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l. Introduction 

In OVHL (II), relationships of inclusion/membership 
between objects of a SETL program are deduced by a process 

which also deduces relationships between parts of these 

objects. Relationships of this general nature are written 

in the form 

where O and o• are symbols representing SETL objects, 

n1 ,n2 , ••• ,nk and µ 1 ,µ 2 , ••• ,µj are symbols representing 

monadic mappings on composite SETL objects, and p is a 

symbol representing a binary Boolean-valued operator on 

SETL objects. The relationship (*) holds if 

• • • µ . O') 
J 

is true. Although only a few of these relationships are 

(*) 

of practical interest, they are all incorporated into the 

deduction scheme so that the deduction process can be 
carried out ef£iciently by standard information propagation 
methods. 

In the following, we will reformulate the problem of 
value-flow analysis along this line. The problem of value
flow analysis and the problem of inclusion/membership analysis 

bear strong resemblances to each other. By undertaking this 

reformulation, we hope not only to obtain a simpler and roore 
efficient value-flew algorithm, but also hope that the reform
ulation will eventually lead to a unification of the two 
problems. 

In order to express value-flow information in terms of 
relationships of the form(*), we introduce the relation+, 
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which intuitively corresponds to the mapping 'crthis' defined 

in OVHL(I). The relationship O + O' holds if the value of 

the object O' might possibly become the value of the object 0 

during the execution of a program in which O and O' occur. 

The monadic operators we a11ow to appear in a+ relationship 

are 3, =, 1, 2, •·• • As ill OVHL(II), we use the symbol 3 

to denote the operator which selects an arbitrary element 
from a set, the symbol 00 to denote the operator which selects 

an arbitrary component from a tuple, and n to den~te the 

operator which relates the n-th component from a tuple. 

EXAMPLE. In a program P with ovariable o and ivariable i, 

the relationship i 3 00 2 + o means that during the execution of 
P, if we apply the operations 3, 00 , 2 sequentially to the 

current value of i, the value resulting from this sequence 

of operations might possibly come from some previous value 

of o. From another point of view, this relationship means 

also that the current value of o during an execution of P 

might possibly become the second component of some component 

of an element of some future value of i. 

Let O = the set of all value-creating ovariables p 
in a program P, 

= the set of all ivariables in P, 

Then the 

co, 1,2,•••} I 

the closure of r+ 
over r+. 

relationship between the 
value-flow analysis can be stated 

crthis(q) = {o E op 
crmemb(q) = {i E I p 
crsomcomp(q) = {i E I p 
crcomp(q,n) = {i E I p 
crpart(q) = {o: o E 

, i.e. the set of all words 

two formulations of 
precisely as follows: 

q + o} 

q 3 + i} 

q 00 + i} 

q n + i} 

0 p' y E r* + I q Y + o} 
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for each occurrence q in P. This comparison makes it clear 

that we are interested primarily in relationships of the 

foxm q y + o. We will thereby confine our discussion to 

this type of relationship. 

Before we proceed to describe an algorithm for deducing 

relationships q y + o in a program, we will first consider 

an example which offers some insight into the principle that 

under1ies the algorithm. 

EXAMPLE 

Ll: V = read; 

L2: t = <v>; 

L3: s = s + {t}; 

L4: p = 3 s; 

LS: y = p(l); 

Generally speaking, in order to establish all relationships 

q y + o for some fixed ovariable o, the value of o must be 

traced along all paths originating from o. In the above 

sequence of straight-line code, the only path from ovariable 

v1 is (Ll,L2,L3,L4,L5). (Note: We use the symbol vi to denote 

the ovariable occurrence of vat Li, and the symbol v .. to 
l. 'J 

denote the j-th ivariable occurrence of vat Li). To trace 

the value of v1 , we consider each operation on this path 

that might transmit the value directly or indirectly. Starting 

from Ll, we know the value of v1 is created at Ll and then 

passed on to v 2 , 1 • Hence we deduce the trivial relationships 

v1 + v 1 and v 2 , 1 + v1 • When L2 is executed, this value is 

incorporated as the first component of the value of t 2 • 

Hence t 2 1 + v1 and consequently t 312 1 + v1 • When L3 is 

executed, the value of t 3 , 2 is inserted into the value of s 3 
as one of its elements. As a result, the value of v1 is 

indirectly incorporated into the value of s 3 as the first 
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component of one of its elements. Hence s 3 3 1 + v1 and 

s 4, 1 31 + v1 • When L4 is executed, some random element is 

picked from the value of s
411 

and transmitted to p4 • Since 
the element selected might be the one with the value of v1 
as its first component, the relationships p4 1 + v1 and 

Ps,l 1 + v1 holds. The first component of this very same 
element is then extracted at LS. Since this component might 

possibly be the value of v1 , we have y5 + v1 • 

The above chain of reasoning is identical with the 
theorem generating process of an appropri.ately defined formal 
system. The axioms of this formal system include two types 
of relationships. Relationships of the first type are 

v 2 , 1 + v 1 , t 3 , 2 + t 2 , s 4 , 1 + s 3 and Ps,l + p4 , representing 
the flow of data within the code sequence. Relationships of 

the second type are t 2 1 + v 2-, 1 , 

S3 3 + t3,2 , P4 + 3 s4,1 and Y5 
the semantics of the instructions. 

in the formal si•stem is: 

