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Abstract

We present a polymorphic type model for a very high level algorithmic language with
set theoretic dictions largely similar to SETL [SDDS86]. The model is based on ML-style
polymorphism [Mil78], yet extends it in two fundamental ways. It is possible to infer
undeclared recursive types, and it adds a restricted form of polymorphic types, termed
finitary polymorphic types. This, in contrast to ML, permits generic operators such as ‘+’
to be handled in the type inference system. We briefly address the modifications to the
unification based type inference algorithm for ML to deal with these extensions.
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1 Introduction

SETL [SDDS86] is a very high level programming language with set theoretic dictions. It is
a largely declaration-free algorithmic language with a weak typing discipline that is geared
towards prototyping applications. It is safe to say that the prominent high level features
of SETL were instrumental in the successful validation of the first Ada compiler [DaC84].
Practical experience, however, also indicates that the weak typing discipline — checks for type
consistency are only done at run time, not at compile time — results in enormous execution
time and memory overhead, as well as a large amount of type errors that go undetected until
run time.

To improve the execution characteristics, Tenenbaum [Ten74] and Weiss [Wei86] devised
type finding algorithms that collect type information from variable usage and and data flow
information. Tenenbaum’s type finder was in fact implemented as part of the SETL optimizer
[FSS75]. Its payoff has been very limited, though, mostly because it has to be able to analyze
“anything goes” programs.

For this reason the design of the successor of SETL, tentatively termed SETL-2, incor-
porates amongst its design goals the adoption of a strong typing discipline without, however,
compromising the “spirit” of SETL. More specifically, the new typing discipline should permit
variable declarations, yet mandate as few as possible; it should provide a syntactic criterion for
representation independence [Rey74, Don79, Fok81] so that there is no need to maintain type
information at run time; it should be sufficiently robust in the context of an evolving overall
language design; and, of course, it should admit a theoretically and practically efficient type
checking/inference algorithm in order not to create a bottleneck in compiler performance.

In section 2 we introduce the type model for our language. We give an informal exposition
of syntax and semantics in section 3. This is followed by a logical specification of the type
inference problem for our language in section 4. In section 5 we touch upon the implementation
of the novel features in our type model within a unification based type inference algorithm.
Section 6 contains some examples of type correct program fragments, and section 7 finishes
the paper with some concluding remarks.

2 The Basic Type Model

The type model specifies the collection of types we are working with. We will not present a
formal semantics for types here, but appeal to their intuitive character as “sets of objects”.
We feel this is sufficient at this point to justify the typing rules we will describe in section 4.

2.1 Monomorphic Types

2.1.1 Simple Types

The types are presented in the form of type expressions, which, for convenience’ sake, we simply
call types, too. First, we introduce the simple types in grammatical form. The simple types
comprise all the data types for which there are operators and constants in the programming
language that construct values of those types.

TYPE ::= BASETYPE |

set(TYPE) |

sequence(TYPE) |

tuple(TYPE ...) |

smap(TYPE ...)TYPE |

procedure(TYPE ...)TYPE

union(a1 <- TYPE, a2 <- TYPE,..., an <- TYPE)

record(a1 <- TYPE, a2 <- TYPE,..., an <- TYPE)
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BASETYPE ::= integer | real | bool | atom | char

The base types are the well-known primitive (computational) data types integer, real,
boolean, and character. atom is an abstract primitive type for which equality is the only
defined operation. There are no constant denotations of type atom; however, atoms can be
generated with the newat primitive, which is similar to gensym in LISP systems. For any
type τ , set(τ) is the type of all finite sets whose elements are of type τ , sequence(τ) is
the type of finite sequences with elements of type τ , and smap(τ1, τ2, . . . , τn)σ is the type of
finite single-valued maps whose arguments have types τ1, τ2, . . . , τn, respectively, and whose
range elements have type σ; tuple(τ1, τ2, . . . , τn) is the type of n-tuples whose elements have
types τ1, τ2, . . . , τn in the appropriate positions1; procedure(τ1τ2, . . . , τn)σ is the type of all
procedures with n arguments of types τ1, τ2, . . . , τn, respectively, and whose result is of type
σ; union(a1<-τ1, a2<-τ2,..., an<-τn) stands for the type of tagged unions, the tags being
the tokens a1, a2,. . . , an with associated values of types τ1, τ2, . . . , τn; finally, record(a1<-τ1,
a2<-τ2,..., an<-τn) is the type of labelled records with labels (fieldnames) a1, a2,. . . , an,
and corresponding values of types τ1, τ2, . . . , τn.

