
SETL Newsletter # 186 April 21, 1977 

Syntax and Semantics of a Restricted Backtrack Implementation 
R. Dewar, J. Schwartz 

If SETL is provided with some limited degree of backtrack 
capability, it willbcpossible for us to program pattern-matching 

operations of the SNOBOL type. This is a potentially significant 
semantic extension, especially if backtracking can be handled 

in an acceptably efficient manner. The present newsletter 
will try to define a set of backtrack primitives and an imple

mentation for them which meets these criteria, and which in 
addition implies only minimal changes in the system developments 

currently under way. 

The discussion of backtracking in NL 166 should be 

consulted, even though the present newsletter will modify 
earlier suggestions very considerably. 

A. Semantic primitives. Nondeterminism is introduced 
via the selection primitive 

(1) 3s • 

Ifs is a set, this selects an element from s, nondeterministi-· 

ctlly. If s is a tuple, bitstring, or character string, it 
selects a component nondeterministically, but in increasing 

:Order. If s is a positive integer, it selects an integer 
between 1 and s, nondeterministically, but in increasing order. 
(1rhese last selections are nondeterministic in that they can 
be backtracked to and changed.) 

Ifs is ni, nult, nulb, nulc, or a nonpositive integer, 

selection fails. This rule makes a separate fail operator 
81.'lperfluous; however, such an operator will be provided anyhow, 

£or reasons of clarity and efficiency. 
The backtrack implementation outlined in NL 166 assumes 

that all variables will be backtracked when failure occurs, 

and is devised to preserve efficiency even in the face of 
this assumption. In the present NL, we shall make the rather 
different assumption that only a relatively few variables will 



SETL-186-2 

be backtracked on failure; this should allow a reasonable level 
of efficiency to be secured by much less drastic modification 

of our present implementation. 
The set of variables to be restored on backtrack will be 

d~fined statically. For· this purpose, we introduce local and 
global backtrack declarations. Global backtrack declarations 
occur in the same place as~ declarations in a module, and 

have the fonn 

(2) 

where v 1 , ••• ,vn is a list of variables. Local backtrack 
declarations have the same form, but occur within subprocedures. 

We also provide a local noback declaration, of the form 

(3) 

The set of variables whose values are restored on failure back 

to a point P of nondeterministic selection are those which are 
in backtracking status at the (textual) location of P. If P 

occurs in the scope of (2), (3), and a local backtrack declara

tion listing w1 , ..• ,wk; then the variables backtracked are: 

{v1 , ••• ,vn} + {w1 , ... ,wk} - {u1 , .•• ,um} • 

The static character of (2) and (3) implies that all sets 
of variables which can simultaneously be in backtrack status at 
any manent during run time are known at compile time. The 
compiler can therefore associate each such set of variables 
With a pointer to the block of code which will backtrack the 
variables when this is necessary. (Additional details 

concerning this backtracking action are giver below.) 

We allow the nondeterministic boolean valued expression 
~ as an abbreviation for 3<true,false>. In addition, we 
introduce a closely similar but not identical nondeterministic 
boolean primitive okok, whose semantic specifics are as follows: 

•• 



SETL-186-3 

~ 

i. Each use of okok as an expression initially yields 
the value~, and also creates an identified backtracking 

environment which one can either fail out of in the normal 

manner or stabilize on success. To stabilize such an environ

ment, we execute the statement 

(4) accept; 

This abolishes the topmost remaining backtrack point established 
by a previous execution of okok as an expression, together with 

all backtrack points stacked above it. 

ii. When one fails back to an okok point backtracking 

of variables takes place in standard fashion, the backtrack point 

established by the~ is deleted, and the okok is made to 

return false. This rule establishes a certain symmetry between 
the treatment of failure and success returns to an okok point, 

but in the rare case in which there is a variable v in back
tracking status at the moment of evaluation of the okok but not 

imme:liately before this moment, it has the consequence that 

Changes to v made along the failed path from okok = true will 

not be propagated back to earlier environments, whereas changes 

to v made along the path from okok = false will, even if one 
backtracks to an earlier environment in consequence of a 

subsequent fail. 

A typical pattern in which okok was used might be 

(5) if okok then 

else 

oode exploring a certain alternative; 
/* suppose that if we arrive here the alternative 

was correct*/ 
accept; go to L_success; 

E to L_failure; 
end if; 

.. 



