
0

0

0

SETL NE~SLETTER 190 Al< T GRA•W
MAY 5, 1977 THE l~PLEMENTATION GF BACKT~AC~ING

THIS NE~SLETTER DISCUSSES THE lMPL~M[NTATION OF THE BACKTRACKING
SCH~MF PROPOSED IN NE~SLETTEK 168. WE B~Gl~ CUR DISCUSSlON WlTM
THE RUh TI~E IMPLEMENTATlC~, THEN DISCUSS lHE CHANGES ~HICH MUST
Bf MADE I~ THE COMPILER.

FOR PUPPOSES CF DISCUSSION, WE ASSU~E THAT BACKTRACKING IhVOLVES
THE FOLLOWING PRIMITIVES. THi TRANSLATION CF SETL ~CURCE INTO
THESE PRIKITIVES IS DlSCUSSEO LATER.

OKOKI

FAilt

ACCEPTS

REJECT&

ARBI

SAVE THE CURRENT STATE OF THE BACKTRACK VARIABLES.

A SPECIJ.L OK.

RETREAT TO PREVIOUSLY SA~EO E~VIRONMENT.

FINALIZE ALL CHANGES TO EN~IRON~ENT SINCE
LAST OKOt<..

REJECT jLL CHANGES SINCE LAST OKOK.

NONDETERMANISTIC ARB SELECTION

~ ENVIRONMENT BLOCKS

0

C

BACKTRACKING IS BASED ON VARIOUS OPERATIONS hHICH SAVE ~ND RESTORE
PARTS OF THE ~NVIRO~MENT. ~NVIRONMENTS ARE SAVED Bf PUSrllNG
tENVIRONME~T BLOCKS, CNTO lhE ~TACK AND RESTORED SY POPPING THEM.
AN ~NVIRON~ENT BLGCK CONSISTS OF A SfRIES OF S\VED VALUES TOGETHEK
wITH A POI~TER TO A PROCED~RE TO POP THE BLOCK.

FOR EXAMPLE, THE OK PR!MlTIVc PUSHES THE VALUES GF ALL ~BACKI
VARIABLES TOGETHER \..'ITH A POlNT~t< TO A PPOCEDUKE wHICH WILL
POP THE V~LUES. THE FAIL PRIMITIVE THEN POPS TrlE PKOC~OURE
POINTER ANO EXECUTES IT TO RESTORE THE ENVIRON~ENT.

THE STACK CONSISTS OF A SEkIES OF ENVIRONMENT BLOCKS, STACKED
l~ THE ORDfR THEY WERt SAVED. THE FAIL PRIM111Vt DE~CRIBED
ABOVE rusr ACTUALLY ~rSTOkE ~LL EN~l~GNMENTS SAVED SINCE THE
LAST OK. IT Docs TrlIS BY POPPING E~ViRO~r.E~T SLGC~S f~OM THE
STACK UNTIL IT POPS A~ OK BLOCK. EACH POP IS DONE 3Y EXECUtING
THE PKOCEOUQE FuUND 0~ TOP Of lrlc STACK.

ENVIRONMENT BLOCKS ARE MADE OF STANDARD SETL VALU~ SPECIF!cRSe
THE TOP TWG SPECIFIERS IN EACH BLCCK HAVE A STA~OARO SIGNIF
ICANCE•

0

....

0

0

0

SETL-190-2

THE TUP SP~CIFil~ ALWAY~ HAS

TYPE
VALuf

Tr+SU~R
P O I r-. 1 E R T O C C (E F i<. A G ,-, E t-i T T L'. P C I' t3 L G C t<

THE SPECIFIE~ 8tLO~ lT HAS

TYPE
VALUE

T~INT
LENGTH OF BLOCK

THERE ARE FOUR TYPES OF ENvIRONMt~T BLOCKS.

ENTRY BLOCKSs THESE APE BUILT BY ROUTINE PROLOGUES AND POPPED BY
ROUTINE EPILOGS.

0 EXIT BLOCKSs THESE BLOCKS ARE BUILT WHEN ~E EXECUTE A STATEMENT
SUCH AS

0

0

e

OK BLOCKS&

IF OK THEN RETURN;;

A~D ARE REMOVED BY EXECUTING FAIL, ACCEPT, OR REJECT.
RtTURNS LIKE THE O~E ASGVE ARE CALLEO CONDITIONAL
RETURNS AND ARE DESCRIBED BELO~.

THESE. ARE BUILT BY OK~S ANO POPPED BY FAILS.

OKOK BLOCKS: THESE ARE BUILT BY OKOK-S AND POPPED BY FAILS.

