M

® © o

SETL NEWSLETTER 197

'SOME COMMENTS ON EXTENDING CODE MOTION AND EXPRESSION

AVAiLAuILITY ALbORITHMb FOR THE SETL OPTIMIZER.

MICHA SHARIP .
SEP 30 1977

IN THIS NOTE WE SHALL OUTLINE SEVFRAL ASPECTS AND OBSERVATIONS
RELEVANT TO CODE MOTION AND EXPRESSION AVAILARILITY ANALYSIS
OF SETL PROGRAMS. WE SHALL ALSO SUGGEST SEVERAL POSSIBLE
EXTENSIONS AND GENERALIZATIONS UF THESE ANALYSES, AND HINT ON
PUSSIBLE APPROACHES TO THESE PRUBLEMS.

THE AIM OF THIS NOTE IS MERELY TO DOCUMENT AMD CLARIFY THE
PRESENT STATE OF THE DESJIGN AND THPLEMENTATION OF SUCH
ALGORITHMS IN THE SETL OPTIMIZER, AS WILL RE WCTED RELOW,
We STILL HAVE T0 MAKE A DECISION AS TO WHAT EXTENT WE WISH
TO CARRY OUT THOSE OPTIiM]ZATIUNS, AND HOW TO IMPLEMENT THEM
EFFICIENTLY. SOME OF THE COMMENTS BELGW ARE SIMPLY GUIDING
PRINCIPLES IN THE MAKING OF SUCH A DECISION.

1) POTENTIAL COMPUTATIONS FOR ELININATION AND MOTION,

PR R L Rl R N e kK R R R R R L I R ey T )

Ady SETL OPERATION WITH A UNIQUE OVARIABLE, WHICH IS DETERMINED
UNTQUELY AND IN A DETERMINISTIC FASHION FROM THE IVARIABLES,
WITHOUT ANY SIDE-CFFECTS, EXCLUDIUG ASSIGHNMEMT-LIKE OPERATIONS,
WILL BE CALLED AN EXPRESSIQWN COMPUTATION, THE OVARITABLE NAME
WILL BE A TEMPORARY NAME, UNMIQUELY DETERMINED KY THE OPERATIONM
AiD THE IVARIABLE NAME, THUS, FOR EXAMPLE, CALLS, BRANCHES,
ASSIGNMENTS, MAP AND TUPLE STCRAGES, ETC, ARE NOT EXPRESSION
COMPUTAT]ONS, A COMPUTATION, F0K 0OUR PURPNSE, WILL RE EITHER

Al EXPRESSION COMPUTATION, OR A SIMPLE ASSIGMMENT, OK AN
ASSIGNMENT=LIKE OPERAT]ON, THESE COMPUTATIUNS WILL BE THE ONLY
POTENTIAL CANDIDATES FOR CODE HMUTIUNM AND COMMOMN SUBEXPRESSION
ELIMINATION,

2) SAFETY CONSIDERATIONS OF MOVING EXPRESSION COMPUTATIONS,

WE IGNORE ALTOGETHER THE PROBLEM OF SAFETY OF MOTION OF EXPRESSIOM
COMPUTAT]ONS, AS THE COMPILER IS DESIGNED, THERE WILL BE SEVERAL
MODES OF EXECUTING SETL PROGRAMS, THE OHLY PERMITTED MODE FOR
PROGRAMS TU WHICH THE CODE MOTIGN OPTIMIZATION WILL EE APPLIED

IS THE ONE IN WHICH FATAL RUN TIn{ ERRORS, STEMMING FROM IJLLEGAL -
ARGUMENTS UF AN OPERAT]ON, WILL NOT CAUSE AN IMMEDIATE ABORTION