If q' a+ B q and 

s 3 3 + 3 s 2 ,l , 

+ 1 Ps,l , representing 
The only inference rule 

then q 1 CX y ~ V ...... 1 ' 

* -where q and q' are occurrences; a,8,y Et+; and Sis the 

reversal of 8. The theorems of this formal system are 
precisely those relationships relevant to the transmission 
of the value of v1 • 

In the next section, this formal system will be recast 
in Kildall's lattice-theoretic framework {or rather, Tarjan's 

version of it). 
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2. Formalization of va1ue-flow problems 

DEFINITION Given a schematized SETL program P, and 

an ovariable o in P, the value-flow problem for o is a 
quintuple (L, F, G, f, a) where 

* (1) Lis a semi-lattice whose elements are sets of words in E+ 

and whose binary meet operation is set union. 
(2) Fis a set of optimizing functions f: L + L. 
(3) G is the flow graph (N,E,n

0
): 

N = the set of nodes representing variable occurrences in P; 

E = E1 u E2 ; E1 is the set of edges (q,i) for all 

occurrences q and all ivariables i such that 

q e bfrom(i); E2 is the set of edges (i,o') for all 

ovariables 0 1 and all ivariables i in the same 
instruction as o'; 

n 0= the initial node representing the ovariable o. 
(4) The mapping f: E + F associates each edge with an 

optimizing function. If e 1 e E1 , then f(e
1

) (x) = x 

for all x EL. For e 2 e E2 , f(e 2) depends on the 

instruction corresponding to e
2

; e.g. in the instruction 

o = i 1 with i 2 , we have 
f(i

1
,o) (x) = {y Ex I y(l) ~ 3} , 

f (i
2 

,o) (x) = { 3 y : y e x}, 

for all x e L. (Note: 3 y denotes the concatenation of 
words 3 and y). 

{5) a: N +Lis the initializing function: 

a(q) = 1 {e} if q is the ovariable o (e denotes the 
empty word) 

otherwise 
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The solution of th~s problem is defined to be the maximum 

solution to the set of equations: 

/\. f { q I I q) (XO ( q I ) ) 

{q' ,q)EE 
a (a) , q E N ; 

heuristically, x (q) is a superset closely approximating 
* 0 

· {y Et+ I q y + o}. 

The following is a list of representative SETL instruc
tions and the optimizing functions associated with them: 
(1} Transfer operation, o = i 1 : 

f{i1 ,o) (x) = x since o + i
1

. 

(2) Inclusion operation, o = {i
1

}: 

f(i
1

,o) (x) = {3 y: y Ex} since o 3 + i
1

. 

(3) Extraction operation, o = 3i1 : 

f(i
1

,o) (x) = {y(2:) : y Ex I y(l) ~ 3} since o + 3 i
1

• 

(4) Union operation, o = i
1
+i 2 : 

(5) 

(6) 

f{i
1

,o) (x) = f(i
2

,o) (x) 

= {y Ex I y(l) ~ 3} since o 3 + 3 i 1 , 

o 3 + 3 i2. 

Difference operation, 
f (il ,o) (x) = {y E X 

f (i2 ,o) (x) = ~ 

o = i 1-i2 : 

I r c1> ~ 3} 

Tuple-former, o = <i1 , ..• ,im>: 

f (ij ,o) (x) = { j y : y E x}, 1 ~ j < m since o j + i .• 
J 

(7) Functional application, o = i 1 Ci2 ): 

f(i1 ,o) (x) = {y(2:) : y Ex I if known(i
2

) is n 
ne O then y(l) E {m,n}else y(l)E(r+-{3})} 

+ . { y ( 3 : ) : y E x I y ( 1 : 2 ) ~ 32 } • 

f(i2 ,o) (x) = 91. 
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The relatively complicated relationship appearing in (7) 

reflects the fact that this operation can represent one of 

three semantically different possibilities. If i 1 is a map, the 
operation exgacts the second component of some element of i 1 • 

e,. 

Hence o + 2 l i. If i 1 is a tuple, the operation extracts 
the n-th component of its value, n being the current value 
of i 2 • (The mapping 'known' maps an occurrence to its known 

constant value). In case n is a compile-time constant, we 

have o + (0 i 1 and o + n i 1 • Otherwise we have o + (0 i 1 and 

o + m i 1 for all positive integers m. · If i 1 is a string, 

a completely new value is created and hence no additional 
possibilities need to be considered. 

(8) Indexed assignment, o = [i1 Ci2) + i 3]: 

f(i1 ,o) (x} ={ye x I if known(i2) is n ne n 
then y(l} E (E+ - {n}) else y(l} Er+} 

f (i2 ,o) (x) = {3 l y . y E -X} . 
f (i3 ,o) (x) = {3 2 y : y Ex} + if known(i2) is n ne n 

then {n Y . y Ex} else { (0 y . y E x}. . . 
The semantic grounds for (8) are as follows: 

If i 1 is a map, a pair is created with the value of i 2 as its 
first component and the value of i 3 as its second component 
and then the pair is inserted into the value of o together 
with elements of the value of i 1 • Hence o 3 1 + i 2 , o 3 2 + i 3 
and o 3 + 3 i 1 • If i 1 is a tuple, the value of i 3 becomes the 

n-th component of o, with n being the current value of i 2 • 
For the case that n is a compile time constant, we have 
on+ i 3 , o = + t0 i 1 and o m + m i 1 for all positive integers 
min. Otherwise, we have o (0 + i 3 and o a+ a i 1 for all 

a E 1:+ - {3}. 
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(9) Tail extraction, o = i 1 {i2 :) : 

f(il,o) (x) = {00 y(2:): y EX I y(l) E o:+ - {3}}} 

f{i2 ,o) (x) = ~. 
For the time being, we will ignore the case of i 2 

being a compile-time constant. So we have o 00 + 00 i 1 and 
o 00 + m i 1 for all positive integers m. 

