
Semi-Unification

Fritz Henglein
Courant Institute of Mathematical Sciences

New York University
715 Broadway, 7th floor
New York, N.Y. 10003

Internet: henglein@nyu.edu

April 6th, 1988

Abstract

Semi-unification is the problem of solving inequalities of the form τ1 ≤ τ2 in the sub-
sumption lattice of (free) terms. Since this problem does not seem to have attracted much
attention despite its fundamental character (we know of no reference that addresses this
problem — possibly because of lack of obvious applications) we give a comprehensive intro-
ductory treatment and contrast it with unification, which is the corresponding problem of
solving term equations. We prove a structure theorem showing the existence of most gen-
eral semi-unifiers analogous to the structure theorem for most general unifiers in unification
theory and present several nonoptimal algorithms for computing most general semi-unifiers.
The main theorem shows that the uniform semi-unfication problem is decidable, and we
conjecture that the algorithm terminates also for nonuniform semi-unification problems.
Finally we present a partial arithmetization of the uniform semi-unification problem that
leads to a speed-up over the original algorithm. Semi-unification is of utility for type in-
ference in parametric polymorphic type systems. In particular, a proof of termination of
our algorithm for nonuniform semi-unication problems implies decidability of the typability
problem in the Milner-Mycroft Calculus, an open problem simultaneously raised by Mycroft
[Myc84] and Meertens [Mee83].

1 Introduction

Unification and semi-unification deal with related problems. Unification addresses solving equa-
tions between terms with variables while semi-unification tackles the question of solving in-
equations of the form τ1 ≤ τ2 between terms τ1 and τ2.1 Here ≤ refers to the subsumption
preordering on terms. Whereas unification has innumerous applications semi-unification seems
to have ducked investigative scrutiny, possibly because there have been no apparent applications
for it.2

1We find the prevalent terminology somewhat unfortunate. While there is a distinction between “equation”
(something that is to be solved) and “equality” (something that holds), there is no corresponding distinction with
“inequality” since the term “inequation” is not commonly used in the English language. Even worse, “inequality”
gives no indication as to whether ≤ (less-than-or-equal-to) or 6= (not-equal-to) is meant, and there is no standard
linguistic mechanism for distinguishing between these two. Since the term “inequation” has popped up in several
published articles, we will use it in this paper, too, in order to be able to distinguish between inequations and
inequalities in analogy to equations and equalities.

2We are not aware of any treatises on this problem and would appreciate hearing of relevant references.

1



In this paper we present some structural and computational results on semi-unification and
point out an application of semi-unification in type theory, which actually led to this work.
First, we give a brief background on unification and its many-fold applications. In section 5, we
describe terms and substitutions and their algebraic structure. Section ?? contains some basic
results and examples of semi-unification. We contrast the algebraic structure of unifiers and
semi-unifiers in section ??. The following section, section ??, presents a structure theorem for
most general semi-unifiers that is analogous to the structure theorem for most general unifiers
in unification. Section ?? contains several algorithms for computing most general semi-unifiers
for a quite standard graph-theoretic representation of terms and substitutions (cf. [PW78]). A
partial arithmetization of the problem in section ?? remedies some computational bottlenecks
and leads to a speed-up for uniform semi-unification problems. Semi-unification is at the heart
of the type inference problem for the Milner-Mycroft Calculus [Myc84]. This is briefly treated in
section ??, although we refer to [Hen88] for a comprehensive treatment of this problem.3 Finally,
section ?? gives a brief summary and outlook to related problems that we think deserve further
study.

3Since [Hen88] refers back to this paper in its treatment of semi-unification, both [Hen88] and this paper
should be consulted for a complete treatment of the type inference problem for the Milner-Mycroft Calculus. We
have made sure that there are no problems with circular references between these papers.

2



2 Work on Unification and Semi-Unification

3 Work on Unification

Unification is the problem (and informally also the process) of finding solutions to term equations
of the form τ1 = τ2 where τ1, τ2 ∈ T . A solution of τ1 = τ2 is a substitution σ such that
σ(τ1) ≡ σ(τ2).

Although Herbrand [Her68] and Prawitz [Pra60] had already used unification algorithms,
the utility of and interest in unification was essentially initiated by Robinson’s novel resolution
principle in theorem proving [Rob65] at the heart of which was a unification algorithm.

Since then papers on unification as well as applications of unification have abounded. While
Robinson’s original algorithm took exponential time to compute the solutions, new representa-
tions and algorithms have been found (see, e. g., [PW78] and [MM82]) that achieve linear bounds
on the computation time, and the unification problem has been found to be P -complete [Sta88].
Universal unification theory addresses the problem of unification in term algebras that are subject
to equational [Sie84] or conditional-equational [Hus85] laws such as associativity, commutativ-
ity, and idempotence. Several unification algorithms (e. g., citeLSSU79, [Bue86], [Sti81], or see
[Sie84]) for such term algebras have been presented. Kapur and Narendran [KN86] showed that
most of these unification problems are inherently hard, though. Huet [Hue75, Hue76] investigated
higher-order unification and proved that it is recursively undecidable.

Unification has permeated the field of resolution-based and even non-resolution-based the-
orem proving [Ble77]. With the identification of a subset of First Order Logic that is espe-
cially amenable to resolution theorem proving (Horn Clause Logic, c. f. [Kow79]) unification
plays an eminent role in logic programming languages such as Planner [Hew71] and PROLOG
[WPP77, SS86].

A concise and clean treatment of the algebraic aspects of unification can be found in [LMM86]
or in [Ede85].

4 Work on Semi-Unification

Semi-unification addresses the problem of solving inequalities of the form τ1 � τ2 where τ1, τ2 ∈
T . A substitution σ is a solution to τ1 � τ2 if there exists ρ ∈ S such that ρ(σ(τ1)) = σ(τ2).

Whereas reasoning with equalities and 6=-inequalities is drawing more and more attention
(c. f. [Col84, LMM86, MSK87]), ≤-inequalities in the subsumption lattice of terms don’t seem
to have attracted much attention, probably because of a lack of apparent applications in other
theoretical or practical areas so far. We have found that semi-unification is at the heart of the
type inference problem in the Milner-Mycroft Calculus [Myc84, KTU88], but we are unaware of
other treatments or applications of semi-unification.

3



5 The Algebraic Structure of Terms and Substitutions

In this section we define the objects of our universe of discourse, terms and substitutions, and
investigate aspects of their algebraic structure. The material is mostly extracted from [Hue80],
[Ede85], and [LMM86]; much of the material dates back to [Plo70a], [Plo70b], [Rey70], and
[Hue76]. Some definitions and results are new. They are not deep, but extremely useful for later
sections.