CF THE JOB, BUT RATHER ALLOW THE FXECUTION TO BE CONTINUED,

WITH THE OVARIABLE OF THE OPERATIOII RECEIVING AN ERROR VALUE,

AS LONG AS THE PROGRAM FLOW. ]S WELL DEFINED. ANY COMPUTATION
IHVOLVING AN GBJYECT WITH AN ERRUR VALUE WILL YIELD AN ERROR



o~

® oo » o o © 66 o © O

SETL = 197 - 2

VALUE AS A RESULT. THE EXECUTION WILL BE ABORTED WHEN A BRANCH
CEPENDING Oiv AN ERROR VALUE IS EXGCUTED. THUS, IT IS SAFE TO
MOVE E,G. A DIVISION OUT 0F A LOOP, EVEN THOUGH [T MIGHT NOW
KAVE A ZERO DIVISUR, PROVIDED THAT IN THIS CASE, THE ERROR
VALUE OF THE QUOTIENT IS NEVER USED LATER ON, THUS, ANY
EXPRESSIUN CUMPUTATION CAN BE MOVED OUT OF A LGOP, OR EVEN
INSERTED ANYWHERE IN THE PROGRAM, WITHOUT ANY HARM, (USUALLY,
CODE MOTION ALGORITHMS DO NOT MOVE CODE QUT OF LOOPS, BUT RATHER
INSERT THE CODE InTO THE TARGET BLOCK OF THE LGOP, AND LET THE
COMMON SUBEXPRESSION ELIMINATION PHASE DO THE REST.) THUS, WHEN
WE SAY THAT AN EXPRESSION COMPUTATION CAN BE MOVED, WE ALWAYS
MEAN MOVED PROFITaABLY, AwD THIS WILL BE DEFINED BELOW,

3) PROFITABILITY GF CODE MOTION,.

-------- LB R P e Al R B ]

USUALLY, THE PROFITABILITY CRITERIOM FOR CODE MOTION OUT OF A
LUOP, IS THAT EVERY MOVED COMPUTATION WILL BE UNCONDITIONALLY
EXECUTED WITHIN THE LOQP FOR EVERY EXECUTION FLOW. THIS WILL
ENSUKE THAT THE NUMBER OF TIMES THIS COMPUTATION IS EXECUTED
WILL NEVER INCREASE, AND WILL PUTENTIALLY LDECPEASE SURSTANTIALLY,
HOWEVER, THE SETL STRUCTURED LOOPS ARE SUCH THAT THE TEST FOR
LUOP TERMINATION IS PERFQRMED AT THE BEGIMNING OF EACH LOOP,
THUS, CONSIPERING THE POSSIBILITY THAT SQE LOOPS MIGHT NOT BF
EXECUTED AT ALL, FOR A PARTICULAR RUN OF THE PROGRAM, THIS
CRITERION IS T00 STRONG, FOR EACH COMPUTATION WITHIN A LOOP
MIGHT POTENTIALLY NEVER BE EXECUTED, AND SO THIS CRITERION WILL
YIELD NEXT TO NO MOVABLE COMPUTATIONS AT alLL,

THUS, OUR COMPROMISE IS TO MOVE OuT OF A LUOP COMPUTATIONS
WHICH ARE UNCONDITIONALLY EXECUTED, ASSUMING THAT THE LOOP IS
EXECUTED AT LEAST ONCE, THUS, THOUGH WE MIGHT COMPUTE EXTRA
EXPRESSIUNS AFTER THE CODE MOTION, ME WILL GAI!l CONSIDERASLY
0N THE AVERAGE,

4) HIGHER LEVEL OF CODE MOTION AND AVAILABILITY,

L A B R Al R ik e adiad R K T IR R R

LET US DEMOUNSTRATE, THROUGH SOME EXAMPLES, THE LEVEL
OF OPTIMIZATION THAT WE MIGHT WANT TO ACHIEVE =

1) IN THE FOLLOWING CODE FRAGMENT
(v)

T1 := F(B)};

A = Ti13

T2 := HCA)}
END v

WE WOULD LIKE T0 DERIVE THAT ALL THREE COMPUTATIONS CAN BE MOVED
QUT OF THE LOOP. THERE ARE SONE COMPLICATIONS AND LIMITATIONS



