
•

~ETL NEYSLETTER #214 March 27, 1980
MICHA SHARIR

h 1,Lr:inge Sorting Alzorithr., Inspired E.Y Formal Differentiation

In this note we will describe an application of the rnetarules given
tn section 4 of (Sh] in a generalized situation, where the object being
con;tructed is not a set. This application leads (by informal intuitive
•teps) to a new sorting aleoritho.

The problem considered is sorting a given sequence of inteeers.
Let A•(Al,A2 ••• An) be this sequence. A specification of the meaning
of sorting might roo~ like

find a sequence of integers B such that
Bis a permutation of A and Bis sorted

Ye can write a skeleton program to solve this problem as follows:
Consider the first conjunct "Bis a permutation of A" as an invariant
property to be preserved throughout the program, and the second
conjunct "Bis sorted" as the program's goal. Then we can write

B : .. A;
(while not sorted(B))

B :_ = f (B);
end while;

vhere f(B) is a 'scall' change in B which preserves the invariant
:,' l c on ju n c t •

k;;,._~

For the moment let us ignore the probler.i of how to split the
predlcat~·defining B into an 'invariant' subpart and 'goal' subpart,
and how to find a faoily of invariance-preservine transformations f
on B, though these are problems deserving substantial study. (Note
that ln the set-valued case considered in [Sh) the function f was
sinply addition of elements to the set object being constructed.)
I.e. suppose that we sonehow find out that the transformations f can
be taken to be swapping of any two elements of B. This put us into a
situation quite similar to the one considered in [Sh], namely a
cocplicated predicate

P(B) a not sorted(B)

is repeatedly computed in a loop in which B changes 'slightly'
(although Bis not a set). This is precisely the set-up needed for the
application of formal differentiation and the other r~lated techniques of
[Sh] which aim at making the selection of the transformation f to be
applied core intelligent.

ReYrite P(B) as
P(B) • exists (i,j) : i in [l ••• n], j in (1. •• n], i<j and Bi>Bj

- {(i,j) : •••• }/• {)

Let K(B) denote this set.
Aining to apply the first transformation of section 4 of [Sh) and

• not bothering for the time being to verify its applicability), we want

•

SETL NE\.ISLF.TTER 1214 • Ma r c h 2 7 , 1 9 8 0

to rewrite the prograo as

B : • A;
(while K(B) /•· { ·»·

B :• f(B) where f is a swap such that
' K(B) * DK(B,f)/• {}

end while;
vrltlng K(B) in the form
vc can write

Hence
DK(B,f) • {x

~

K(S)*DK(B,f) •
- { (i ,.j)

{x : Q(x,B))

{x: Q(x,B) & - Q(x,f(B)))
i<j & Bi> Ilj & f(Bi) <=f(Bj)}

Q(x,B) & Q(x,f(B))}

In other words, we want to perform a swap which will cause an inverted
pair to become sorted.

Now of course there is always a way to select a swap to
satisfy the above selection criterion (K(B) * DK(B,f) = { }), i.e.
svap the inverted pair (i,j) itself. However, there also exist other
choices for the swap. For exaople, suppose that there exists an
inverted pair i<j & Bi> Bj. We could then swap j with any k for
vhich Bi <•Bk, or. swap i with any k for which Bk<= Bj. Although at
first sight these swaps seem to be counter-productive it is neverthe­
less interestinc to follow the lead and see what algorithms such a
choice might yield.

,'
\t.·
~~ To do this we will abandon the course of formal considerations and

'1 continue in an intuitive informal mode.

i
To push Chines to the extreme, let us consider only swaps which

recove at least one inverted pair but which are not swaps of inverted
pairs. It 1s easily seen that there are two such cases

