
\

SETL NEWSLET'I'ER # 180

Uncovering Profitable Basing Relations

1. §!:lrnmary

S.C. Liu
B. Schonberg
February 14, 1977

Based representations provide a systematic mechanis~ for

optimizing set"·theoretic operations. The gain they provi('i.e is

twofold:

a) Operations on based sets and maps can be performed wi tho,;.t

hash·~t.ab.l.e sea.rches. The otherwise standard hashing and cla.sh··

list scanning is replaced by one or two indexing operations,

or fast bit-vector operations.

b) The code for the corresponding SET~ primitives can be emitted

on""'line, c...:liminating the interpretive overhe:ad imposed by the

calls to off-line hash-table accessing procedures.

The cost involved in using based representations is also twofold:

a) When based objects are generated, their base is b,:d.J. r; s5rnuL

taneously, 11 behind the scenes" as j t were. Inserting a. 1:cw c-.1(•~·

ment in a set forces its parallel ir:::~ertion into the con~cGp;..:r;,J-··

ing base, an operation slightly more expensive than norm~l (Jn-

ba£ed} set insertion, because an ele~ent block, yener0lly seve:al

words long, must be alloca~ed.

b) BasE:s are bulky: each element. block r.mst a,~cornodatc U~f,

'-'a}ue of .:-ill bc:tscd functions that are defined en some s, .. :J.>s:::t c<:

SE'rL-· 18 o--2

which are themselves bases: they can then be used.more effi

ciently (in terms of storage) as domains of based maps.

. '

Leaving aside for now the question of storage optimizat.Lcn,

it is important to notice that both cost and gains connected

with the use of basings can be quantified in terms of the number

of insertion operations and hash-searches per.formed. The cost

of set insertions is itself the combination of a hash-search and

a storage request, and little will be lost if we disregard the

latter. This means that we will disregard the difference between

an unbased set insertion, and a base insertion. If we use this

somewhat simplified measure, and apply it to a program graph, an

notated with frequency information (even as coarse as a nesting

•

depth for each statement), we are led to a rather straightforwarQ.

algorithm for generating useful basing relations for programs

without declared basings.

Outli~e of a method for inferrin9 useful basings

The operations whose presence will suggest certain based

representations for program obj~cts fall into three categories.

a) Operations which involve one or more membership tests. These

operations are invariably performed off-line when applied to

unbased objects. We can further subdivide these op~rations into

global ones, whose operands are two sets, and differential ones,

whose arguments are a set and a (possible) element of it. Global

operations include the predicates incs and subset, and the set

operations: +, *, - , //. Differential operations include the •.

predicates in and notin, the insertion and deletion ops: ~~,

less, lessf, and the various map accessing operations.

' '

•

•

•

SE'I'L-180-3

b) The set iterator (e.g. the loop: Vx&S) must be examined se

parately. It does not by itself suggest a based representation

for x and S, but favors some linked representation for S. Its

optimization in a based environment will be discussed separately.

c) Other SETL,primitives which create atomic values: arithmetic

and string primitives, etc. Their execution is of course inde

pendent of the presence of basings, but if the target (ovariable)

of the operation is assumed to be an element of a base, then i·t

must be inserted in this base after creation. Thus operations

of this type are seen to bear the expense of enforcing the basing

choices suggested by operations of type a).

We start by_noting that, for all operations of type a),

basings are invariably advantageous. The gain over unbased repre

sentations ca..I).'be very large (as il1 the bit-vector case of set

union and intersection) or marginal (as in the case of membership

in a remote bit-vector) but in all cases a gain is available.

Therefore, if we use based representations for the objects invol

ved in the operations of highest frequency through the program,

execution speed of that program can only increase. We start by

EQStulating basings in terms of these operations, and then pro-.

pagate these choices by means of. the use-definition chaining func

tions. The costs incurred by the original choices of basings

make their appearance when we reach instructions of type c), i.e.

the'value-source' nodes of the use-definition graph.

