
SETL Data Structures

by

Stefan M. Freudenberger

SETL Newsletter Number 189B
Courant Institute of Mathematical Sciences

New York University

May 15, 1980

Revised October 23, 1982

This newsletter describes the data structures which are used for
the run-time systems of both the interpreted and compiled
versions of the SETL 2.1 system. It replaces SETL Newsletter 189
on the SETL Data Structures by Robert B. K. Dewar, Art Grand,
Edmond Schonberg, and Jacob T. Schwartz.

Most of the changes to the previous newsletter are in the
details, rather then in the general design of the data structure.
In the course of the implementation, however, a sufficient number
of differences developed to make this revision necessary.

Page 2

Table of Contents

1. Form of Storage ••••••••••.•...••.•..•••••••••••••.••••••. 4

1.1
1.2

Value Specifiers •
Data Words .

2. Typed Primitive Data .
2.1
2.1.1
2.1.2
2.2
2.2.1
2.2.2
2.2.2.1

Integers .
Short Integers
Long Integers

.
•

Strings .
Short Strings
Long Strings

.
•

Direct Format Long .
2.2.2.2 Indirect Format

Strings
Long Strings .

2.3 Reals .
2.4 Procedures .
2.5 Atoms .
2.5.1 Short Atoms .
2.5.2 Long Atoms .
2.6 Boolean Values •
2.7 Omega Value .
3.

3.1
3.2
3.3
3.4
3.5

4.

Untyped Primitive Data .
Untyped Integers .
Omega Untyped Integers .
Untyped Reals •
Omega Untyped Reals .
Skip Words •

Non-Primitive Data •

4
5

6

6
7
7
8
8
8
8
9

10
11
11
11
12
12
13

13

13
13
14
14
14

15

4.1 Tuple Formats •.. 15

4.1.1
4.1.2
4.1.2.1
4.1.2.1.1
4.1.2.2
4.1.2.3
4.1.3
4.1.4

. Standard Tuples
Special Tuples

Packed Tuples
Packed Values

Real Tuples
Integer Tuples

.
.

.
.

Null Tuples .
Pairs .

16
16
16
17
17
18
18
18

4.2 Set and Map Formats·•···••••·••··•····•·••••···•··•••• 18

4.2.1 Hash Table Structure . 19

Page 3

4.2.2
4.2.2.1
4.2.2.2
4.2.2.3
4.2.2.4
4.2.2.5
4.2.2.6
4.2.3
4.2.3.1
4.2.3.2
4.2.3.3
4.2.3.3.1
4.2.3.3.2
4.2.3.3.3
4.2.3.4
4.2.3.4.1
4.2.3.4.2
4.2.3.4.3

• Set Formats
Unbased Sets .
Base Sets . Plex Bases
Remote Sets
Local Sets
Constant Sets

• .
•

Map Formats .
Map Image Representation .
Unbased Maps
Remote Maps

.
. Remote Packed Maps

Remote Real Maps
Remote Integer Maps

.
.

Local Maps •
• Local Packed Maps

Local Real Maps
Local Integer Maps

.
5. Element-of-Set Format .
6. Iterator Formats .
6.1
6.1.1
6.1.2
6.1.3
6.1.4
6.1.5
6.2
6.2.1
6.2.2
6.2.3

Index

Set Iterators .
Unbased Set Iterators • . Base Iterators
Unbased Map Iterators
Based Map Iterators
Tuple Iterators

• .
•

Domain Iterators .
. Unbased Map Domain Iterators

Based Map Domain Iterators
Tuple Domain Iterators

.
.

•

22
22
22
24
25
25
25
26
26
27
27
27
28
28
28
28
29
29

30

30

31
31
31
31
32
32
32
33
33
33

34

SN 189B: SETL Data Structures Page 4

1.0 FORM OF STORAGE

As in the previous system, storage is arranged as a contiguous
sequence of "words". Each SETL word may be composed of one or
more machine words depending on the machine word size.

The SETL word (henceforth simply called a word) is capable of
holding a pointer field plus 7 additional bits. If more bits are
available, they can be made use of in various situations.

There are basically two word formats:

value specifier: A one word quantity used to hold (directly
or indirectly) a SETL data value. These
correspond to the root words of the old
system.

data word: In some cases, value specifiers are used to
point to data blocks consisting of one or
more data words in a data type dependent
format.

1.1 Value Specifiers

A value specifies a data value in the SETL system and has the
following uniform fields:

is om:

type:

value:

is shared:

Flags undefined values (Omega values, see
section 2.7.)

A field giving the type code of the value.
This field must be at least 4 bits long,
but may be longer if convenient for
efficient access. It contains a system
constant value (whose name is of the form
T xxx) which indicates the type.

This field contains either the data value
or a pointer to a data block in the heap
containing the value. The type code (in
the type field) indicates which of these
two forms is used and the exact
significance of the value field.

A flag which is set in
indicate that the value
shared and that the value
before it is modified.

a specifier to
referred to is

must be copied

SN 189B: SETL Data Structures Page 5

is_multi: A flag used in map formats to indicate that
an entry is for a range set (rather than a
single range value).

The IS_OM, TYPE and VALUE fields are adjacent and in that order.
The following composite fields are defined:

otype:

tvalue:

otvalue:

1.2 Data Words

is_om + type

type+ value

is_om +type+ value

Certain data values (large primitive values and all composite
values) cannot be represented by a single value specifier. These
values are represented by one or more data words which are
pointed to by the value field of the specifier. Such a
collection of data words is called a data block.

Each data block is regarded as an entity by the garbage collector
and there is a standard header at the beginning of each data
block for use by the garbage collector. This header has the
following fields:

htype:

blink:

hsize:

A unique code for the type of data block
(H XXX)

Pointer field for use by the
collector

garbage

Field for use by the garbage collector in
dead blocks to record the size of the next
live block.