SETL-186-4 

In addition to accept, we introduce a statement 

(6) reject; 

which fails immediately all the way back to the last preceding 

okok point • 

. B. Implementation Approach. 
We will describe a relatively high-efficiency, highly 

compiled implementation. Of course, a somewhat less elaborate, 
slightly more interpretive variant is easily possible. 

2. Rather than simply containing return addresses and 
values stacked on calls {as at present), the stack will 
contain a sequence of areas with the following general layout. 

low return backtrack call return backtrack call 
••• 

hig: 

stack . . . 
area. 2 n-

area 1 n- area. 1 n- area n-1 area n 
Here, each backtrack area will ·contain stored n 

values of variables which might need to be backtracked to 
re-enter the n-th active environment, and call arean contains 

the values of variables stacked by execution of calls in this 

environment. The return areas contain information needed to 

\indo returns made in later environments. 

arean 

ii. To execute a non-deterministic selection or an ok, 
we proceed as follows. Let the set of variables momentarily 
being backtracked be v1 , ••• ,vm, and suppose for example that back
tracking is initiated by an evaluation of 3S. We establish 

a new backtrack area on the top of the stack. In this area 

we save a copy of s, an iterator x referencing the first value 
Of s, and also the values of v1 , ••• ,vm; plus various utility 
pointers to code and to other system objects as described 
below. The share bits of x,s,v1 , ••• ,vm are set in the symbol 
table and on the stack. This initiates active environment n+l. 

Subsequently, to re-enter environment n+l at its logical 
'backtrack point', we first use associated fragments of return 

areas to undo the effect of subroutine returns (with no match

ing calls past the backtrack point) that may have occurred 

.. 

stac: 



SETL-186-5 

in the environment subsequent to this backtrack point (a 

process that will be described in more detail below}. Then 

we restore the values of the variables x,v1 , ••• ,vm from back

tracking area n + 1 , and advance the iterator x. (However, 

if the backtrack point was established by an okok, it is 

abolished by popping the stack.} 
iii. Call operations are handled in the normal way, 

by placing the values of all variables stacked by a called 
procedure (including its current parameters} on top of the 

stack, transmitting parameter values, and ir•itia.lizing symbol

table values of nonparameter variables ton by setting 

their is_undefined bits. This can be accomplished most 
efficiently by providing each procedure with pre-compiled 
ma.chine-level 'stack' and 'unstack' entries, jumps to which 
cause in-line stacking and unstacking sequences to be 
executed. 

Handling of return operations is more complicated. 

Some return operations, namely those which occur when call 

information is on top of the stack, are handled in the normal 

way (essentially, invoke the 'unstack' entry of the current 
routine). However, to handle a return which occurs when a 

backtrack area lies atop the stack we proceed differently. 

Instead of simply restoring the values of all stacked variables 

and popping the stack, we locate the last call area on the 

stack. This references the routine from which we are provi
siona11y returning, and holds the pre-call values of all its 

variables; the symbol table holds the current values of these 
variables. We interchange values between the symbol table 
and the topmost fragment of call area; this converts this 
fragment of call area to a fragment of return area. All the 

return area fragments of the group F1 , ••• ,Fk created by 
return operations executed when a given backtrack area B 
is on top of the stack are held on a list associated with B. 
Each new return performed when Bis atop the stack adds a new 

Pk+l to this list. 

-



SETL-186-6 

The interchange operation which creates a new Fk can 
be handled most efficiently by providing each subroutine 

with an associate 'swap entry', which when invoked inter

changes relevant variables between the symbol table and 

a designated stack area. 
In general, it should be possible to handle all returns 

simply by jumping to a code address planted on top of the 

stack. 

iv. Whenever we fail out of an environment, all the 
calls and returns which occurred subsequent to the opening 
of the environment, and all changes to variables in backtrack 

status, must be undone. We accomplish this as follows: force 

returns from all calls stacked above the backtrack block 
representing the environment (which is topmost): then, proceed
ing down the chain of return· fragments associated with a 

backtrack block in the order Fk, ••• ,F1 , interchange 

all values held in the return fragments with the corresponding 

values held in the symbol table. This will restore portions 
of one or more return areas to the adjacent call areas. 

