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h 1,Lr:inge Sorting Alzorithr., Inspired E.Y Formal Differentiation 

In this note we will describe an application of the rnetarules given 
tn section 4 of (Sh] in a generalized situation, where the object being 
con;tructed is not a set. This application leads (by informal intuitive 
•teps) to a new sorting aleoritho. 

The problem considered is sorting a given sequence of inteeers. 
Let A•(Al,A2 ••• An) be this sequence. A specification of the meaning 
of sorting might roo~ like 

find a sequence of integers B such that 
Bis a permutation of A and Bis sorted 

Ye can write a skeleton program to solve this problem as follows: 
Consider the first conjunct "Bis a permutation of A" as an invariant 
property to be preserved throughout the program, and the second 
conjunct "Bis sorted" as the program's goal. Then we can write 

B : .. A; 
(while not sorted(B)) 

B :_ = f ( B); 
end while; 

vhere f(B) is a 'scall' change in B which preserves the invariant 
:,' l c on ju n c t • 

k;;,._~ 

For the moment let us ignore the probler.i of how to split the 
predlcat~·defining B into an 'invariant' subpart and 'goal' subpart, 
and how to find a faoily of invariance-preservine transformations f 
on B, though these are problems deserving substantial study. (Note 
that ln the set-valued case considered in [Sh) the function f was 
sinply addition of elements to the set object being constructed.) 
I.e. suppose that we sonehow find out that the transformations f can 
be taken to be swapping of any two elements of B. This put us into a 
situation quite similar to the one considered in [Sh], namely a 
cocplicated predicate 

P(B) a not sorted(B) 

is repeatedly computed in a loop in which B changes 'slightly' 
(although Bis not a set). This is precisely the set-up needed for the 
application of formal differentiation and the other r~lated techniques of 
[Sh] which aim at making the selection of the transformation f to be 
applied core intelligent. 

ReYrite P(B) as 
P(B) • exists (i,j) : i in [l ••• n], j in (1. •• n], i<j and Bi>Bj 

- {(i,j) : •••• }/• { ) 

Let K(B) denote this set. 
Aining to apply the first transformation of section 4 of [Sh) and 

• not bothering for the time being to verify its applicability), we want 
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to rewrite the prograo as 

B : • A; 
(while K(B) /•· { ·»· 

B :• f(B) where f is a swap such that 
' K(B) * DK(B,f)/• {} 

end while; 
vrltlng K(B) in the form 
vc can write 

Hence 
DK(B,f) • {x 

~ 

K(S)*DK(B,f) • 
- { ( i ,.j ) 

{x : Q(x,B)) 

{x: Q(x,B) & - Q(x,f(B))) 
i<j & Bi> Ilj & f(Bi) <=f(Bj)} 

Q(x,B) & Q(x,f(B))} 

In other words, we want to perform a swap which will cause an inverted 
pair to become sorted. 

Now of course there is always a way to select a swap to 
satisfy the above selection criterion (K(B) * DK(B,f) = { }), i.e. 
svap the inverted pair (i,j) itself. However, there also exist other 
choices for the swap. For exaople, suppose that there exists an 
inverted pair i<j & Bi> Bj. We could then swap j with any k for 
vhich Bi <•Bk, or. swap i with any k for which Bk<= Bj. Although at 
first sight these swaps seem to be counter-productive it is neverthe­
less interestinc to follow the lead and see what algorithms such a 
choice might yield. 

,' 
\t.· 
~~ To do this we will abandon the course of formal considerations and 

'1 continue in an intuitive informal mode. 

i 
To push Chines to the extreme, let us consider only swaps which 

recove at least one inverted pair but which are not swaps of inverted 
pairs. It 1s easily seen that there are two such cases 

