
SETL Newsletter# 213

Future Plans for The

SETL Optimizer
M. Sharir
January 1,1980

The work on the SETL optimizer is now approaching the

end of another phase. A first implementation, written in

SETL, is about to be completed. It contains most of the major

optimizations that we have contemplated, including common sub

expression elimination and code motion, type analysis, automatic

data-structure selection and copy optimization. It has been

tested on a few small to medium size SETL programs with

satisfactory results.

Of course, in its current state, the optimizer is still

far from the state at which it could be used routinely as part

of the SETL compiler. Currently it does not contain based

data-structure declarations, and because of its length it is

compiled and executed as nine successive phases. On the average

the optimizer currently processes one SETL source line per

minute. However, we can estimate the speed-up that could be

achieved by the following improvements:

(a} Introduction of based representations (especially

in the sections which perform bitvectoring data-flow analysis,

where currently the analysis bitvectors are still represented

as unbased sets). This should give a speed-up of at least 2.

(b} Improvement of the SETL system, e.g. by generation

of hard code and el~mination of the interpretive overhead,

should give a speed-up of approximately 4.

(c) Elimination of the binary I/O currently needed for

communication between subsequent phases of the optimizer, and

minimization of the dumps and other printouts currently produced

by the optimizer, should give a speed-up of approximately 4.

All these improvements together could bring the optimizer to

a level at which it could process roughly 30 lines/minute.

SETL-213-2

(d) Optimization of the optimizer by self-application.

This might double the optimizer speed once more. Note however

that the optimizer is roughly 10,000 lines long, so self

application will initially require a run of approximately

five hours. If these estimates are correct, then the optimizer

Will reach only a minimal production level after these improvements.

It therefore appears likely that we will want to recode all,

or significant parts of the optimizer in a lower-level

language (probably LITTLE).

In any case, one of the next steps in the work on the

optimizer ought to be improvement of its performance by ste:ps

(a), (b) and (c) above ((d) is too impractical at the moment.)

In particular we should try to compile the optimizer as one

unit. Measurement of the speed-up obtained by these improve

ments will allow us to be precise concerning the.ultimate

speed-up likely to be gained without recoding of the optimizer.

Another direction that we ought to pursue soon is

~xtensive testing of the optimizer. In fact we ought to

develop a comprehensive test-library for the optimizer.

This should precede any attempt to recode the optimizer, and

would require at least two to four man-months.

There are also various sections of the optimizer that

have not yet been written, or that need modification. We

list the most impor~ant ones:

(1) Add to the automatic data-structure selection a

refinement phase which chooses local, remote or

sparse attributes for based objects, in a way

which is based on the usage of these objects.

(2) Consider various other extensions to automatic

data-structure selection, such as list representation

for tuples, multiple REPRs, etc.

(3) Add the currently missing 'bookkeeping' optimization

routine to copy optimization, so that secondary

improvements in the copy mechanism will be attempted,

SETL-213-3

e.g. suppression of share-bit settings and motion of

copy operations out of loops. Also add special case

treatment of uses of the form 'f(x) with:=y', in which

local analysis can usually assist in the elimination

of copy operation.

(4) Modify the treatment of partically compiled programs

by the optimizer. The current approach,which simulates

external procedures in the •most general' way, seems

too cumbersome, and can probably be replaced by a more

compact handling of such procedures.

(5) Add a 'peephole' optimization phase in which various

local code improvements are performed.

(6) Look for other major optimizations that have been

overlooked in the current optimizer design, but which

might become obvious e.g. by studying the Ql code

produced by the optimizer.

(7) Develop methods for applying the optimizer as an

error-detecting global analyzer during the compile

phase, and also to assist in management of large

systems of programs.

(8) Design, and if possible install, mechanisms for the

optimization of backtracking.

Beyond all of this, a significant possibility seems to

be the development of 'multi-level' optimization techniques, i.e.

(i) Begin by determining appropriate data structures,

eliminating unnecessary copies, etc. After this, determine

those parts of the library which will be entered, and assemble

the relevant library fragments into a program-specific package

of online macros and tailored offl.ine routines.

(ii) l,.nalyse this code globally and optimize. it at the

LITTLE level. The resulting code should compare in an interesting

way with applications code written directly in LITTLE.

SETL-213-4

Note that a more detailed 'REPR' language, which

facilitates data packing and the application of other LITTLE

level techniques by declaring set size and other representation

related information,may become appropriate in connection with

steps (i) and (ii).

In summary, we can say that although much still needs to

be done in order to realize the full potential of the SETL

optimizer, we have now come very close to the point at which

most of the goals initially projected for the optimizer have

been realized, and least in their e~sentials. This now makes

possible a period of large-scale experimentation out of which

new ideas will hopefully grow.

Co~- ~ \""""---- \ -? ,~ r-r-- +>'-~ ·~

~(1 ,l Cod-,:.... Gu '-1.A , IA<• •. f, 0 ..:__