Definition 1 Let V be a countably infinite set, called variables; let F be another countable (finite
or infinite) set disjoint from V , called function symbols or functors; and let a : F → N be an
arity function from F into the natural numbers (including 0).

The set T (V, F, a) of terms is defined inductively. It is the smallest set closed with respect to
the following rules.4

• Every variable v ∈ V is a term.

• Every functor c ∈ F with arity a(f) = 0 is a term.

• If functor f ∈ F has arity a(f) = n, with n ≥ 1, and t1, . . . , tn ∈ T are terms, then the
string f(t1, . . . , tn) is a term.

Functors with arity 0 are also called constants. For τ ∈ T,Θ ⊂ T , V (τ) denotes the set of
variables v ∈ V that occur in τ and V (Θ) is

⋃
{V (τ) | τ ∈ Θ}.

Terms are simply uninterpreted expressions: they denote themselves; that is, two terms τ1
and τ2 are equal if and only if they are syntactically identical. Term equality is denoted by ≡;
i. e., f(x, y) ≡ f(x, y), but f(x, y) 6≡ f(u, v).5

Definition 2 A substitution is a mapping σ : V → T from V to T , with σ(x) 6= x for only
a finite number of elements x ∈ V . We define the domain D(σ) = {x ∈ V | σ(x) 6= x}. A
substitution σ is extended to T by defining recursively

σ(f(t1, . . . , tn)) = f(σ(t1), . . . , σ(tn))

and
σ(c) = c.

For Θ ⊂ T we define σ(Θ) = {σ(τ) | τ ∈ Θ}. The canonical representation of σ with D(σ) =
{x1, . . . , xn} is {x1 ← σ(x1), . . . , xn ← σ(xn)}. V (σ) = D(σ) ∪ V (σ(D(σ))) is the set of all
variables that occur in the canonical representation of σ.

A substitution σ is idempotent if σ ◦ σ = σ. The set of all substitutions is denoted by S; the
set of idempotent substitutions by I.

A substitution specifies the simultaneous replacement of some set of variables by specified
terms. For example, for σ0 = {x← u, y ← v, u← y, v ← x} we have σ0(f(x, y)) ≡ f(u, v).

We can phrase the notions of term and substitution in the terminology of universal algebra
[Gra77] by saying T is the free a-graded F -algebra generated by V , and S is the set of F -
morphisms with finite basis.

4Whenever V , F , and a are understood from the context will simply write T instead of T (V, F, a).
5We use the convention that identifiers starting with letters from the lower half of the alphabet denote functors

and identifiers starting with letters from the upper half of the alphabet stand for variables.

4



Definition 3 The preordering ≤ of subsumption6 in T is defined by

τ1 ≤ τ2 ⇔ (∃σ ∈ S)σ(τ1) = τ2

for any τ1, τ2 ∈ T .
The equivalence relation ∼= of α-conversion in T is defined by

τ1 ∼= τ2 ⇔ τ1 ≤ τ2 ∧ τ2 ≤ τ1.

For any τ ∈ T , [τ ] denotes the equivalence class of τ in T .

If τ1 ≤ τ2 we say τ1 subsumes τ2; e. g., f(x, y) subsumes f(g(y), z) since for σ1 = {x ←
g(y), y ← z} the equality σ1(f(x, y)) ≡ f(g(y), z) holds. If τ1 ∼= τ2 we say τ2 is an α-variant of
τ1 and vice versa; e. g., f(x, y) is an α-variant of f(u, v).

Definition 4 A substitution π ∈ S is a permutation if it is a bijection of V into V . We say
α ∈ S is injective on W ⊂ V if σ(W ) ⊂ V and σ(x1) = σ(x2)⇒ x1 = x2 for x1, x2 ∈W .

Note that the permutations are exactly those substitutions that are injective on any W ⊂ V .
It is also easy to see that a substitution σ is a permutation exactly when its domain D(σ) and
its range V (σ(D(σ))) are identical and it is injective on D(σ).

The following proposition is easy to prove.

Proposition 1 Let τ1, τ2 ∈ T . The following statements are equivalent.

• τ1 ∼= τ2.

• There exists a permutation π such that π(τ1) = τ2.

• There exists a substitution α injective on V (τ1) such that α(τ1) = τ2.

We can view permutations as substitutions that are “uniformly” injective for all W ⊂ V
whereas there are other substitutions that are injective on some, but not all subsets of V.
For example, {x ← y, y ← x} is a permutation, but {x ← y} is not; it is injective on W
if and only if W ⊂ V − {x} or W ⊂ V − {y}. The above proposition shows that we can
characterize α-conversion in T both in terms of permutations and the weaker notion of injective
substitutions. We will see later that permutations and injective substitutions lead to different
algebraic structures in S.

Recall that a partial ordering on the set L is a lattice if it has a greatest lower bound and
a least upper bound for every finite subset of L. It is a complete lattice if it has greatest lower
bounds and least upper bounds for all subsets of L, not just finite ones [MB79]. Recall also that
a partial ordering is Noetherian if it has no infinite descending chains τ1 > τ2 > . . . [Hue80]. The
structure of terms with respect to subsumption is captured in the following theorem.

Theorem 1 Let T̂ be the quotient set T/∼= = {[τ ] | τ ∈ T} with an additional maximum element
>; let ≤ denote also the partial ordering in T̂ canonically induced by the preordering ≤ in T .
Then

• (T̂ ,≤) is Noetherian.

• (T̂ ,≤) is a complete lattice.

6Note that this definition follows [Hue80] and [Ede85], but is dual to the definition in [LMM86].

5



Proof
See [Hue80].
The least upper bound of a set Θ of terms is called its most general common instance; its

greatest lower bound is called its most specific common anti-instance. The theorem expresses
that both most general common instance and most specific common anti-instance are unique
modulo α-conversion. Finding the most general common instance of a pair of terms is a special
case of a unification problem (disjoint variable case). Finding the most specific common anti-
instance of a pair is the anti-unification problem [Hue76, LMM86]. A most general common
instance of {f(x, g(y)), f(g(y), z)} is f(g(y), g(z)), but also f(g(u), g(v)); a most specific common
anti-instance is f(s, t).

Definition 5 Let Φ be a subset of V . The preordering ≤Φ in S over Φ is defined by

σ1 ≤Φ σ2 ⇔ (∃ρ ∈ S)(∀τ ∈ T (Φ, F, a))ρ(σ1(τ)) = σ2(τ).

The equivalence relation ∼=Φ in S over Φ is defined by

σ1
∼=Φ σ2 ⇔ σ1 ≤Φ σ2 ∧ σ2 ≤Φ σ1.

