to an auxiliary shadow

variable associated with the pair i,v and named iokasvindex.

This observation makes it plain that some of the checks that

would otherwise be necessary can be eliminated using standard

redundancy analysis.

If the value being retriev~d by the operation v(i) is

known to be an arithmetic quantity, and if this quantity will be used

only arithmetically, so that its misuse cannot cause endless looping

or lead to any pointer failure in SETL's garbage-collected environment,
thon a substantially more effective treatment becomes possible.

Specifically, we can allow out-of-range references to occur

within loops, and attempt to check them only on loop exit.

For this to be allowable, we must insist that an out-of-range

condition can never occur within the loop unless an out of ransc

condition is detected on loop exit, and conversely that an

out-of-range condition must never occur on exit from a loop L

unless such a condition also occurs within the loop.

SETL-178-3

Endless looping aside, the conditions that have just been stated

will be implied by the following mo~e easily checked conditions:

i. The length of the tuple vis not changed within the loop L;

ii. The index i is only increased within L;

iii. Any path in L from an instruction which changes the

value of i to an exit of L passes through at least one use of

i as an index of the tuple v.

As an example of this, consider the loop

(1 2 Vi 2 # v) c(i) = u(i) + v(i);;

where we suppose that u and v are known by declaration to be

real vectors. This expands as

loop:

i = l.
lim = # V

c(i) = u (i) + v(i);

if i ~ lim then go to out;;

i = i + 1;

go to loop;

Here our conditions (i - iii) are satisfied, and hence the

suitability of i as an index of ii and v need not be checked

until after loop exit. Note also that the loop-terminator

sequence

if i ~ lim then go out;

i = i + 1;

go to loop;

can immediately be optimized to

i = i + l;

if i < lim then go to loop;

provided that it is remembered that the value of i upon exit from

the first sequence is one less than upon exit from the second

sequence.

SETL-178-4

The matrj~ multiply loop

(1 ~ Vn ~ k, 1 ~ Ym ~ 1) a(n,m) = [+: 1 ~ j ~ n] b(n,j)*c(j,m} ;;

furnishes another signficant example. After expansion, reduction

of two-dimensional matrix macros to corresponding one-dimensional

form, and strength reduction of integer arithmetic, this loop

can become

loopn:

looprn:

loopj:

outj:

outm:

outn:

(copy a}

n = l;

dimc.n = 0;

dirnbn = O;

rn = 1;

nj = dimbn + 1;

s = O;

nm = dirr,cn + m;

jm = m;

j = l;

s = s + bb(nj) * cc(jm);

if j ~ r then go to outj;;

j = j + l;

jm = jm + dime;

nj = nj + l;

go to loopj;

aa (nr,, = s;

if m > t then go to outrn;;

m = m + l;

run = nm + l;

jm = jm + 1;

go to loopn;

if n > k then go to outn;;

n = n + l;

dime~= dimcn + dime;

dimbn - dirnbn + dimb;

nm = nm + dima;

nj -- n_j + dimb;

90 to loopm;

SETL-178-5

The integers which appear in the preceeding code are all

initialized using quantities which we_may assume to have been

declared to be of a size reasonable for vector indices; none

of them can be incremented inordinately often. Using these facts
its follows readily (by arguments which will be given in additional

detail later in the present newsletter) that none of the integers

appearing in the preceeding code can be larger than machine

word size. Thus all can be carried in machine format, and all

integer arithmetic can be done at machine speeds without any
special necessity for integer overflow checking. None of the

loops shown in the preceeding code change the size of the tuples

bb or cc, or diminish any of the indices nj, jm, or nm. Moreover,

neither nj nor jm is ever incremented without being used as an

index of bb (resp. cc) subsequently, and before exit from the

preceeding nest of loops. Hence all range checks for the indices

nj and jm can be moved entirely out of this nest of loops.

Range checks for indices appearing in indexed store

operations can also be moved, but the justifying arguments needed

in this case are somewhat more complex than in the indexed load

case. Even though we may not be able to run the risk of

overwriting any area that contains pointers, tuples containing

untyped reals and integers only can be segregated at the top of
memory, so that an out-of-range indexed store cannot destroy

any pointer. However, still more serious problems arise in connection
with out-of-range indexed stores. In SETL, an out-of-range

store (with a non-negative index} is legal, since it can be used

legitimately to extend the size of a tuple. Moreover, in

making such a store, we may have to check a tuple's share bit,
and to perform a copy operation if this share bit is on. (Note
that repeated share-bit checking within an important loop can

ultimately put one to considerably more expanse than occasional

copy operations, which will tend to take place before loops are

entered, or on the first iteration of a loop.)