(10) Concatenation operation, 0 = il 11 i2 . . 
f (i1 ,o) (x) = f {i2 ,o) {x} 

= { 00 'Y (2:} . y E X I y(l) E (!:+ . 
since o 00 + 00 i 1 , o 00 + 00 i 2 , o 00 + m i 1 
and o 00 + m i 2 for all positive integers m. 

- { 3})} 

Even without giving a complete specification off, we 

can convince ourselves by looking at these exarr~les of 

optimizing functions that the value-flow problems satisfy 
all the criteria of a global flow problem as defined by Tarjan, 
with perhaps one exception, namely the boundedness condition. 

This observation means that the solution of a bounded value

flow problem can be obtained by any one of the standard methods 

for solving global flow problems, such as Tarjan's edge listing 
method or Kildall's workpile method. ~..n algorithm based on the 
workpile method is given below. 
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3. An Algorithm for So1ving Value-Flow Problems 

Given a value-flow problem (L, F, G, f, a) for some 

ovariable o as input, the following algorithm traces the 

va.lue of o. The output x is the solution of the value-flow 
* problem in which x{q} ~{ye r+ I q y ~ o}. 

definef mfp{graph, £, a); 
<nodes, edges, o> = graph; 

{yq e nodes) x(q) = a(q); end Vq; 
workpile = edges{o}; 

(while workpile ~ ni) 

<ql,q2> from workpile; 

y{q2) = x(q2); 
x(q2) = x(q2) meet f (ql,q2) (x (ql)); 

if x(q2) ~ y(q2) then 

workpile = workpile + edges{q2}; 
end if; 

end while; 

return x; 

end mfp; 
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4. A Concise Algebraic Specification off: E + L 

Let I_= {3-l,m-1 ,1-1 ,2-1 ,••·} where 3-1 , 00-
1 ,1-1 ,2-1 ,··• 

represent respectively the inverse of the operators 

3, =, l, 2, ·•· in E+· E.g. heuristically speaking, 

3-l maps a value to all the sets containing it. Let 

I= I+ u I. Our intention in this section is to represent 

f: E + L concisely in terms of a semi-group c2I*,o). 

With this objective in mind, we define the binary operation 

o in four steps, namely, 

(1) 

(2) 

* Define o: Ix r + r as follows: 
l 

(i) For all a E 2:+ and b E I-.::.J~ a o b = ab. 

(ii) 

(iii) 

For 

3-l 

n -1 

-1 
n 

00 
-1 

-1 
00 

all a 

0 3= 

0 n = 
0 00 = 
0 n = 

0 00 = 

E r and b EI_, a o b = ab 

e (e denotes the empty word) 

e 
for all positive integers n 

e 

e 

e 

(iv) In all other cases, the result is undefined. 

* * Extend o tor x I + I 

Let a e E, y Er* and y =b1 b2 ••• bk. 

Then a O y = (a O b 1 )b2 b 3 ••· bk if y ~ e 

a if y = e and a e I+ 

undefined otherwise. 

* * * (3) Extend O to r X E + r : 

* Let Y1,Y2 EE, Y1 = al a2 ••• at. 

Then 
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(4) 

It is 

with 

T. 
J.,O 

(1) 

( 2) 

(3) 

(4} 

(5) 

(6) 

o y 2 ) ••• )} if yl ~ e 

otherwise 

r* r* r* Finally, extend o to 2 x 2 ~ 2 
r* Let x

1 
,x:

2 
e 2 • Then 

X ox = lY1°Y2 . yl. E xl, Y2 1 2 . 

straigh tiforward to write f in 

f (i,o) (x) = T. 0 

J. ,o 

T~ bein.g 
.1..,0 

a set of words over 

. . 

E x2IY1oy2 

the form of 

X I 

r. Here is 

i 

a 

corresponc.ing to f (i,o) discussed in section 

transfer operation., 0 = il . . 
T. 
11,o - {e} 

inclusion operation, 0 = {il} . . 
T. - { 3} 

i 1 ,o 

extraction operation, 0 = 3 i
1 

. . 
T. 

2.1,0 - { 3 -1} 

union operation, 0 = il + i2 : 

T. = T. - { 33-l} 
l.l ,o J.2,o 

difference operation, 0 = il - i2 : 

T. = { 3 3-l} 
1.1 ,o 

T. = 91 J.2,o 

tuple-former, 0 = <il, . . . im > . , . 
T. ·- {j} , 1 < j < rn 

1.. ,o -
J 

Q}. 

sample 

2. 

of 
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(7) functional application, o = i 1 (i2) : 

T. = {2-1
3 -l, if known(i

2
) is n ne n then n-l else co-1 } 

1 1 ,o 

T. = ~ 
1

2
,o 

(8) indexed assignment, o = [i
1

(i
2

) + i
3

] : 

-1 T. = {aa : a e E+}- if known(i 2) is n ne n then 
1 1 ,o 

{n n-1 } else~ 

T. = { 3 l} 
1

2
,o 

T. = { 3 2 , if known(i 2) is n ne n then n else co} 
l.3,0 

(9) tail extraction, o = i 1 (i2 :) : 