‘'® e © © o e 0 o © °

4

SETL = 197 = 3

ABOUYT MOVING THE ASSIGNMENT QUT OF THE LOOP,
BUT HE

EXPLAINED HELOW,
THAT WILL ALLOW US

AS WILL BE
TC FIND SOHE MECHANISH

e T OALET VoA MW
rraang [ANNA NI

TO MOVE THE CONHPUTATIOHS 0UT,

2) CONSIDER THE FOLLOWING UNOPTIMIZED CODE

(vY = §)
FeY)
H(Y)

END v

WHICH WOULD EXPAND

(vY = §)
T1 :

Fey)
T1
T2
H(Y)

END w3

1= GiX)}
P= P(GIX))}

TO

G(X)s

P(T1)3:
= 723

AHD ANY STANDARD ALGORITHM WILL BE ABLE T0 MOVE THE COMPUTATION

OF T1 AND T2 OUT GF THE LOQP,

HUWEVER, AFTER A MANUAL SEMI-

OPTIMIZATION, THE ORIGINAL CODE MIGHT LOOK SOMETHING LIKE THIS:

(Y «» 5)
A 1= G(X)3 A
FCY) := A} -
H(Y) := P(A)}

END v3

WHICH WOULD BE EXPANDED JNTO

(vy -« &)
T1
A &=
FeY)
T3
H(Y)
END v3

G(X)};
Ti:.
Al
PC(A)Y;
733

AND SINCE THE STANDARD ALGORITHH WILL REGARD THE ASSIGNMENT

A 1= T3

AS A KILL OF A AND OF ALL THE DEPENDENT EXPRESSIONS,

IT WILL NOT PICK UP THE FACT THAT THE COMPUTATION OF T3 CAN

BE MOVED OUT OF THE LOOP,

THUS,
OPTIMIZE HIS CODE.

TOGETHER WITH THE ABOVE ASSIGNMENT,

WE PUNISH THE PROGRAMMER FOR HIS ATTEMPT TO SOMEWHAT
THIS SITUATION
USER DEFINED TEMPORARY,
SEVERAL SUBEXPRESSIONS,

COULD ALSO OCCUR IF A IS A
USED TO SPLIT A LONG COMPUTATION INTO
AGAIN, WE MIGHT WANT TO BRE ABLE 7O

MOVE ALL THESE COMPUTATIONS OUT OF LOOPS,



-,

S & & » ¢ © o o © 9

SETL = 197 -« 4

3) ONE MIGHT ALSO WISH T) GENERALIZE AVAILABILITY, IN A SIMILAR
FASHION, CUNSJDER THE FOLLOWING EXAMPLE.,

IF COND THEN

B 1= F(A)}

X = G(B)}
ELSE

C 1= F(A)}

Y t= G(C)}
END IF3

AFTER EXPANDING, WE WILL HAVE
IF COND THEN

Ti1 := FCA)}

B 1= T13

T2 := G(B)}

X iz T23
ELSE

Ti :=2 F(A);

C 1= T1:

T3 := G(C)}

Y 1= T33
END IF3

HERE, THE EXPRESSION G(F(A)) IS ACTUALLY COMBUTED UNCONDITIONALLY
IN THIS IF STATEMIINT (STORED, HOWEVER:s UNDER TWO DIFFERENT
TEMPURARY NAMES). WE M]GHT WANT To DETECT THIS INFORMATION,

SO THAT WE CAN ELIMINATE ANY FURTHHER COMPUTATION OF THIS
EXPRESSIUN, HERE lE REFER TQO A DEEPER ANALYSIS, TRYING TO

ANALYZE FURTHER THE CURRENT VALUE THAT EXPRESSIONS ANWD USER
VARIABLES HAVE AT CERTAIN PRUGRAM POINTS,

5)y SAFETY CONSIDERATIONS OF MOVINf; ASSIGNMENTS,

- TS W s W g W N e P a0 eo

THE SAFETY CONSIDERATIONS FOR MOVING ASSIANMENTS OUT OF

LOOPS ARE QUITE DIFFERENT FROM SUCH CONSIDERATIONS FOR

MOVING OUT EXPRESSION COMPUTATIONS, AS DESCRIRED ABOVE,

1.{DEED, IN GENERAL, ONE CANNOT MOVE AN ASSIGMNMENT LIKE X := T3
QUT OF A LUCP, SILCE, IF THE LOUP HAPPENS NOT YO BE EXECUTED