SETL-178-6

Especially if applied interproeedurally,the technique outlined

in newsletter 176 should eliminate most unnecessary share-bit

checking (especially by moving copy operations out of loops at

compile time.}
Cases in which an out-of-range index store operation can be

treated as (movable} error can be defined in the following way.

When we write a declaration such as

v: tuple (real} (100) ,
we mean to assert that no value other than a real tuple, and

no value in which there exists a non-n component with index in

excess of 100, can ever be assigned to v. This clearly excludes

out-of-range stores except in situation in which v has been

passed as a parameter. Now suppose that vis passed as a

parameter to a procedure p, and that

(a) no indexed assignment v(i} = x to v can have an n
right hand side. Thus no such assignment can diminish the
length of v.

(b) Neither p, nor any procedure called directly or

indirectly by p, can exit normally,i.e., by a non-error-exit.

(We leave open the possibility that these procedures may call

an error exit.}

Then if the length of vis increased by p or some procedure

called directly or indirectly, an error is inevitable, and will
take place no later than upon return from p. Hence we are free

to consider such an assignment as an error at its moment of

occurence, and to diagnose it as an error at any subsequent

moment prior to program exit. This observation allows out of

range checks for indexed checks to be moved in much the same
way as load checks. Note that an argument much like that which
we have just given can also be used to exclude stores of quantities
of the wrong type into tuples originally declared ·to have

members of some other type, e.g., to exclude stores of non-real

quantities into at initially declared to be tuple(real).

SETL-178-7

However, in moving a store check we inevitably permit a

store to a somewhat unpredictable heap location. If an upper

memory area is reserved for tuples (especially tuples containing
untyped reals and integers exclusively} then we can be sure
that an out of range store can only affect either a component
of a tuple or the stated size, length, or hashcode/hashokbit

of a tuple. Call a quantity tuple-dependent if it is obtained

either by accessing a component, or the length of some tuple ~

which might have been declared to contain untyped quantities
only, or is obtained by performing a set theoretical operation involving

t either as a member, number of member, component, etc. Then
if none of the quantities appearing in tests within a loop L

are tuple-dependent, it follows that the gross features of

the flow of control within L cannot be influenced by out-of-range

indexed stores, and consequently range checks for these store

can be moved out of L. Out of range indexed store operations

occuring within L can therefore be tolerated temporarily,

since they cannot prevent exit from the loop L, and a check

for the occurence of such a store, with appropriate diagnostic

action if one has occured, will in any case take place irnrnediat~ly

after exit from L.

Note in particular that all tests occuring in the loops given

as examples above are tuple independent; thus for these loops
all range checking of tuple indices, whether for loads or
stores, can be postponed until loop exit.

In addition to the check-elimination techniques that have

been suggested, other methods, based on global analysis, which

exploit available facts concerning relative extent of tuples

and size of indices can be devised and used to eliminate

redundant checks. By combining available approaches in

suitable fashion, it should be possible to eliminate almost all
of the checks which the SETL tuple semantics would seem to

demand, at least in dealing with tuplcs known a priori not to

contain any pointers.

SETL-178-8

2. O{?timization of Integer Arithmetic.

If a SETL quantity i is an integer we will generally know

this fact, since either typefinding or direct declaration will

reveal it. In some cases, we will know upper and lower bounds

for i since these bounds can be declared. Of course, declared

bounds must occasionally be checked; however techniques like

those used in the preceeding section can often be used to move

such checks out of loops. An important possibility that arises

in connection with the optimization of integer arithmetic is to

keep integers i in their standard machine format ~p to 59 bits

of absolute value in the 6600). For this to be possible, we

need to be sure a priori that none of the integers to be kept

in this format can exceed 259 - 1 in absolute value. We shall

now describe techniques which can be used to establish this fact.

Our procedure is as follows:

(1) First, we establish that certain integers do not

exceed 2n - 1 in absolute value ('n-bit' integers). We can

know that this is true for i either because it is declared, in

which case the checks that we apply to i will in any case have

to validate the declaration, or because every assignment to i

has the form i = canst, where canst is not too large, or i = j + k,

where j and k are both known to be integers of n - 1 bits at

most, or i = j/k, where j is at most n bits, or i = j * k, where

the sum of the lengths of j and k do not exceed n - 1 bits.