This type model departs in several respects from the SETL type model formulated in
[Ten74] or [Wei86]. For one, no free disjoint union type is available such as integer|real.
Instead tagged unions are provided. With tagged unions we not only avoid problems having
to do with implicit coercions from a type τ to a free union type containing τ as an alternand,
they are also more general in some sense since we can draw distinctions between values of the
same type having different tags associated with them. Furthermore, we include procedures as
first class objects, which we think necessary for a language of very high level. We also provide
a labelled record type, the absence of which has been criticized repeatedly and has led to the
extensive use of SETL macros to emulate a record facility.

2.1.2 Recursive Types

The usefulness of recursive types was recognized early on and found its expression in many
strongly typed programming languages beginning with ALGOL68 [vWMPK69]. In all of these
languages recursive types have to be declared explicitly, and variables, likewise, have to be
declared explicitly to be of a recursive type. Even ML, which is largely declaration free,
mandates declarations for recursive types in such a way as to make the detection of expressions
of such a type trivial.

Weiss in his thesis [Wei86] extended the type model of [Ten74] with recursive types and
observed that expressions with recursive types can be found with data flow analysis. It has
been known that recursive types can also be inferred in the syntax-directed polymorphic type
discipline of ML by removing the “occurs check” from the unification algorithm employed in
it, although references seem to be hard to come by [Rey85, page 113]. Since our discipline
is basically syntax-oriented, our type inference algorithm (see section 5) illustrates the latter
technique.

To accommodate recursive types we add the following productions to the grammar for
simple types.

TYPE ::= fix VAR . TYPE

BASETYPE ::= VAR

VAR ::= <type variables>

The presence of type variables in type expressions is semantically quite puzzling at first.
What is the type denoted by an expression that contains a type variable? It is best to think of

1Note that our usage of tuple and sequence is congruent with mathematical usage, but exactly opposite from
the terminology of [Wei86], where our sequences are tuples and our tuples are sequences.
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such type expressions as type functions, which map argument types to a result type2. With this
understanding, a recursive type fix α.f(α) is the smallest type τ that satisfies the constraint
τ = f(τ). Of course, if f(α) contains another type variable, fix α.f(α) more properly
defines a type function, but we will avoid such complications in our informality in order to
keep things simple.

Recursive types let us introduce ML-style lists, which are not primitive (i.e. simple) data
types in our model. The type of lists of integers is denoted by fix α.tuple(integer,α).
More generally, the list type over elements of any type τ is rec α.tuple(τ,α). For reasons
of simplicity, we have only included directly recursive types. Mutually recursive types are
notationally more cumbersome, but constitute no additional technical problems.

The simple types together with the recursive types constitute the collection of monomorphic
types.

2.2 Polymorphic Types

If we want to write a function that returns the length of an input list in a strongly typed
languages with only monomorphic types, such as Pascal, we have to provide a separate function
definition for every element type of the input lists even though that type is inessential for the
function. While this is a nuisance in a language with mandatory variable declarations, it is
unacceptable in a largely declaration-free language since, although all the copies would be
identical, as many of them are needed as there are list element types in calls. To associate a
type with the length function we need to introduce some form of type polymorphism. Before we
present our form of type polymorphism, though, we will go over some of the common models
of polymorphism to provide some reasoning for our approach to polymorphism from the point
of view of SETL.