If we use the _total number of hash-searches performed as

a measure of program expense, and have frequency information

available for each instruction, it is a simple matter to.compare

' '

SE'l'L·-130-4

the cost of the based and unbased versions of a program. It is

important to note that, if we start from the instructions-of

highest frequency, this procedure need not backtrack at any point

to examine other basing choices: the initial choice can only be

profitable. If the instructions of highest frequency are of type

c}, i.e. create .new values that would have to be inserted into

bases, then of course no basing choice would be useful, and we

can immediately decide to leave such a program unbased.

A few qualifications must be appended to this optimistic

claim. We will show below that they lead to various refinement·

in the choice of basings, without affecting the fundamental struc

ture of our procedure. We must now discuss the nature of the

initial basing choices, and the propagation of these choices to

all program variables.

Step 1. Ini tJ.al basing choices.

We examine first the instructions of highest frequency.

If they are of type a), some basing choices suggest themselves:

all global operations for example, suggest bit-vectors representa

tions for both of their arguments. Membership tests suggest

subset and element-of representations, etc. Table I lists the

SETL primitives of type a), and the most favorable :based repre

sentation for their arguments. Each one of these-ope~ations

introduces a base B, whose exact composition is at thi_s point

undetermined.

If several operations of high frequency appear, basings

•

•

are postulated for the arguments of each. At this point, each -

•

•

•

SETL-1ao-·S

operation is taken to suggest a different base, even if the same

variable may appear in several of them. Initially, these bases

are only linked to variable occurrences. In the next phase of

the algorithm we are sketching, the various bases are merged so

that they correspond to bases of program variables instead. For
-

example, if the innermost loop of a program includes the code:

Ll: f {x)==y;

L2: S with x;

L3: if z in S then y=y+l;;

then our initial basing choices are as follows:

(We use the line number as a subscript to specify various variable

occurrences}

fl: mae, (EBl) •••

xl: t:Bl

S2: set (e:B2}

x2: e:B2

S3: set (EB
3

)

z3: &B3

It is only later th.,.\t we will make the obvious identification

a1ea2;B3 • The basing chosen for S above has of course been

described imprecisely. rt could be a local, or a remote subset;

or it·could be represented as a set of elements of the base.

We will start with the optimal choice (:i.n this case, local subset)

but consider thii:1 as tentative and .revise it if necessary, in

subsequent phases of the process •

ptep 2. Propa_gation of basing choices.

'l'he initial choices made for a few program variables must

now b-e propagated to the point of creation of the correspo11ding

values. For example, if the basing: x:£B has been hypothesized;

then all instructions which give a value to x must be forced to

he compatible with this choice. The use-definition map u.d is our

basic tool in this phase. We must distinguish two cases:

a) An occurrence xi of variable x, for which basing bi has been

!luggested, is cha.ined to an o·,rariable occurrence x
0

, in an oper:i.

tion o, of type a.), or on a simple assignment. For example,

f'tuppose ---hat- x - - ~ -- i is cn~ated by one of the statements:

x=y; .
x = arb S;

Then the basing choice for xi is propagated to the iYariables of

operation O. In the case above, y is postulated to have the same

basing bi as x, and S to have. basing {bi}. These choices are

nnw propagated through the ud links of y az:d S.

b) If the instruction Oto which x1 is linked, is an instruction

of type c), no further basing propagation is possible. A base·

insertion opcode ls introduced at that point.

•

•

•rhe above suggests that we regard ud .;1s defining a basing

transmission graph (BTG} on which our cost ~stimates are evalua.ted.

Terminal nodes of the graph correspond to operations of type c).

The basi~q transmission grapl.!_

ha.sing transmission graph hypothesized in the preceeding •

paragraph has the following structure:

. . ,

•

•

•

SETL-180-7

a) Its nodes are pairs <instruction,frequency>.

b) Its edges are elements of the use-definition chaining

function, ud.

