
1978 

Possible Addition~l R~P~s 

for the ~Tew S:S7L Syst2r'.l 

The new SETL system is now beginning to app~oach operational 

status. As the present library of data representations,and the 

routines which support them become operational, it may become 

feasible to add various significant new representations, with 

corresponding code, to the library. Some of these representations 

m2.y be easily implementable by short routines which invoke existing 

facilities. This note will comment on two potentially significant 

representations not currently provided: list and B-trees. 

1. List reoresentations 

Sets can be represented as lists with bitvector supple.r:i.ents, 

and tuples can be represented by lists. For sets, we can begin 

by introducing two new REPRs 

local list (Eb) ---
and remote list· (Eb) • 

A sets having the first of these representations would be 

represented by a one-way list of its elements, supple.mented by 

one-bit fields in the base (these are exactly the bits that 

would represents as a local set.) Similarly, ifs has remote 

list representation, then it is represented by a list, and also 

by a bit-vector of exactly the sort that would represents if 

it were remote set (Eb). 

The bits associated with a set support r.e2b2rship c!nd 

equality testing, whereas the list supports iteration and the 

from operation. The operations less x can be perforned si~ply 

by dropping the bit associated with x; but then ono will wont 

to check for deleted ele~ents during iteratio~s overs, 2nd 



For tuples t we can provide 

listed tuple sode, 

this represented t as a 1-way list. Such lists support efficient 

iteration, and also concatenation and adjunc~ion of elernents. 

The indexing operation t(i) and indexed assigni~ent t(i) :=x 

one very expensive, but their expense can be reduced by 

storing the index value i associated with the last list component 

examined, plus a pointer to the preceeding component, as part 

of the representation of a listed tuple. Then indexed retrievals 

t(i) can be performed by comparing i to the current component 

index, and proceeding forward as many list el~~ents as necessary 

from the current position. This technique can be especially 

effective if we use the trick of storing the exclusive or of a 

backward and a forward pointer in each list element; then 

either t(i+l) or t(i-1) can be retrieved rapidly once t(i) 

has been accessed. 

It is conceivable that an automatic analyser may be able 

to detect cases in which. the elements added to a sets 

having list REPR are known (statically) to be outsides, and 

in which scan always be used destn:.ctively. The necessary 

analysis will not be easy, but will be facilitated by the fact 

that attempts to establish this kind of disjointness can be 

focused on sets for which a list REPR has been declared. When 

these conditions can be established, the bit-flag or bit-vector 

part of the representa tio:i1 of s can be abandon.ed, and s can 

represented as a simple list. In some cases it raay even be 

possible to show that two lists sands' represent disjoint 

sets, allowing the union operations+ s' to be implemented, 

in maxirn.ally efficient fashion, . . 1 ' SlE'.?,-Y DY concatcn~ting lis~s. 



If a tu~le t frequently addressed by ins~rtio~s an~/o~ 

deletions, then it may be ad~antageous to use a B-tree represent

ation fort. If destructive use is permissible, concatenation 

of tuples and separation of tuples into two parts can also be 

handled effectively in this representation. Acceptable syntactic 

representations for these operations are already available: 

for element insertion: t(i:0) := [x] ; 

for subtuple insertion: t(i:0) := t'; 

for subtuple deletion: t ( i:) := t(i+j:); 

for concatenation: t 11 .,__ ' (or t+t I) j .... 

for separation into two parts: [t, t']:= [t(l:i), t(i+l:)J. 

It is possible for the parser to special-case these situations 

for objects t declared to have B-tree representation. 

A plausible declaration form is 

tree tuole mode. --- _ ___,.,. __ 
We must also provide an effective way of searching a tuple 

having B-tree representation~ A plausible approach is to store 

the index i of the last two components accessed, together with 

a pointer to the last component accessed; as part of each tuple 

t having B-tree representation. Then we can provide three 

additional primitives 

right t, left t, and mid t. 

Our aim in defining these primitives is to allow an efficient 

binary search of a sorted vector t having B-tree representation 

to be written as follows: 

i : = wid t; 

(while i f: 0.) 

if key-field (t(i)) 

quit; 

else 

x then 



]_ . 

/* now the condition if Q determines whethsr a key-field*/ 

/* with value x has been found or not, and the value */ 

/* t(i) is imnediately accessible if x has been found */ 

The logical advantage of proceeding in this way is that no 

notion of sorted order need be inherent in the B-tree REPR itself. 