ALL E~TRY BLOCKS ARE LINKED TOGETHER ~ITH A SPECIFIER WITH

• TYPE T,nNT
VALUE POINTER TO PREVIOUS ENTRY BLOCK

THE GLOBAL tLAST•ENTRY- CONTAINS A POINTER TO .THE MOST RECENT ENTRY
BLOCK.

ALL □ KOK BLOCKS ARE LINKED IN A SIMILAR FASHION, WITH TrlE GLOBAL
,LAST~CKOK, POI~TING TO THE MOST RECENT &LOCK. 60TH LISTS MUST
BE ADJUSTED WHEN THE GARBAGE COLLECTOR REJUESTS ,oRE SPACE FROM
THE OPERATING SYSTEM, SINC~ THIS WILL FORCE IT TO MOVE THE STACK.
OTHEwlSE THEY ARE IGNORED BY THE GA~SAGE COLLECTOR.

SETL-190-3

V

CONDITIONAL PtTLRNS
~ -------------------

A CCNDITIO~AL RETU~N IS A RETURN MADE ~HILE hE ARE IN A 6ACKTRACKI~G
~ ~NVlPONrENl, FOR EXA~PLE,

0

0

0

0

0

0

0

Q

0

IF OK THEN PETUR~;;

IF THE RETURN EVENTUALLY LEADS TO A FAIL, IT WILL SE N(CESSARY TO
UNOO THE RETUR~, THAT IS TC RESTORE THt VALUES OF ALL PARAMETERS
ANO STACKED VARIABLES PRlOR TO THE RETuRN.

WHEN WE ENTER A PROCEDURE kE SAVE THE VALUES OF ALL PARAMETERS
AND STACKED VARIABL~S ON THE STACK. WHEN WE MAKE A NO~MAL ~ETURN,
WE RESTO~E THESE VALUtS ANO POP TH~ STACK. ~HEN ~E MAKE A CQ~OlTiO~AL
RETURN WE CANNOT POP THE STACK; INSTEAO WE PGP THE cu~~ENT VALU~S OF
THE STACKED VARIABLES ~ITH THOSE IN THE ENTRY BLOCK. THIS ALLO~S
US TO REPEAT THE SWAP ANO UNDO fHE RETURN LATER.

WHEN WE MAKE A CONOITIQNAL RiTU~N, ~E PUSH A TH~EE WORD EXIT
SLOC~ ONTO THE STACK. THlS BLOCK CONTAINSl

1. A POINTER TQ A PROCEDURE TO UNDO THE RETURN. SUCH A
PROCEOU~E IS CALLED A RESTORE P~OCEDURE.

2. THE SIZE OF THE EXIT BLOCK, NAMELY 3.

3. A POINTER TO THE ENTRY BLOCK.

SIMULATED RETURNS

SUPPOSE WE EXECUTE THE CODE SEQUENCE SUCH AS&

(1)

(2)

IF DK THEN
P(X);

END IF;
•
•

DEFINE P(Y);
•
FAIL;
•

END P;

WHEN WE REACH THE FAIL AT (2) THERE ARE Two BLOCKS ON THE STACK, AN
OK BLOCK AND AN ENT~Y BLOCK. ~EFGRE WE CAN RESTORE THE VALUES SAVED
AT (1), WE ~UST RESTOR~ THE VALU~S STACKED U~ E~TRY TOP. THIS IS
DONE BY SIMULATING A ~ETURN FROM P ~IlHOUT ACTUALLY JUMPING TO TrlE
RETURN ADDRESS.

WHEN WE PUSH AN ENTRY BLOCK ONTO THE STACK, THE TOP SPECIFIER CO~TAlNS
A POINTER TO A PROCEDURE wHICH WILL SIMULATE A ~ETURN FROM THE KOUTINE,

SETL-190-4

,,...._ TREATMENT OF ARB

- THE ARB PRIMITIVE HAS T~O OPERANDS, AN ITERATOR AND A SET(TUPLE, ETC.).
THc OPERATION X = ARB s SETS XTO THE FIRST ELEMcNT OF s
A~O BUILDS i SP~CIAL LK BLGCK ON ThE 5TACK. THIS BLOCK
IS UNUSUAL IN ThAT IT POINTS TO A SPECIAL ,ADVANCE- PROCEDURE ~HICH
NOT ONLY RfSTORES THf SAVEC VARIABLES ~HEN A FAlL IS ENCOUNTERED,
BUT ALSO ADvANCES X. IT ONLY POPS THE OK BLOCK IF X HAS

- REACHED THE END OF S.
,._I

Q ACCEPT ANO REJECT

0

0

0

0

ACCEPT IS TREATED SOMEwHAT DIFFERENTLY FKOM THE OTHER PRIMITIVES.
ITS ACTION IS TU COMPACT THE TOP Of THE STACK, REMOVING ALL
DK, ANO EXIT BLOCKS SINCE THE LAST OKOK. THERE IS A STA~OARO
ACCEPT PROCEDURE IN THE LIBRARY WHICH IS DRIVEN BY THE SIZE
SPECIFIER CONTAINED I~ fACH EN~IRONrENT BLOCK.