For any σ ∈ S, [σ]Φ denotes the ∼=Φ-equivalence class of σ in S.

If Φ = V then σ1 ≤V σ2 ⇔ (∃ρ)ρ ◦ σ1 = σ2. ≤V and its associated equivalence relation ∼=V

are the standard structures on substitutions found in the literature. For this reason we drop the
subscript V in the following and refer to them simply by ≤ and ∼= whenever there is no danger
of confusing them with the identically named preorder and equivalence relation in T .

The definition of ≤Φ expresses the fact that only the variables in Φ are relevant for comparing
two substitutions. In fact it is obvious that σ1 ≤Φ σ2 if and only if (∃ρ ∈ S)(∀τ ∈ Φ)ρ(σ1(τ)) =
σ2(τ). This restriction to a certain subset Φ of V comes in handy in a later section when we
need to generate “new” variables that play no role in a ≤-comparison. These new variables can
be chosen from amongst the set V −W . W is always chosen such that V −W is nonempty, in
fact infinite.

For a given subset Φ of V we can ask ourselves whether it is possible to construct a sequence
of ever more and more general subsitutions from a given starting substiution σ ∈ S. The answer
to this question is no and is proved below.

Definition 6 Let Φ be a subset of V ; let σ be a substitution in S. Let the length l(τ) denote
the number of occurrences of any m ∈ F ∪ V in τ for any τ ∈ T (V, F, a). We define the degree
d(σ,Φ) of σ in Φ as follows.

d(σ,Φ) = max{(
∑
x∈F

l(σ(x)))− |V (σ(F ))| : F ⊂ Φ ∧ |F | <∞}

Of course, we would have liked to define d(σ,Φ) simply by (
∑

x∈Φ l(σ(x)))− |V (σ(Φ))|, as in
[Ede85], but this definition would be ill-defined for infinite Φ’s. It is easy to see that due to the
finiteness of the domain of any substitution d(σ,Φ) is well-defined, that is, 0 ≤ d(σ,Φ) <∞, for
any Φ ⊂ V and σ ∈ S.

Theorem 2 Let ŜΦ be the quotient set T/∼=Φ = {[σ]Φ | σ ∈ S}; let ≤Φ denote also the partial
ordering in ŜΦ canonically induced by the preordering ≤Φ in S. Then

• (ŜΦ,≤Φ) is Noetherian for any Φ ⊂ V .

6



To prove this theorem we establish a lemma first, which is a simple generalization of a similar
lemma in [Hue80].

Lemma 1 Let Φ be a subset of V ; let σ1, σ2 be substitutions in S. We will write σ1 <Φ σ2 if
and only if σ1 ≤Φ σ2, but σ1 6∼=Φ σ2. We have

• σ1
∼=Φ σ2 ⇒ d(σ1,Φ) = d(σ2,Φ)

• σ1 <Φ σ2 ⇒ d(σ1,Φ) < d(σ2,Φ)

Proof (Proof of lemma)
Assume σ1

∼=Φ σ2. By definition we know that there exist substitutions α, β such that
α(σ1(x)) = σ2(x) and β(σ2(x)) = σ1(x) for all x ∈ Φ. Consequently α(β(y)) = y for all
y ∈ V (σ2(Φ)) and β(α(z)) = z for all z ∈ V (σ1(Φ)). From this we can conclude immediately
that α is injective on V (σ1(Φ)) and β on V (σ2(Φ)). Now let F be any finite subset of Φ and
let x be an arbitrary element of F . Since α is injective on V (σ1(Φ)) it is of course injective on
V (σ1(x)). Since α just replaces variables by variables, the length of an argument to α is invariant.
Thus l(σ2(x)) = l(α(σ1(x))) = l(σ1); furthermore, |V (σ2(F ))| = |V (α(σ1(F )))| = |V (σ1(F ))|.
This establishes (

∑
x∈F l(σ1(x)))−|V (σ1(F ))| = (

∑
x∈F l(σ2(x)))−|V (σ2(F ))| and consequently

d(σ1,Φ) = d(σ2,Φ).
Now let us assume σ1 <Φ σ2. By definition we have (∀x ∈ Φ)α(σ1(x)) = σ2(x) for some

substitution α. α cannot be injective on V (σ1(Φ)) because otherwise we could construct a β
as above, which would show σ1

∼=Φ σ2. If α is not injective on V (σ1(Φ) then there are two
cases. Either there is a y0 ∈ V (σ1(Φ) such that α(y0) = f(τ1, . . . , τn) or α(y0) = f for some
functor f ∈ F (first case), or α(σ(Φ)) ⊂ V and there exist variables y1, y2 ∈ V such that
α(y1) = α(y2)∧ y1 6= y2 (second case). Considering the first case let x0 be an element of Φ such
that y0 ∈ V (σ1(x0)). x0 is guaranteed to exist since y0 is in the range of σ under Φ. Let F be
a finite subset of Φ containing x0. Now imagine the σ1(x) where x ∈ F written out as a string
in which there is exactly one occurrence of every variable in it that is tagged with some mark.
The number of untagged functor and variable occurrences is d(σ1, F ). We can do the same for
σ2, of course, where the number of untagged functor and variable occurrences is d(σ2, F ). Since
we can derive this string representation for σ2 by replacing all occurrences of a variable y in the
string representation for σ1 with α(y), if an occurrence y in σ1 is untagged, then we can assume
without loss of generality that all the variable occurrences in α(y) in the corresponding position
in sigma2 are also untagged. If we consider the tagged occurrence of y0 (in σ1) in the first case
then the corresponding string α(y0) has at least one more untagged occurrence than y0, namely
the functor f . If we consider the untagged occurrences of y0 in σ1, then the corresponding string
α(y0) in σ1 contains at least as many untagged element occurrences as the untagged y0, namely
one. Since by the way we did the tagging there cannot be any untagged variable occurrence in
σ1 whose corresponding substring in σ2 has only tagged element occurrences, we can see that
d(σ2, F ) ≥ d(σ1, F ) + 1. Similarly, in the second case, consider the tagged occurrences of y1 and
y2 in the string representation (with respect to F ) of σ1 and the corresponding occurrences of the
variable α(y1)(= α(y2)) in the string representation (with respect to F ) of σ2. Since not both
occurrences of α(y1) can be tagged, this shows that there is at least one more untagged symbol in
σ2 than in σ1. Consequently, we have again d(σ2, F ) ≥ d(σ1, F ) + 1. This finishes the proof.

The proof of the theorem is now straightforward.
Proof (Proof of theorem)
Assume there is a set of equivalence classes {Ei | i ∈ N} such that Ei > Ei+1 for all ı ∈ N .