As with all fields in data blocks, the position of the fields
(word and bit offset) is a function of the implementation,
subject to the requirement that all pointers have the same
position in a word (i.e. they correspond to the standard field
STD PTR in each LITTLE word).

HLINK is used to build back chains by the garbage collector. See
garbage collector description for full details. Since the
garbage collector traces pointers from the symbol table, HLINK
may contain any value outside the range (SYM_ORG •• H ORG), and the
garbage collector preserves this value. Note that this peculiar
range is based on the fact that the symbol table precedes the
heap in physical memory.

During the garbage collection process, an additional field called
HSIZE is used in dead blocks only. Since this field is not

SN 189B: SETL Data Structures Page 6

needed in active blocks, it may overlap other fields {but there
must be room for it).

The format of the remaining data words in the data block is
dependent on the data type involved, and is interpreted as a
function of the specifier's TYPE field and the data block's HTYPE
field.

If more than one data word is involved, then there is typically
additional header information which {among other information}
gives or implies the length of the block.

The detailed format of data words is explained data type by data
type in sections 2.0 through 6.0.

2.0 TYPED PRIMITIVE DATA

This section contains details on the format of primitive data
items which do not contain component values {i.e. all types
except sets and tuples).

Every data value in the SETL system is represented by a value
specifier {often just called a specifier}. In some cases, the
data value can be completely contained in the specifier. These
values are called short items. In other cases, the value field
of the specifier contains a pointer to data words which describe
the data value. Such values are called long items.

Note that only the type and value fields contain or represent the
data value itself. All the other fields in a specifier are
independent of the data value and their use depends on the
context in which the specifier appears.

If there are short and long formats for the same data type, then
the value is represented in the short form whenever possible.

2.1 Integers

An integer in SETL is
the magnitude other
There are two formats
integer.

a signed integral value with no limit on
than that imposed by memory constraints.

for integers. called short integer and long

SN 189B: SETL Data Structures

2.1.1 Short Integers -

Short integers range from o •• MAXSI, where MAXSI is
integer which will fit into the value field (i.e.
the value field set on). The specifier has:

type:

value:

TINT

unsigned integer value

Page 7

the largest
all bits of

The type field value (i.e. TINT) must be zero. This particular
value is significant since it allows for rapid coding of the
integer addition function.

The integer value ranges from Oto the implementation constant
MAXSI. Only small positive integers can be stored in this
manner. Large and negative integers are stored in long integer
format.

2.1.2 Long Integers -

The specifier for a long integer has:

type:

value:

T LINT

Pointer to an integer data block

An integer date block has the following fields:

htype:

blink:

li_nwords:

H_LINT

Not used (0)

Number of words in the integer data block
including the header.

The length of the header is given by the system constant HL_LINT.

The remaining words of an integer data block contain a signed
integer in a format which is convenient to the particular machine
and implementation. The details of this format are of
significance only to the long integer routines and are described
there.

The current CIMS implementation places an implementation
restriction on the size of an integer: the maximum signed
integer has to fit into one SETL word. It should be pointed out,
however, that this is an implementation restriction and not part
of the language definition.

SN 189B: SETL Data Structures Page 8

2.2 Strings

A string value in
characters. The
the implementation
case letters if
values:

SETL is an arbitrary length sequence of
exact range of possible characters depends on
environment, but should include upper/lower
possible. There are two formats for string

2.2.1 Short Strings -

Short string format can represent strings from zero characters
{the null string) to strings of length SC_MAX {an implementation
dependent system constant}. The specifier for a short string
value has:

type: T STRING

value:

sc_nchars:

sc_string:

subdivided into two fields as follows:

number of characters in string

string characters

The characters are stored left justified, right filled. The fill
character is binary zero. The length of a single character in
bits is given by the system constant CHSIZ.

N.B. While the current system includes short character strings,
they are nowhere generated or used. Instead, all strings are
represented as long character strings. Code found in the current
run-time library operating on short strings is out-of-date with
the current implementation of SETL.

2.2.2 Long Strings -

There are two methods of storing long string
between these methods depends on the
capacity. The library code has an assembly
determines the choice for a given machine.

2.2.2.1 Direct Format Long Strings -

values. The choice
implementation word
switch {SSI) which

This format corresponds to SSI being set off and is used if a
string descriptor as described here can fit into the value field
of a specifier. The specifier for a direct format long string
value has:

SN 189B: SETL Data Structures Page 9

T !STRING

string descriptor, consisting of:

Number of characters in the string

type:

value:

lc_len:

lc_ofs: Offset to first character in string data
block

lc_ptr: Pointer to long string data block

The data block which contains the actual string characters is
called a long string data block and has the following fields:

H_LSTRING

Not used (0)

htype:

hlink:

lc_nwords: Number of words in data block, including
header

The length of the header is given by the system constant
HL_LCHARS.

The characters are stored in the remaining area of the block in a
format which is implementation dependent and described by the
coding of the string manipulation routines. Note that the string
descriptor may reference only a substring of the string contained
in a long string data block.

2.2.2.2 Indirect Format Long Strings -

This format corresponds to the SSI switch being set and
if the three fields needed to describe a string cannot
the value field of a specifier. The specifier for an
format long string value has:

type:

value:

T !STRING

Pointer to string descriptor block

is used
fit into
indirect

The string descriptor is a pointer to an indirect string data
block which has the following format:

htype: H_ISTRING

hlink: Not used (0)

lc_len: Number of characters in string

lc_ofs: Offset to first character in string data
block

SN 189B: SETL Data Structures Page 10

lc_ptr: Pointer to long string data block

The length of the string descriptor block is given by the system
constant HL_IC. There are no additional data words in a string
descriptor block.