REJECT PERFORMS A SERIES OF FAILS UNTIL IT REACHES AN OKOK BLOCK.
THESE FAILS ARE UNUSUAL IN THAT THEY RETURN TO THE POl~T OF THE
REJECT RATHE~ THAN TO THE POl~T OF THE OK(wHICrl HAS uEEN SAVED AS
PART OF THt OK BLOCK).

THE CODE FOR FAIL OPERATIONS CHECKS WHETHER IT IS RESTORING AN
ENVl~ONMENT SAVED BY AN OK OR ONE SAVED BY A~ OKOK. IN THE
LATTER CASE, IT ALWAYS RETU~NS TO lHE POINT GF THE OKO~. IN THE
FCRMER CAS~, IT CHECKS THE GLOBAL FLAG IS~REJECT TO SfE WHETHER
~f ARE SIM~LATING FAILS AS PART OF A REJECT. IF SO, IT RETURNS
TO THE POINT OF THE ~EJECT. OTHE~WISE IT RETURNS TO THE POINT
OF THE OK.

SYSlfM SUCCESS FLAG
© ----------~----~---

THERE IS A GLOBAL SYSTEM SUCCESS FLAG wHICH IS SET TO TRUE BY
D THE OK AND OKO~ PRIMITIVES A~D SET TO FAL3E UY FAIL ANO REJECT.

THIS FLAG 1S RETURNED AS THE VALUE OF OK A~O OKOK.

0

0

0

0

C

f

SETL-190-5

CODE FOR BICKTRACKING

THE BACKTRACKING PRIMITIVES ARE IMPLEMENTED AS tUXllllARY
PROCtC-URES ~HICH ARE COMPILED FOR EACH ROUTINE CONTAINED
IN TrlE ~OURCE PROGRAM. AN INDI~IDUAL OK IS COMPILED AS A CALL
TO THE AUXILLIARY OK PKOCEDUKt OF THE CUR~ENT ROUTl~E; A
FAIL IS IMPLEMENTED AS A SERIES OF CALLS TO THE PROCEDURES
FOUND UN THE TOP OF THE STACK.

THE BASIC CALL iNO RETURN NU~BINS ARE VERY LOw LEVEL. TrlE CALL
MERLEY SAVES THE RETURN ADDRESS IN SOME GLOBAL LOCATION AND
JUMPS TO ITS ARGUMENT. THE RETURN J~MPS TO Th~ PREVIOUSLY
SAVED RETU~N ADDRESS.

THE CODE SECUENCES FOR LINKAGE, ROUTINE PROLOGUES, OK, ETC.
AREi

le CALLS

CALLS CO~SIST OF A PUSH ~UBBIN TO PUSH ITS ARGUMENTS,
A CALL ~UBBI~, AND A POP NUdBIN TO POP THE ARGUMENTS.

2. ROUTINE PROLOGUES

A ROUTINE PPOLOG CCNSISTS OF A NUBBIN CALLED Q2~ENTRY WHICH
SAVtS THE RETURN ADDRESS, STACKED ~ARIABLES, ETC. THIS
NUBBI~ IS FOLLOWED BY CODE TO RclNITIALIZE STACKED BASES ANO
PEPFORM ANY RESULTING BASE ASSIGNMENTS.

3. ROUTINE EPILOGUES

A ROUTINE EPILOGUE CONSISTS OF THE ROUTINES RETURN CODE PLUS
LOCAL PROCEDuRES FGR OK, uKOK, FAIL, RESTORE, SIMULATED RETURN,
ARB, AND ADVANCE.

THE RETURN CODE CONSISTS OF A Q2~EXIT NUBBIN WHICH PERFORMS
ALL THE STACK MANIPULATION, FOLLOWED BY A RETURN NUBaIN.

0

0

G

C

t

(_

SETL-190-6

't• RETURNS

A METURN IS COMPILED AS A JUMP TO lHE ~OUTINE EPILOGUE.