Let σi ∈ Ei be arbitrary representatives of the Ei’s for any i ∈ N . By assumption we have
σi > σi+1. We know that d(σ0,Φ) is finite by definition of d. Lemma 1 asserts that for any i
it must be that d(σi,Φ) > d(σi+1,Φ). Consequently, there must be a σi0 with a negative degree,

7



but this is impossible. Thus the assumption cannot hold, which proves that there are no infinite
descending chains.

We can view this theorem as establishing an analogy between the structure of T̂ and ŜΦ for
any Φ ⊂ V . A natural question to ask is whether or not ŜΦ forms a (complete) lattice under ≤Φ

just as (T̂ ,≤) is a complete lattice. It is well-known, though, that (ŜV ,≤V ) fails to be a lattice.
Eder [Ede85] shows that the pair of substitutions {x ← f(x, f(y, z)), y ← f(x, f(y, z)), z ←
f(x, f(y, z))} and {x← f(f(x, y), z), y ← f(f(x, y), z), z ← f(f(x, y), z)} have an infinite set of
upper bounds, but no least upper bound with respect to ≤V . The reason for this “failure” is
due to the fact that we cannot “hide” any variables from ≤V . For subsets Φ of V that leave
“enough” variables hidden in V −Φ the partial orders (ŜΦ,≤Φ) have indeed a lattice structure.
We make the previous precise in the following theorem.

Theorem 3 Let Φ be a subset of V . Let ŜΦ be as before, but with an additional maximal element
>. The following statements are equivalent.

• (ŜΦ,≤Φ) is a complete lattice.

• Φ is co-infinite; that is, |V − Φ| =∞.

Furthermore, if Φ is co-finite, then (ŜΦ,≤Φ) is not a lattice.

Lemma 2 Let Φ be a co-infinite subset of V .

• Let σ1, σ2 be two substitutions in S. Then {σ1, σ2} has a greatest lower bound with respect
to ≤Φ; that is, there is a σ0 such that σ0 ≤Φ ∧σ0 ≤Φ and for all σ ∈ S for which σ ≤Φ σ0

holds we have σ ≤Φ σ0.

• Let R be a subset of S. Then R has a greatest lower bound with respect to ≤Φ.

Of course, the second statement implies the first, but we can show that the first statement
in connection with the Noetherian-ordering property of ≤Φ (theorem 2) implies the second
statement.

Proof (Proof of lemma)
Consider any variable x ∈ D(σ1) ∪ D(σ2). Clearly for any lower bound σ of sigma1 and

sigma2 it must hold that
Proof
First we prove that for any co-finite Φ ⊂ V there is a pair of substitutions with no least

upper bound. A simple generalization of Eder’s pair will do the trick. Let Φ be a co-finite
set. Without loss of generalization we can assume that V − Φ = {w1, . . . , wn} for some n
and that {x1, . . . , xn+1, y1, . . . , yn+1, z1, . . . , zn+1} is a subset of Φ. Now with ρi = {xi ←
f(xi, f(yi, zi)), yi ← f(xi, f(yi, zi)), zi ← f(xi, f(yi, zi))} and σi = {xi ← f(f(xi, yi), zi), yi ←
f(f(xi, yi), zi), zi ← f(f(xi, yi), zi)} consider the substitutions ρ = ∪i∈{1,...,n+1}ρi and σ =
∪i∈{1,...,n+1}σi.7 The minimal upper bounds of ρ and σ are the the substitutions

∪i∈{1,...,n+1}{xi ← f(f(si, ti), f(ui, vi)), yi ← f(f(si, ti), f(ui, vi)), zi ← f(f(si, ti), f(ui, vi))}

for pairwise distinct variables W = {s1, t1, u1, v1, . . . , sn+1, tn+1, un+1, vn+1}. Consider one such
minimal upper bound, say σ1. Simple counting shows that there must be some variable w ∈ W
such that w 6∈ {w1, . . . , wn, x1, . . . , xn+1, y1, . . . , yn+1, z1, . . . , zn+1}. Thus w is in Φ. If we con-
sider another minimal upper bound, σ2, with range variables V (σ2({x1, . . . , xn+1, y1, . . . , yn+1, z1, . . . , zn+1}))
disjoint from V (σ1({x1, . . . , xn+1, y1, . . . , yn+1, z1, . . . , zn+1})), then it is clear that σ1 ≤Φ σ2 be-
cause w 6∈ V (σ2).

7More formally, ρ = ρ1 ◦ . . . ◦ ρn+1 and σ = σ1 ◦ . . . ◦ σn+1. Since the order of composition is insignificant the
informal set union operation on the canonical representations of the ρi’s and σi’s is well-defined.

8



6 Equations and Inequalities

6.1 Equations and Sets of Equations

Definition 7 • A (term) equation is a pair of terms written as

τ = υ

where τ, υ ∈ T . A set of (term) equations is written as

{τ1 = υ1, . . . , τn = υn}.

• Any substitution σ ∈ S for which
σ(τ) ≡ σ(υ)

is called a unifier of the equation τ = υ. σ ∈ S is a unifier of a set of equations {τ1 =
υ1, . . . , τn = υn} if it is a unifier of every equation in it; that is,

σ(τ1) ≡ σ(υ1), . . . , σ(τn) ≡ σ(υn)

.

• For any equation G, U(G) is its set of unifiers; similarly, for any set of equations G, U(G)
denotes G’s unifiers.

Let us consider the sets of sets of unifiers {U(G) | G is a term equation} and {U(G) |
G is a set of equations}. It is conceivable — and possible — that those two sets are not the
same. However, under quite weak conditions they are always identical.

Definition 8 We call (F, a) — the functors with their arity function — nonlinear if there is an
f ∈ F such that a(f) ≥ 2.

Proposition 2 Let, as usual, T = T (V, F, a). The following two statements are equivalent.

• {U(G) | G is a term equation over T} and {U(G) | G is a set of equations over T} are
identical.

• (F, a) is nonlinear.

Proof
Let the two sets {U(G) | G is a term equation over T} and {U(G) | G is a set of equations over T}

be identical. Consider the set of equations G′ = {x1 = y1, x2 = y2}. Clearly σ0 = {x1 ← y1, x2 ←
y2} is a unifier of G′, but no proper subset of σ0 is. Let G0 be a term equation τ = υ such that
U(G0) = U(G′), which is guaranteed to exist by assumption. Let us further assume that there is
no functor with arity greater than 1. In this case all terms, in particular τ and υ have at most
one variable occurrence. Since σ0 is a unifier of G0, τ and υ are either identical or contain
either x1 and x2 or x3 and x4 in corresponding positions in τ and υ. But in any of those cases
there would be a proper subset of σ1 that is also a unifier of G0. Consequently our assumption
that there is no functor with arity greater than 1 is false, and thus (F, a) is nonlinear.

