,...\\‘
{
/

SETL NEWSLETTER # 180 S C. Liu
' E. Schonberg
February 14, 1977

Uncovering Profitable Basing Relations

l. Summary

Baéea representations provide a systematic mechanis: for
optimizing set-theoretic operations. The gain they provide is
twofold:
a) Operstions on based sets and maps can be performed without
hash«table searches. The otherwise standard hashing and clach-
list scanning is replaced by one or two indexing operations,
or fast bit-vectoyr operations.
b} The code for the corresponding SETL primitives can be emitted
6n~line, eliminating the interpretive overhead imposed by the
calls to off~line hash-table accessing procedures.
The cost involved in using based representations is alsc twofeld:
a}) When based objects are generated, their base is builf simul-~
taneously, "behind the scenes" as it were. Inserting & new clo-
ment in a set forces its parallel insertion inte the corvespond-

ing base, an operation slightly more expensive than normal {an-
based) set insertion, because an element bleock, generally severzal
words iono, must be allocated.

DY Bases are bulky: each element block must acconmodate the
vatue of all based functions that are defined on some subsot oI
the base. If the domains of definition of fhese funcltiors cover
s sioll fraction of the vase; the space wastc can be considerveble.

i

1 VU S v s e e . 9 T G D a3 de A e : PR
This isg the main reason for allowing the doefinition of subsson

which are themselves bases: they can then be used. more effi-
ciently (in terms of storage) as domains of based maps.

Leaving aside for now the question of storage optimizaticn,
it is important to notice that both cost and gains connected
with the use of basings can be quantified in terms of the number
of insertion oéerations and hash-searcihes performed. The cost
of set insertions is itself the combination of a hash-search and
a storage request, and little will be lost if we disregard the
latter, This means that we will disregard the difference between
an unbased set insertion, and a base insertion. If we use this
somewhat simplified measure, and apply it to a program graph, an-
notated with frequency information (even as coarse as a nesting

depth for each statement), we are led to a rather straightforward .

algorithm for generating useful basing relations for programs

without declared basings.

Gutline of a method for inferring useful basings

The operations whose presence will suggest certain bésed
representations for program objects fall into three categories.
a} Operations which involve one or more membership tests. These
operations are invariably performed off-line when applied to

unbased objects. We can further subdivide these operations into

global ones, whose operands are two sets, and differential ones,
whose arguments are a set and a (possible) element of it. Global
operations include the predicates incs and subset, and the set

operations: +, *, -, /. Differential operations include the .

predicates in and notin, the insertion and deletion ops: with,

less, lessf, and the various map accessing operations. .

SETL-180-3

b) The set iterator (e;g. the loop: ¥xeS) must be examined se-
parately. It does not by itself suggest a based representation
for x and S, but favors some linked representation for S. Its
optimization in a based environment will be discussed separately.
c) Other SETLZprimitives which create atomic values: arithmetic
and string primitives, etc, Their execution is of course inde-
pendent of the presence of basings,'but if the target (ovariable)
of the operation is assumed to be an element of a base, then it
must be inserted in this bese after creation. Thus operations

of this type are seen to bear the expense of enforcing the basing
choices suggested by cperationS'of type a).

We start by noting that, for all cperations of type a),
basings are igvariably advantageous. The gain over unbased repre-
sentations cén‘be'very‘;arge (as in the bit-vector case cf:set_
union and intersection) or marginal (as in the case of membership
in a remote bit—vector) but in all cases a gain is'available.
.Therefore, if we use based representations for the objects inﬁol—
ved in the operationS‘of highest frequency through the program,
execution speed of that program can only'increase. We start by.

postulating basings in terms of these operations, and then pro-.

pagate these choices by means of the use-definltlon chalnlng func-
tions. The costs incurred by the or1g1nal choices of basrngs
make their appearance when we reach instructrons of type c?, 1.e;
the "value~source' nodes of the use-definition graph. o

If we use the total number of hash-searches performed as
a measure of program expense, and have frequency lnformation

available for each instruction, it is a simple matter tomcompare

SETL~130-4

the cost of the based and unbased versions.of a'progrém. It is
important to note that, if we start from the instrﬁctions.of
highestfrequencyn this proéedure need not backfrack'at any point
to examine other basing choices: the initial choice can only be
profitable. If the instructions of highest fregquency are of type
c), i.e. create new values that would have to be inserted into
bases, then of course no basing choice would be useful, and we
can immediately decide to leave such a programbunbased.