If we asslL."':le a 2-3 tree representation for t, the 

primitives right and left will act as follows. Suppose that 

the last addressed comnonent oft is stored as the k-th element 
J; 

a node N of the tree representing t, and that N stores a total 

of K components oft. (Of course, K has either the value 

2 or the value 3, and 1 ~ k 2 K.) Then 

(a) If k < K, then: right t is the k + l'st element stored 

in N, unless this was the last component but one accessed, in 

·which case right t is the middle element of the k-th child 

node N I of N. (But if in this latter case N is a twig, then 

right t is Q; if N I exists but stores only two elements. of t, then 

right t is the first of these elemen-t;s.} 

(b} If k = k, then right t is the middle item stored 

in N' (as in (a)), or, if N' stores only two elements, is t_~e 

first of these two elements. If N is a twig, so that N' does 

not exist, then right t is Q. 

(c) The rules for the primitive left tare symmetric 

to those for right t. 

(d) The primitive mid t returns the middle element stored 

in the topmost node N of the tree representing t (or the first 

element in N, if N stores only two elements.) 



Various spe2ialized representations for set-t~eoretic 

objects have cone to p~~y a large role in the tlesign of 

particular classes of high-efficiency algorithI"~s. Some of 

these might be made available as REPRs. Th2 co,:1._,_-rron obstacle 

to doing so is that the pattern of operations that these REPRs 

support can be somewhat fragr::ientary, and may involve several 

objects in co~bination. Here we shall only consider one such 

specialized REPR, the 'compressed balanced virtual tree re

presentation' for mappings that gives a highly advantageous 

way of handling equivalence classes. (This structure and its 

use is described by Aho Hopcroft-Ullman.) 

We can put the essential £acts connected with this data 

structure as follows. L~t f be a single-valued map, defined 

on all or part of a sets. We suppese that no sequence of 
2 . 

values x, f(x), f (x) , ..• will ever cycle; thus every such 

sequence will end with a unique y = fn(x) such that f(y) = n. 
c.o 

Introduce the notation f (x) for this y (an infix notation 
en 

for f (x) might be f •1im x.) The REPR we have in mind makes 
co 

the calculation off (x) very fast (essentially, a fixed number 

of machine cycles), and also supports the following operations: 

Retrieval of f(x). 

Assignment or reassign..nent f(x) := y, subject to restrictions 

described below. 

Overall reassigrL'Tient f : = n.Q. or f : = h. 

The technique is to store both a standard form map representation 

off, and a subsidiary 'compressed virtual tree' representation. 

This subsidiary representation involves the following objects: 

(i) A map ff whose do2:1.in includes that off, which is 

essentially the parent mapping in an au~iliary tree T. 

(ii) An integer-valued map ~Jascs with the same do~ain 

as f, which is the nu;:iiber of dcscenda:its function for T. 

(iii) A boolean val~2d function 

exact signific~nce of values of ff. 



this basic proc~dure is 28dified to 'cornpactr paths in T as 

they are traversed: Each node encountered along such a tree 

is made a 
co • 

f (x) ultimately 
co 

reached. 

direct child of the ancestor node 

The full procedure used to evaluate f (x) is therefore 

z := x; s := n9,; 

(while flag (z)); 

s ·with z ; z : = ff ( z) ; 

end while; 

<VuEs) ff (u) : = z; ; 

/* and now return if ff(z)f Q then ff(z) else z* 1 

An assigThc1ent f (x) : = y will only be accepted if f (x) = Q 

(so that no element z with f(z) = x can have ff(z)t x) and if 
00 

_x if (y) (so that the assignment creates no cycles). The 
0::, 

effect of this assignment on ff is to cause either ff(x) := f (y) 
00 • 

or ff(f (y)) := x to be executed; of these two possible operations 

we choose that one which will keep the tree T balanced. The 

procedure is simply: 

if f(x) f Q or 

f(x) := y; 

ff (x) := z; 

0::, 

(z .- f (y)) = x then error;; 

/* keep the map up to date*/ 
co 

/* keep value f (x) up to date*/ 

if ndescs(x)· ~ ndescs(z) then /* make z a T-child cf x */ 

ndescs(x) + ndescs(z); /* here take~ as a code for 1 */ 

ff(z) .- x; flag(z) := true; /* x is now the T-parent of z */ 

else 

end 

ndescs(z) + ndescs(x); 

flu.g (x) : = true; 

J. -f • . ~, 

/* 

/* 

make 

Z lS 

T-child of z */ 

the T-parent 0£ x */ 

To make this represent.a tio::1 av2.il~ble as a P3PR, i;,;e can 



li0it sRa~ (Eb) Eb. -·----- __ _;,_ 

We can also allow the (sparse) forre 

li~it sparse smap (mode) mode. 

Generalizations of the compressed balanced tree data 

structure are also very useful for cases in which values v(x) 

belonging to an associative semigroup are defined on the nodes 

x of T, and in which products 

v(x) • v(f (x)) = .v(f (x)) 

need to be calculated with very high efficiency. However, since here 

three distinct logical objects, namely f, the map v, and the 

binary operation which combines values v(x) are involved, 

it is less clear that a situation of this kind can be described 

simply by a REPR. 


