SETL Newsletter no., 185
La2onard Vanek

March 28, 1977

USING OUTPUT FROM THE SETL COPY OPTIMIZER

The copy optimization phase of +the SETL optimizer
transmits the results of 1its analysis via '"copy stata"
dascriptors attach=sd4 to each argument of the guadruples of
intermediats code. These descriptors are accessed via the
COPYFLAS map, which maps variable occurencz2s to one of five
values indicating how tha code genarator is to 2mit code for
the quadruples. Thase five copy states are:

NOCOPY - no copyving or share-bit manipulation is don=2

PRECOPY - copy befors a destructive us=2

POSTCOPY - copy after a valu= transmission operation

SETSHRBIT - turn on the share-bit after a value

transaission operation

TESTSHRBIT - if the share-bit is on, <copy before a

destructive use

For the first and second arguments of a gquadrupl=,
there exist opcodzss which allow any of thess states to bhe
realized. For the third arqument - which can never be used

i

i

structively - PRECOPY and TESTSHRBIT will never apply.



SETL fNewsletter #1185 2

If for SOme argyument {occurencsa) A,
COPYFLAG (A) = PNSTCOPY +then after +the execution of the
instruction containing A, A must have an 1sdolated value.
That is, A must be a new (unshared) copy of its value. The
same 1is true when COPYFLAG{A) = PRECOPY, however in this
case there is Aan aided requirement resulting from the fact
that A is being used destructively. The copy operation nmnust

b=z carried out before the instruction is sxecuteda.

I1f <COPYFLAG(A) = SEISHRBIT, the copy optimizer has
concluded that A may ultimatrely need to be copied but the
dacision to <copy can be postponed until run-time by using
the share-bit machanism [NL1A4J. In this case (which is the
conditional form of POSTCOPY) after the instruction is
executed the share-bhit nf A is turned on; otherwise, the

share-bit retains its original value.

If COPYFLAG{R) = TESTSHRRIT 1t is possible that A may
bz used destructively 1in safety, but only a test of A's
share-pi+ will confirm or iAe2ny this. Hence, 1f the
share-bit is set tha value of A will be copied before A is

modified. This is the conditional form of the PRECOPY

conditiorn.

Fipally, 1if COPYFLAG{A) = NOCOPY, A can be used
directly With there b=ing no need to copy it or make use of

its share-bit.



SETL Newsletter #185 3

The following examples illustrate how the code

gsnerator will use the COPYFLAG.

Exaikples -

A = B with C

1. Copytlag (B3) = PRECOPY copvilag(C) = POSTCOPY
T =B
B = copy (B)

A =T with C

C = copy (C)

2. Copytflag (B) TESTSHRBIT copytlag{(C) = SETSHRBIT

H

T =B
if sharebit(B) then B = copy(B)
A = T with C

setsharebit {C)

H

3. Copyflag (B) NOCOPY copyflag(C) = NOCOPY

A = B with C

No other copy states are possible for this opcoda.



SETL Newsletter #7185 4

F{X) = XY

1
1

4. Copytlag (F) PRECDPY copyflag{X) POSTCOPY

copvilag{(y) SETSHRBIT

F = copy (F)

setsharebit (Y)

Nota that there i1s no need to use a temporary T whan
the PRECOPied argument is the first {output) arguement. This
is becaunse for all such cases, the operation 1s a sinister

assiqument, which kills the old value of its first argument.

5. Copyvflag (F) TESTSHRBIT

Copyflag (X) copvflag (Y) = NOCOPY

if sharebit (F) *then F = copy(F)

FUX)y = ¥

6. A& = B copvflag(h) = copy£flag(B) = POSTCOPY

A = 3
A = copy(h)

B = copy(B)



SETL MNecwsletter #135 5

7. A = arp B copyflag{A) = POSTCOPY
4 = arb B
A = copy(A)
For thiis operation B is neither modzfied nor

transnitted, so its copyflag will always be NOCOPY.

The following fragmant of a SEIL program summarizes the
operation of a code agenerator which uses the «copyflag to
minimlizes copying operations. BRegardless of ths semantics of

the opcode of thz quadruple bheing processed, the Jquadruple

H

will be written as "3 3 op C",

case copyflag (A} of

(PRECOPY) 3 amit {2 = copy(A));
(TESTSHRBIT): =2mit(if sharebit{d) then A = copy(d));
else noop;

end case;

case copyflag{(B) of

(PRECOFPY)Y : amit {T = B) :
2mit (B = copy (B));
emit {A = T op C);

{TESTSHRBIT) : zmit (T = B) ;

amit (1f sharebit{B) then B = copy{(B));
2mit{A = T op QC);

else 2mit (A = B op C);

end case;



SETL Newslshter #1385

case copyflag(A) of

{(POSTCOPY) : amit (A = copy(A));
{SETSHRBIT) : amit {s2tsharebit{A));
else n00p;

end case;

case copyflag{B) of

{PDSTCOPY) 3 2mit {B = copy{B));
{SETSHRBIT) amit(setsharebit (B)) ;
else noop;

end case;

case copvflag(C) of

(POSTCOPY): emit (C = copy(C)}) ;
(SETSHRBIT) : anit (setsharebit (<)) ;
else noop;

end case;



PAGE

6

LINE

35

coOL

3

CARD#

198

MACRO DEFINITIONS

4036

« DM SEF

77
93
145
196
211
215
2217
BYTES

U S ) -

1
1
0
1
0
5

1

Ul
L
12
'MARCH 29, 19771
35
6
*11: 021

REMAIN IN MACLIB.