5, GK At-10 GKOK

THESE P~IMlfIVES l~t CG~PILEO AS CALLS TO T~E ROUTINE,$ OK
At,I.) OKOt<. PRJC.c.DUt[~ fif~Ft:CTlVfLY,

6• FAIL

A FAIL IS REALIZED SY A~ INFINITE LOOP WHICH PGPS PROCEDURES
FROM THE STACK ANO EXEC~TES THEM. THESE PROCEDURES WILL EITHER
BE RESTORES AND Sl~ULATtD RETURNS, WHICH wlll JUrP dACK TO THc
LOOP, OP FAILS, WHICH ~ILL JUMP BACK TO THE POINT OF THE LAST Ok,

7. REJECT

A REJECT IS SIMILAR TO A FAIL, EXCEPT THAT BEFORE ENfERI~G THE
LOOP IT SETS THE FLAG IS~REJECT TO TRUE. WHEN THIS FLAG IS SET
WE WILL KEEP POPPI~G BLOCKS UNTIL WE REACH AN OKOK.

8, ACCEPT

ACCEPT IS A CALL TO A STANDARD LIBRARY RO~TINE,

9, ARB

WE GENERATE THE FOLLOWING INLINE CODE FOR ARB1

A, ASSU~E WE ARE DOING X = ARB S. BEGIN BY PUSHING SYMBOL
TABLE POINTERS TO X ANOS ONTO THE STACK.

B. CALL THE ROUTINES ARB PROCEDURE, THE ARB PROCEDURE ~ILL
SET XTO TrlE FIRST EL~MENT OF S JNO BUILD AN OK BLOCK
ON THE STACK. THIS OK BLOCK wILL CONTAIN A PulNTEK TO
THE ROUTI~ES ADvANCE PROCEDURE.

C. AFTER RETURNING FROM TrlE ARB PROCEDURE, SEE IF X IS OMEGA.
IF SO THEN FAIL.

WHEN THE ADVANCE PPOCEDURE IS CALLEO, IT ~ILL ADVANCE X OVER
S, THEN PROCEED TO RtSTORE BACKTkACK VARIABLES AS IF WE wERE
EXECUTI~G A FAIL. HO~EVER lT WILL ONLY POP THE OK BLOCK IF
X HAS REACHED THE END OF S,

NOTE TH~T SihCE THE OK BLOCK CONTAINS POINTERS TO X AND S,
THE SA~c ADVANCE PPOCEOUKc CAN BE USED FOR ALL THE ARB
OPERATIONS OF A SihGLE ROUTINE.

0

0

0

0

0

0

SETL-lG0-7

NUBBINS

IN THE ~EXT TWO SECTIONS wE uET~ll THE NU8BINS FOR BACKTRACKING
AND LINKAGE.

WE CONTINUE TO MAKE CERTAIN ASSUMPTIONS ABOUT THE UROER OF THE SYMBOL
TABLE, NA1ELY THAT THE FO~MAL PARAMtTERS FUR tACrl KOUTINE AKc SlORcD
CGNTIGUGUSLY, A~ ARE lHE STACKED VARIABLES FOR EACrl ROUTINE, THIS
ALLOWS US TO GENERATE CODE IN ~2 WHICH MOVES E~TIRE BLOCKS AT A TIME.
THE ACTUAL MACrllNE CODE FOR THESE LOOPS MAY GR MAY NOT BE DONE AS A
LOOP.

SCME OF THE NU8BINS P~ESENTED HERE HAVE MORE TrlAN THREE APGUMENTS.
AS USUAL, WE REPRESENT THESE NUS~INS BY A SERIES OF QUADRUPL~S.
THE OPCODE AND FIRST THREE ARGU~ENTS ARE CONTAI~tD IN THE FikST
OUADRUPLE, AND THE REMAINI~G ARGUMENTS ARE PACKED I~TO SUCCESSIVE
QUADRUPLES,

BASIC LINKJGE NUBBINS

WE ASSUME lHAT THERE IS sore GLOBAL LOCATION KNOWN AS RETADDR
WHICY CONTtINS THE ~ETURN iOOiESS. THIS WILL BE A HARDWA~E
REGISTER IN MOST l~PLEMENTATIONS.