The data block which contains the actual string characters is
called a long string data block and has the following fields:

htype:

blink:

lc_nwords:

H_LSTRING

Not used (0)

Number of words in data block, including
header

The length of the header is given by the system constant
HL_LCHARS.

The characters are stored in the remaining area of the block in a
format which is implementation dependent and described by the
coding of the string manipulation routines. Note that the
indirect string data block may reference only a substring of the
string contained in a long string data block.

2.3 Reals

There is no provision for short real values since it is assumed
that the value field is too short to contain a meaningful real
value. However, it is assumed that a full SETL word will hold a
real value.

The specifier for a long real value has:

type:

value:

T REAL

Pointer to real data block

A real data block contains the following fields:

htype:

blink:

rval:

H_REAL

Not used (0)

Real value

The size of a real data block header is given by the system
constant HL_REAL. Since a real data block header is always
followed by exactly one data word, the size of a real data block
is given by the system constant REAL_NW.

SN 189B: SETL Data Structures Page 11

2.4 Procedures

The specifier for a procedure has the following fields:

T PROC type:

value: Code pointer for the routine code

The format of the code pointer depends on the form of the
executing program. For the interpretive version, it is a pointer
to a code data block. For the compiled version, it is an
external name whose absolute address will be suplied by the
target machine's linkage editor.

Note that SETL does not distinguish between functions and
subroutines. Rather, every routine returns a value, in the case
of a subroutine this value is the undefined value omega, and is
discarded.

A code data block in the interpretive version has the following
fields:

H_CODE

Not used (0)

htype:

blink:

codenw: length of code data block, including header

The length of the code data block header is given by the system
constant HL_CODE.

The rema1n1ng words in a code data
interpretable instructions. The length
given by the system constant INST_NW.

2.5 Atoms

block consists of
of one instruction is

An atom in SETL represents a unique value which can be compared
for equality but not otherwise manipulated. There are two forms
for atoms, called short and long atoms.

2.5.1 Short Atoms -

The specifier for a short atom value has:

type: TATOM

SN 189B: SETL Data Structures Page 12

value:

2.5.2 Long Atoms -

an integer in the range
uniquely identifying the atom

l .• MAXSI-1,

Long atom values are used instead of short atoms if the atom is
used in a plex base (4.2.2.3.)

The specifier for a long atom value has:

type:

value:

T LATOM

Pointer to long atom data block

The long atom data block contains the following fields:

htype:

hlink:

la_value:

la_form:

la_nlmaps:

la_nwords:

H_LATOM

Not used (0)

An integer representing a unique atom
identification. Note that since SETL has
an infinite integer range, the question of
overflow does not arise.

Pointer to the form table entry of the plex
base

Number of local maps based on this long
atom. For details, see the section on Plex
Bases (4.3.2.5.)

Length of data block, including header

The length of the long atom data block header is given by the
system constant HL_LATOM.

2.6 Boolean Values

In SETL, TRUE and FALSE are distinguished constant atom values,
and are stored in the same manner as any other short atom value.
The values for TRUE and FALSE are 0 and MAXSI, respectively.
However, when the SETL TYPE operator is applied to booleans, the
result is the string 'BOOLEAN'. Furthermore, the I/O routines
associate iT and #F with TRUE and FALSE, respectively.

SN 189B: SETL Data Structures Page 13

2.7 Undefined Value: Omega

The undefined value is called omega, noted as OM. and treated
specially. Its specifier has a TYPE and VALUE which correspond
to some proper defined value (of the appropriate type in the case
of an object with a REPR). The IS_OM bit of this specifier is
set to indicate that the value is undefined.

From the SETL language point of view, there is only one omega
value. The use of multiple representations of omega within the
library is useful in the case of based map and set formats, where
omega values can retain typing information. In addition, the
fact that omega values appear to have a proper value of the
correct type means that code which omits the IS_OM check always
produces results which, though they may not be correct, do not
result in failure of system integrity.

3.0 UNTYPED PRIMITIVE DATA

In addition to the typed data structures described in the
previous section, there exists untyped data which do not carry a
type code. Unlike any other data in the system, such values
cannot be identified by the bit pattern of their specifier. To
maintain the integrity of the environment so that the garbage
collector can operate correctly, the manner in which untyped data
can appear is restricted as described in this section.

3.1 Untyped Integers

An untyped integer fits into all or part of a SETL word. It
typically corresponds to a signed integer value of the hardware
integer size.

3.2 Omega Untyped Integers

The omega untyped integer value is represented by a unique
machine dependent bit patterns which meets the requirement that
it is never produced as the result of any integer operation on
defined values where the result is properly defined and in range.
Typical choices are negative zero (l's complement) or the largest
negative number (2's complement).

SN 189B: SETL Data Structures Page 14

3.3 Untyped Reals

An untyped real fits into all or part of a SETL word. It
typically corresponds to a signed real value of the hardware real
size.

The format of an untyped real is the same as the format of a real
data word (see section 2.3).

3.4 Omega Untyped Real

The undefined untrped real value (untyped real omega) is
represented by a unique machine dependent bit pattern which meets
the requirement that it is never produced as the result of any
real operation on defined values where the result is properly
defined. Where an operation on real values produces an improper
result (e.g. 0.0/0.0), the omega value must be generated.

3.5 Skip words

These specifiers do not represent SETL values, but are used to
mark untyped primitive data for the garbage collector.

The marking phase of the garbage collector iterates over the
symbol table and the (SETL) stack tracing the heap pointers of
long data items. A skip word is inserted before each block of
untyped data to assure that the garbage collector does not
attempt to interpret the bit pattern in the position where typed
data items store their type code. Whenever the garbage collector
finds a skip word, it ignores or skips the next n specifiers,
where n is the VALUE of the skip word.

type:

value:

T SKIP

Number of words to be skipped by the
garbage collector. This number includes
the skip word.