To prove the converse, assume that functor f0 ∈ F has arity a(f) = n0 ≥ 2. Note that for
any equation τ = υ the set of equations {τ = υ} has the same unifiers. To show that for any set
of equations there is a simple term equation with the same unifiers we can construct a sequence of
terms ψ1, ψ2, . . . by ψ1 = f0(x1, . . . , xn0), ψ2 = f0(f0(x1, . . . , xn0), f0(xn0+1, . . . , x2n0), . . . , f0(x(n0−1)n0+1, . . . , xn2

0
))

9



and so on. For all i ∈ N the term ψi has in0 variables. Let G = {τ1 = υ1, . . . , τn = υn} be
any set of equations over T (V, F, a). Let i0 be such that i0n0 ≥ n. We define σ1 = {x1 ←
τ1, . . . , xn ← τn} and σ2 = {x1 ← υ1, . . . , xn ← υn}. Now it is easy to see that any unifier of G
is a unifier of σ1(ψi0) = σ2(ψi0) and the other way around.

In the rest of the paper we will always assume that F is nonlinear. Consequently we could
work only with term equations instead of sets of such equations. However, sets of equations
come in handy when describing algorithms for computing unifiers and will follow us around for
a while.

6.2 Inequalities and Sets of Inequalities

Definition 9 • A (term) inequality is a pair of terms written as

τ � υ

where τ, υ ∈ T . A set of (term) inequalities is written as

{τ1 � υ1, . . . , τn � υn}.

• A substitution σ ∈ S for which
σ(τ) ≤ σ(υ)

holds, i. e. (∃ρ ∈ S)ρ(σ(τ)) ≡ σ(υ), is called a semi-unifier of τ � υ. σ ∈ S is a
nonuniform semi-unifier of {τ1 � υ1, . . . , τn � υn} if σ(τ1) ≤ σ(υ1), . . . , σ(τn) ≤ σ(υn)
or, equivalently, (∃ρ1, . . . , ρn)ρ1(σ(τ1)) ≡ σ(υ1), . . . , ρn(σ(τn)) ≡ σ(υn). σ is a uniform
semi-unifier of {τ1 � υ1, . . . , τn � υn} if (∃ρ)ρ(σ(τ1)) ≡ σ(υ1), . . . , ρ(σ(τn)) ≡ σ(υn).

• For any inequality G, V (G) is its set of semi-unifiers; similarly, for any set of inequalities
G, V (G) denotes G’s uniform semi-unifiers, and ~V (G) stands for G’s nonuniform semi-
unifiers.

In complete analogy to equations semi-unifiers of inequalities and uniform semi-unifiers of
sets of inequalities have the same structure.

Proposition 3 ??
Let, as usual, T = T (V, F, a). The following two statements are equivalent.

• {V (G) | G is a term inequality over T} and {V (G) | G is a set of inequalities over T} are
identical.

• (F, a) is nonlinear.

Proof
Let the two sets {V (G) | G is a term inequality over T} and {V (G) | G is a set of inequalities over T}

be identical. Consider the set of inequalities G∞ = {y0 � x1, y0 � x2}. Clearly σ1 = {x1 ← x2}
is a semi-unifier of G∞, but {} is not. If we assume that no functor in F has arity greater than
1, we already know that all terms in T (V, F, a) have at most one variable occurrence. Thus if
an inequality τ � υ has a solution at all then there must be subterms τ ′ and υ′ of τ and υ,
respectively, such that τ ′ � υ′ has the same set of unifiers as τ � υ and either τ ′ is a variable or
υ′ is a variable. If τ ′ is a variable then the identity substitution {} is a semi-unifier, and if it is
not, then σ1 is not a semi-unifier of τ ′ � υ′. Consequently there is no term inequality with the
same set of semi-unifiers as G∞ under the assumption that F has no functor with arity greater
than 1, and we can conclude that (F, a) must be nonlinear.

10



To prove the converse we can make use of the same construction as in the corresponding part
of the proof of proposition 2.

While this proposition gives a straightforward connection between semi-unifiers of inequalities
and uniform semi-unifers of sets of inequalities, it is not clear off-hand how nonuniform semi-
unifiers are related. We will come back to this question later.

6.3 Simple Connections

We may ask ourselves if and how the unifiers of an equation τ = υ are related to the semi-unifiers
of the corresponding inequality τ � υ. In this subsection we give a couple of straightforward
answers to some simple questions of this nature.

Proposition 4 Let τ, υ ∈ T be terms. Let G= be the equation τ = υ, and let G� be the
inequality τ � υ.

• If there is a unifier for G= then there is a semi-unifier for G�; more specifically, every
unifier of G= is a semi-unifier of G�.

• If τ is a variable, i. e. τ = x ∈ V , then U(G=) = {σ ◦ {x← υ} | α ∈ S} whenever υ does
not contain x; otherwise U(G=) is empty. For τ = x ∈ V , V (G�) = S no matter whether
υ contains x or not.

If, on the other hand, υ is a variable, i. e. υ = y ∈ V , and τ is a term of the form
f(τ1, . . . , τn) for some functor f ∈ F and terms τ1, . . . , τn ∈ T , then U(G=) = {σ ◦ {y ←
τ} | α ∈ S} whenever τ does not contain y; otherwise U(G=) is empty, which is completely
symmetric to the previous case. However, for υ = y ∈ V and τ = f(τ1, . . . , τn), V (G�) is
properly contained in S, but contains U(G=). Unless τ contains y, in which case V (G�)
is empty, or τ contains no variables at all, the containment V (G�) ⊃ U(G=) is proper.

The first part of this proposition follows immediately from the definition of semi-unifier. The
second part is also very easy to prove.

11



7 Most General Unifiers and Most General Semi-Unifiers

7.1 Most General Unifiers

Definition 10 Let G be a term equation (or set of term equations). Let Φ be a subset of V . A
substitution σ ∈ S is called a most general unifier (mgu) of G over Φ if it is a unifier of G and
there is no other unifier ρ of G such that ρ <≤ σ.

Note that every equation that has a unifier has a most general unifier. This follows immedi-
ately from theorem 2. Furthermore, we have the following theorems, which are well-known (c.
f. [Ede85], [LMM86]).

Theorem 4 Let σ1 and σ2 be most general unifiers of term equation G. Then σ1
∼=V σ2.