A very powerful form of polymorphism in a programming language can be found in the
Second Order Lambda Calculus (SOL) [Gir71, Rey74]. SOL is, however, a fully declared
language: every variable is explicitly declared with its type. At present these declarations
cannot be omitted and replaced by automatic type inference since the decidability of the
type inference problem for SOL is still an open problem. Similarly, the languages Russell
[BDD80] and Poly [Mat83, Mat] are based on the notion of types as first class objects and
full parameter declaration. Since this is in conflict with our design goals we opted not to
adopt these powerful polymorphic type disciplines. The situation is not much different in
Cardelli’s inclusion or subtype polymorphism [Car84, Rey85, CW85]. It is based on a partial
ordering between types and the axiom that an object of type τ has also type τ ′ for any type
τ ′ greater than τ . This corresponds to implicit coercions from the smaller type τ to the bigger
τ . An example would be the coercion of an integer typed value into the (same) value of the
free union type integer|real. Under appropriate conditions, every typable expression has a
unique minimal type [Rey81, Rey85]. This property hinges critically on the requirement that
the types of function parameters be declared. Since this, also, is in conflict with our design
goal of assuring a maximum of declaration-freeness, we have excluded inclusion polymorphism
at this point. As a consequence, free union types are not part of our type model currently.

Our form of polymorphism builds on and extends the socalled parametric polymorphism as
it can be found in ML [GMM+78], Hope [BMS80], Miranda [Tur85], or B [Mee83]. We first
describe the kind of infinitary polymorphism in our language that is common to all of these
languages. Then we proceed to describe our novel extension, terming it finitary in contrast to
infinitary polymorphism.

2Type expressions with no type variables can thus be identified with constant functions.
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2.2.1 Infinitary Parametric Polymorphic Types

Infinitary parametric polymorphic types, or simply polytypes [Mil78], are expressed by un-
bounded quantification over type variables. We amend our type grammar with the following
rules.

POLYTYPE ::= forall VAR . POLYTYPE |

TYPE

A polymorphic type forall α.f(α) is the biggest type in an appropriate domain of types
contained in the type f(τ) for every monomorphic type τ . In a set-theoretic domain this is
simply the intersection of the f(α)’s for all monomorphic τ ’s. A procedure of type forall α.
procedure (sequence(α)) integer can be applied to sequences of any type.

2.2.2 Finitary Parametric Polymorphic Types

Finitary parametric polymorphic types, or simply oligotypes, capture operators sometimes
confusingly called generic [Rey85], which is why we prefer to refer to them as dynamically
overloaded [Hen87]. We express an oligotype by bounded quantification over type variables, as
indicated in the following additional grammar rule.

POLYTYPE ::= forall VAR in {TYPE ...}. POLYTYPE

The meaning of the type expression forall γ in {τ1, τ2, . . . , τn}.f(γ) is the biggest type
contained in f(γ) for every type γ in {τ1, τ2, . . . , τn}. forall γ in {set(α), sequence(α)}.
procedure(α, γ)bool is the oligotype of the SETL operator in.

Some examples in section 6 will demonstrate the significance of oligotypes.

3 Syntax and Semantics

In this section we will present the basic syntax and an informal semantics of an abstract
language that is meant to capture the salient features of SETL-2 as they relate to typing
issues. We are able to greatly reduce the conceptual complexity of the basic type inference
problem and make it largely independent from the idiosyncracies of SETL in this way. Relating
the syntax to concrete SETL provides the informal semantics of our language.