T. = {co 00-l} 
11,0 

{10) concatenation operation, o = i 1 l li2 : 

T. = T. = {00 co-1}. 
1 1 ,o 1. 2 ,o 

A complete specification 

given in Appendix I. 
of T for all SETL primitives is 
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5. Unbounded value-flow problems 

As mentioned earlier, the algorithm of section 3 does not 

necessarily converge. Consider the following program: 

Ll: s = n!; 
L2: (while ••• ) 

L3: s = {s}; 

L4: end while; 

The relationship s 3 3i + s 1 holds for all i ~ 1, meaning that 

we can be confronted with a solution of xs (s 3) that is infinite, 

containing words 3, 33, 333, ••• of arbitrary length. The 

algorithm shown above can never arrive at this solution. 

It simply keeps on incrementing the value of xs1 (s 3) forever. 

In qeneral, the algorithm fails to terminate whenever its 

input is a program in which o y + o holds for some ovariable o 

and some non-empty word y Er:. We will call these culprits 

self-dependent ovariables. Once we have recognized its source, 

the problem of divergence can be avoided, for example, by either 

of the following modifications of our earlier method: 

Method I (a la Fong, Kam and Ullman) 

Change the initialization of a value-flow problem to 
* * a(o') = E+ for each self-dependent ovariable o'. (Note: E+ is 

the zero-element of the semi-lattice L). This will force the 
* value of x

0
(o') to remain at E+ and hence the algorithm will 

terminate. By underestimating x (0 1
) this way, value-flow 

0 
information concerning o' will be lost. Nevertheless, this 

underestimation has no effect on other occurrences whose values 

do not depend on 0 1
• 

Use of this method makes it necessary to determine whether 

an ovariable is self-dependent or not. Fortunately, there are 
many good criteria for deciding which ovariable might possibly 

be sc!f-dependent. For instance, the algorithm itself•rnight be 
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able to make such a decision. Recall that the algorithm always 

approaches its solutions from below, incrementing the value of 

·x
0

(q) iteratively. As x
0

(q) grows larger, we can be more 

and more certain that its solution is an infinite set. Therefore, 

we can fix some arbitrary limit on the size of each x 0 (q) and 
* whenever that limit is exceeded, set x 0 {q) tor+. 

Method II (a la Tenenbaum) 

The basic idea of this method is to limit the length of y 

in a relationship q y + o. Let ,r = r+ u {w} and w be a 

monadic operation which maps a value to all its parts. Let 
* r* L' = 2,r. Define the operation o': 2 x L'-+ L' the same way 

o is defined, except that 

(1) a O I w = w for all a E E , and 

(2) given a E r, E ,r * then y I 

a o' y = if !aoyl < - i then aoy 

else (aoy) (l:i) 11 w, 

where i is some fixed number. 

By replacing the operation o by o' and the semi-lattice L by L', 

the algorithm will converge for all value-flow problems. This 

modification will retain considerably information on self-dependent 

ovaraibles. However, this is done at the expense of losing 

information concerning other variable occurrences. Since this 

method keeps track of values in a composite object only up to 

a certain level of depth, some amount of info~mation on occurrences 

with deeply nested values is bound to be lost. 
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6. Backward Value Tracing 

So far we have only discussed the problem of tracing a 

value in the forward direction. We have seen how relationships 

q y + o are deduced for each ovariable o. It seems appropriate 

at this time to consider the problem of tracing a value in the 

backward direction and seeing how relationships q +yo can 

be deduced for each occurrence q. Because of the symmetric 

nature of our formulation, these two problems are almost 

identical. To deduce all q +yo for some fixed q, we can use 

the same algorithm we used before to find all q' + y q, except 

that we must first reverse all the edges in the flow graph, 
-and also make use of the following fin place of the former f: 

where 

and 

-

T . 
0,1 

~ f(o,i) (x) = T . 0 (x) , for all x EL, 
0,1 

,,,..--__,,, 

= {(yloy2} : Yi E xl, Y2 E x2h1 o Y2 ~ Q}. 

(Note: y is the reversal of y.} 

The ability to trace values in the backward as well as the 

forward direction is important. With both options, the algorithm 

can be used to compute each value of the value flow functions 

(i.e. the er functions) efficiently independent of any other value. 

Preferably, forward tracing is used to compute crthis-1 (q), 

crmemb-1 (q), crpart-1 (q), etc. and backward tracing is used to 

compute crthis(q), crmemb(q), etc. This allows an implementer 

the freedom of not storing the entire er functions, but 

computing a value each time it is needed. This is particularly 

significant if the optimizer requires only a few values of the 

er function. As it now stands, the optimizer uses value-flow 

information only in the determination of control flow and the 

evaluation of the destructive use condition. In the first 

application, the optimizer need only know crthis-1 (o) for the 
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definition o of each procedure. In the second application, 

the optimizer need only knew crthis(i) for each ivariable i 

in a modification instruction and crpart-1 (o) for each o in 

some of these crthis(i). 

7. Evaluation of the Destructive Use Condition 

In OVHL(I), the destructive use condition for an 

ivariable i is stated in terms of the set t(i) of all 

ovariables whose current value might possibly incorporate 

the value of i: 

An ivariable i may be use.tdestructively if its value 

is dead, i.e. for all ovariables o in t(i), there does not 

exist a path from o tQ some ivariable of v(o) through i that 

is clear of any ovariable occurrence of v (o) • (Note: v (o) 

denotes the variable of o.) 