{2) Next, we find groups of integers i 1 , i 2 , ••• all
assignments to which have either one of the forms considered

above, or have the form i 1 = i 2 + j, where the 'increment integer'

j has already been shown to have at most n bits. Suppose also

that, if assignments of the form i 1 = i 2 + j were left out of

consideration, the integers i 1 , i 2 , ••• could themselves be

shown (by application of the arguments of paragraph (1) above)
to be of at mo~t n bits.

I

SETL-178-9

37
Then, if we assume that no SETL program executes more than 2

incrementation operations (which would require at least six

hours running time on the 6600 and probably much more},at most

237 incrementation could have intervened before all the integers

ik were set by operations other than an incrementation; hence

each ik consists of at most n + 37 bits.

In the matrix multiply example shown in the preceeding

section of this newsletter, this argument suffices to establish

that all the quantities nj, dimbn, nm, dimcn, and jm are of

54 bits at most. Thus,on the 6600, all these quantities can

be carried in their 'hardware' form. Note that (nj, dimbn)

and (run, dimcn) form 'groups' in the sense of the preceeding

paragraph.

Within-loop checks of the size of an integer (of declared

size) are only necessary if the integer appears as an incrementation

constant; and, in the example all such checks can be moved

out of all loops.

In some cases it will be important to us to know a priori

that a positive integer is 'short' in the sense of the SETL

run-time data structures. There may also be significant machine­

dependent size limits n, such that integers of n bits or less

can be handled with special efficiency. (For example, lengths

of 17 and 18 bits can be significant on the 6600). There do

exist a few simple cases in which this can be assumed a priori.

Programmer defined integers will often be supplied with range

declarations.When we form the sum or difference of two integers,

both supplied with declared limits, then limits will be available

for the result. Some operations, and in particular division by

constants known to be positive, will reduce an integer's range

of variation, and this can be exploited.

Each time a value is assigned to an integer declared to

lie in a certain range,we must in principle check the value to

ensure that it belongs to this range. In some cases, the fastest

way of doing this on the 6600 will be to use an operation which

generates a machine exception for integers out of range; in

SE'rI.,-178-10

in other cases, a slower sequence containing a conditional

branch operation will have to be used. Note ~lso that in some

cases the techniques for moving range checks out of loops

that were described earlier in the present newsletter can be

adapted and will allow integer range checks to be moved out

of loops. This remark applies in particular to range-checking

of integers which steadily increase or decrease within a loop.

3. An additional remark concerning 'covariant integers'.

Two integers i,j are said to be 'covariant' in a loop if

every basic block within the loop increments each of i, j by

the same loop-invariant amount. In this case, the difference

of the two integers is loop invariant, and only one,say j~

of the integers needs to be carried in the loop. The other,

i, can be derived from j by addition. Moreover, if all the

contexts in which i is used within the relate i to a loop

invariant context, we will often be able to obtain the same

information by relating j to a somewhat different, but still

loop-invariant context, thus making it unnecessary to culculate

i at all. In such situations we will always want to carry the

variable, i or j, which it is most difficult to eliminate; and

to eliminate the other. By applying this observation ·(which

slightly generalizes the classical technigue of 'linear test

replacement' described some years ago by Frances Allen) to the

matrix multiplication routine shown in section 1, we can obtain

the following improved code:

loopn:

(copy aa)

dimcn = 0;

dimbn = O;

dimcnlirn = k * dim,:: + 2 * dime;

nj = dimbn + l;

nmlirn = 9, + dimcn;

nm= dimcn +_l;

SETL-178-11

loopm:

loopj:

s = 0;

jm = run - dimcn;

njlim = nj - l + r;

s = s + bb(nj) * cc(jm);
nj = nj + l;

jm = jm + dime;

if nj < njlim then go to

a (nm) = s;

nm = nm + l;
nj = nj - l;

if nm < nmlim then go to

dimcn = dimcn + dime;

dimbn = dimbn + dimb;

nm = nm + (dima - 1) ;

jm = jm + dime;

loopj;;

loopm;;

if dimcn < dimcnlim then go to loopm;;
nj = nj - 1;· /* these instructions prepare .J,;/

nm = nm -dima; /* for the application of 01
: I

/* out-of :range tests * /

It is less obvious in this code version than in the preeeeding

version of the same code that the array indices increase steadily
between successive indexing operations; but since this code

is equivalent to the preceeding version, it is still true.

Hence, it is also true that in-range checks only need to be
performed on loop exit.