SN 189B: SETL Data Structures Page 15

4.0 NON-PRIMITIVE DATA

This section contains details on the format of non-primitive data
items, that is data items which contain other data items as
components. Mathematically, these data items correspond to
ordered vectors or sets, and unordered sets. Ordered sets are
called tuples. The mathematical notion of a relation is captured
by the SETL multi-valued map, the notion of a function by the
SETL single-valued map. Note that SETL uses the mathematical
definition of a relation as a set of pairs for its definition of
a map.

Every non-primitive data item consists of a specifier containing
a heap pointer to a heap data block with the following standard
fields:

hform:

nelt:

hash:

is neltok:

is hashok:

4.1 Tuple Formats

Form table pointer

Cardinality of the composite object

Hash code

Flags valid NELT field

Flags valid HASH field

In addition to the standard fields for non-primitive objects, all
tuple data blocks have two standard fields:

maxindx:

is range:

Index of the last component allocated

Used only in
section 6.3)

map iterators {see

MAXINDX implies the number of words allocated for the tuple data
block not counting the words for the tuple header data block.
This may exceed the value implied by the NELT field to allow for
growth space, in which case the extra words contain the specifier
for the appropriate omega value. If the NELT value is correctly
set {as indicated by the IS NELTOK setting), then the value
corresponding to the index value NELT must not contain omega {so
that the NELT value corresponds to the cardinality of a tuple).

SN 189B: SETL Data Structures Page 16

4.1.1 Standard Tuple -

A standard format tuple is represented by a specifier which has:

type:

value:

T TUPLE

Pointer to tuple data block

The tuple data block has the standard fields. with

htype: H_TUPLE

Following the header is a zero-origin vector of data values.
These are ordinary value specifiers giving the values of the NELT
successive elements of the tuple, or the omega value for indices
for which the tuple value is not defined. Note that the zero
entry always contains the proper omega value and cannot be
modified (since tuples in the SETL language are one-origin). The
extra zero index value speeds indexed references.

4.1.2 Special Tuples -

Special tuples (as opposed to standard tuples) are represented by
a specifier which has:

type:

value:

T STUPLE

Pointer to appropriate tuple data block

There are three subtypes of special tuples. distinguished by the
HTYPE values of the corresponding data blocks.

4.1.2.1 Packed Tuples -

The packed tuple data block consists of a standard format header
which has (in addition to the standard fields):

htype:

ptbits:

ptvals:

ptkey:

H_PTUPLE

Number of bits per value

Number of values per word

Specifier used to interpret packed values
as SETL values

The values are stored from right to left in each word, fitting as
many values as possible in each word. Thus the setting of PTVALS
can be computed from the PTBITS setting and the word size. It is
stored to save the time for this calculation. If there are
unused bits, they are set to zero.

SN 189B: SETL Data Structures Page 17

4.1.2.1.1 Packed Values -

The values stored in packed tuples and maps are small integers
known as pack indices. These indices are mapped into SETL
specifiers by means of a key. The key for a packed tuple is
contained in the PTKEY field; the key for a local packed map is
kept in its LS KEY field, to be described in the proper sections.

There are two types of keys depending on the REPR of the tuple or
map:

packed tuple(integer i •• j)

In this case, I and J must be integer constants, and
we assume that the difference J-I is reasonably
small. In this case the values I •• J are stored as
indices l •• J-I+l, and the index zero signifies the
undefined value omega. The key has the following
format:

type: TINT

value: I-1

packed tuple(elmt B)

Here B must be the name of a constant base. The pack
indices then correspond to the EBINDX values for the
elements of B. In order to retrieve a value from
this type of tuple, we provide a standard tuple(elmt
B) whose i'th component is the specifier for the base
element with EBINDX i. This tuple is internally
generated by the compiler (namely the COD phase).
Again, a pack index of zero is used to represent the
undefined value omega, and the zeroth component of
the tuple(elmt B) contains the proper omega value.
The key has the following format:

type: T_TUPLE

value: Pointer to standard tuple(elmt B)

4.1.2.2 Real Tuples -

A real tuple contains untyped real values (see section 3.). A
real tuple data block has:

htype: H_RTUPLE

A real tuple data block is identical in format to a standard
tuple except that the values stored are untyped reals (or the
omega untyped value) rather than standard typed values.

SN 189B: SETL Data Structures

4.1.2.3 Integer Tuples -

An integer
section 3.).

htype:

tuple contains untyped integer
An integer tuple data block has:

H_ITUPLE

Page 18

values (see

An integer tuple data block is identical in format to a standard
tuple except that the values stored are untyped integers (or the
omega untyped integer) rather than standard typed values.

4.1.3 Null Tuples -

Unlike the previous system, the null tuple does not have a
special value. It is simply a tuple whose data block header word
has a zero NELT value with its IS_NELTOK bit set.

4.1.4 Pairs -

A tuple of two non-omega elements is called a pair. It is stored
in the same way as an ordinary tuple with the NELT field
containing a value of 2 to indicate that two elements are present
(i.e. elements with subscripts 1 and 2). Small tuples in
general, and pairs in particular, usually do not have growth
space allocated. Thus the value in MAXINDX is usually the same
as the value in NELT.

4.2 Set And Map Formats

There are several formats for sets and maps corresponding to
possible REPR declarations. In this description, the use of the
word "set" is reserved for sets other than maps (although the
SETL mode for all these objects is set). In addition to the
typing of objects as sets or maps by the appearance of relevant
REPR declarations, objects are dynamically converted between
these formats where appropriate. For example, a set of pairs is
converted to map format if it is used as a map, and the inverse
conversion occurs if a non-pair element is added to an object
stored in map format (since maps can only contain pairs). This
dynamic conversion is transparent to the SETL program, since a
set of pairs and the corresponding map are semantically
equivalent.