The set t(i) is esti~ated according to the formula: 

t(i) = crpart-
1

[crthis(i)] 
pi 

where p. = exsinthis(i) 
1 

is the set of instructions which 

might have been executed between the time a value is created 

and the time it reappears as the value of i; and crpart-1 (o) 

is the subset of crpart-1 (o) containing all ovariables Pio' 

such that the value created at o might possibly be incorporated 

into the value of o' along some path lying entirely in p .• 
1 

The method described in OVHL(I) for computing the 

function exsinthis is extremely and unnecessarily expensive. 

It solves a set of equations that are almost identical to the 

equations for crthis. This seemingly redundant computation 

is necessary because the er functions do not contain enough 

information from which exsinthis can be directly evaluated. 

In this section, we will examine a simple and fast technique 

for computing exsinthis(i) from the+ relationships. 
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Given an ivariable i and an ovariable o E crthis(i). 

We say an occurrence q transmits the value of o to i if 
during an execution of the program, the value of o might be 

incorporated into the value of q and then subsequently 

it is extracted from q and becomes the value of i, i.e. 
* q y + o and i + y q for some y E r+. It is clear that 

an ovariable other than o transmits the value of o to i 

only if one of the ivariables in the same instruction also 

transmits the value of o to i. It is also clear that to find 

exsinthis(i), it suffices to find the set·of all occurrences 

that transmit the value of some ovariable in crthis(i) to i. 

The argument for the latter claim goes as follows: 
By the definition of exsinthis, an instruction belcngs 

to exsinthis(i) if and only if there exists a path p from 

some ovariable o E crthis(i) to i along which the value 

of o is trans~~tted to i. On such a path p, there must exist 

a sequence of instructions L, L2, ••• , Ln such that 
(1) 

(2) 

For 1 < j < n, the ovariable o. of instruction Lj 
J 

transmits the value of o to i; and 

For 1 < j _< n, there is an ivariable i. E du(o. 1 ) 
J J-

in the instruction Lj that transmits the value 

of o to i. (o1 = o and in= i.) 
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Ll: 0 - opl( ... ) 

du 

L2: op2 ( ... , i2 I 
... ) 

du 

L3: 0 = 3 
op3 { ••• , i3 I 

... ) 

. . 
• 

L(n-1): 0 = n-1 

Figure 1. The path 

op ( ••• 
n-1 ' i n-1 I 

.... ) 

/* i = i */ n 

p = (Ll,•••,L2,•••,L3,•••,L(n-l) ,•••,Ln) 
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Finding exsinthis(i) is simply a matter of enumerating 

all such value-transmitting paths. The above criteria (neces

sary but not sufficient) for paths that transmit the value to 

i tell us how the enumeration can be done statically. First 

find the set C{i) of all ivariables that transmit the value 

of some o E crthis(i) to i, and then link these ivariables 

up by data flow information. Specifically, we can use the 

formula: 

(*) exsinthis{i) = U chainback(i') • 
i'EC(i) 

Note that chainback(i') is, as in OVHL(I), the set of all 

instructions which lie along some v(i')-clear path beginning 

at a definition of v(i') and terminating at i'. 

·rn our for:r:i.ulation, the relationships i + y i' can be 

deduced by tracing backward the value of i and the relation

ships i' y + o can be deduced by tracing forward the value 

of each o E crthis(i). The set C(i) of ivariables i' trans

mitting the value of some o E crthis(i) to i can thus be 

found. Hence exsinthis(i) can be computed efficiently 

according to formula (*). 

In fact, an improvement on(*) can be made: 

(**) exsinthis(i) = u chainback(i'). 

all ivariabes i' such that 
* i + y i' for some y er+ 

The use of(**) will eliminate the need for forward tracing. 

It will also solve one of the most annoying technical problems 

in value flow analysis the handling of multi-value creating 

instructions. 

In general, more than one value (pointer) can be created 

at a SETL primitive instruction. In order for the destructive 

use condition to be valid, we must find a way of registering 
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the creation of all these values. In the formulation of 

OVHL(I), we can either insert auxiliary instructions to 

account for all these values or regard all of them as values 

of the ovariable in the instruction. 

In the extreme situation, we have the read operation 

o = read which creates an indefinite number of values 

(pointers). Consider the following example: 

Ll: s = read; 

L2: X = 3S; 

L3: X = X with y; 

L4: t = s + s'; 

Here we have crthis(x
3 1

)= {x
2

} and consequently 
-1 , 

t(i} = crpartp. [crthis{x3 , 1 }] = {x2}. Since the variable x 

is redefined at L3, we come to the wrong conclusion that 

x3 , 1 may be used destructively, while in fact the value of 

x
311 

is a member of the current value of s 1 , which is very 

much alive at L3. 

To avoid this error, we can either insert a sequence of 

auxiliary instructions before Ll, simulating the SETL input 

routine, or we can modify the equations for the er functions 

so that 

crthis(s1 ) 

crmemb (s1 ) 

crsomcomp ( s 1 ) 

= 
= 
= 

{sl}, 

{sl}, and 

{sl}, 

treating the read operation as if all the values it creates 

are stored ins one time or another. 