Because σ1
∼=V σ2 implies σ1

∼=Φ σ2 for any subset Φ ⊂ V we see immediately that the above
theorem holds for any such Φ.

Theorem 5 Let ρ ∈ S be a most general unifier of term equation G. Then there is an idempotent
most general unifier σ of G such that ρ ∼=V σ.

In view of theorem 4 we could have formulated this theorem somewhat stronger by asserting
that for every unifiable equation G there is an idempotent most general unifier. However, it
is conceivable that for a different set of substitutions (instead of all most general unifiers of an
equation) theorem 4 fails, but theorem 5 still holds. The particular formulation of these theorems
reflects this separation of concerns.

Since there are substitutions that are not ∼=V -equivalent to any idempotent substitution, as
a consequence of the last theorem not every substitution in S is a most general unifier (of some
equation). For example, {zi ← f(zi), . . . , zi ← f(zi)} has no ∼=V -equivalent substitution [Ede85].

7.2 Most General Semi-Unifiers

Definition 11 Let Φ be a subset of V .

• Let G be a term inequality. A substitution σ ∈ S is called a most general semi-unifier
(mgsu) of G over Φ if it is a semi-unifier of G and there is no other semi-unifier ρ of G
such that ρ <Φ σ.

• Let G be a set of term inequalities. Let σ be a substitution in S. σ is called a most general
uniform semi-unifier (mgusu) of G if it is a uniform semi-unifier of G and there is no other
uniform semi-unifier ρ of G such that ρ <Φ σ. σ is called a most general nonuniform
semi-unifier (mgnsu) of G if it is a nonuniform semi-unifier of G and there is no other
nonuniform semi-unifier ρ of G such that ρ <Φ σ.

Again, we are assured of the existence of most general (uniform/nonuniform) semi-unifiers
for inequality (set of inequalities) due to theorem 2. Unfortunately, the analog of theorem 4 does
not hold. In fact we have the following proposition:

Proposition 5 There is a familily F = {Gi} of term inequalities such that for every i ∈ N the
inequality Gi has most general semi-unifiers σi1 and σi2 such that σi1 6∼=V σi2.

12



Proof
Consider Gi = f(x1, . . . , xi) � y.8 The substitutions σi1 = {y ← f(u1, . . . , ui)} and σi2 =

{y ← f(v1, . . . , vi)} are most general semi-unifiers of Gi since the only for ρ = {} we have
ρ <V σi1 or ρ <V σi2 and {} is not a semi-unifier of Gi. But there is no substitutions α ∈ S
such that α ◦ σi1 = σi2 or α ◦ σi2 = σi1.

Unfortunately, the analog of theorem 5 is not true either.

Proposition 6 There is a family F = {G〉} of sets of term inequalities such that for every i ∈ N
the set of inequalities G〉 has no idempotent most general uniform semi-unifier.

Proof
Consider G〉 = {f(y1) � z1, . . . , f(yi) � zi}. The substitution σ = {z1 ← f(z1), . . . , zi ←

f(zi)} and its congV -equivalent substitutions are the only most general unifiers of G〉. As we
remarked earlier there is no idempotent substitution amongst them.

Some of the questions that arise from this “failure” of most general semi-unifiers to exhibit
the same structure as most general unifiers are:

• Is there any other notion that will let us say that most general semi-unifiers are unique in
some sense?

• Are all substiutions most general semi-unifiers?

• Is there any other ordering but ≤V such that the substitutions form a (complete) lattice?

We will address these questions in the following sections. In particular, we will discover a
lattice structure on substitutions with respect to ≤Φ for all co-infinite subsets Φ of V .

7.3 The Structure of Unifiers

A term equation τ1 = τ2 can have zero, one, or many solutions. But the set of all solutions is
well-structured. In particular there always exists a least solution called a most general unifier (of
τ1 and τ2). This, and the importance of idempotent substitutions, is expressed in the following
theorem.

Definition 12 The set of unifiers U(τ1, τ2)isdefinedby{σ | σ(τ1) ≡ σ(τ2)}

Theorem 6 Let τ1, τ2 ∈ T . Then (U(τ1, τ2),�Φ) is a complete lattice for any Φ ⊂ V . Further-
more, if U(τ1, τ2) is nonempty, then its greatest element is > and its least element an equivalence
class of substitutions containing an idempotent substitution.

8We can always assume that any functor can have a variable number of arguments as long as the underlying
(F, a) is nonlinear. See propositions 2 and ?? and their proofs.

13



8 Most General Semi-Unifiers are Unique

In the previous sections we saw that most general semi-unifiers (of any fixed inequality G) are
not unique modulo ∼=V -congruence whereas most general unifiers (of any fixed equation G′) are.
In this section we will show that most general (uniform/nonuniform) semi-unifiers are unique
modulo ∼=Φ for any co-infinite subset Φ of V .

8.1 Most General Uniform Semi-Unifiers

Recall that simple term inequalities give rise to the same (most general) semi-unifiers as the
uniform (most general) semi-unifiers of sets of equations under our proviso of a nonlinear functor
system (F, a). In this section we will show that simple all most general semi-unifier (with respect
to ≤) of term inequalities are ∼=Φ-congruent for any Φ ⊂ V . This implies that sets of inequalities
also have most general uniform semi-unifiers modulo ∼=Φ.

Proposition 7 Let τ1, τ2 ∈ T be arbitrary terms; let Φ be a subset of V . Then {σ ∈ S | τ1 ≤
σ(τ2)} has a greatest lower bound with respect to Φ; i. e., there exists a σ0 ∈ S such that
τ1 ≤ σ0(τ2) and (∀σ ∈ S)τ1 ≤ σ(τ2)⇒ σ0 ≤Φ σ.

Proof
By theorem 1 we know that the lowest upper bound [τ ] = [τ1] ∨ [τ2] exists. Without loss of

generality we can assume that V (τ) ∩ Φ = ∅. Consequently there is a substitution σ′0 such that
σ′0(τ2) = τ . Now define σ0 as follows.

σ0(x) =
{
σ′0(x), if x occurs in τ2
x, otherwise

It is easy to see that σ0(τ2) = τ and, consequently, τ1 ≤Φ σ0(τ2) by construction of σ0. Now let
σ be any other substitution such that τ1 ≤ σ(τ2). σ(τ2) must be an upper bound of τ1 and τ2,
and thus τ ≤ σ(τ2) must hold. By definition this means that there is a substitution ρ′ such that
ρ′(τ) = σ(τ2). If we define ρ by

ρ(x) =
{
ρ′(x), if x occurs in τ
σ(x), otherwise

then it is straightforward to check that (∀x ∈ Φ)ρ(σ0(x)) = σ(x), which means σ0 ≤Φ σ.
This proposition tells us that the set {σ ∈ S | τ1 ≤ σ(τ2)} has a greatest lower bound with

respect to any co-infinite Φ ⊂ V (and which is unique modulo ∼=Φ) for any choice of τ1, τ2 ∈ T .
We will denote this greatest lower bound by

∧
{σ ∈ S | τ1 ≤ σ(τ2)}. We assume that we have a

“top”-element > in S that is greater than any other substitution in S.
From now on let us fix a co-infinite subset Φ ⊂ V .