Set and map data blocks have several standard fields (in addition
to the fields which are common to all non-primitive data):

SN 189B: SETL Data Structures Page 19

hashtb:

is_based:

is_map:

is_mmap:

is_smap:

is_elset:

Pointer to hash table header block

Flags local and remote sets and maps

True for maps, false for sets

True for maps which
everywhere

True for maps which
everywhere

are multi-valued

re single-valued

True for sets of base elements, and maps
from base elements to some range mode

The HASHTB field points to the hash table for the set or map if
it is unbased, and to the hash table of the base if it is based.
IS_ELSET distinguishes the special cases of a set whose members
are elements of some base, or maps whose domain elements are
elements of some base. These objects can be treated in an
especially efficient way in some situations.

4.2.1 Hash Table Structure -

Sets and maps in various formats are represented by hash tables.
The basic format of all hash tables is consistent throughout the
data structures, although the manner in which information is
stored in the individual element blocks of the hash table depends
on the usage.

The hash table pointer (HASHTB) in the set header points to a
hash table header data block which contains the following fields:

htype:

blink:

neb:

lognhedrs:

H_HT

Not used (0)

Number of element blocks in hash table

Log(base 2) of number of hash headers

The number of hash headers is always a power of 2, with a minimum
value of 1 (corresponding to a LOGNHEDRS value of O). The system
constant MAX_LOGN defines the maximum hash table size. If the
size of the set would require a larger hash table, the expansion
request will not be honoured, and gradual performance
deterioration will take place as the length of individual clash
lists increases.

The NEB field contains the number of element blocks in the hash
table, excluding the template block and hash headers. In the
case of unbased maps, this value might differ from the NELT value
in the set header.

SN 189B: SETL Data Structures Page 20

The hash table proper consists of a contiguous sequence of hash
table header blocks (HTB), and clash lists of element blocks
(EB) •

HTB's represent a 'short' form of EB's in the sense that they
consist only of the fields needed to iterate over the set, but
have no values associated with them. Their size is constant, and
is given by the system constant HL_HTB.

There is one EB for each set element, plus one special EB, called
the (hash table) template block. The template block immediately
follows the hash table header data block in memory. The number
of words in each EB varies with the context in which the hash
table is used.

The following fields occur in every hash table header block:

htype:

hlink:

eblink:

is_ebhedr:

is_ebtemp:

H_HTB

Not used (0)

Pointer to either a clash list of EB's, or
the next HTB

True

False

The following fields occur in every element block:

htype:

blink:

eblink:

is_ebhedr:

is_ebtemp:

ebsize:

ebspec:

Type of hash table EB

Not used (0)

Pointer to either the next EB in this clash
list of EB's, or the next HTB

False

False

Number of words in EB.
overlaps HLINK)

(This field

Specifier for the set element, or the map
domain element

The EBSPEC field is a
found in a normal
EBSPEC corresponds to
required.

composite field which includes all fields
value specifier. It may be the case that
an entire SETL word, but this is not

The EBLINK field is used to chain the EB's of a hash table
together in one long linked list, as further described below.

SN 189B: SETL Data Structures Page 21

The IS_EBHEDR flag identifies the start of each clash list in the
hash table.

The number of SETL words required for these standard fields of an
EB (which is the minimum possible size for an EB with no extra
fields) is given by the system constant HL_EB.

The template EB occurs immediately following the hash table
header word and is a dummy EB with its fields set as follows:

ebspec:

eblink:

is_ebhedr:

is_ebtemp:

Appropriate omega value

Points to the first hash table block (HTB)

True (a special case)

True

The hash table proper consists of a contiguous sequence of
element blocks called hash headers. The number of hash headers
can be obtained from the LOGNHEDRS field of the hash table header
word. The system constant MAX_LOGN gives the maximum number of
hash table blocks in any hash table.

The EBLINK field of the template points to the first hash table
HTB. Often the template block will immediately precede the hash
headers, but this is not required.

Each hash table block is chained (using the EBLINK field) to a
list of EB's.

The chain of EB's from one hash table block correspond to those
elements which hash to the given header position. The EB's of
the hash chain are chained using the EBLINK field of the EB's.
The end of each chain links back to the next hash table HTB. The
EBLINK field of the last block (either HTB of EB) points back to
the template block. Thus the EB's of a set, together with the
corresponding HTB's, form one long circular list. The end of the
list is detected by testing the IS_EBTEMP flag which is only set
for the template block itself.

Every hash table has at least one hash table HTB. In the case of
a null set, there will be one hash table HTB.

This format results in the elements of the hash table being
chained together in one long list while retaining the possibility
of hashed access for a search. Note that the end of a given hash
chain is detected by encountering an HTB, marked by the IS_EBHEDR
flag.

SN 189B: SETL Data Structures

4.2.2 Set Formats -

All set formats are represented by a specifier which has:

type:

value:

T_SET

Pointer to set data block

Page 22

The IS_MAP bit of the referenced data block is always off. The
HTYPE of the data block indicates the particular format of set
referenced.

4.2.2.1 Unbased Sets -

This section describes the format of unbased sets. Note that
this includes sets of elements of a base in the case where
neither the keyword REMOTE nor the keyword LOCAL appeared in the
REPR. Such objects are stored in standard unbased format with
the appropriate specifiers in element-of-base format.

The set header data block has:

htype: H_USET

the HASHTB field of the data block (which contains no fields
other than the standard ones) points to a standard format hash
table (4.2.1).