Finally, restore all backtrack variable values by 

moving values from the backtrack area to the symbol table, 
and pop the backtrack area. 

Note however that the values of variables which are 

neither in backtrack status, or stacked by a call or a return 
out of which we are backtracking, are not restored when we 

fail out of an environment. 
v. Pointers to the topmost call currently on the stack, 

to the topmost backtrack block, and possibly also to the topmost 
backtrack block of okok type are always accessible. 

Each backtrack block points to the last previous backtrack 

block. (A small optimization in the handling of backtracking is: 
attempt to advance before restoring variables. If advance fails, 
check last preceding block for identical restoration routine 
before actually doing restoration.) 

.. 



SETL-186-7 

vi •. To handle the accept statement, we pop the stack from 

the topmost backtrack block down to the topmost backtrack 
block of okok type. To handle the reject statement, we force 
a chain of fails back to and just past the topmost backtrack 

block of okok type. 

c. The SNOBOL primitives. 

A forthcoming newsletter of s. Rapps represents these 
systematically in terms of general nondeterministic primitives. 
In general, our approach will be: 

a. To reserve a variable name, e.g. matchcursor, at the 
system level. An implicit global declaration putting this 
variable in backtrack status is always assumed. By• treating 

. _this variable in a special way we can gain some efficiency 

advantages. A global variable matchstring, not backtracked, 

is also assumed. 

b. Provide a small library of string-oriented operators 

taken from SNOBOL. This will include variant of any, notany, 
len, span, break; also an exactly operator such that exactly 
'XYZ' matches 'XYZ' and nothing else. These routines will all 

exemplify the way in which we shall treat patterns, namely 

as functions which access matchstring and matchcursor, and 

which either return a string,or fail. They will be optimized 

~n the following ways: 
i. The string catenate operator will check its arguments 

to see if it is handling two adjacent substrings of the same string. 
If so, it will preform a fast catenate, simply by producing a new 

string specifier. Similarly if one of its arguments is nulc. 

ii. Calls 

any string 

will be handled roughly as 

if string= savestring then return realany converted; 
else savestring=string; converted=convert string; 

return realany converted; 

Here, convert produces a bitstring representation of a set of 
characters (using machine level character codes), and realany 

.. 



.. 
... 

SETL-186-8 

works from this. The operations ·no·ta·ny, span, etc., will be 

handled similarly. 

With these fundamental primitives working at high efficiency, 

we should be able to attain a reasonable fraction of the speed of 

SPITBOL. 

We can also use a se·tu;e s; macro, equivalent to 

matchstring = s; matchcursor 11 

D. A Few Syntactic Suggestions 

To come close to the elegance of the SNOBOL alternative 

and ~..RBNO constructions, we need to think about syntax. A full 
expression-language approach may have advantages, but here , 
we shall only explore certain more conservative possibilities: 

i. Introduce-a stacked, blank-named variable, local to 

the procedure or begin-end block (see below) in which it occurs. 

This makes it possible to evaluate an expression merely for its 
side effects, simply by writing an assignment,= ezpn,to the 
b1ank variable. 

ii. Introduce a begin code end block. Syntactically, 
-this is an expression; its value is the current value of the 

blank variable. We can exit from such a block either by a jump 

~which kills its value), or by a return, or by executing its 

end statement. Then the standard value language construction 

statement; statement; statement; expression return L: 

J,ecomes simply 

es 

statement; statement; statement;= expression; return; L: 

This allows us to write a close equivalent of the SNOBOL 

(pat1 arbno{pat2) pat3) $x 

-{2) x = pat1 1BEGIN auX:=riulc; (while not ok) auxlpat2 ;;=aux; 

ENDlpat3 • 



, 

SETL-186-9 

In this context we can also allow BEGIN to be abbreviated as 
[:, and END as]. Note .then that ARBNO is simply a macro for 

BEGIN aux=nulc: (while not ok) auxl pat;; =aux; END~ 

and that if no assignment is to be performed (2) can become 

(2.) 

b. To handle alternatives, we need some kind of short-form 

'case expression', for which we suggest 

(3) 

If m lies in the range l,.~.,k, the effect of this is to select 

· expnm for evaluation_ and return its value; otherwise it· fails. 

This allows the SNOBOL alternation 

to become 

and we might even allow the redundant k to be elided (here 
and in the corresponding~ statement) to give 

-