3.1 Syntax

The syntax is given below in an essentially abstract form. It is spiced up with familiar concrete
elements to facilitate understanding.

program ::= ’program’ exp

exprs ::= exp ...

exp ::= set |

sequence |

procedure |

tuple |

smap |

union |

record |

quantexpr |

unionappl |

tagcheck |

5



recordappl |

application |

identifier |

constant |

’(’ vardecls block ’)’

set ::= ’{’ exp : vardecls ’|’ exp ’}’

sequence ::= ’[’ exp : vardecls ’|’ exp ’]’

procedure ::= ’procedure’ ’(’ vardecls ’)’ exp

tuple ::= ’[’ exprs ’]’

smap ::= ’{’ ’[’ vardecl exp ’]’ ’|’ exp

union ::= ’[’ field ’]’

record ::= ’{’ fields ’}’

fields ::= field ...

field ::= label ’<-’ exp

label ::= identifier

quantexpr ::= quantifier vardecl ’|’ exp

quantifier ::= ’forall’ | ’exists’

unionappl ::= exp ’as’ label

tagcheck ::= exp ’is’ label

recordappl ::= exp ’.’ label

tupleappl ::= exp ’[’ constant ’]’

application ::= operator exprs

operator ::= ’()’ | ’with’ | ’less’ | ’:=’ |

’=’ | ’<’ | ’read’ | ’print’ |

’om’ | ’newat’

block ::= constdecl block |

statements

statements ::= statement ...

statement ::= ’yield’ exp |

’return’ |

’if’ exp statements statements |

’while’ exp statements |

’for’ vardecl ’:’ exp statements |

exp

vardecls ::= vardecl ...

vardecl ::= identifier

constdecl ::= identifier ’=’ exp

identifier and constant are lexical categories.

3.2 Semantics

3.2.1 Expressions

We give a list of expressions denoting a set, a sequence, a procedure (as part of a constant
declaration), a tuple, and a single-valued map, respectively. The notation for our language is
on the left with the corresponding formulations in SETL on the right.

{x: x | x in S and x > 0} {x : x in S | x > 0}

[y+1: y | y in S and y > 0] [y+1: y in S | y > 0]
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lte = procedure (x,y) procedure lte(x,y);

( yield x < y return x < y;

return ) end procedure;

[5, 5.0, ’hello’] [5, 5.0, ’hello’]

{[x,x+1]: x | x in S and x > 0} {[x,x+1] : x in S | x > 0}

We make no difference between an iterator and a boolean valued expression in set and tuple
formers — in contrast to SETL — since we don’t have to worry as to whether the expression
is executable or not.3 Our notation mirrors to some degree the approach taken in Miranda
[Tur85], yet provides more flexibility. The first expression denotes the set of all elements in S

that are greater than 0. The second expression describes the sequence of successors of positive
elements in S. If S is a set, the order of the elements in the sequence is indeterminate; if S is a
sequence the order is determined by the order in S. The fourth expression is simply a 3-tuple
(triple) with the integer element 5, the real value 5.0, and the character sequence hello. The
fifth expression, finally, represents a single-valued map mapping all positive elements in S to
their successors.

The correspondence between quantified expressions in our language and SETL is given
below.

forall x | x in S ==> x in T forall x in S | x in T

exists y | y in S and y in T exists y in S | y in T

The first expression returns true if and only if all elements in S are also in T, and the second
expression evaluates to true if and only if there is an element in S that is also in T.

As mentioned before, our language provides data types not directly available in SETL. The
additional operations on these are exercised in the following code fragment.

u := [ complex <- [5.0, 5.7] ]

if (u is complex) then

print ‘‘Real part is’’ (u as complex)[1]

r := { birthdate <- [3, 6, 1961], name <- ‘‘Fritz’’ }

print ‘‘Age is’’ r.birthdate

In this example we first assign a tagged value to u. Then we check if u currently has the
tag complex, and if so print the constant string Real part is followed by the first component
of u, which is assumed to have the tag complex. Note that u as complex returns the tuple
associated with the tag complex if u currently has that tag, otherwise it generates a dynamic
exception that aborts program execution4. Of course we could add an exception handling
facility to be able to resume execution. Since for typing purposes this is inessential, we have
chosen not to do so. Coming back to the example code above, in the fourth line we assign a
record with fieldnames birthdate and name to r. In the last line, the 3-tuple associated with
birthdate in r is printed.

3It seems possible to develop flexible syntactic conditions (a la “safety” in relational calculus [Ull82, pp.
159ff]) to insure that set (tuple) expressions in our language evaluate to finite sets (tuples) only.

