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In this newsletter we spggest a possible modification of the 

data-flow maps in the presence of subprocedures, and show how these 

modified maps can be utilized in further global flow-analysis. 

I. Introduction 

The inter-procedural data-flow analysis consists of several 

phases. The first phase establishes the call-graph of the program, 

which may not be straight-forward, because of possible procedure

variables, map retrieval interpreted as a function call, partial 

compilation, etc. The second step obtains local information for each 

procedure P, including the sets defsof(P), usesin(P) and thru(P), 

defined in NL134 p.9. This information is already of an inter-procedural 

nature, and may require some iteration on the nodes of the call graph 

in case of cycles (recursive calls) in the graph. 

The guiding principle for these phases is to obtain only safe 

information, i.e. - any plausible algorithm should yield only over

estimation for the edges of the call-graph, for defsof, usesin and thru. 

We also assume that intra-procedural analysis has been carried out 

for each procedure~ Taking the bfrom-map, for example, we assume that 

for any ivariable occurence i of a variable x in any procedure P, we have 

a modified set, auxbfrom(i), which contains 

(a) the occurences of x in P from which i can be reached via a 
x-free path. 

(b) the calling points in P to other procedures which mi~ht use 
or define x, and such that there is an x-clear path fro□ 
these calling points to i. 
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.(c) the entry point of P, if i can be reached from this point 
via a x-clear path. 

Note that this analysis.is performed simultaneously with the previous 

phases and may too require iteration in case of recursive procedures. 

Before describing the kind of global, inter-procedural, infor

mation we'd like to derive from the above~ let us first consider some 

examples: 

(1) The simplest and most common exa~ple is - two procedures, A, B, 

each calling a third procedure C. The following diagram shows such 

a case: 

A B 

C 

K: call C L: call C 

In this situation, bfrom(y4) and bfrorn(y
5

) should both include y
3

, and 

and ·bfrorn(x
3

) should include both x1 and x 2 (We ~se the notation vk to 

indicate the occurence of the variable vat line 1k). However, during 

further attribute - flow analysis (type-finding, value-flow etc) we wish 

to avoid linking z 4 to x
2 

and z 5 to x1 • (through the above chainings of 

they occurences and the x-occ~rences). 

This situation is common enough to worry about. In fact, except for 

stylistic.reasons, the only reason to make a code fragment into a 

procedure is that it is invoked from several places in the prosra~. 

Remarks: (a) The same problem will occur if C is called from several 

points in A alone, so emphasis should be placed on particular calls, 

rather than more coarsely on the calline procedure. 
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!b} If, in the above example, we replace £ 4 and 2
5 

by z=x, then we 

could overcome our problem by replacing the bfrom map by the ud map • 
. . 

Indeed, realizing that x E, thru ( C), we can deduce that ud ( x4 ) includes 

x
3 

and x1 but not x2 , if we only carry out an intra-procedural analysis, 

making use of defsof, usesin and thru of each procedure. The reason 

for this is that by a direct evaluation of ud we take the transitive 

closure of bfrom in a sele'cti ve manner, making sure that after crossing 

to a called procedure, we go back to the same calling point only. 

(2} A single recursive procedure. For example: 

A B 

B 

K: call B 

In this situation, bfrom(y
3

) includes y4, and bfrom (x4) includes x1 . 

But y3 or z3 are never linked to x1 , but rather to x2 . Hence we have 

another instance of incorrect chaining. 

(3} Co-recursive procedures! For exanple 

A 

K: call B · M: call B 

Here, bfrom(y 5) includes y3 acd bfrom(x 3) includes x1 ,x2 ,x 4 . 

However, z 5 can not be linked to x2 but only to x1 , x4 • 
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-Unlike the first example, the last two cases may be adjudged uncomnon 

enough to ignore the problems they raise and be satisfied with the 

standard over-estimated data flow. Nevertheless, the algorithm that 

we shall now suggest will be able to handle these general cases as 

well. 

II. The modified bfrom map and its applications. 

It is clear from the examples above that some kind of trace-back 

information ought to be kept during attribute-flow analysis. We 

propose the following format for a modified bfrom map: Let v be an 

invariable occurence of the variable x in a procedure P. Then bfrom(v) 

contains all ·elements of the form u(w), _ where u is an occurence of x 

anywhere in the progra,m from which v can be reached via a x-clear path, 
/ \, ~ 

and w is a (possibly empty) string of procedure-call points, preceded 

by procedure-return points, such that 

(a) all the procedure-calls and procedure-returns in ware executed 

(in the order from left to right) along the path from u to v. 