The rules for basing propagation are as follows:

a) Basing constraints propagate backwards, i.e. from ivariables

to ovariables.

b) Basing constraints are propagated only from instructions of

greater frequency to those of smaller frequency. If a basing

constraint appears at instruction i 1 , with frequency f 1 , and

if ud leads from <i1 ,f1 > to <i
2
,f

2
>, with t 2>f1 , then we distin

guish two cases:

a) i 2 is an instruction of type c). Then it is not advantageous

to impose the basing constraint on i 2 • Instead, an appropriate

conversion operation is inserted at i 1 •

b) Otherwise, i 2 transmits an already existing value. The basing

constraint is propagated tentatively to i 2 , and a depth-first

search starting at i 2 tries to determine whether the cost of that

constraint can be pushed below the frequency f 1 • If this is not

possible, the constraint is dropped and a conversion operation

is introduced at i 1 • Such a procedure is seen to be linear in

the size of the graph, provided that we can convince ourselves

that handling loops in the basing propagation graph presents no

difficulty.

Loops in the BTG

Apart from trivial cases, such as

x=y; ••. /*code using x,y */ y=x;

loops in the basing propagation graph will reflect the existence

) . .
SETL-180-8

of program loops which repeatedly modify a given variable. For •

example, consider:

(VxcS)

s
1

with f (x);

.
• .
s1 ~ g (x);

end V:

It is clear that both occurrences of s1 are linked in ud, so that

the BTG contains a loop L. It is also clear that both instances

of s1 should have the same (based) representation. (This is not

always the case and we discuss in the next sections the problem

of conflicting basing constraints).

The following code shows another instructive but somewhat

more complicated case:

(VxcS)

(VycT)

s 1 with t(y);
• •
•

end Vy;

• • .
S1*S2;

end Vx1

Here again, both instances of s1 are linked by ud. However, the

choice imposed in the inner loop: s1 :~(eB), f: map(cB2)cB will

propagate outward only (i.e. towards operations appearing at a

shallower depth) but the outer basing will not propagate inwards,

•

'because of our rule against propagation to higher frequencies. •

(Note that the bit-vector representation suggested by the

• ' r

•

•

SE'.t'L-180-9

intersection operation will eventually be chosen, as a refinement

of the original choice: set {E:B)) Loops in the BTG are therefore

broken by suppressing edges that go from lower to higher fre

quencies. If this is done, then basing propagation will proceed

monotonically through the graph.

Having in this way made our BTG loop-free, we must now exa

mine the way in which we will handle merging paths in it, i.e.

the way in which we will either "fuse or resolve" conflicting

basing constraints which arise since the BTG (even if loop-free}

is generally not a tree.

Consider the code fragment:

x·from S;

(VycT)

z•f {x) 1

• .
r•g (x);
• • •

end;

The scheme that we have outlined starts by setting the following:

XI cBf

Next, it propagates this choice to S:~(eBf) :and thence to the

points of creation of s. After this 11 we process the other high

frequency instruction, and set:

x:£Bg

but of course x has already been based. At this point we must

• make one of two choices, and either identify the bases B1 and B9

I 1' t

SE'H,-180-10

(wh:J.ch is clearly reasonable, being that at least some of their •

elements overlap) or insert a conversion at the point where x is

created, so that two copies of x exist:

xf from s,

~g~locate(xf,Bg);

(Yyc'l')

• •
r-g(xg·>;

end7

The interesting point to no~e is that this type of basing con-
.

flict can always be resolved by enlarging the base, because bases

for a given program are fully defined only &fter all the based

variables have been chosen 1 The main reason for choosing · a double •

representation for x instead of a common base for f and g, is

one of space optimization: f and g might have disjoint domains

of definition (except for element xl) and a common base might

therefore be wasteful of storage. But this indicates that within

our scheme, space and time optimization are disjoint processes.

We can start with the optimal choice of basings for speed, and

then undo some of our basing choices to bring storage use down·

to some appropriate level. In any case the two optimizations

can be treated independently.