4Alternatively we could also make it return om, but then we could not distinguish [real <- 5.0] as complex

from [complex <- om] as complex.
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3.2.2 Statements and Blocks

Statements are just like expressions; the only difference is that they have no associated values.
Their principal purpose is to modify the the store and the environment. The statement forms
that have a direct equivalent in SETL are shown below.

for x : x in S (for x in S)

if x < 0 then if x < 0 then

x := x+1 x := x+1;

else end;

om

while y > 0 (while y > 0)

y := y-1 y := y-1;

end;

In this code om is a statement, a “no-op”, similar to skip in ALGOL68, only present to make
explicit that nothing is to be executed in the else clause. om has type forall α.α, which is
synonymous to void in our type system (compare section 4). We interpret the for statement
to be the repeated execution of the statements in the for loop body for every value of x that
satisfies the boolean expression in the loop header. The while loop is standard in both form
and semantics.

Our language has, in contrast to SETL, a block structure. Every block can have a value
associated with it determined by a yield statement. The return statement quits and thus
finishes execution of a block. The value of the block is the one produced by the last yield

statement executed. Note that the return statement in SETL combines the functionalities
of yield and return in our language. In fact return e in SETL is equivalent to yield e;

return in our language. The block in the example below returns an integer value.

digit := ( if exists x | x in S

print ‘‘nonempty’’

yield 1

else

yield 0

)

If there is no yield statement in a block, or no yield statement is executed, om is returned.

4 Specification of the Type Inference Problem

Strong typing is a part of the static semantics of a language. It prunes the set of grammatically
correct programs such that any program left over is type correct, that is, it cannot incur a
type error during program execution. Since we have not formulated a formal semantics for
our language, we have to refer to [Mil78] again for a precise definition of type correctness.
Intuitively, a type error is the application of an operation to incompatible operands, such as
adding an integer to a string, applying the integer 3 as a function, or assigning an integer
valued expression to a variable in one statement and a real value in another.

We characterize the set of programs that we consider type correct with an inference system.
Since our reasoning proceeds along the programming language syntax we formulate logical
statements, called typings, for programs, expressions, statements and blocks. The following
two subsections contain the language of typings and the inference system that specifies the set
of valid typings, respectively.

8



4.1 Typings

Typings in our type inference system are the equivalent of propositions in propositional calculus
or well-formed formulas in first-order logic. Just like those, a typing can either be true or false.
Before we can describe the composition of typings, we have to define type expressions and type
assignments.

We already introduced type expressions in section 2, but to have all grammar rules in one
place they are given again just below. The type expressions are all the strings derivable from
the nonterminal POLYTYPE.

POLYTYPE ::= forall VAR . POLYTYPE |

forall VAR in {TYPE ...}. POLYTYPE |

TYPE

TYPE ::= BASETYPE |

set(TYPE) |

sequence(TYPE) |

tuple(TYPE ...) |

smap(TYPE ...)TYPE |

procedure(TYPE ...)TYPE

union(a1<-TYPE, a2<-TYPE,..., an<-TYPE)

record(a1<-TYPE, a2<-TYPE,..., an<-TYPE)

fix VAR . TYPE

BASETYPE ::= integer | real | bool | atom | char |

VAR

VAR ::= <identifiers>

A type assignment is a finite mapping from program identifiers to type expressions. It
specifies a set of assumptions about the types of the identifiers in its domain.

There are typings for programs, expressions, statements, and blocks, respectively. A is a
type assigment, e a program expression, and σ a type expression, then A |- e:σ is a typing.
It should be read “Under the type assumptions A the expression e is type correct and has type
σ.” The typings for statements and blocks have the same parts, but we will write them down
and read them differently. If A is a type assignment, s a statement, a sequence of statements or
a block, and τ a type expression, then A,τ |- s is a typing. It should be read something like
“Given the type of the current block is τ , then, under the type assumptions A, the statement
(sequence of statements, block) s is type correct.” The current block refers to the innermost
parenthesized block containing �s.5 Finally, if p is a program, |- p reads “Program p is type
correct”. Of course, not all such typings are acceptable. The acceptable typings are exactly
the typings derivable in the type inference system of the next subsection. We consider all the
programs p, and only those, type correct for which we can derive |- p (as the reading of |- p

suggests).