Lemma 3 Let M1,M2 ∈ T be arbitrary terms; let Φ be a subset of V . Then {σ ∈ S | M1 ≤
σ(M2)} has a greatest lower bound with respect to Φ; i. e., there exists a σ0 ∈ S such that
M1 ≤ σ0(M2) and (∀σ ∈ S)M1 ≤ σ(M2)⇒ σ0 ≤Φ σ.

Proof By theorem 1 we know that the lowest upper bound [M ] = [M1]∨ [M2] exists. Without
loss of generality we can assume that V (M) ∩ Φ = ∅. Consequently there is a substitution σ′0
such that σ′0(M2) = M . Now define σ0 as follows.

σ0(x) =
{
σ′0(x), if x occurs in M2

x, otherwise

14



It is easy to see that σ0(M2) = M and, consequently, M1 ≤Φ σ0(M2) by construction of σ0. Now
let σ be any other substitution such that M1 ≤ σ(M2). σ(M2) must be an upper bound of M1

and M2, and thus M ≤ σ(M2) must hold. By definition this means that there is a substitution
ρ′ such that ρ′(M) = σ(M2). If we define ρ by

ρ(x) =
{
ρ′(x), if x occurs in M
σ(x), otherwise

then it is straightforward to check that (∀x ∈ Φ)ρ(σ0(x)) = σ(x), which means σ0 ≤Φ σ.
This proposition tells us that the set {σ ∈ S |M1 ≤ σ(M2)} has a greatest lower bound with

respect to any co-infinite Φ ⊂ V (and which is unique modulo ∼=Φ) for any choice of M1,M2 ∈ T .
We will denote this greatest lower bound by

∧
{σ ∈ S |M1 ≤ σ(M2)}. We define Ŝ to be S with

an additional maximum element >.
From now on let us fix a co-infinite subset Φ ⊂ V .

Definition 13 Define FM1,M2(σ) =
∧
{σ′ ∈ S | σ(M1) ≤ σ′(M2)}.

In view of the previous proposition we are assured that F is well-defined. The following
lemma will tell us that F is monotonic.

Lemma 4 F is monotonic with respect to ≤Φ; more precisely, (∀σ ∈ S)σ1 ≤Φ σ2 ∧ D(σ1) ∪
D(σ2) ⊂ Φ⇒ F (σ1) ≤Φ F (σ2).

Proof It is sufficient to show {σ′ ∈ S | σ2(M1) ≤ σ′(M2)} ⊂ {σ′ ∈ S | σ1(M1) ≤ σ′(M2)}
or, even simpler, σ2(M1) ≤ σ′(M2) ⇒ σ1(M1) ≤ σ′(M2) for any σ′ ∈ S. But this is trivial
because, by assumption (the domains of σ1 and σ2 are contained in Φ), for some ρ we have
σ1(M1) ≤ ρ(σ1(M1) = σ2(M2)).

We can define a sequence of substitution operators

F k
M1,M2

(σ) =

{
FM1,M2(F

(k−1)
M1,M2

(σ), k > 0
σ, k = 0

and their limit

F∞M1,M2
(σ) =

{
F k

M1,M2
(σ), F k

M1,M2
(σ) = F

(k+1)
M1,M2

(σ)
>, otherwise

Theorem 7 Every SEI S has a most general nonuniform, respectively uniform, semi-unifier.9

Proof We can simply apply the above lemmas.
The results above can be considerably strenghtened, yielding an analog of the main structure

theorem of unification. Let us say that two substitutions σ1 and σ2 are weakly equivalent with
respect to an SEI S if and only if σ1

∼=V (S) σ2 where V (S) denotes the set of variables in S.
For any SEI S let (̂SU(S)V (S)) and (̂USU(S)V (S)) denote the sets of equivalence classes

{[σ]V (S) | σ ∈ SU(S)} and {[σ]V (S) | σ ∈ USU(S)}, respectively, with an added maximum
element >.

Theorem 8 Let S be any SEI. Then

1. ((̂SU(S)V (S)),≤V (S)) is Noetherian.

9Recall that Φ is an arbitrary, but fixed co-infinite subset of V .

15



2. ((̂SU(S)V (S)),≤V (S)) is a complete lattice.

Similarly,

1. ((̂USU(S)V (S)),≤V (S)) is Noetherian.

2. ((̂USU(S)V (S)),≤V (S)) is a complete lattice.

16



9 Computing Most General Unifiers and Most General
Semi-Unifiers

9.1 An Algorithm for Computing Most General Unifiers

Although it is not more or less difficult to solve a set of simultaneous equations instead of just a
single equation, we describe, for convenience, an algorithm originally used by Herbrand and the
basis for Martelli and Montanari’s algorithms that solves sets of equations.

Definition 14 Let E = {τ11 = τ12, . . . , τn1 = τn2} be a set of term equations. The substitution
σ ∈ S is a unifier of E if τi1 ≡ τi2, 1 ≤ i ≤ n.

Given a set of equations the algorithm chooses randomly, but fairly, an equation e ∈ E, for
which there is a rule in the following rule system H, and takes an action depending on the form
of e until no rule is applicable any more.

f(τ1, . . . , τm) = f(υ1, . . . , υm): Replace e by the equations τ1 = υ1, . . . , τm = τm.

f(τ1, . . . , τk) = g(υ1, . . . , υl: Halt with failure (functor clash).

f(τ1, . . . , τm) = x: Replace by x = f(τ1, . . . , τm).

x = f(τ1, . . . , τm) where x occurs in at least one of tau1, . . . , τm: Halt with failure (occurs
check).

x = f(τ1, . . . , τm) where x does not occur in tau1, . . . , τm, but occurs in another equation e′ ∈ E:
Replace x by f(τ1, . . . , τm) in e′.

x = x: Delete e.

Theorem 9 Given a set of equations E, the algorithm H either terminates with failure or returns
a set of equations E′ = {x1 = ρ1, . . . , xp = ρp} such that x1, . . . , xp ∈ V and xi does not occur
in ρj for 1 ≤ i, j ≤ p. If H terminates with failure the set E has no unifier. If H succeeds, then
the substitution σ = {x1 ← ρ1, . . . , xp ← ρp} is an idempotent most general unifier of E.

