
An example of how to lnlt:lallse the SETL heap dynamically

Stefan M. Freudenberger

SEIL Newsletter 217
Courant Institute of Mathematical Sciences

New York University

11. November 1981

Assume we have a large programme which we want to execute often but which requires that
some initialisation be done before the actual start of the programme. Then we might be
dissatisfied by the performance of the programme because of the time spent to re--initialise for
every execution. Luckily there is a way to avoid this, as the following example shows:

program example;

$ plenty of initialisation code

$ actual program which depends on some input

end program example;

This example can be modified as follows:

program example;

$ plenty of initialisation code

debug rgarb, rdump;
If ptipp('INIT=0/1') = 1 then stop; end If;

$ actual programme which depends on some input

end program example;

This modified programme is then compiled and initialised as follows (where we use the DEC
VAX VMS syntax):

$ setl example /J.Dit/dump=example.cod
$ setlx example /q2init=21q2e=example.q2e/q2h=example.q2h

If we want to execute the programme without the initialisation step, we then simply say:

- 2 -

$ setlx /q2init/q2e==example.q2e/q2h=example.q2h

Since only the VMS implementation provides for the "mapped heap file" feature used in the
preceding example, other implementations would compile and initialise as follows (where we use
the UNIX syntax):

stlc example.It! # compile example.It!
stl example.cod init dump==example.cod # initialise

and then use the initialised code file via:

stl example [options]

Several points should be kept in mind.

Firstly, the debug statement was added to the implementation to aid the debugging of the
compiler, and not as a feature of interest to the general user. The rgarb option forces a
garbage collection, thus compacting the heap. Since all sections of the heap which might contain
live data are written to the dump file, this will assure the smallest possible dwnp file. The
rdump option then writes a valid Q2 file. Its primary purpose was (and is) to create a file whiclt
can be processed by the dump formatting routine SEILJ)MP. More than one dump can be
written to this file. For our purpose, however, only one dump may be taken. When these
options are used, one should keep in mind that taking a dump is not exactly performing an exit
function: several ~system-internal values currently are not part of the 02 file, and thus are
not preserved but will assume their normal initial value when execution re-starts. The three
most important values lost in this way are the value of the narp operator, which ordinarily
returns the number of arguments of the current procedure, the value of the lev operator, which
ordinarily returns the number of ok's which are currently saved, and the environment chains in
backtracked programmes, which are used to restore environments after a fall or aucceed. If the
dump is taken in the main programme before the first backtracking primitive has been executed,
only some trace flags should be reset, which should be of little interest to the general user.
Otherwise, execution most likely will be unpredictable, and results might be wrong.

Secondly, INIT is a programme parameter which cannot be used for any other purpose. In the
last line, /INIT=O is an implicit parameter. Of course, any parameter can be used for this
purpose, subject to the normal constraint that it has no other pre-defined meaning.