AT ALL, THENM X IS ASSIGNED A VALUE, WHICH WOULD NOT_BE ASSIGNED
TO IT OTHERW]SE. THERE ARE SEVERAL WAYS Tn OVERCOME THIS
LIMITATIUNS, WHICH MIGHT SEVERELY AFFECT aNY EXTEMDED ALGORITHM,
ATTEMPTING TO TRACE INFORMATION PAST ASSIGNMENTS,

ONE WAY IS TO ALLOW THAT ASSIGNHMENT TO BE MOVED OUT OF THE
LOOP, ONLY IF X IS DEAD UPON ANY EXIT FROHM THE LNOP, SO THAT
THE MEW VALUE OF x WOULD NOT AFFECT THE EXECUTION OF THE REST

CF THE PROGRAM, THIS LIMITS SOMEWHAT THE POWER OF CODE HOTION,



© © o o e o6 o

® © ~ © © © o6 © o ©

SETL = 197 - 5

- - a ~e
i TEMPORARY, USEDN

T NEEDED ELSEWHERE

BUT FOCUSES Ol CASES WHERE X I
TO SPLIT A LONG CALCULATION IN THO
IN THE PROGRAM, |

o m

ANOTHER WAY IS TO MOVE THIS ASSIGHMENT OUT OF THE LOOP, BUT
REPEAT ALL TESTS WITHIN THE LOOP WHICH ARE EXECUTED BEFORE THE
ASSIGNMENT, ALSO IN THE TARGET uLuCK OF THIS LOOP, TO MAKE SURE
THAT IF THE STATEMENT WAS ORIGINALLY NOT EXECUTED, IT SHALL NOT
BE EXECUTED AFTER THE MOTION AS WeLL, THIS WAY IS VERY AWKWARD
AND DIFFICULY TO IMPLEMENT, EVEN WITH STRUCTURED LOOPS, THE
TESTS FOR LOOP TERMINATION MAY BE QUITE IHVOLVED, AND DIFFICULT
TO LOCATE (CUNSIDER, E,G,, AUIT STATEMENTS SCATTERED THROUGHOUT
THE LOOP), AND IN MANY CASES, TU HEPEAT THOSE TESTS WILL REQUIRE
TO ALMOST UUPLICATE THE LOOP B0ODY IN THE TARGET BLOCK (WHICH wILL
NOT BE NOW A BLOCK ANYMURE), ALSO, ATTEMPTING TO MOVE THESE
ASSIGNMENTS AND TESTS OUT OF TWO uwR MORE MESTED LOOPS MIGHT
INCREASE THE COMPLEXITY QOF TWE CODE TREMENDOUSLY, THUS, THIS

WAY 1S CERTAINLY WOT RECOMMENUED,

A THIRD WAY, WHICH IS ALSO RELATEN TO THE GENERALIZED AVAILABILITY
SUGGESTED ABOVE, IS TO EMPLOY A SCHEME OF SUSSTITUTIONS OF ONF
EXPRESSIUN INTO ANOTHER, EXPLICITLY IN THE CODE, SO THAT THERE 1S
NO NEED TO MOVE ASSIGNMENTS AT ALL, LET US EXAMINE THE FXAMPLES
GIVEN [N 4),

IN THE FIRST EXAMPLE, WE CAN MODIFY THE CODE TO LOOK LIKE

(v)