(a) SYap j and k, where exists i < j < k s.t. Bj<Bi<=Bk

✓ /

-~-
i j k

(b) swap k and i, where k < i < j s.t. Bk<=Bj<B:

k i j

PA

•
SETL NE~SLf.TTER 1214 March 27, 1980

note that ~waps (a) push a conflict 't~ the right' whereas swaps (b)
pu~h it to the left. This suggests that we try only swaps (a) first,
and vhen ther~ are no more such s~aps possible, try only swaps (b).
tt ls an easy exercise to show that after swaps (a) are exhausted,
•vAp9 (b) cannot generate a triple (i,j,k) which makes a swap of the (a)
typ~ possible ■ Hence when the two phases of our algorithn terminate,
thc~e ar~ no core swaps (a) or (b) possible, and it follows that the
•~quence being manipulated must now have the following structure:

1.e. a concatenation of non-decreasing subsequences, such that each
subsequence has all its elements smaller than those of the preceding
subsequence. Such a sequence can be sorted by a linear pass through
its elements ■

We give an example of this algorithm as applie~ to the sequence

4 1 5 9 26 3 8 7

I~ svaps (a) performed frot:i. left to right (the triple suggest ins the
svap is circled):

4 1 5 9 2 6 3 8 7
4 5 1 9 2 6 3 8 7
4 5 9 1 2 6 3 8 7
4 5 9 6 2 1 3 8 7
4 5 9 6 8 1 3 2 7
4 5 9 -6 8 7 3 2 1

In the last row no more swaps (a) are possible.

11. swaps (b) performed fron right to left

4 5 9 6 8 7 3 2 1 /

4 5 9 8 6 7 3 2 1
4 8 9 5 "6 7 3 2 1
9 8 4 5_/· 6 7 3 2 1

~e have now achieved the situation described above which decooposes the
subscquences 9, 8, 4567, -3, 2, 1 and the soi;-ted sequence can now
be easily obtained. We will not digress here into a study of the
cocplcxity of this algorithm.

Another algorithc that suggests itself is as follows: pick any
co~ponent Boo of the sequence; apply swaps (a) from left-to-right to
the collection of elements which lie to the right of using mo as the
first index of each triple suegestinB a swap. (I.e. swap j and k where
00 <j<k and Bj < Boo <a Bk). Similarly perform swaps {b) to the left
of B~o usi~g mo as the last index of each swap-inducinc triple. It

PJ

..

"-"""''~

' l
1

31 ~ .r ~:, '. ~1

!II

SETL NEWSLETTER #214 March 27, 1980

is easy to see that the sequence Yh ich results froo this has the
follovin& structure:

•••

• .,
• • •

Il I2 mo· I3 I4
<:

'Where the blocks shown are unsorted but have elements which compare in
the manner suggested by the figure. Ye can thus use a recursive approach
which sorts each of the four subsequences Il, 12, 13, 14, and then obtain
the final sorted order by

merge (sort(I2),sort(I4)) II

This will yield a variant of QUICKSORT.

[mo] I I merge (sort(ll), sort(I3))

In the preceding example, suppose that we pick Bmo = 6. Then
applying swaps (a) to its right we get

6 3 8 7
6 8 3 7

-6 8 7 3

and applying swaps (b) to its left gives us

4 1 5 9 2 6
4 1 9 5 2 6
4 9 1 5 2 6
9 4 1 5 2 6

We thus obtain the sections 11 = 9 IZ = 4 1 5 2
and the sorted order can be obtained by sorting 12
then using the above formula. Note: A variant may
mo as the first (or last) index. That would +eave
to be sorted at each step, and 'Would eliminat~ the

.. - ..

13 = 8 7 14 = 3
, 13 separately and
be obtained by picking
only two subsequences
need to nerge.

The moral of this little Dijkstra-like happening is that interaction
between a formal program-developnent iystem and its user could be very
fruitful even if applied in a very l~ose sense, in which the formal rules
of the systen suggests ideas, or 'algo~ithm-fragments'
which the systen user must pick up
and develop intuitively. As an example of this I note that the idea
of using the above swaps did not cone to my mind (and would have
probably never done so) except thru application of the formal­
differentiation-based transformations of [Sb}.

[Sh] Sharir, Micha, "Some Observations Concerning Formal Different­
iation of Settheoretic Expressions'', N.Y.U. Conputer Science Technical
Report 16, 1979.

p