Other possible basing conflicts _which might have to be han

dled by a generalization of this approach are:

a) Remote vs. local representations. It is probably reasonable

here to decide in favor.of the remote representation. •

•

•

SETL-180-11 .

b) Conflicting bases for composite objects. This is similar to

the case just discussed~

c) Different basings for composite objects. The typical case

is that of a set, which is also an element of another set:

S: ~_!: (tB)

S:£BS

This is actually not a basing conflict, because the structure

of BS is not fully determined yet. These two basing constraints

can be made consistent by setting BS: ~ (~(&B)), i.e.

relating the two bases which appear in our conflicting basing

constraints.

d) We have so far ignored the iteration operator and its rela

tion to basing representations. It is clear that the linked

hash-tables used to represent bases and unbased sets are optimal

for iteration. Based representations,be they local or remote,

are more expensive, because they involve an iteration over the

base, and a membership test in the based subset. Furthermore,

overhead incurred by iterating over the base will be greater, the

sparser the based object is. It will therefore be convenient

to generate unbased representations of sparse objects, if they

are frequently iterated upon. This conversion is totally depen

dent on s.ize information, and can only be chosen by some dynamic

test {i.e. by comparing cardinalities of base and based object

during program execution). We therefore propose to handle sets

for which iteration is a critical operation, by introducing con-

• ditional conversion operations in the code, at points whe~e the

:J.:,::;e~; object. .Ls completely h~ilt, and only if the conversion •

,,.,·o,J..Ld oc:cur &t a point of luwer frequency than the iteration Wfi

'· l"' 'C'.,,,~mn ·1 .o .r~ . -~_.,, r?....-..."~._

W"3 f.':Xa1:,ine an algorithm for finding the spanning tree of

.,; gr apt (Kl, Ll). StHJ: I.ow@ s analysis for commenll; on the tec.hni·-

read nodes, adges; --- .

(Vxtnodes) fatherix}•x;1

fg=groupof(f};

it: fg ne sy then
... _,,._ ♦

~.e.rge (fg,sg);

end if:

end V:

definef groupof(node);

end;

while (father(node} ~ node)node=father.{node};

return nodei

•

•

•

•

•

SETL-·180-· J. J

The instruction of greater frequency in the main program

is the invocation of groupof .. We consider therefore the loop in

that procedure as our starting point. Our first choice is:

father:map(eBN)eBN

node: £BN

This choice propagates to variables f and s, and thence toe

and edges, which receive the basing;

e: •c:cBN, cBN>

edges:~(<cBN,tBN>)

The cost of that choice is eventually propagated to the read

statement. Returning to the main loop, we consider the variable

tresset. The optimization of its lone appearance in the code

81.lggests the basing:

treeset:set(£BE)

e:cBB

Notice that e has already received a basing specification. But

the new one is not incompatible with e being a pair of nodes.

This new constraint one propagates to its source, the iteration

'loop over edges. We now specify that edges:~(&BE} and the base

BE receives the description

BE:~(<eBN,eBN>)

All that remains is to propagate our choice for father to the

loop over nodes. We obtain nodes: set (e:BN);

A further optimization becomes available when we put the base

insertion statements needed tc, generate BN and BE into the code.

~1.'hey only appear at the point of input, i.e. immediately after

nodes and edges have been read. This means that nodes can

Then W!i-

;l}e '~ loc:e,.1 subs.:;!lt of that bas,2. j'at'he1., iil a lo.cal map on BN,

::'>f'\Ci:'tttfH!! :\Qt.hintJ requir,~s that it be made remote. The basing

;i<L ~\.1;.U°i;h, D ;:;, 'l,h;: .itct •Of Computer P.rogratoming, Vol~ l, p. 353
l-:-.6.i'.'LleJon ~•t!:;1S1<;':y, Reading, Masf3 ft, 1971.

U. of Ro-chezt."A:~r preprint, Nov. 1976 (unpublishedQ

•

•

•

•

•

Opcodc

in

with

less

II

doma.in

:f. (x)

f{x)

1: [S]

f {x) "'"'Y

f{X}""S

next

a.t:b

,. • • 1' '!J1 ,,r

Table I. Initial basing choices

argil argi2

cB

{cB} {cB}

(remote bit-vector)

ma:e (cB}--

map (-) eB (but not useful)
(conceivably ·!:.reat the rari.ge of f explicitly as a subs;

cB

same as retrie,ral.

same as retrieval.

!!!!:.E. (eB)-

map {cB}--

~..E. •: (cB) }{ cB1 }

Nothing. Sugge:,ts hash-table, but not binding·~

however;• if nothing sug9est(!d so far, set-cf

ele."Ilents-of may be tried.

{cB}