THE BASIC LINKAGE NUBBINS ARE

1. Ci2PCALL
SET ~ETAOOR TO THE NEXT LOCATION THEN JµMP TO ARG3

2. 02,.SCALL
AS ABOVE, BUT CALL THE PROCECURE GIVEN BY THE TOP STACK SPECIFIER

3. Q2i+VCALL
AS Q2~CALL, RUT THE THIRC ARGUMENT IS A SYMBOL TA~LE POINTER
TO A P~OCtDURE VARIABLE,

4. Q2i+RETURN
GO TO RETJIDOR.

0

0

0

SETL-190-8

E~Vl~ONME~T ~uaBINS

THIS SECTION CONTAINS NUeBINS FOR PR~CEOURE EhTRY ANO EXIT, OK A~D
Fill, ETC. lHEY ARE ALL CUlTE LOhG AND CUMPLEX.

THE ENTRY NUBBIN IS PLACED AT THE BEGINNING OF EftCH ROUTINE AND IS
FOLLOWED SY THE BODY GF THE ROUTl~t. THE REMAINING NU6BINS ARE
PLACED AT THE END CF Trlc ROUTINE AND A~E ESSENTIALLY LOCAL
PPOCEDU~ES ~HICH ARE CALLED FROM THE BODY OF THE ROUTINE.
THUS THE INLINE CODE GEN~RATEO FOR OK IS A CALL TO THE
OK-PROCEDURE LOCATED AT THE ENO OF THE ROUTINE, ETC. THESE
LOCAL CALLS ARE MADE WITH THc STANDARD LINKAGE QUADRUPES DESCRIBED
ABOVE

THE NUBBINS FOR ENTRY, EXIT, OK, AND OKOK PUSH ENVIRONMENT BLOCKS
() ONTO THE STACK. THUS THE TOP WGKD OF THE STACK ALWAYS CONTAINS

A SPECIFIER FOR A ROUTINE TO POP THE MOST RECENTLY 5AVEO
ENVIRONMENT.

a

G

1. Q2i+ENTRY

THIS NUBdIN IS THE ENTIKE ROvTINE PROLOGUE. IT
ACTUALLY CONSISTS OF T~O QUADRUPLES SO THAT IT
CAN HAVE ~ORE ThAN TH~EE ARGUMENTS. ITS ARGUMENTS ARE&

ARGll SYMBOL TABLE POINTE~ TC FIRST FORMAL PARAMETER
ARG2l NUMBER OF FORMAL PARAMETERS
ARG3: SYMBOL TABLE POINTER TO FIRST STACKED VARIABLE
ARG41 NUMBER OF STACKED VARIABLES
ARG5s SYMBOL TA&LE PGINTER FGR THE ROUTINE
ARG6c SYMBOL TABLE P01~TER Ta SP~ClFlER WITH,

TYPE: Tr+SUBR
VALUE1 POlNTEP TO SIMULATED RETURN CODE

ARG5 IS U5EO TO ACCESS THE PRINT NAME OF THE ROUTINE
FC~ DEBUGGING PURPOStS.

\ .

,...,

0

0

"""" ...,,

-·

SETL-190-9

THE SEMANTIC OF THIS NUBBIN ARE

le S~iP T~E ARGUMENTS CN THE STACK WITH THE FORMAL
PARAMETE~S IN ThE SYM60l TABLE.

2. RESERVE ARG4 + 4 wO~OS OF STACK SPACE.

3. CCPY Tr.E SPECIFIERS FOR ALL STACKtD VARIA3LE5 ONTO
THE STACK A~D SlT TrlEIR lS~U~uLF SITS I~ Th~ SYMeOL
TABLE.

4. PUSH RETAOOR, LiST~ENTRY, A~D THE SIZE OF THE BLOCK.

5. PUSH THE SPECIFIER FOR THE RETURN CODE

6. SET LAST~ENTRY = TOP OF STACK

2. 02,.EXIT

THIS NUBBIN HANDLES THE ENTIRE RETURN CODE. ITS
ARGU~ENTS ARE LIKE THOSE OF 02~ENTRY EXCEPT THAT
AkG6 POINTS TO A SPECIFIER FtR THE ROUTINES RESTORE
PROCEDURE. ITS ACTIONS ARE

1. RESTORE THE PREVIOUS VALUE OF LAST~ENTRY AhO POP
THE RETURN ADDRESS.

2. SEE IF THIS IS AN UNCONDITIONAL RETURN, THE RETURN IS
U~CONDTIONAL IF ThERE rlAVE BEEN NO GK-S SINCE THE RDUTI
ROUTINE wAS CALLEO, I.~. IF THE ENTRY BLOCK lS THE
TOP ENVIRONMENT 8LOCK.