(a) SYap j and k, where exists i < j < k s.t. Bj<Bi<=Bk 

✓ / 

-~-
i j k 

(b) swap k and i, where k < i < j s.t. Bk<=Bj<B: 

k i j 

PA 
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note that ~waps (a) push a conflict 't~ the right' whereas swaps (b) 
pu~h it to the left. This suggests that we try only swaps (a) first, 
and vhen ther~ are no more such s~aps possible, try only swaps (b). 
tt ls an easy exercise to show that after swaps (a) are exhausted, 
•vAp9 (b) cannot generate a triple (i,j,k) which makes a swap of the (a) 
typ~ possible ■ Hence when the two phases of our algorithn terminate, 
thc~e ar~ no core swaps (a) or (b) possible, and it follows that the 
•~quence being manipulated must now have the following structure: 

1.e. a concatenation of non-decreasing subsequences, such that each 
subsequence has all its elements smaller than those of the preceding 
subsequence. Such a sequence can be sorted by a linear pass through 
its elements ■ 

We give an example of this algorithm as applie~ to the sequence 

4 1 5 9 26 3 8 7 

I~ svaps (a) performed frot:i. left to right (the triple suggest ins the 
svap is circled): 

4 1 5 9 2 6 3 8 7 
4 5 1 9 2 6 3 8 7 
4 5 9 1 2 6 3 8 7 
4 5 9 6 2 1 3 8 7 
4 5 9 6 8 1 3 2 7 
4 5 9 -6 8 7 3 2 1 

In the last row no more swaps (a) are possible. 

11. swaps (b) performed fron right to left 

4 5 9 6 8 7 3 2 1 / 

4 5 9 8 6 7 3 2 1 
4 8 9 5 "6 7 3 2 1 
9 8 4 5_/· 6 7 3 2 1 

~e have now achieved the situation described above which decooposes the 
subscquences 9, 8, 4567, -3, 2, 1 and the soi;-ted sequence can now 
be easily obtained. We will not digress here into a study of the 
cocplcxity of this algorithm. 

Another algorithc that suggests itself is as follows: pick any 
co~ponent Boo of the sequence; apply swaps (a) from left-to-right to 
the collection of elements which lie to the right of using mo as the 
first index of each triple suegestinB a swap. (I.e. swap j and k where 
00 <j<k and Bj < Boo <a Bk). Similarly perform swaps {b) to the left 
of B~o usi~g mo as the last index of each swap-inducinc triple. It 

PJ 
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is easy to see that the sequence Yh ich results froo this has the 
follovin& structure: 

••• 

• ., 
• • • 

Il I2 mo· I3 I4 
<: 

'Where the blocks shown are unsorted but have elements which compare in 
the manner suggested by the figure. Ye can thus use a recursive approach 
which sorts each of the four subsequences Il, 12, 13, 14, and then obtain 
the final sorted order by 

merge (sort(I2),sort(I4)) II 

This will yield a variant of QUICKSORT. 

[mo] I I merge (sort(ll), sort(I3)) 

In the preceding example, suppose that we pick Bmo = 6. Then 
applying swaps (a) to its right we get 

6 3 8 7 
6 8 3 7 

-6 8 7 3 

and applying swaps (b) to its left gives us 

4 1 5 9 2 6 
4 1 9 5 2 6 
4 9 1 5 2 6 
9 4 1 5 2 6 

We thus obtain the sections 11 = 9 IZ = 4 1 5 2 
and the sorted order can be obtained by sorting 12 
then using the above formula. Note: A variant may 
mo as the first (or last) index. That would +eave 
to be sorted at each step, and 'Would eliminat~ the 

.. - .. 

13 = 8 7 14 = 3 
, 13 separately and 
be obtained by picking 
only two subsequences 
need to nerge. 

The moral of this little Dijkstra-like happening is that interaction 
between a formal program-developnent iystem and its user could be very 
fruitful even if applied in a very l~ose sense, in which the formal rules 
of the systen suggests ideas, or 'algo~ithm-fragments' 
which the systen user must pick up 
and develop intuitively. As an example of this I note that the idea 
of using the above swaps did not cone to my mind (and would have 
probably never done so) except thru application of the formal­
differentiation-based transformations of [Sb}. 

[Sh] Sharir, Micha, "Some Observations Concerning Formal Different­
iation of Settheoretic Expressions'', N.Y.U. Conputer Science Technical 
Report 16, 1979. 
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