The algorithm H is conceptually clear, but very inefficient on the standard representation of
terms as strings. This is due to the space explosion that can arise in the step that replaces all
occurrences of a variable x in E by the right-hand side of an equation x = τ .

Definition 15 The size of a term equation set E is the number of nonblank character used to
write it down. The size of E is denoted by |E|.

Proposition 8 There is a class of equation sets E = {E1, . . . , Em such that for any E ∈ E of
size n the equation set E′ returned by H has size Ω(2n).

The copying cost and space blow-up can be avoided in a graph-theoretic representation of
terms in which occurrences of a variable are designated by pointers to a single variable. Amaz-
ingly, in such a representation the unification problem becomes an instance of the equivalence
problem for finite automata. This problem has an elegant O(nG(n)) time algorithm [AHU74,
pp. 143-145]. By exploiting the specific structure of unification problems linear time algorithms
are also possible [PW78, MM82].

17



9.2 Basic Properties of Semi-Unification

References

[AHU74] A. Aho, J. Hopcroft, and J. Ullman. The Design and Analysis of Computer Algorithms.
Addison-Wesley, 1974.

[Ble77] W. Bledsoe. Non-resolution theorem proving. Artificial Intelligence, 9(1):1–35, 1977.

[Bue86] W. Buettner. Unification in the data structure sets. In Proc. 8th Int’l Conf. on Auto-
mated Deduction, pages 470–488. Springer-Verlag, 1986. Lecture Notes in Computer
Science, Vol. 230.

[Col84] A. Colmerauer. Equations and inequations on finite and infinite trees. In Proc. Int’l
Conf. on Fifth Generation Computer Systems, 1984.

[Ede85] E. Eder. Properties of substitutions and unifications. J. Symbolic Computation, 1:31–
46, 1985.

[Gra77] G. Graetzer. Universal Algebra. Addison-Wesley, 1977.

[Hen88] Fritz Henglein. Semi-unification. Technical Report (SETL Newsletter) 222, New York
University, April 1988.

[Her68] J. Herbrand. Recherches sur la theorie de la demonstration. In Ecrits logiques de
Jacques Herbrand. PUF, Paris, 1968. thèse de Doctorat d’Etat, Université de Paris
(1930).

[Hew71] C. Hewitt. Description and Theoretical Analysis (Using Schemata) of PLANNER: A
Language for Proving Theorems and Manipulating Models in a Robot. PhD thesis,
MIT, 1971.

[Hue75] G. Huet. A unification algorithm for typed lambda-calculus. Theoretical Computer
Science, 1(1):27–57, 1975.

[Hue76] G. Huet. Résolution d’equations dans des langages d’ordre 1, 2, . . . , omega (thèse de
Doctorat d’Etat). PhD thesis, Univ. Paris VII, September 1976.

[Hue80] G. Huet. Confluent reductions: Abstract properties and applications to term rewriting
systems. J. Assoc. Comput. Mach., 27(4):797–821, October 1980.

[Hus85] H. Hussmann. Unification in conditional equational theories. In European Conf. on
Computer Algebra (EUROCAL), pages 543–553. Springer-Verlag, April 1985. Lecture
Notes in Computer Science, Vol. 204; also Universitaet Passau technical report MIP-
8502, January 1985.

[KN86] D. Kapur and P. Narendran. NP-completeness of the set unification and matching
problems. In Proc. 8th Int’l Conf. on Automated Deduction, pages 489–495. Springer-
Verlag, 1986. Lecture Notes in Computer Science, Vol. 230.

[Kow79] R. Kowalski. Logic for Problem Solving. Artificial Intelligence Series. North-Holland,
1979.

[KTU88] A. Kfoury, J. Tiuryn, and P. Urzyczyn. A proper extension of ML with an effective
type-assignment. In Proc. 15th Annual ACM Symp. on Principles of Programming
Languages, pages 58–69. ACM, ACM Press, January 1988.

18



[LMM86] J. Lassez, M. Maher, and K. Marriott. Unification revisited. Technical report, IBM
Yorktown Heights, 1986.

[MB79] S. MacLane and G. Birkhoff. Algebra. Macmillan, 1979. 2nd edition.

[Mee83] L. Meertens. Incremental polymorphic type checking in B. In Proc. 10th ACM Symp.
on Principles of Programming Languages (POPL), pages 265–275, 1983.

[MM82] A. Martelli and U. Montanari. An efficient unification algorithm. ACM Transactions
on Programming Languages and Systems, 4(2):258–282, April 1982.

[MSK87] C. Mohan, M. Srivas, and D. Kapur. Reasoning in systems of equations and inequa-
tions. In Proc. 7th Conf. on Foundations of Software Technology and Theoretical
Computer Science, pages 305–325. Springer-Verlag, December 1987. Lecture Notes in
Computer Science, Vol. 287.

[Myc84] A. Mycroft. Polymorphic type schemes and recursive definitions. In Proc. 6th Int.
Conf. on Programming, LNCS 167, 1984.

[Plo70a] G. Plotkin. Lattice-theoretic properties of subsumption. Technical Report MIP-R77,
Univ. of Edinburgh, 1970.

[Plo70b] G. Plotkin. A note on inductive generalization. Machine Intelligence, 5:153–163, 1970.

[Pra60] D. Prawitz. An improved proof procedure. Theoria, 26:102–139, 1960.

[PW78] M. Paterson and M. Wegman. Linear unification. J. Computer and System Sciences,
16:158–167, 1978.

[Rey70] J. Reynolds. Transformational systems and the algebraic structure of atomic formulas.
Machine Intelligence, 5:135–152, 1970.

[Rob65] J. Robinson. A machine-oriented logic based on the resolution principle. J. Assoc.
Comput. Mach., 12(1):23–41, 1965.

[Sie84] J. Siekmann. Universal unification. In Proc. 7th Int’l Conf. on Automated Deduction,
pages 1–42. Springer-Verlag, 1984. Lecture Notes in Computer Science, Vol. 170,
Springer-Verlag.

[SS86] L. Sterling and E. Shapiro. The Art of PROLOG. MIT Press, 1986.

[Sta88] R. Statman. Personal communication, May 1988.

[Sti81] M. Stickel. A unification algorithm for associative-commutative functions. J. Assoc.
Comput. Mach., 28(3):423–434, July 1981.

[WPP77] D. Warren, L. Pereira, and F. Pereira. Prolog — the language and its implementation
compared with LISP. SIGPLAN Notices, 12(8):109–115, 1977.

19