3. IF THE RETURN IS UNCONDITIO~Al THEN

A. RESTORE ALL STACKED VARIABLES
a. SWAP ALL PARAMEftRS wITH THEIR SAVED VALUES
C. POP THE ENTRY BLOCK.

4. OTHERwISE THE RETURN IS CG~DITIONAL. SwAP ·THE SYMBOL
TABLE ENTRIES FOR ALL STACKED VARIABLES ANO PARAMETERS
WITH THE CLRRESPGNOING STAC~ ENTRitS, THEN BUILD AN
EXIT BLOCK ON THE STACK. THIS CONSISTS OFa

A. A POINTER TC THE ENTRY BLOCK. THIS POINTER IS
STORED AS A SHCRT INTEGtR wHOSc VALUE IS TH£
OFFSET BETwEEN THE ENRTRY BLOCK ANO THE EXIT
BLOCK SO THAT IT C~N BE IGNORED BY THE GARBAGE
COLLECTOR.

a. THE LENGTH OF Tnt BLOCK, NAMELY 3.

C. A SPECIFIER FOR THE ROUTlNE~S RESTORE PROCEDURE.

A Q2PEXIT QUADRUPLE IS ALwAYS FOLLO~EO BY A Q2~RETURN.

0

0

0

e

0

0

0

0

0

SETL-190-10

3. Ci2,.RESTGRE ·

THIS OUAORU~LE ~ESTORES A CO~Dlll □ NAL ~ElURN. ITS
FIRST FOUR A~GUrENTS A~E Ll~E QZ"E~TRY; AkG5 ANO ARG6 ARE
UhUSfO. ITS ACTlLl~S ~REI

1. RECGNSTRUCT A PGINTER TU THl LAST ENTRY BLOCK
A~O R~SET LAST,.ENT~Y.

2. SwAP THE ROUTINtF~ PA~AMtTERS AND STACKED VARIABltS
WITH THE CO~RESPCNOING VALUES IN TrlE LATEST ENTRY BLOCK

3. POP THE EXIT BLOCK.

THIS OUADRUPLE IS ALwAYS FOLLOWED BY A RETURN.

4. 02,.0K

THIS NugarN COMPRISES THE ROUTINE~$ OK PROCEDURE. IT HAS
A VAPIABLE NUMBER OF ARG~MENTS DEPEND!~G 0~ THE NUMBER
OF SAVED VARIABLES, ANO USUALLY CONSISTS CF SEVERAL
QUADRUPLES.

THE FIRST QUADRUPLE HAS:

ARG2 POINTER TO SPECIFIER FOP FAIL PROCEOuRE
ARG3 NUMBER OF SAVED VARIABLES

THE I-TH ADDITIONAL CUADRUPLE CONTAINS:

ARG3 SYM80L TABLE PDINrER TO I-TH SAVED VARIABLE

THE ACTION OF THIS N~B81N IS

·~.GET A BLOCK OF ARG3 + 3 hOROS.

2. ITERATE OVER THE LIST OF SAVED VARIABLES. SET THE
SHARE BIT OF EACH SYMBOL TABLE ENTRY ANO STORE IT
AT HEAP(T-2-I). (T IS THE TOP OF THE STACK.)

3. PUSH RETAOOR A~O THE FAIL PROCEDURE.

THIS NUBBIN IS ALWAYS FOLLOWED BY A C2~RETURN.

6 • 02,.0KOK

THIS NUBSIN HANDLES OKOK. IT IS IDtNTICAL TO Q2~0K EXCEPT
THAT IT THREADS THE NE~ E~VIRONMENT BLOCK INTO THE LIST
OF OKOK BLOCKS.

Q

0

0

0

0

0

0

0

0

SETL-190-11

5. Q2~FAIL

THIS NUBeIN DEFINES A LOCAL ~OuTINt FOR HANDLING FAIL ANO REJtCT.
THE POUTlhE PER~J~MS ON~ OF T~U ACTIO~S etSE0 CN THE SETTING OF
THE GLOBAL FLAG !S~KEJcCT, WHICH INDICATtS WHETHtK wE A~i DOING A
FAIL OR A REJECT.

THE NUBBlN CONSISTS GF SEVERAL QUADRUPLES. THE FIKST QUADRUPLE H

A~G3 NUMBER OF VARifteL~S ~EI~G RESTORED

THERE IS AN ADDITION.AL QU~DRuPLE FOR EAC~ VAKIABLE BEING
RESTORED. THE I-TH ACDITIJNAL QUADRUPLE CONTAINS•

ARG3 SYMBOL TABLE POINTER TO I-TH VARIABLE BEING RESTORED

THF. 1-TH VARIABLE IS RESTORED FROM HEAP(T-1-I).
(T POINTS TG THE TOP OF THE STACK.)