Similar adjustments should be made for other multi

value creating instructions. In the case of the power set 
instructions o = pow(i) and o = npow(n,i), the power set o 

is formed by first creating the subsets of i. In order to 

account for the creation of these subsets, we can use a dummy 

temporary t and expand o = pow(i) to 
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0 = pow{i) 

t = aux_arb{i) I* t = ~ i */ 

t = aux_set(t) I* t = {t} */ 

t = aux __ set (t) I* t = {t} *I 
0 = aux __ or { o, t) I* o=if junk then o else t*/ 

(Similar expansion for o = npow(n,i) ) • Or if we want to 

avoid this expansion, we can modify the equations by setting 

crmemb(o)= crthis(i) for the instructions o = pow{i) and 

o = npow{n,i). This modification is necessary regardless 

of whether the value of i is always copied before inserting 

into the pcwer set, or in the case of o = npow(n,i), whether 

the size of the set i is known to differ from n. 

Indexed assignments such as f{x) = y are also multi

value creating instructions. Semantically, when f is a map, 

the instruction f(x) = y first creates a pair <x,y> and then 

inserts this pair into the map f, replacing any old pair <x,z>. 

To account for the creation of the pair <x,y>, f(x) = y can 

be expanded to 

f(x) = y 

t 

f 

= aux __ pair(x,y) 

= f aux __ with t 

/* t = <x,y> */ 

/* f = f + {t} */ 

(The effect on indexed assignment is not as significant as in 

the case of read operations and pow set operations, since it 

is very unlikely that a map is implemented as a set of pairs). 

Neither of the above two solutions is clean, especially 

when auxiliary instructions are involved. On the other hand, 

the difficulty of handling multi-value creating instructions 

is totally avoided in a backward oriented method which uses 

formula (**) to compute P. = exsinthis(i) and the formula 
J. 

(***) i(i) = C'(i) 

to compute i(i), where C'(i) is the set of all ovariables o 

* such that for some ovariable o' and some y,y' Er+, 
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i + y' a' and o y + y' o' within P .• Since C' (i) not only 
.i 

accounts for ovariables in crthis(i) but all other possible 

sources of the value of i as well, there is_ no need to 

require all values to be created explicitly at some ovariable. 

E.g. in the example given above for .. the read operation, 

the backward tracing alone will discover that x 3 , 1 + 3 s 2 , 1 
and of course x 3 , 1 + x 3 , 1 • By(**), exsinthis(x311 ) 

= {Ll,L2,L3}. By (***), t(i) = {s
1

,x2 }. Though x is dead, 

sis still alive when L3 is executed. Hence we come to the 

right conclusion that x3 , 1 cannot be used destructively. 

8. Conclusion 

We have formulated the problem of value flow analysis 

in terms of the formal lattice-theoretic framework of Kildall. 

Besides its theoretical significance, we believe the algorithm 

based on this reformulation has practical value. In particular, 

it computes the individual values of the er functions separately 

and efficiently, which will often make it unnecessary to store 

the entire function. We also collect considerably more informa

tion than is immediately available in the er functions of OVHL. 

Using this information, the function 'exsinthis' can be 

evaluated by a simple and fast algorithm. Last but not least, 

we are optimistic about the possibility of using the technique 

that we have sketched to unify the three major forms of analysis 

performed by the SETL optimizer, and we see our reformulation 

as a step toward this goal. 
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Appendix I. Specification off: E ➔ F 

In this appendix we specify the function f: E ➔ F by 

tabulating the matrix T. (Note f(i,o) (x) = T. 0 x). 
l., 0 

For an instruction o = op(i1 , ..• ,i., ••• ,i ), the value of 
J m 

depends mainly on the opcode op and the operand T. 
l.. ,o 

nu:dtber j •. 

opcode operand No. list of elements in T. 
l.., 0 

33-l J 
op 7 add 1 

2 33-l 

op 7 cc 1 -1 
CIOCD 

2 -1 
0000 

op 7 less 1 33-l 

op 7 lessf 1 33-l 

op 7 mod l 33-l 

2 33-l 

op 7 mult 1 33-l 

2 33-l 

op 7 repl 2 
-1 

0000 

op 7 sub 1 33 -1 

op 7 with 1 33-l 

2 3 

op 7 arb 1 3 -1 

op 7 dom 1 3l-l3-l 

op 7 range 1 32-l3-l 

op 7 rand 1 
-1 3 , co -1 

op 7 end 1 00Q) -1 

op 7 subst l 0000 
-1 

op 7 set 1 1 3 

op 7 pair 1 1 

2 2 

op 7 next 1 3 
-1 

op 7 nextd 1 -1 -1 
1 3 

op 7 nxtinc l 
-1 -1 

1 3 
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opcode operand No. List of elements in T. J.., 0 

-~-1 J 
op, of 2 2 , if known (i1.) is n ne Q then 

-1 -1 n else 00 

op 7 oft 2 if known (i1 ) is n ne Q then n -1 
- --1 
else 00 

op 7 ofa 2 32 -~-1 

op , ofb 2 32-13-l 

op 7 pow 1 333-l 

op 7 npow 2 
-1 

333 

op 7 argin 1 e 

op 7 argout 1 e 

op 7 asn 1 e 

op 7 fval 1 e 

op 7 retasn 1 e 

op 7 sof 0 e 

1 1 

2 32, if known (i
1

) is n ne Q then n - -
else 00 

op 7 sofm 0 33-l 

1 31 

2 32 

op 7 sofa 0 33 
-1 

1 31 

2 323-l 

op 7 send 0 e 

2 0000 
-1 

op 7 ssubst 0 e 

3 0000 
-1 

aux 7 arb 1 3 -1 

aux 7 asn 1 e 

aux 7 or 1 e 

2 e 



.. 
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o;ecode operand 

aux 7 dis 1 

2 

aux 7 with 1 

2 

op 7 set 1 
op 7 tup l 

op 7 ofn 2 

No. 