The element block has the following fields:

htype: H_EBS

The EBSPEC fields of these element blocks contain the values of
successive elements of the set in standard specifier format. The
EBSPEC field of the template block contains the omega value typed
and formed consistently with the type of element in the set.

The size of each unbased element block is constant, and given by
the system constant EBS_NW.

4.2.2.2 Base Sets -

Base sets are represented by a specifier in the standard format.
The data block for a base set has:

htype: H_BASE

In addition to the standard fields defined for all set headers,
the following three fields are defined for a base set data block:

SN 189B: SETL Data Structures Page 23

blink:

rlink:

nlmaps:

Used by the garbage collector to link all
bases

Used by the garbage collector to link
remote objects to their bases

Number of local (unpacked) maps on the base

The length of this expanded header block is given by the system
constant HL_BASE.

The HASHTB field of the base set data block, as well as the
HASHTB field of all objects based on it, point directly to the
base set hash header data block. The element blocks in a base
set hash table contain the following fields:

htype:

eblink:

is_ebhedr:

is_ebtemp:

ebsize:

ebspec:

ebform:

ebindx:

ebhash:

is_eblive:

H_EBB

EB link pointer

Set in hash header EB's

Set for template block only

element block size (overlaps HLINK field)

Value of base set element

Pointer to the Form Table Entry of the base

Index value for remote based objects

Element hash code

Used during base compaction during garbage
collection to mark live element base blocks

The EBINDX values range from 1 up and are
as new EB's are added to the base set.
used to reference the required element
indexing.

allocated consecutively
These index values are

of remote objects by

The EBHASH value is always set correctly.

The number of words required for this expanded EB format is given
by the system constant HL_EBB.

If there are local objects associated with the base, then
additional words may be allocated following the standard fields.
These words are used to hold the values of locally based objects
as described in the individual sections on locally based objects.
Each unique local object is assigned (statically) a given word or
bit field in the base set EB to contain the value. Some of these
words contain specifiers and must be processed by the garbage
collector, others contain bit strings or untyped data which must

SN 189B: SETL Data Structures Page 24

be ignored. The entries for standard local maps contain pointers
which must be relocated by the garbage collector. All such
entries occur immediately after the initial words. The NLMAPS
field of the base header data block gives the number of such
entries in each EB.

The fields of the template block are set as follows:

htype:

eblink:

ebspec:

is_ebhedr:

is_ebtemp:

ebindx:

ebhash:

H_EBB

Pointer to first hash header

Appropriate omega value

True

True

Next index value to be assigned

Zero (the hash value for omega)

Note that if the index of the template block is used to access a
remote object, the index will always be out of range and a omega
value will be obtained as required. Remaining words in the
template block (corresponding to local object values) are set in
a manner appropriate to the particular local object type as
described in the individual sections on local maps. Note that
the index value O is never used. The corresponding zeroth entry
in a remote objects is the template for the remote object and is
set in the same manner as the hash table template block field in
the base for a corresponding local object.

4.2.2.3 Plex Bases -

A special case of base sets are plex bases. A plex base has no
hash table, and consists of long atom values only (see
section 2.5.2 for details on long atom values). This means that
no hashing operation can be performed on such an object. All
objects based on it must be based locally on it. All references
to elements of an object based on a plex base must be in 'element
of base' format, to be described in section 5. As with the
format of a standard element block, the local maps represented by
standard specifiers (i.e. those which must be processed by the
garbage collector) must come first. The field LA_NLMAPS gives
the number of such specifiers in each long atom value.

SN 189B: SETL Data Structures Page 25

4.2.2.4 Remote Sets -

A remote set data block contains a standard form set header with
the following fields:

htype:

rs_maxi:

H_RSET

Maximum index value

This header is immediately followed by a bit string which
represents the value of the remote set. The length of this bit
string (as given by RS_MAXI) must be at least as great as the
maximum index for any value in the base set which is contained in
the remote set (plus one since indices start at zero). The k'th
bit indicates the membership in the remote set of the base
element whose index is k. The bit is set iff the element is in
the remote set. The first bit in the string (corresponding to
index value 0) is never used, and is always set to O.

The bits are arranged from right to left in successive words.
The last (partially filled) word contains unused high order bits.
The system constant RS_BPW gives the number of bits stored in
each word.

4.2.2.5 Local Sets -

A local set data block contains a standard form set header with
the following fields:

htype:

ls_word:

ls_bit:

H_LSET

Offset to word in EB containing value

Position of membership bit in EB word

LS_BIT is a bit position from the low order end of the word
(least significant bit numbered 1). The single bit in the
indicated position of the base EB indicates whether the base
element is in the local set or not. It is set iff the element is
in the local set. The corresponding bit in the template block of
the base set hash table is never set.

4.2.2.6 Constant Sets -

Constant sets are stored in exactly the same format as normal
sets except that they are never modified (and cannot be converted
to map format). For each constant set, an index vector is built
for use by packed index values (see section 4.2.2.1.1.). The
zeroth element of this vector contains the omega value.
Successive elements contain the values of the set elements in set
element format. There is no link between this vector and the

SN 189B: SETL Data Structures Page 26

hash table since none is ever needed. If the constant set is
used as a base, then its hash table contains index values as
usual. These index values match the index values used in the
index vector. This means that packed values immediately yield
the base index without reference to the index vector.

4.2.3 Map Formats -

All maps are represented by a specifier which has:

type:

value:

T_MAP

Pointer to map data block

The map data block HTYPE determines the particular map format.