THE ACTION OF THIS NUBBIN IS

le AT THIS POINT THE TOP ENVIRONMENT IS EITHER THE LAST OK
BLOCK OR THE LAST □ KOK BLCCK; WE CAN TELL hrl!Crl BY COMPARlhG
THE TOP OF THE STACK WITH LAST~OKOK.

2. IF WE ~RE PROCESSING AN □ KOK BLOCK POP THE PREVIOUS VALUE
OF LAST~OKOK. POP THE RETLRN ADDRESS AND SET IS~PEJECT
TO NO.

3. IF WE tRE PROCESSING AN OK ELOCK, WE ~UST CHEC~ WHETHER
WE ARE ACTUALLY PERFORMING A FAIL OR A REJECT. WE ONLY POP
THE RETURN ADDRESS IN THE FORMER CASE.

4. RESTORE EACH OF THE BACKTRACK VARIABLES.

5. POP THE TOP ENVIRONMENT BLOCK.

THIS NUBaIN IS ALWAYS fOLLOWEO BY A Q2~RETURN.

7, Q2,.ACCEPT

THIS NUBBIN CALLS A LIBRARY ROUTINE TO COMPACT THE STACK.
THE ROUTl~E DELETES ALL OK BLOCKS, EXIT 8LOCKS, AND
CONDITIO~AL RETU~N bLCCKS C~E~T~D SINCE THE LAST OKOK.
IT IS DRIVE~ BY THE SIZE SPtCIFIER CONTAINED IN EACH
ENVIRONMENT BLOC~.

0

0

0

SETL-190-12

8. Q2~ARB

THIS NueeIN IS A LOCAL ~KOCEOURE fOK THE NO~DtTERMlNISTLC ARB
OPERATIC~. ITS AR~UMENTS ARE JUST LIKE THOSE OF Q2~ □ K. ITS
ACTION ISa

le ASSUM~ WE ARE DOING X s ARB S. THEN ON E~TRY TO THIS NUB81~
THE TOP STACK ENlRY 1S A POINTER TO X, ANO THE E~TRY B~LOh
IT IS A POI~TER TJ S. USE THESE TO INITIALIZE XTO POINT TOT
THE FIRST ELEMENT OF 5.

2. BUILD AN OK &LOCK AS DESCRISED FOR THE 02~0K NUBBIN. RATHER
THAN PUSHING A POINTER TO THE ROUTIKES FAIL PROCEDURE, PUSH
A POINTER TO ITS ADVANCE PKOCEDURE.

THIS NUBBIN IS ALWAYS FDLLOkEO SY A Q2~RETUKN NUBBIN.

9. Q2~ADVANCE

THIS NU3b!N IS A LOCAL PROCEDURE TO ADVANCE AN ITERATOR FOR
A NONDETERMINISTIC AR3. ITS ARGUMtNTS ARE LIKE THOSE OF A FAIL
NU~BIN. ITS SEM4NITCS AREi

1. GET PGINTERS TO X AND S FROM THE STACK. ADVANCE X TO THE NEXT
lLEMi:NT OF S.

2• RESTORE All ~BACKt VARIABLES AS IF WE WE~E DOING A FAIL.

3. IF X IS OMEGA, POP THE TOP ENVIRONMENT BLOC~.

0 CHANGES TD THE COMPILER

C

C

0

Cl

C

IN THIS SECTION WE DISCUSS TrlE CHANGES WHICH MUST BE MADE TO Trlt
corPILER. ~E BEGIN BY REVIE~ING THE aASIC COMPILER STRUCTURE.

THE FIRST PHASE OF THf: COMPILER IS A COMBINATION SCANNER - PARSER.

THE SECOND PHASE OF THE COMPILER IS CALLEO THE SEMA~TIC PASS. IT
WALKS THE TREE PRODUCED SY TrlE PARSER, PkuCESSING DECLARATIONS
AND EXPANDING VARIGUS HIHG LEVEL CONSTRUCTS. THE 00TPUT OF THE
SEMtNTIC PASS 15 AN A~~OTATED SYMBOL lABLE AND A SERIES OF
QUACRUPLES KNOWN AS Cl.

THE THIRD PHASE OF THE COMPILER IS CALLED THE CODE GENERATOR •
. IT EXPANDS THE QUADRUPLES PROOLCED BY THE SEMANTIC PASS INTO
A MORE DETIAL~D SET OF QUADRUPLES KNOWN AS 02. THE$E QUADRUPLES
CORRESPOND 10 INDIVIDUAL NUBBINS, AND AkE EITH~R CONVERTED TO
MACHINE CODE OR USED Et THE INTERPRElE~. .

