
SETL Newsletter 183

Some Revisions of Basing

S~antics and Implementation.

E. Schonberg
R. Dewar ·
A. Grand
J. Schwartz
December 16, 1976

1. It is often a useful and inexpensive to maintain

two or more representations of a single object. Accordingly,

we allow multiple repr's to be stated for a single object.

The suggested syntax is illustrated by

s: set (<Ebl, <Eb2 ,Eb3>>) , roap{Ebl}roap{Eb2} set (Eb3) ;

The implementation of this is unproblematical; the compiler

simply generates additional variable names, and assigns a

single repr to each of these names. In our examples would

be fragmented into two names s
1

, s
2

; source operations

changing s would be compiled into corresponding changes to

both s 1 and s
2

• In expanding an operation that used but

did not modify s, the compiler could choose to use either

s 1 or s 2 as input to the expanded operation; the object

form leading to the most efficient code would be used.

Similarly,.pperati6ns incorporating s into a larger object

will choose the most effective of s
1

and s 2 for incorporation.

Assignment of s to a variable g of type gener·a1 will be

implemented as an assignment of one of s 1 and s 2 (perhaps

always the first) to g.

2. The implementation of the present b
2

:base(Eb1) construct

will be modified so that, whereas a field for a pointer to

an element block of b
1

will always be reserved in each element

block of b 2 , this field will not be filled in until some

reference to an element block eb
2

of b 2 attempts to access

this field. When such an access is attempted, the required

element block eb1 of b 1 will be located by hashing (and

inserted into b
1

if necessary), and the field in eb 2 which

points to eb1 will be filled in.

SETL-183-2

When this is done, the value pointer in eb 2 may also be

modified to match that in eb1 • In the special· case in

which an object known to have Eb1 format is inserted into

b 2 , its eb2 field may be filled in at once.

An advantage of this scheme is that it lowers the

cost of initial insertion of eb2 into b 2 . This allows us

to base b 2 ?n more than

b2:base(Ebl, Eb31••->.
declare a repr constra

is to be preferered.

one other base, much as if we wrote

However, since we may also wish to

Note that this scheme allows 'circular' constructions

such as

(*)

wnich might for example create a base and a subbase which

point to each other. In this way, 'plexes' efficient for

certain purposes can be created. Note that if a construction

like (*) is used, we can fill in pointers from b1 to b 2
whenever pointers from b 2 to b1 are filled in, and vice-versa.

3. The former construction s:s·et{Eb}' is now perceieved

as redundant, since much the same effect can be achieved

by writing b 2 :{b)base, s:subset{b2} ~ This change also

has the beneficial effect of speeding up iteration overs.

Thus we will drop the set-of-elements construct. This makes
the syntax set(Eb) that we formerly used for set-of-elements

available for what was formerly written as subset(b). Note

that each element block in a base will have a few bits

available for the storage of local subset indicators.

SETL-183-3

If a base b supports only a small number s 1 , .•. ,s2 of

local subsets (but no maps and no elements with Eb basing

other than iterators over local subsets based on b) then

there will exist no pointers to completely null element

blocks of b. In this case, the NELT field of the header

of b can be used to keep count of the number of totally

null blocks which the base contains; this count must be

updated whenever a destructive deletion operation is applied

to some sj. At the start of each iteration this count can
be compared to the hashtable size of~, and if1he number

of null element blocks is excessive the base can be rehashed.

By proceeding in this way, the density of null element

blocks can be held down to something in the neighborhood

of 50%.