4.2 The Type Inference System

In the presentation of the inference system we use several notational abbreviations. First,
A[x:τ] denotes the type assigment identical to A in all arguments but, possibly, x; the type
associated with x is τ . Second, for A[x1:τ1][x2:τ2]...[xn:τn] we simply write A[x:τ]
whenever no ambiguity can arise. Third, we allow ourselves to write A |- e1: τ1, e2:

τ2, ..., en: τn for A |- e1: τ1, A |- e2: τ2, ..., A |- en: τn; similarly, A,τ |-

s1, s2, ..., sn for A,τ |- s1, A,τ |- s2, ..., A,τ |- sn. Fourth, we write void for
forall α.α. Fifth and last, the type σ[α:=τ ] is the same as σ except that all free occurrences
of α in σ are replaced by the monotype τ .

5Remember that the execution of a yield statement assigns a value to the current block.
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Since we have quite a numerous collection of axioms and inference rules for our program-
ming language we break it down into strictly syntax-oriented rules and the other rules, which
capture recursive types, oligotypes, and polytpes.

4.2.1 Syntax-Oriented Axioms and Rules

The syntax-oriented rules are partitioned into rules that derive program typings, rules that
derive expressions, and rules that derive statements and blocks.

Rule for Programs

|- (expression) e:void

-----------------------

|- program e

This rule expresses the fact that a program is type correct if the expression it is made up
from is type correct under no assumptions and has result type void.

Axioms and Rules for Expressions

A |- (constant) c:τc (where τc is the type of c)

A[x:σ] |- (identifier) x:σ

A[x:σ] |- e:bool, e’:τ
--------------------------------

A |- { e’: x | e }:set(τ)
A |- [ e’: x | e ]:sequence(τ)

A[x:σ] |- e:τ
-----------------------------------

A |- procedure (x) e:procedure(σ)τ

A |- e1:σ1, e2:σ2,..., en:σn
----------------------------------------

A |- [e1, e2,..., en]:tuple(σ1,σ2,...,σn)

A[x:σ] |- e:τ, e’:bool

-----------------------------

A |- { [x, e] | e’ }:smap(σ)τ

A |- e:τ
---------------------------------------------------

A |- [a<-e]:union(a<-τ,b1<-σ1,b2<-σ2,/ldots,bn<-σn)

A |- e1:σ1, e2:σ2,..., en:σn
--------------------------------------------------------------

A |- {a1<-e1,a2<-e2,...,an<-en}:record(a1<-σ1,a2<-σ2,...,an<-σn)

A[x:σ] |- e:bool

----------------------
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A |- forall x | e:bool

A |- exists x | e:bool

A |- e:union(a<-τ,b1<-σ1,b2<-σ2,...,bn<-σn)
-------------------------------------------

A |- e as a:τ
A |- e is a:bool

A |- e:record(a<-τ,b1<-σ1,b2<-σ2,...,bn<-σn)
--------------------------------------------

A |- e.a:τ

A |- e:tuple(σ1,σ2,...,σi,...,σn)
-------------------------------

A |- e[i]:σi

A |- (operator) op:procedure(σ1, σ2, . . . , σn)τ
A |- e1:σ1, e2:σ2,..., en:σn
-------------------------------------------

A |- op e1, e2,..., en:τ

The rules can quite easily be phrased in natural language with the readings we have provided
before. For example,

A[x:σ] |- e:bool

----------------------

A |- forall x | e:bool

A |- exists x | e:bool

says that, if e has type bool under the assumption that x has some type σ, then both the
quantified expressions forall x | e and exists x | e are type correct and have type bool

with no assumption made about x. The absence of a type assumption about x reflects the
fact that x is locally scoped inside both quantified expressions. Other assumptions about free
variables in e — expressed in A — are not affected by this rule.