0

0

0

0

0

-'J

. .I

.
0

C

0

SETL-190-13

PARSING

WE wILL ~OT DISCUSS THE CHA~GES ~HICH ~UST BE MADE TO THE PARSER
SINCE THE BACKTKACKING StNlAX IS SlILL ~EING FI~ALLIZiD.

SEMANTIC P~OCESSING

IN THIS SECTION we DISCUSS CHANGES TO THE SEMANTIC PASS WHICH MUST
BE MADE TQ IMPLlMENT BACKTRACKING.

BAC~TRACKING ADDS BOTH STATIC CECLtRATIONS AND EXECUTABLE STATEMENTS
TO l~E LANGUAGE. USUALLY THi StMANTIC PASS PROCE5$ES DECLARATIONS dY
SETTING VARIOUS FIELDS IN TrlE SYMBOL TABLE, HOWEVER, FGK VARIOUS
TECHNICAL REASO~S IT ~ILL P~OCESS THE #BACK- AND -~OSACK
DECLA~ATIONS BY GENERATING SPECIAL ~UAGRU?LES WHICH INSTRUCT THE
CODE GENERATOR TO MAKE TABLE ENTRIES.

THE SEMANTIC PASS SEfS BACKTRACKING AS CONSISTING OF THE FOLLOWING
PRIMITIVES, EACH OF WHICH IS REPRESENT~D BY A NE~ OPCODE.

BACK Vl, ••• , VNI ADD Vl TH~OUGH VN TO THE LIST OF BACKTRACKED
VARIABLES

NOBACK v1, ••• vN: REMOVE Vl THROUGH VN FROH THE LIST OF BACKTRACKED
VARIAt3LES.

OK: SAVE THE CURRENT STATE OF THE BACKTRACK VARIABLES.

OKOKI A SPECIAL OK •

FAILS RETPEAT TO PREVIOUSLY SAVED ENVIRONMENT.

ACCEPT FINALIZE ALL CHA~GES TO ENVIRONME~T SINCE
LAST □ KOK.

REJECT REJECT ALL CHANGES SINCE LAST □ KOK.

ARB NO~CET~RMlNISTIC ARB

THE COkRESPO~DING OPCCDES ARE

0lrt8ACK
Cli+NOBACK
Cli+ARB
QlrtOK
Cllr+OKOK
01.+FAIL
OlrtACCEPT
0lrtREJECT

ADO Al, A2, ANO A3 TO LIST OF BACKTRACK VARIABLES.
REMOVE Al, A2, AND A3 FROM THE LIST
Al• ARB A2

..
NOTE THAT ONLY THE FIRST TH~EE OPCODES HAVE OPERANDS.

0

0

0

0

C

e

SETL-190-14

HIGHfR LEVEL CO~ST~UCTS

THE DEF~RED EVALUATIO~ JPE~ATuR

X • ARB. TH. <El,. E2, ••• EN>

IS TREATED AS A SYNTACTIC MACRO FOR:

CASE ARB. N OF
(1) I X • ElJ
(2)I X • E2;

•
•
•

(N) I X = EN;
END CASE;

THIS IS EXPANDED BY THE SE~ANTIC PASS.

CODE GENERATION

TH,E PHASE OF THE COMPILER MOST EFFECTED BY BACKTRACKING IS THE
CODE GENERATQR. THE CODE GENERATOR ~ILL HAVE TO BE MODIFIED IN
THREE AREAS:

1. THE CODE GENERATOR MUST PROCESS THE BACK ANO NOBACK DECLARATIONS
BY SETTING VARIOUS FLAGS IN THE SYMBOL TABLE WHt~EVER A 6AC~ OR
NOBACK OUADRUPLE IS SEEN. UNLIKE MOST INFO~MATIQN WHICH
IS PICKED UP FROM DECLAkATION~, THE SETTING OF THESE
FLAGS WILL VARY DURI~G CODE GENERATION. AS A RESULT THEY
CANNOT Bt SET STATICLY bY THE SEMANTIC PASS.

2• ~OUTINE PROLOGUES ARE SOMEWHAT ~ORE COMPLEX THAN PREVIOUSLY.
THE BASIC CHANGE HERE IS IN THE WAY THE Q2~ENTRY QUAORuPLE
IS EMITTED.

3. ROUTINE EPILOGUES MUST CONTAIN NOT ONLY CODE FOR RETURNS, BUT FO~
OKS, FAILS, ETC.