A few qualifications must be appenﬁed to this optimistic
claim. We will show below that they lead to Qarious refinement’
in the choice of basings, without affecting the fundamental struc-
ture of our procedure. We must now discuss the nature of the
initial basing choices, and the propagation of these choices to

all program variables.

Step 1. Initial basing choices.

| We examine first the instiuctions of highest‘freqﬁency.
If they are of type a), some basing choices suggest themselves:
all global operations for.example, suggest bit-vectors representa-
tions for both of their arggments._ Membership tests;suggest

subset and element-of representations, etc. Table I lists the

SETL primitives of type a); and the most favorable based repre-
sentation for their arguments. Each one of these‘ope:étions |
introduces a base B, whose exact composition is at this point
undeternined.

If several operations of high freqﬁency appear, basings

are postulated for the arguments of each. At this point, each

SETL-180-5

operation is taken to suggest a different base, even if the same
variable may appear in several of them. Initially, these bases

are only linked to variable occurrences. In the next phase cf

the algorithm we are sketching, the various bases are merged so
that they correspond to bases of program variables instead. For

example, if the innermost loop of a program includes the code:

Ll: £ {x)=y;
L2: S with x;
L3: if z in S then y=y+l;;

then our initial basing chcoices are as follows:
(We use the line number as a subscript to specify various variable
cccurrences)
f1: EEE (eBl)...
X0 By
5 set (eB,)
Xyt eBz
Syt set (eB,)
z4? eB3
It is 6nly later that we will make the obvicus identification

Bl=B2§B3. The basing chosen for S above has of course been
described imprecisely. It could be a local, or a remote subset;

r it could be represented as a set of elements of the base.
We will start with the optimal choice (in this case, local subset)
. but consider this as tentative and revise it if necessary, in

subsequent phases of the process.

Step 2. Propagation of basing choices. .

The initial choices made for a few program variables must
now be propagated to the point of creation of the corresponding
values. TFor example, if the basing: x:¢B has been hypothesized,
ther all instructions which give a value to x must be forced tc
be compatible with this choice. The use*definitionvmap ud is our
basic tool in this phase. We must distinguish two cases:
aj) An occurrence xg of variable x, for which basing bi has been
suggested, is chaineé to an_ovariable occurrence X, in an operi-

tion O, of type a), or on a simple assignment. For example,

suppose that X5 is created by one of the statements:
X=Y;
X

= arb S; ‘.l’

Then the basing choice for Xy is propagated'to the ivariables of

operation 0. In the case above, yvis postulated to have the same
basing b, as x, and S to have. basing {bi}. These choices are
now propagated through the ud links of y ard S.
b)) If the instruction ¢ to which Xy is linked, is an instruction
of type ¢), no further basing propagation is possible. A base-
insextion opcode is introduced at that point.

The above suggests that we regard ud as defining a basing
tranémission graph {(BTG) on which ouf’cést estimates are evaluated.

Terminal nodes of the graph correspond to operations of type ¢).

The basing transmission graph

The basing transmission graph hypothesized in the preceeding .

paragraph has the following structure:

SETL-180-7

a) Its nodes are pairs <instruction, frequency>.

b} Its edges are elements of the use-definition chaining
function, ud.