T1 := F(B)}

A= T13

T3 := H(T1):
END v3

NOW, THE COMPUTATIONS OF T1 AND T3 CAN BE SAFELY MOVED ouT
CF THE LOCP., THE ASSIGNMENT KEMAINS IN THE LOOP, AND, IF A
WAS INDEED A USER DEFINED TEMPORARY, THEN A SURSEOUENT PHASE
OF DEAD COUE ELIMINATION WILL ELIMINATE THE ASSIGNMENT,

SIMILARLY, IN THE SECOND EXxAMPLE, THE SEMI=-OPTIMIZED CODE
WILL BE TRANSFORMED INTO SOMETHING LIKE THE FOLLOWING,

(vY = §) X

T1 := G(X)}

A = T13

FeYy)y 1= 113

T4 := P(T1)3

H(Y) = T4; .
END w3

AND AGAIN, THE COMPUTATIQNS OF T1 AND T4 CAN BE MOVED OUT
OF THE LOOP,



'O © € o e ® ®© © © ©o

e 6 6 6 & o @& o o ¢

SETL = 197 - ¢

SIMILAR SUBSTITUTIONS CAN BF PERFORMED IN THE THIRD EXAMPLE,
MAKING THE COMPUTATION OF G(F{A)) AVAILABLE, AND STORED
UNDER THE SAME MAME, ON BOTH bRANCHES OF THE FLOW,

HUWEVER, SUCH A SCHEME HAS ALSO SHORTCOMINGS, AS DEMONSTRATED
In TRE FOLLOWING EXAMPLE,

IF COND THEN

X(1)s
FCA)S
G(A)}

»e o8 we

X(J)s
G(A)}
FCAYS

"nouon

we ee we oo’ "’

FCAY := F(A) + B}
G(A) = G(A) « C}

WITHOUT SUBSTITUTIONS, F(A) AND G(A) ARE A0TH AVAILABLE AFTER
EXECUTING THE IF STATEMENT, HUHWEVER, AFTER SUBSTITUTING

X(1) AND X(J) INSTEAD QF A, NOTHING BECOMES AVAILABLE, aS

THE VALUE OF F(A), FOR EXAMPLE, I3 NOW STORED UNDER TWO
DIFFERENT NAMES,

THUS, THERE IS A CONFLICT BETWEEN CODE MOTION AND AVAILABILITY,
SO THAT SUBSTITUTIONS MIGHT CUMPLICATE AND INTERFERE WITH
AVATILABILITY aNALYSIS, EVEN THOUGH THEY ARE IDEAL FOR CODE
MOTICN,

6) CONCLUDING REMARKS,

THE CLASSICAL, INTERVAL=QRIENTEDL ALGORITHM FOR COMMON
SUBEXPRESSION ELIMINATION AND CUDE MOTION, DUE ORIGINALLY TO
J. COCKE, AND DESCRIBED [N DETAIL BY X, KENNEDY [N zOM
PROGRAMMINGZ, HAS ALREADY BEEN IMPLEMENTED INTQ THE SETL
CPTIMIZER, AS A DEFAULT QPTION, WE ARE NOT SURE THAT THE
EXTENDED CUDE MQOTION AND AVAILAGLILITY AMALYSIS WiILL REALLY

EZ EFFECTIVE, THE EXTRA CODE UPTIHIZATION THAT MIGHT BE PICKED
UP BY SUCH EXTENDED ALGORITHMS, MIGHT BE QUITE MARGINAL,

AD APPLICAZSLE ONLY IN RARE SITUATIONS, HOWEVER, IF ONE

15 REALLY WILLING TO EXTEND THE CUDE MOTION AND AVAILABILITY
ALGOKITHM, THEN THE ABOVE REMAKKS SUGGEST SEVERAL POSSIRLE
APPROACHES, AMONG WHICH WE FAVOR FITHER A FULL ScaAlLE OR

A LIMITEU RANGE SUBSTITUTION SCHE(E, DEPENDING O THE DESIRED
AHOUNT OF EXTRA OPTIMIZATION, .



