
SETL No::wslett0r no. 185

L2onard v.::in,?k

M3.rch 28, 1977

USING OUTPUT FROM THE SETL COPY OPTIMIZER

The =opy optimization phase of the SETL optimizer

tr.:a.nsmits the r::-a.sults of its analysis via "copy state"

descriptors attach~d to each argument ot the quadruples of

intermediate code. These descriptors arP accessed via the

CJ?YFLA; map, whi:h maps variabl~ occurenc~s to one of five

v1lu~s indicating how the codP gen~rator is to emit code for

the? quadruples. ·rh,;_,se five copy st3.tes are:

NOCOPY - no copyinq or share-bit manipulation is don3

PRECOPY - copy before a destructive use

POSTCOPY - copy ~fter a valu~ transmission o~eration

SEfSHRT\IT turn on the share-bit after a value

transmission operation

TESTSHRBIT - if th8 sha.r0-bit is on,

destructive use

:::opy before a

For the first and second arquments of a quadruple,

thers exist oocoies which allow any of these states to be

realizej. For the third argument - which can never be used

1sstructively - PRECOPY and TESTSHRBIT will naver apply.

SETL N'?wslstter #185 2

If for some:c: ar':Jument (occurenc~) A,

C)?YFLAG (l'l) = P0SfCOPY then after the execution of the

instruction containing A,

~J:-,at is, A ruust be a new

A must have an isolated value.

(unshared) copy of its value. The

S::imF' is true when COPYFLAG{.l\.) = PRECOPY, ti-:>wE:ver in this

case th0re is an aiied requirement resulting from thP fact

that A is bein9 us<?a ,'les+-.ructively. The copy 02eration must.

h? carried out befors tLs instruction is sxPcutea.

If COPYFLAG(A) = SETSHRBIT, the copy optimizer has

concluded that A may ultimately need to be copied but thG

iecision to copy can be postponed until run-time by using

the share-bit m0 cbanism [NL1ij4J. In this case (which is the

conilitional form of POSTCOPY) after the instruction is

execut0j the share-bit ~f A is turned on;

shar0-bit retains its original value.

otherwise, the

If COPYFLAi;{A,) = TES1'SHcrnir 1.t is possibl,;, thdt A may

used destructively in safety, hut only a test of A's

share-bit will c0nfirrn or "leny this. HencP, if the

share-hit is set th~ value uf A will be cooied before A is

modi f if'j. This is the conditional form of th2 PRECOPY

conditior,.

Filially, if COPY FLAG {A) = NOCOPY, A C3.D be• used

diri:;:ctly .. ith there b"'in~ no need to copy it. or mdKe use of

its sl:iar.:::;-bit.

3

The foll~wiug ~xampl2s illustrdte how th0 coi.e

J"'nercltor dill US'? th•? COPYFtAG.

I\ = B with C

1 • Copy t 1 :1 g (3) = PRF:C0PY copy£ lag (C) = P0STCOPY

T = f3

B = r::opy (B)

A = T with C

C = copy{C}

2. Copyflag (B) = TES'l'SHctBT'I copyflag (C) = SET SH RBI r

T = 11

'F l .. sharebit (B) then B = copy (l:3)

A = rr, wi<:h C J..

setsh 3.r(';hi t {C)

3. Copyflag (B) = NOCOPY cop yf Lig (C) = N 0C0J?Y

A = R with C

No oth2r copy states ar3 possible for this opcode.

SGTL Newsl2tter #185

F(X) = Y

4. Copyfl:iq {F) = PRE COPY copyflag (X) = POSlCOP Y

copyflaq(Y) = SElSHRdIT

r.,=r:opy(F)

F (X) = '£

X = copy(X)

se+.shar1::bi+. (Y)

4

~ote that there is no need to use a t~mporary T when

the PRECOPied argnm9nt is th>?. first {output) argument. 'rhis

is bs:ause for all such cases, the operatioL is a sinister

afsiqnmeLt, which kills the old valug of its first argument.

5. C::>pyfl:1.g (F) = TESTSHRBIT

C::>pyflag (X) = copvflaq (Y) = ~OCOPY

6. A = B

if shar0bit (F) th•?Il F = copy (F)

p (X) = y

copyflaq(A) = copyfl1q(B) = POSTCOPY

,l\ = i3

A = C'.)py (A)

B = copy(B)

s P "..'L n c w s 1 e t t "? r # 1 3 '1 s

7. A= arD B copyflaq{A) = POSTCOPY

A = rtr b S

l\. = co PY {A)

t Ii i s o n e r ;ci t i o n B is neither modified nor

transmitte3, so its copyflay will always be NOCJPY.

rlie following fr1gm2nt of a SF~rL progn.m summarizes th-2

op?ration of ~ code qenerator which uses thP copyflag to

minimiz2 copying operations. Regardless of the semantics of

the opcode of the quadruple heing processed, the ~uadruple

will b8 written a.s "A = B op C".

case copyflag(A) of

(PREC8PY) !

(TES PSHRBI r)

else

end case;

0mit {A = copy (A));

2mit(if sharEbit(A) th.;;;n A= copy(A))

noop;

case copyflaq(R) of

(PRECOPY):

(r ES TS Ii RBIT)

else

end case;

emit(T = 13);
emit {R = copy (3));
•?mit (A = T op C);

emit (T = B) ;
.::, m it (i f s ha re bit (B) t n e n B = co p y { B))
~mit {li = T op C);

:?mit(A=Bo~C);

S~Tt Newsle~ter •1dS

case copyflag(A) of

{POS!'COPY):

(SET SH P. & IT} :

else

end case;

"ITlit {A = copy (A)};

0 mi t (s -:::,t s ha r E bit (A}) :

:10op;

case copyflag(B) of

(POSTCOPY}: ~mit {B = copy {R));

(SETSHRBI T):

else

end case;

~mit(.set.sharehit (3});

1.oop:

case copyflag(C) of

(P O S 'i' C O P Y) : G rn i t { C = C :J f} y (C) } ;

(SETShRBIT):

else

end case;

,~rnit (s9tsharebit (C))

noop;

6

?A GE

f,

LI!B COL CARD#

15 1 9.H M AC H O D E F IN I T I O 'l S

4036

• DM;. E f
77 (1 1 [I

93) 1 t] '

115 ("' 0 12 \.,

196 D 1 '"l ARCH 29, 1977 1

211 L 0 35
215 p 2 6
227 T 1 '11:02'

BYTES HEMt\IN IN MACLI!3.