4.2.3.1 Map Image Representation -

Although maps are simply sets of pairs in SETL semantics, the
internal storage form is substantially different. In particular,
in the case of a multi-valued map, the set of pairs with a common
head is grouped together. The image of a map for a particular
domain value is thus either a single value or a set of values.
The latter case must be distinguished from a single value which
happens to be a set. This distinction is the function of the
IS_MULTI bit which appears in all specifiers (but is only
meaningful in this context). If the IS_MULTI bit is off in the
specifier representing the image value, then the map is single
valued for the corresponding domain value, and the specifier
value is the range value.

If the IS_MULTI bit is on in the specifier representing the image
value, then the specifier represents the value of a set whose
members are the range values corresponding the domain value. If
the map is single valued, then two representations are possible.
Either the single range value with IS_MULTI off or a singleton
set with IS_MULTI on.

The IS_SMAP bit of the map header block is set on if all image
values have IS_MULTI off. This also implies that the map is
single valued.

The IS_MMAP bit of the map header block is set on if
values have IS_MULTI on. This does not imply that
multi-valued everywhere since some or all of the range
be singletons.

all image
the map is
sets may

If both IS_SMAP and IS_MMAP are off, then either representation
could be used at single valued points. However, the library
standardises in this case to set IS_MULTI only in the case of
multi-valued points.

SN 189B: SETL Data Structures Page 27

4.2.3.2 Unbased Maps -

The unbased map data block contains only standard fields and has:

htype: H_UMAP

The hashtb field points to a hash table which contains the map
values. The element blocks in this hash table have:

htype:

ebimag:

H_EBM

Map image value

There is one EB for each unique domain element.
contains the specifier for the domain value.
contains the image value with the IS_MULTI bit
format as described in 4.3.3.1.

4.2.3.3 Remote Maps -

Its EBSPEC field
The EBIMAG field
indicating the

A remote map data block consists of a standard format set header
which has:

htype: H_RMAP

The HASHTB field of this header points to the hash table header
data block for the corresponding base set.

The header is immediately followed by a standard format tuple
(T_TUPLE), complete with a tuple header block. The k'th element
of this tuple contains the map image value, with IS_MULTI showing
the format as described in 4.7.3.1. The value in MAXINDX (i.e.
the tuple length) must be at least as large as the largest index
value for which the map is defined on the corresponding element.
Note that the tuple which is part of the map data block does not
contain a pointer back to the base. Rather, this pointer is
associated with the map block itself.

4.2.3.3.1 Remote Packed Maps -

A remote packed map data block has:

htype: H_RPMAP

It is immediately followed by
unpacked remote map, except
form (4.2.2.1.)

a tuple of values as for an
that the tuple is in packed tuple

SN 189B: SETL Data Structures Page 28

4.2.3.3.2 Remote Real Maps -

A remote real map data block has:

htype: H_RRMAP

It is immediately followed by a tuple of values as for an
unpacked remote map, except that the tuple is in real tuple form
(4.2.2.2.).

4.2.3.3.3 Remote Integer Maps -

A remote integer map data block has:

htype: H_RIMAP

It is immediately followed by a tuple of values as for an
unpacked remote map, except that the tuple is in integer tuple
form (4.2.2.3.).

4.2.3.4 Local Maps -

A local map data block has a standard format set header with:

htype: H_LMAP

In addition to the standard fields, the following field is
defined:

ls_word: Offset to word in EB containing value

The length of this expanded header is given by the system
constant HL_LPMAP.

LS_WORD shows the location of the word
which contains the value of the
contains the map image with IS_MULTI
usual (4.3.3.1)

4.2.3.4.1 Local Packed Maps -

in each EB
map. The
indicating

of the base
referenced word
the format as

A local packed map data block consists of a standard format set
header with:

htype: H_LPMAP

In addition to the usual fields, the following fields are
defined:

SN 189B: SETL Data Structures

ls_word:

ls_bit:

ls_bits:

ls_key:

Offset to word in EB containing value

Starting bit number for field

Number of bits in field

Pointer to value vector

Page 29

The length of this expanded header block is given by the system
constant HL_LPMAP.

The LS_BIT value is the bit number of the low order bit of the
field (ls bit numbered l}.

The significance of the referenced bit string value and its
relation to the LS_KEY field is the same as for the values in a
packed tuple (see section 4.2.2.1.1.}.

The corresponding field in the template block of the base set
hash table contains all zero bits (the packed representation of
the omega value).

4.2.3.4.2 Local Real Maps -

A local real map data block consists of a standard format set
header with:

htype: H_LRMAP

Additionally, the following field is defined:

ls_word: Offset to word in EB containing value

The word in the base set EB's contains either the appropriate
real value, or the omega untyped real value. The corresponding
word in the template block of the base set hash table contains
the omega untyped real value.

4.2.3.4.3 Local Integer Maps -

A local integer map data block consists of a standard format set
header with:

htype: H_LIMAP

Additionally, the following field is defined:

ls_word: Offset to word in EB containing value

The word in the base set EB's contains either the
integer value, or the omega untyped integer

appropriate
value. The

SN 189B: SETL Data Structures Page 30

corresponding word in the template block of the base set hash
table contains the omega untyped integer value.

5.0 ELEMENT-OF-SET FORMAT

While the value semantic of SETL does not provide for pointers,
they nevertheless exist in a very restricted form, and provide
for the efficient access to element blocks in hash tables without
the need to perform an actual hashing operation.

Values of this type are represented by a specifier which has the
following fields:

type:

value:

T_ELMT

Pointer to corresponding Base EB

If an object in element-of-set format occurs in a context in
which an actual value is required (e.g. addition), then the
operation will be performed on the embedded value, which is
obtained by extracting the value field (EBSPEC) of the element
block pointed to. This 'dereferencing' operation is, of course,
recursive, although one can easily convince oneself that the
operation only involves an iteration.

Values in element-of-set format can occur under two conditions:

1) wherever the data representation ELMT BASE is used

2) for iterations through maps and sets

They might also be used more generally if data representation
declarations were allowed to specify 'element of unbased set' or
'element of domain of unbased map'.