Axioms and Rules for Statements and Blocks

A,τ |- return

A |- (expression) e:τ
---------------------

A,τ |- yield e

A |- e:bool A,τ |- s1, s2

----------------------------

A,τ |- if e then s1 else s2

A |- e:bool A,τ |- s

---------------------

A,τ |- while e s
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A[x:σ] |- e:bool A[x:σ],τ |- s

-----------------------------

A,τ |- for x: e s

A |- (expression) e:void

-------------------------

A,τ |- (statement) e

A,τ |- (statement) s1, (statement) s2,..., (statement) sn

---------------------------------------------------------

A,τ |- s1 s2 ...sn

A[c:σ] |- e:σ A[c:σ],τ |- s

----------------------------

A,τ |- c = e; s

While most of the rules are quite easily understood, the last rule deserves some elaboration.
It makes polymorphic objects (mostly procedures) declared in a declaration of the form c = e

accessible by the following parts of a block. This is comparable to the let construct in ML. The
main difference, though, from a typing point of view is that a polymorphic c is also considered
polymorphic in its definition e here, whereas in ML it would be treated monomorphically in
e. This is one of the main reasons why ML’s type inference algorithm is complete for its
inference system [Mil78], while it isn’t for our inference system even without recursive types
and oligotypes. How hard complete type inference is in our model is an open problem (compare
also the concluding remarks in [Mee83]).

4.2.2 Rules for Recursion and Polymorphism

The rules for recursive types, polytypes, and oligotypes are syntactic manifestations of (some
of) the semantic properties we ascribed to them in section 2.

Rules for Recursion

A |- fix α.τ
-------------------

A |- τ[α:=fix α.τ]

A |- τ[α:=fix α.τ]
-------------------

A |- fix α.τ

These two rules simply express that recursive type expressions can be arbitrarily folded
and unfolded along occurrences of recursive type variables.

Rules for Polytypes

A |- e:σ (α not free in A, but free in σ)
------------------------------------------

A |- e:forall α.σ

A |- e:forall α.σ (τ any monotype)

-----------------------------------

A |- e:σ[alpha:=τ]
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Rules for Oligotypes

A |- e:σ[α:=τ1], e:σ[α:=τ2],...,σ[α:=τn]
(α not free in A, but free in σ)
----------------------------------------

A |- e:forall α in {τ1,τ2,...,τn}.σ

A |- e:forall α in {τ1,τ2,...,τi,...,τn}.σ
-----------------------------------------

A |- e:σ[α:=τi]

5 Type Inference Algorithm

We are currently developing a type inference algorithm for our type inference system. The
algorithm is based on the ML type checker (algorithm J of [Mil78]). It has two main extensions,
however, corresponding to the addition of recursive types and oligotypes in our type model. The
algorithm will be described in a paper under preparation that examines theoretical properties
of our type system and some of its derivatives. Here we only touch upon the salient points
of the extensions over the ML-style algorithm, of which the reader is hoped to have a basic
understanding.

A method for integrating inference of recursive types is described in [ASU86, chapter 6].
It corresponds to eliminating the socalled “occurs” check in unification. In a conventional
unification step we have to check if a nontrivial substitution term t for a variable v contains
v. This is the occurs check. If so, unification is aborted and a failure indicated. In our case
we substitute fix v.t for v and continue.