(b) No other calls or returns are executed along this path, except for 

complete calls (i.e. - a call followed later by a return to the same 

place). 

(c) all procedure returns in w precede all procedure-calls. We denote 

a call from a statement K by K itself and a return to K by K-1 • 

Examples: Consider the above 3 examples. 

(1) bfrom(y4 ) = { y
3

(K-l) } 

bf'rom(y 
5

) = { Y3(L-l) } 

_ bfrom(x
3

) = { x1 (K),x2 (L)} 
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(4) In the following example, 

A B 

K: call B f1
1: 

x=l 

C 

L: call C f12' y=x 

bfrom(x2 ) = { -1 x1 (K L)} 

Let us introduce some notations at this point. A.string of 

calls and returns which satisfies (a)-(c) for some path in the 

program is called proper. i.e. - except for missing complete calls 

(cf. (b)), the proper strings represent all possible tra.~sfers of 

control between procedures along execution paths in the progra~. 

Clearly, if complete calls are ignored, then the general form of 

such a transfer of control is: some procedure returns :followed by . 
some procedure calls. We shall see later that the algorithm becomes 

more efficient if complete calls are ignored. 

-1 -1 -1 Additional notations are: if w = K1 K2 .•• Km L1 L2 •• Ln is a 

proper string, then define calloart (w) = L1L2 ••• Ln and 

returnpart (w) 
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It is easy to obtain this bfrom map from the information already 

obtained (auxbfrom, defsof, usesin, thru etc.) in precisely the same 

way to obtain the standard bfrom. One has only to update the string 

of returns and calls every time procedure boundaries are crossed. 

The appropriate way to utilize this modified bfrom is during 

any attribute-flow analysis. Suppose that the attributes appearing 

in such an analysis form a lattice L. Let us define a primitive 

trace-back attribute as a pair (a,w), where aEL and w is a proper 

· string of returns and calls. The heuristic meaning of (a,w) is as 

follows: the variable occurence to which (a,w) is ascribed can have 

attribute a if the occurence is encountered after executing a program 

path corresponding tow. A general trace-back attribute is defined as 

a finite disjunction of primitive attributes, in the form 

v(an,wn) with a similar meaning, and with the simplificatio:-: 

that whenever w.=w., we replace (a
1

,w
1

)V(cx.,wj) by (a.Vcx.,w.) and that 
1. J l. 1. J 1. 

if a1=a2= ... = an =ex and w1 , ... ,wn are all the possible t~ace-backs for 

this variable occurence, we simply replace this attribute by (cx,e). 

(Evidently there are other similar simplifications which can be applied 

but they would complicate the algorithm). 

Let us recall that in general attribute flow algorithms prop.agate 

attributes in four basic ways (cf. Vl). We shall show how to I!lodify 

each propagat~on rule when the modified bfrom map that we have described 

is available: 

I. FWD(+): In this case we have an instruction o = 1 1 op i~, and ... '-

we want to find the attribute of o from the attributes of 1 1 and 1 2 . 

Suppose that (a1 ,w1 ), (a 2 ,w2 ) are primitive attributes of 11 ,12 

respectively, and that a = forward (a 1 ,a 2 , 2..e.) is the standard 

attribute derived for o in this instruction. 
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Let us say that w
1 

and w2 are conpatible if there exist two 

·corresponding paths in the program flow such that one of them is 

a.tez-minal subpath of the other. Thus, in example 3, KLM and M 

are compatible; whereas KLM and K are not. 

Thus, if w1 and w2 are compatible, and w2 has a shorter 

program path than w1 , th~n as we execute the path corresponding to 

w1 , both attributes a 1 , cx 2 become effective, and hence (a,w1 ) can 

be correctly taken as a primitive attribute of o. It is also clear 

that if w1 and w2 are not compatible, then no inference about the 

attribute of o can be made from a 1 and a 2 . Let us denote by max(wJJ.,r2 ) 

the one with the larger program path, and similarly define min(w1 ,w2 ). 