6.0 ITERATOR FORMATS

When iterating through a map or base, a standard value specifier
is used to control the iteration. In the cases of sets and maps
(but not tuples), it is possible to use this specifier to obtain
the current value, as well as to obtain the next value of the
iteration. However, the SETL run time system usually maintains
two separate iterator values except in certain cases where this
optimisation is possible and desirable.

SN 189B: SETL Data Structures Page 31

6.1 Set Iterators

Set Iterators are the most general form of iterators in SETL.
There forms depend on the object iterated over.

6.1.1 Unbased Set Iterators -

Iterators for unbased sets have the following format:

type:

value:

T_ELMT

Pointer to corresponding element block

The initialisation for the iterator consists of setting the value
field to point to the template block. The iteration is then
performed by using the value field to locate the EB containing
the pointer to the next EB. If the actual value is required it
can be obtained from the referenced element block, and it will
often be advantageous to obtain this value once on each iteration
and store it in a separate location.

Note that this format corresponds exactly to the 'element of set'
format described in the preceding section.

6.1.2 Base Iterators -

The format of a based set iterator is similar to an unbased set
iterator. The iterator, however, is in 'element of base' format,
and thus represents a value which can be described within the
data structure representation sublanguage. Again, the iterator
is initialised by pointing to the template block, and iteration
proceeds analogous to unbased set iteration.

6.1.3 Unbased Map Iterators -

The format of an unbased map iterator is:

type:

value:

T_TUPLE

Pointer to pair value

Note that a pair is a tuple consisting of exactly two non-omega
components.

The first element of the pair is a pointer to the current domain
element block:

SN 189B: SETL Data Structures

type:

value:

T_ELMT

Pointer to map EB

Page 32

The second element of the pair is in one of two formats,
depending on whether we are at a multi-valued point of the map or
not.

If the range of the current domain element is single-valued, i.e.
has its IS_MULTI bit set to zero, then the second component of
the iterator pair is the range specifier corresponding to the
current domain specifier.

If the range of the current domain element is multivalued, the
second component of the iterator pair points to another iterator
describing the iteration through the range set. In this case,
the IS_RANGE bit of the map iterator's tuple header block is set.

6.1.4 Based Map Iterators -

The difference between based and unbased
identical to the difference between based
iterators: The first (or domain) component of
'element of base' format and thus defined
structure representation sublanguage.

6.1.5 Tuple Iterators -

map iterators is
and unbased set
the pair is in
within the data

A tuple iterator simply consists of a short integer value
the index of the current tuple component in the iteration.
initialised to zero.

giving
It is

6.2 Domain Iterators

If a program specifies directly or indirectly an iteration
through the domain of a map or tuple, a special domain iterator
format is used which refers to the map or tuple itself (rather
than actually creating the domain as a set and iterating through
it) •

SN 189B: SETL Data Structures Page 33

6.2.1 Unbased Map Domain Iterators -

The domain iterator is in standard 'element of map domain'
format:

type:

value:

T_ELMT

Pointer to the corresponding element block

6.2.2 Based Map Domain Iterators -

This iterator has the same format as a base set iterator for the
corresponding base.

6.2.3 Tuple Domain Iterators -

The domain of a tuple is the set of integers from 1 to the number
of elements in the tuple. If an iteration through the domain of
a tuple is performed, the corresponding domain iterator is a
standard format short integer (2.1.1.).

SN 189B: SETL Data Structures

Atoms •• 11

Base iterators ••••••••• 31
Base sets ••••••••••• 22
Based map domain iterators ••• 33
Based map iterators •••••• 32
Booleans •••••••••••• 12

Constant sets • • 25

Data words ••••••••••• 5
Domain iterators •••••••• 32

Element-of-set format • 30

Form of storage • • 4

Hash table structure. . . . • • 19

Integer tuples ••••••••• 17
Integers •••••••••••• 6
Iterator formats •••••••• 30

Local integer maps ••••••• 29
Local maps ••••••••••• 28
Local packed maps ••••••• 28
Local real maps •••••••• 29
Local sets ••••••••••• 25
Long atoms ••••••••••• 12

Map formats •••••••••• 26
Map image representation •••• 26

Non-primitive data ••••••• 15
Null tuples •••••••••• 18

Omega • • • • • • • • • • • • • 12
Omega untyped integers ••••• 13
Omega untyped real • • • • • 14

Packed tuples ••••••••• 16
Packed values ••••••••• 16
Pairs ••••••••••••• 18
Plex bases ••••••••••• 24
Procedures ••••••••••• 10

Real tuples . • • . • . • • . • 17
Reals . . . • . • • • . • • . • 10
Remote integer maps . . . • . . 28
Remote maps 27
Remote packed maps . • • . • . • 27
Remote real maps • • • 27
Remote sets • . • • • • 24

Set and map formats • • • • • • 18

Page 34

SN 189B: SETL Data Structures

Set formats •••••••••• 21
Set iterators ••••••••• 30
Short atoms •••••••••• 11
Skip words ••••••••••• 14
Special tuples ••••••••• 16
Standard tuple ••••••••• 15
Strings •••••••••••• 7

Tuple domain iterators ••••• 33
Tuple formats ••••••••• 15
Tuple iterators •••••••• 32
Typed primitive data •••••• 6

Unbased map domain iterators • . 32
Unbased map iterators . • • . • 31
Unbased maps • • • • • • • • • • 26
Unbased set iterators . • • • • 31
Unbased sets • • . • • • • • • • 22
Untyped integers . • • . • . . • 13
Untyped primitive data • • • • • 13
Untyped reals . • • • • • . . • 13

Value specifiers • • 4

Page 35