To handle oligotypes in unification, we maintain a set of possible type expression with
bounded (type) variables. Our algorithm assumes that none of these type expressions are vari-
ables and that their outermost constructors are pairwise distinct. The outermost constructors
of fix α.τ , forall α in {τ1, τ2, . . . , τn}.σ and forall α.ρ are the the outermost construc-
tors of τ , σ, and ρ, respectively. We now describe how to unify a bounded variable β with
a type expression τ . Since β is bounded, it has an associated set S of possible types. If τ
is an unbounded variable α, the unified term is β and the most general unifying substitution
is {α:=β}. If τ is a bounded variable with a set T of possible type expressions, then pair up
type expressions from S and T with equal outermost constructors, which can be done uniquely
because of our conditions above. If there is no such pair, unification aborts with failure. Oth-
erwise unify these pairs in some order (saving up the unifying substitutions) and create a
new bounded variable γ that has the unified terms as possible type expressions. The most
general unifying substitution is the sequential composition of the substitutions saved up and
{β:=γ,τ :=γ}. The unified term is γ. If τ is a type expression with outermost constructor c,
check if there is an expression σ in S with the same outermost constructor. If so, substitute σ
for β and unify σ with τ .

6 Dynamic Overloading and Oligotypes

The main reason for introducing oligotypes into our type model is the abundance of dynamically
overloaded operators and constants in SETL. Due to the weak typing of current SETL, the
notion of overloading in it is completely dynamic: Conflicts are only resolved at run time. In
all the strongly typed languages we know of overloading is purely syntactic and is resolved at
compile time. That dynamic overloading is more general than syntactic overloading can be
seen in the following ML and SETL function declarations.
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fun add (x,y) =

x + y;

The ML operator + is overloaded with integer addition and real addition. Since this conflict
cannot be resolved within the context of the ML function definition of add, the ML system
signals a type error. Notice that the corresponding SETL procedure declaration

procedure add(x,y);

return x + y;

end procedure;

can of course not generate a compile type type error since SETL is weakly typed, but, even
if it were strongly typed, it should not result in a type error since the deliberate use of such
overloading is an instrumental part of the flexibility of SETL. The add procedure exhibits the
sort of polymorphism captured by our oligotypes, since it can be called with two integer values,
two real values or even two sets or two sequences with the same element types.

Dynamically overloaded operators are quite common in SETL. We present a list of them
with their oligotypes in a strongly typed system. Some obvious abbreviations in type expres-
sions have been made; in particular we write ∀ for forall.

in: ∀ α.∀ β in {set(α),sequ(α)}.proc(α,β)bool
+: ∀ α.∀ β in {set(α),sequ(α),integer,real}.proc(β,β)β
−: ∀ α.∀ β in {set(α),integer,real}.proc(β,β)β
<: ∀ β in {integer,real,sequ(character)}.proc(β,β)bool
with: ∀ α.∀ β in {set(α),sequ(α)}.proc(β,α)β
{}: ∀ α.set(α)
arb: ∀ α.proc(set(α)).α

Another more paradigmatic example of the usage of dynamic overloading is the following
quicksort based sorting routine.

qsort = procedure (S)

( var x, L, R

if S = {} then

yield []

else

x := arb S

L := { y: y | y in S and y < x }

R := { y: y | y in S and x < y }

yield qsort(L) + ([] with x) + qsort(R)

)

This sorting routine has type forall y in {integer, real, sequence (character)}.
procedure (set(y)) sequence(y). Note that a type inference algorithm without oligotypes
would treat the < as syntactically overloaded. Since it cannot resolve the overload conflict
within the context given, it would fail and signal an error.

7 Concluding Remarks

We have presented a quite extensive type model for SETL-2, the strongly typed successor of
SETL. We have argued that parametric polymorphism is best suited for the style of declaration-
free programming usually found in SETL. Due to the abundance of dynamically overloaded
operators in SETL we have extended the classical type model of parametric polymorphism to
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finitary polymorphic types, which we call oligotypes. These oligotypes capture in a strongly
typed framework the difference between dynamic overloading found in SETL and syntactic
overloading in a language such as ML. We believe that the standard type inference algorithm
for parametric polymorphism can be extended to handle both recursive types and oligotypes.
Unless the type system is restricted, we believe, though, that complete type inference is infea-
sible. Although oligotypes model dynamic overloading as it is found in SETL quite naturally,
a comprehensive investigation into the theory of oligotypes is necessary to clarify the issues.
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