The rules for basing propagation are as follows:

a) Basing constraints propagate backwards, i.e. from ivariables
+o ovariables.

b) Basing constraints are propagated only from instructions of
agreater frequency to those of smaller frequency. If a basing
constraint appears at instruction il’ with frequency fl' and

if ud leads from <il'f

> to <12,f >, with f2>fl, then we distin-

1 2

guish two cases:

a) i2 is an instruction of type c¢). Then it is not advanfageous
to impose the basihg constraint on iz. Instead, an appropriate
conversion operation is inserted at il.

b) Otherwise, i, transmits an already existing value. The basing
constraint is propagated tentatively to 12' and a depth-first-
search starting at i2 tries to determine whether the cost of that
constraint can be pushed below the frequency £,- If this is not
possible, the constraint is dropped and a conversion operation

is introduced at il. Such a procedure is seen to be linear in
the size of the graph, provided that we can convince ourselves
that‘handling loops in the basing propagation graph'presents no

difficulty{

Ioops in the BTG

- apart from trivial cases, such as
X=Y; ... /*code using x,y */ y=x;

loops in the basing propagation graph will reflect the existence

SETL-180-8

of program loops which repeatedly modify a given variable. For
example, conéidep:
(VxeS).

8, with f£(x);

1

»
©
.

5, less g(x);
end V;
It is clear that both occurrences of 5, are linked in ud, so that
the BTG contains a loop L. It is also clear that both instances
of 83 should have the same (based) representation. (This is not
always the case and we discuss in the next sections the problem
of conflicting basing constraints).
The following code shows aﬂother instructive but somewhat
more complicated case:
(VxeS)
(VyeT)

Sy with £(y);

end Vy;

él*Sz;
end Vx;
Here again, both instances of §, are linked by ud. However, the
choice imposed in the inner loop: Slzggg(eB), f? ggg(eleeB will
propagate outward only (i.e. towards operations appeaiing at a

shallower depth) but the outer basing will not propagate'inWards,

‘because of our rule against propagation to higher frequencies.

(Note that the bit-vector representation suggested by the

SEPL~180-39

intersection operation will e#éntually be chosen, as a refinement
of the original choice: set{eB)) Iloops in the BTG are therefore
broken by suppressing edges that go from lower to higher fre-
quencies. If this is done, then basing propagation will proceed
monotonically through the graph.
Having in this way made our BTG loop-~free, we must now exa-
mine the way in which we will handle merging paths in it, i.e.
the way in which we will either "fuse or xesolve" conflicting
basing constraints which arise since the BTG (even if loop-free)
is generallyAnot a tree.
Consider the code fragment:
x from S:
(VyeT)

z=f (x);

%ﬁg(x);

end;
The scheme that we have outlined starts by setting the following:
f:map (eB.)gen |
xxer
Next, it propagates this choice to S:ggg(eaf)’and thence to the
points of creation of 8. After this, we process the other high-

frequency instruction, and set: - ik

g:ggg(eBd)ggg

teB
X:¢e g

but of course x has already been based. At this point we must

make one of two choices, and either identify the bases B, and Bg

BETL~180-10

(which is clearly reasonable, being that at least some of their .
elements cverlap) or insert a conversion at the point where x is
cxaéted, so that two copies of i exist:

xg from S;

x =locate (xf,Bg): ‘
{(VyeT) .

§=f(xf);

;ag(xg)s

end;

~ The interesting point to note is that this type of basing con-

fliot can always be‘rasolved by enlarging the base, because Bases
for a given program are fully defined only after all the based
variables have been chosen! The main reason for choosing a double.
representation for x instead of a common base for £ and g, is
one of space optimization: f and g might have disjoint domains
of definition (except for element x!) and a common base might
therefore be wasteful of stotage. But this indicates that within
our scheme, space and time optimization are disjoint processes.
We can start with the optimal choice of basings for speed, and
then undo some of our basing choices to bring storage use down
to some apptopriate le§e1. Ih any case the two optimizations
can oe treated independently.

Other possible basing conflicts which might have to be han~>
dled by a generalization of this approach are:

2 Remote vs. local representations. It is probably reasonable

here to decide in favor.of the remote rxepresentation. .