In this way the attribute of o is computed. If (ex 1 , w1 ) _is a 

primitive attribute of i 1 for which there is no primitive attribute 

(a2 ,w2 ) of 12 such that w1 ,w2 are compatible, we add (o,w1 ) as a 

primitive attribute of o (0 is the zero, or error attribute). 

Note that in the second pass of the typefinder, e.g., we will 

want to compute the conjunction of the attribute of o with the above

calculated attribute. The appropriate rules for this are as follows: 

. 
(b) If wi and zj are compatible, and, say, w1 is their minimum and 

zj is their maximum, then 

other~ise, the conjunction (cx~w1 )A(Sj,zj) is ignored. 

Exactly the same rules apply to the BACK(+) propagation, where the 

attribute of an ivariable ls determined by the attributes of the 

other occurences in the instruction. ___ , / 
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Before proceeding further, let us make some comments on 

compatibility. Let w, z be two proper. strings, and let a=callpart (w), 

t=callpart(z). The somewhat weaker condition that we shall use for 

compatibility 1s: 

(a) If cx=S then wand z are compatible. Any of them may be taken 

as their minimum or maximum. 

(b) If cx=}:B and ex is a terminal substring of a, then wand z are 

compatible, min(w,z)=w and max(w,z)=z. 

(c) Otherwise wand z are not compatible. 

This criterion is necessary but by no means sufficient, and may lead 

to an over-estimation, as the following example indicates: 

(5) 

A 

k:call A L:call B 

~/ 
I 11 :x=o 

M:call C 

Here bfrom(x
3

) = {x1 (K-1M)} and bfrom(y
3

)= {y2 (L-1M)}. 

According to the above criterion, K-lM and L-lM are compatible, though 

there is actually no program path for which z is defined. 

The trouble stems from the fact that we have ignored complete calls 

in the proper strings. If we allow trace-back strings which contain 
-1 -1 also complete calls, i.e. strings like K LL M, then the correct 

criterion for compatibility is that one string is a terminal substring 

of the other. In this case, K-1r,1 and L-1M in exar:iple 5 are not compatible. 

However, in the following example: 
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(6) 

K:call A 

L:call B 

u=x 

y=o 

we would have, according to the tentative suggestion just made, 

bfrom (x
3

) _ 

· · b from ( y 
3 

) = 

· { x
1 

(K-1LL -l )} 

.. { y 2 ( L -1 ) } 

and we shall correctly determine that K-1LL-l and L-l are compatible. 

However, including s-crings with complete calls would complicate the 

algorithm considerably, since we shall have to keep and calculate 

redundant trace-back in£ormation for many variables, for the chance 

that they might interact with variables for which this trace-back is 

meaningful. Indeed, in example 6, u4 will have the attribute of x1 
with the trace-back K-1LL-l which is clearly not useful. Besides, 

our tentative suggestion complicates the computation of bfrom, since 

we would also have to consider branching to procedures which do not 

modify the variable at all! 

For these reasons, we propose to accept the ~ver-estimation 

produced by the above criteri?n for compatibility. There is another 

way, however, to overcome the above problem. This is to conpute for 

each pair of calling points in the same procedure, which of thee can 

be the successor of the other in the flow-graph. Then the correct 

criterion for compatibility is as follows: 
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(a) If a=e, let returnnart(w) = J-lJ-1
1 .•. J-1

1 
---~·-- m m-

-1 -1 -1 and returnpart (z)=K K 1 ..• K1 • Let r be an index such that 
n n-

K1=J1 for all i<r, and KrjJr. If no such r exists, then it is 

obvious that one of w,z· is a terminal substring of the other and they 

are compatible, with obvious definitions of their maximum and minimum. 

If such r exists, then it is easy to check that Kr and Jr occur within 

the same procedure. Now, if one of them can be the successor of the 

other, then wand z are compatible, and if say Kr follows Jr in the 

.flo\·r-graph, then rnax(w,z)=w and min(w,z)"=z. On the other hand, if 

neither of K ,J can follow the other, then wand z are not compatible. 
r r 

(b) and (c) are the same as above. 

II. BFRM (f): In this case we calculate the attribute of an ivariable 

v as the disjunction of the attributes of all occurences in bfrom(v). 