l 

list of elements in T. 
1. ,o 

e 

e 
33-1 

3 

3 

(arg 1 of i
1

) 
2-1 2-1 ••• 2-1 

arg2 
f 

times 

-1 
3 

J 
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Appendix II. A More Sophisticated Approach to the Non

convergence Problem 

Neither of the two methods described in section 5 for 

solving the nonconvergence problem is an intellectually 

satisfying solution in the sense that they both lose 

information that is otherwise obtainable by the algorithm 

of OVHL(I). Despite the fact that the information lost is 

for all practical purposes extremely insignificant, we wish 

to consider other alternatives. In this appendix, we will 

examine one alternative that makes use of the fact that each 

x
0

(q) in the solution of a value-flow problem is a regular 

set and thus can be represented by a regular expression. 

The claim that x (q) is a regular set can be verified by 
0 

constructing a finite automaton for x
0

(q). 

Given a path p = (q1 ,q2 , ... ,qn} in a flow graph with* 

q 1 = o, the initial node, and qn = q, we call a word a in E 

a label of the path p if a= a1a2 ··· an-l, where 

a.ET , 1 < i < n. Suppose we also label each 
1 qi,qi+l -

individual edge (q,q') in the flow graph by the words in T ,. q,q 
Then obviously the set y

0
(q) of labels of all paths from 

o to q is regular, since the labeled flow graph can easily 

be transformed into the state diagram of a nondeterministic 

finite automaton (NFA) for y
0

(q), by label splitting and e 
-elimination. The reversal y. (q) of y

0
(q) is also regular. 

0 * 
Furthermore, y E x

0
(q) iff y EE+ and y can be obtained 

from a word in y
0

(q) by applying repeatedly the cancellation 

rules: 
3-~ = e 

-1 ex, ex, = e 
-1 

} 
ex, n = e 
-1 

for all positive integers n n = e n. 
-1 

n n = e 
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Hence the state diagram for x
0

(q) can be obtained from the 

state diagram for y
0

(q) by (i; adding label e for edge (q1 ,q3) 

whenever there are edges (q1 ,q2) and (q2 ,q3) with labels 

a and b respectively such that ab = e in accordance with the 

cancellation rules; ~i) applying the standard e elimination 

procedure, and then (iii) eliminating all labels in {e} u r_. 
The above construction can be summarized in the following 

procedure: 

(1) Consider each edge (q1 ,q2) in the flow graph. 

For each wordy= a a •·· a in T : 1 2 i q1 ,q2 
if lrl ~ 1, label the edge y; 

otherwise, create new nodes n1 ,n2,··•,n2_1 
and edges (q1 ,n1),(n1 ,n2),···, (n2_2,n2_1) ,(n2_1 ,q2) 

and label these edges a 1 ,a1_1 , •••a1 respectively. 

(2) If there is a pair of edges (q1 ,q2}, (q2 ,q3} with labels 

a and b such that b O a= c and c E {e} u r+, label the 

edge (q1 ,q3) c. (If the edge (q1 ,q3) does not exist, 

introduce it.) 

(3) Repeat (2) until no new label can be generated. 

(Note: An edge can have more than one label.) 

(4) If there is a cycle along which all edges have label e, 

merge all nodes on this cycle. 

(5) Delete all labels in {e} lJ r_ from the graph, except the 

label e on (o,q) if there is one. 

(6) Delete all edges with no label. 

{7) Reverse all the edges; exit. 

The graph obtained by this procedure is the state diagram 

representing an NFA for x (q) with initial state q and 
0 

final state o. 
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EXAMPLE. Consider the example given in section 5. 

Ll: s = n.2.; 

L2: (while ••• ) 

L3: s = {s}; 

L4: end while; 

The NFA for xs (s3 ) can be constructed in these steps according 

to the above ptocedure: 

(1) The flow graph for tracing the value of s 1 is labelled 

as follows: 

( 2) and ( 3) • Apply the rules repeatedly until convergence: · 

3 

e 

(4) Step (4) is not applicable since there is no cycle with 

all its edges labelled e. 

(5) and (6). Delete labels e and then delete edges with no labels: 



.. . 
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(7) 

3 

Reverse the edges; then we have the NFA for x (s 3): 
sl 

3 

The NFA's for x (s
1
), x (s

3 1
), x (s

1
), x (s 3 1), x (s 3) s 1 s

1 
, s

1 
s 3 , s 3 can be constructed analogously. 

We now proceed to construct a global flow problem 

(L, F, G, f, a) isomorphic to a given value-flow problem 

(L, F, G, f, a). Since two regular expressions are said to 

be equal iff they represent the same regular set, there is 

a 1-1 correspondence between regular expressions and 

regular sets. More specifically, we let r(x) = x iff x is 
a regular expression representing the regular set x. We 

will build the semi-lattice Land subsequently the global 
flow problem (L, F, G, f, a) on this 1-1 correspondence. 