SETL-180-11

b) Conflicting bases for composite objects. This is similar to
the case just discussed.
¢) Different basings for composite objects. The typical case
is that of a set, which is also an element of another set:

S:set {eB)

5:eB8

This is actually not a basing conflict, because the structure

of BS is not fully determined yet. These two basing constraints

can be made consistent by setting BS: base (set(eB)), i.e.

relating the two bases which appear in our conflicting basing
constraints.

d) We have so far ignored the iteration operator and itg rela-
tion to basing representations. It is clear that the linked
hash-tables usedbto represent bases and unbased sets are optimal
for iteration. Based representations, be they local or femote,
are more expensive, bacause they involve an iteration over the
base, and a membership teét in the based subset. Furtherﬁore,
overhead incurred by iterating over the base will be greater, the
sparser the based object is. It will therefore be convenient

to generate unbased representations of sparse objects, if they
are frequently_iteraﬁed'upon.v This conversion is totally depen-
dent on size information, and can only be chosen by some dynamic
test {i.e. by comparing cardinalities of base and based object
during program exscution). We therefdre propose to handle sets
for which iteration is a critical operatioh, by infroducing con-

ditional conversion operations in the code, at points where the

sazed object i3 completely buoilt, and only if the conversion

wouad coour &t a polnt of lower frequency than the iteration we

ars trying o optimize.

Wa examine an algorithm for finding the spanning tree of
2 graph (X1, Ll). Ses low's analysis for comments on the techni-
gue used. |

module spantree: var nodes, edges, father;

read nodes, adges;

{¥xenodes) fatherix)e=x;:;

{(Veeedgyes) fw=ell);

g=a{2);

fg=groupof (£} ;
ag=aroupof (g} ;-
it £g ne sy then
treeset with a;
werge {(fg,s5g):
and if;
end V:

print treeset;

definef groupof (node);

while {father(node} ne node)rode=father{node);
return nodes

and;

end;

My
L
c?
e
1]
4
&

~

gefine marge '.:ql! o)

5
“~

}ugl; return

and;

SETL~180-13

The instruction of greater frequency in the main program
is the invocation of groupof. We consider therefore the loop in
that procedure as our starting point. Our first choice is:

father:map (¢BN) eBN |

node: BN
This choice propagates to variables f and s, and thence to e
and edges, which receive the basing:

@&:<ecBN, eBN>

edges:gg§(<eBN,cBN>)
The cost of that choice is eventually propagated to the read
_ statémént. Returning to the main loop, we consider the variable
trgesei. The optimization of its lone appearance in the code
suggests the basing:

treesct:gset (¢BE)

@: BB

Notice that e has already received a basing specification. But
the new one is not incompatible with e being a pair of nodes.
‘This new constraint on e propagates to its source, the iteration
"loop over edges. We now specify that edges:set (eBE) and the base
BE receives the description

BE:t_:_g_g_e;(?sBN,eBNﬂ
All that remains is to propﬁgate our choice for father to the
loop over nodes. We obtain nodes:sét(eBN);
. A further optimization becomes availabie when we put the base
ingertion statements needed tc generate BN and BE into the code. b%
‘They only appear at the point of input, i.e. immediately after

nodes and edges have been read. This means that nodes can

A

o the othsy nand, when edges

is read, it mast be sonverted, to mode sal<cBN, eBN>. Then we
gake the ddentification of edges and the base BE. Treeset can
3w local subsat of that base., father is a local map on BN,
seeakse noething reguires that it be made remote. The basing

sholces are aow conmplete,

BoE. The Are of Computer Programming, Vol. 1, p. 353
Hasley, Reading, Mass., 1871,

jerd
ped
ol
..

o
)
Ll
e
=
2t
k3
e

Li) Low, J. Bukumatic Data Structure Choice-~an overview,
. of Rochester preprint, Nov. 1976 (unpublished.

Opeode
I
nobin

Y»\‘l th

o b e

less)
Bubset

4

i

*®

V4

domain

range

Table I. Initial basing checices

argil argi2
£B {eB}
{cB} {eB}

{remote bit~vector)

map {eB)--

map {~) B (but not useful)
{conceivably tresat the range of £ explicitly as a subs

eB map {(cB)-~
eB : map {eB}i--
{zB] map - (eB)}{eB;}

same as retrieval,
same as retrieval,

Nothing. Suggests hash-table, but not binding:
howewver, if nothing suggested so far, sei-cf-

elewents~of may be tried.

{eB}