The specific rule applied is as follows: 

Suppose that (a,\·1) is a primitive attribute of u(z) e: bfrom(v). 

We say the z is a p~op~r continuation of w if, after concatenating wl lz, 

and deleting from it iteratieely all consecutive pairs of the same call 

and return (i.e. of the form KK-1 ) we are left i·1ith a proper string of 

returns and calls. This string is denoted by \': • z. Then ( a, w· z) is 

taken as a primitive attribute of v. Otherwise (a,~) is ignored.· 

Example (1): Let attrib(x1 )=(1,e) , attr1b(x2 )=(2,e) (1,2 are any 

attributes and e is the empty ;tring) 

Then attrib(x3) = (l,K) V (2,L) (BFR..'l) 

attrib(y
3

) = (l,K) V (2,L) (FWD) 

a+-t-"'l...(·· ' = (l,e) (BPRr:1) ",...,_..., ~••J .. 
attrib(y5 ) = (2,e) (BFRM) 

Thus, the incorrect chainings have been avoided. 

/ 
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(2) Let attrib(x1 ) = (l,e) 

attrib(x2 ) = (O,e) 

attrib(x4 ) = (O,L) V (l,K) (BFRM) 

attrib ~<Y 4 ) = (O,L) V (l,K) (FWD) 

a~trib (y 
3

) = (O,e) {BFRM) 

--and again the correct chaining has been obtained. It can be easily 

verified that in example 3 too the algorithm yields the correct 

chaining. 

Note that if no bounds are imposed in flow-analysis we can obtain 

arbitrarily long strings. e.g. -

A 

x=n1 

K:call B 

B 

X =. {X} 

L:call B 

If in this example we do not restrict the nesting level of sets 

allowed, e.g., in type-finding we can produce attributes for x in B 

with strings of arbitrarily many L's. However,for practical purpose, 

it is reasonable to suppress. cyclic strings in the trace-back, i.e. -

7egard KLL as KL etc. 

III. FFRM (t): In this case we aim to obtain the attribute of an 

:occurence v as the disjunction of the attributes of all occurences 

u such that v e: bfrom(u), i.e. - u e: .ffrom(v), where the actual 

emodified definition of ffrom is: 

rrrom (v) = { u(z) : v(z) e:bfro~(u) } 

Jlere we apply the follwing rule: 
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Suppose that (~w) is a primitive attribute of u(z)E ffrorn(v}~ 

-1 -1 -1 -1 -1 1 Then, if z=K1 K2 .•• Km L1 ••• Ln, put z = Ln Km .•. K1 • If z- is a 
. ~1 

proper continuation of w, then (~,w~z ) is taken as a primitive 

attribute of v. Otherwise ( a, w) is ignored. 

-Again, this sometimes leads to an over-estimation. In example 

1 -1 (5), (O,K- M) is a primitive attribute of x
3 

and x
3

(L r-!) E ffrom(x 2 ). 

We shall thus conclude that (O,K-1L) is a primitive attribute of x 2 , 

h . hi i t N t h th t i"f K-lL th w ic s ncorrec. o e, owever, a were proper, en we 

would obtain a correct attribute. 
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Remarks: 

(a) The algorithm that has been suggested might also be useful in 

intra-procedural analysis, in particular, it can detect errors of 

a sort that would otherwise go undetected when at an instruction we 

unknowingly merge two floN paths which are not simultaneously 
. . 

executable. We can thus generalize the algorithm and carry trace-back· 

information during regular·flow analysis to obtain deeper results 

whenever it is desirable to do so. 

(b) If, after completing the analysis, we find variable occurences 

with two or more possible attributes, we might produce conditional 

code which, depending upon the calling instruction from which the 

procedure was last called, utilizes the corresponding attribute of the 

occurence efficiently. 

{c) Actually, a simpler, slightly over-estimating algorit~m could be 

obtained if we define the trace-back strings to include procedure calls 

only (without returns), while retaining the same form of the bfrom map. 

This would make it easier to handle the strings, check for compatibility 

etc. while the loss of information will be about the same as in the 

above algorithm. More specifically - two strings w>z will be compatible 

if one is a terminal substring of the other, with natural simplified 

definitions of their maximum and minimum, whereas t·he appropriate rules 

for the BFR.M and FFRM propagations remain the same. 

• 
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