Let L be the semi-lattice whose elements are the regular 

expressions over r+ and where the meet operation I is 
defined as: 
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- { Rl + R2 
if R1,R2 i ~, 

Rl I R2 = Rl . if R = ~ , 
2 

R2 otherwise , 

for 1½_,R2 EL. Let F be the set of functions f: L + L. 

Let a(q) = r(a(q)) for all nodes q in G. Since a(q) equals 

either {e} or~, a(q) is either e or~. It remains to find 

f such that f(q,q') (r(x)) = r(f(q,q') (x)) for all edges (q,q') 

and for all X EL. So we let f(q,q') (R) = T '; R for q,q 
all RE L where o is defined similarly too as follows: 

(1) 

(2) 

Define 0 . 1: X o: u . 
For a E 1:+, b 

For a E E+ I 

For a E E I b -
For a E E , 

-Extend 0 to E X L + 

Given RE L, a E 

{e,~}) + L: 
E 1:, - b ab a 0 = 

a 0 ~ = ~ I 

E E _, a 0 b = ab 

a 0 e = ~, -a o ~ - ~, 

and 3-l~ 3 = e 

-1- } n .o n = e 
-1-n o 00 = e 
-1-

00 0 n = e 
-1-

00 0 00 = e 

L: 

E , then 

a 0 e = a 

for all positive 
integers n, 

+ ••• +(a; Rj)Rj+l ••• I\: 
where j is the smallest positive integer such 

-1 that e ~ r (R.). 
(ii) if R 

J 
= Rl + R2 + ••• + Rk, 

-a o R = 
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* (iii} . f ( ) l. R = Rl , 

-a o e • 

* (3) Extend o tor x L + L: 

Given y = al a2 ... a.e, . , a. E r, 1 < i < R, and RE 
l. 

-
{ (a1 o (a2 0 . . . (a 0 R) ... )) if y 'I- e 

(4) 

y 0 R = 
R 

Finally, - L* extend 0 to 2 X L 

Given x = {y1,Y2,··•,yk}, 

x; R = {yl; R} + (y 2 ; R) 

otherwise. 

+ L: 

* y. EL and RE L, 
l. -+ ••• + (yk o R). 

L 

The upshot of this development is that the solution of the 

global flow problem (L, F, G, f, a) represents the solution 

of the value-flow problem (L,F,G,f,a). That is, x (q}= r(x (q}) 
0 0 

for all variable occurrences q. It is true that, because 
of this isomorphism, the algorithm of section 3 will not 

converge for (L, F, G, f, a) if it fails to converge for 

(L,F,G,f,a). But the main difference is that x (q) always 
0 

has· a finite representation. We can generate a closure 

of regular expressions by oracles such as Rudin's rule, 

* i.e. x = ax + b • x = a b. Hence the problem of nonconvergence 
will be avoided if the algorithm of section 3 is modified 
as follows: Whenever the algorithm updates the value of x (q) 

0 
for some occurrence q, it should also check whether q may 

be a self-dependent ovariable, and if so, update x (q) further 
0 

by setting it to xq(q) I I xo(q}, i.e. the concatenation of 

regular expressions x (q) and x (q). The regular expression q 0 

x (q) will contain at least one closure symbol* if q is 
q -

indeed a self-dependent ovariable. To find x (q), we can q 
construct a NFA for it, as described earlier, a~d then 
construct a regular expression from the NFA, for instance, 

by algorithm 2.1 on page 106 in Aho and Ullman, Volume I. 
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EXAMPLE Let us again consider the example given in section 5. 

Ll: s = n!; 

L2: {while . . . } 

L3: s = {s}; 
L4: end while; 

The flow graph for tracing the value of s 1 in the forward 
direction is: 

e 

To trace the value of s 1 , the modified algorithm proceeds as 
follows: (for the sake of convenience, we write x(q} for 

is (q)) 
l 

(1) Initialize x(s1 ) = e, x(s3,l} 
-(2) 

(3) 

x(s1,1> = x(s3,1) I {e} 0 x (s1) 

-x(s3) = x{s 3) I {3} 0 x(s3,l) = 
(4) Since s 3 may 

the NFA for 
be a self-dependent 

is (s3): 

3~3 

= ~, x(s 3) = ~ 

= ~ I e = e . 
~ I 3 = 3. 

ovariable, construct 
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(5) 

(6) 

x(s 3 , 1) = x(s3 , 1 ) I {e}; x{s3) 

x(s3) = x(s3) I· {3}; x(s3 , 1 ) 

= 3*31 {3} o (e + 3*3) 

* * 

* = e + 3 3. 

= 3 3 + 3 + {33 + 3) 3 + 33. 

* * * (7) Since 3 3 = 3 3 + 3 + (33 + 3) 3 + 33, the procedure 

converges. 

One difficulty of this approach is obvious from the above 

example. The algorithm is liable to generate long and unintel

ligible regular expressions. Since deciding the equality of 

two regular expressions is an exponentially difficult problem, 

this approach might not be feasiable in implementation terms. 

(The next step to be taken in this direction is of course to 

look for canonical forms for regular expressions that are 

suitable for our purposes.) 

Note in passing that the crthis, crmemb, crpart functions 

can be computed directly from the NFA's constructed from the 
flow graphs. E.g. q + o (resp. q 3 + o, ••• ) if there is an 

edge from q too with label e (resp. 3, ••• ). So we have yet 

another algorithm for solving value-flow problems. In fact, 

this is preferable to the regular expression approach if 

there is a substantial nUIPber of self-dependent ovariables in 

SETL programs. 




