
The SETL2 Programming Language

W. Kirk Snyder
Courant Institute of Mathematical Sciences

New York University
New York, NY 10012
September 9, 1990

Abstract

The SETL2 programming language is a very high level language based on the theory and nota-
tion of �nite sets. It is evolved from SETL, developed at New York University by J. T. Schwartz.
SETL2 adds to SETL a syntax and name scoping closer to more recent imperative languages,
full block structure, and procedures as �rst class objects.

This document is divided into three parts: First, we give an introduction to SETL2, high-
lighting its di�erences from SETL. A description of programming with sets along with a detailed
description of SETL is given in [SDDS86], and we strongly encourage the reader to refer to that
book if he has no experience with SETL. The second part of this document provides a detailed
reference manual of the SETL2 language. The �nal section is a guide to the operation of the
current implementations of SETL2.

This paper is Technical Report 490, Courant Institute of Mathematical Sciences, New York
University.

New York University
Department of Computer Science

Courant Institute of Mathematical Sciences

CONTENTS i

Contents

1 An Introduction to SETL2 1

1.1 Overview : 1

1.2 Nested Procedures : 1

1.2.1 Name Scoping : 1

1.3 Procedures As First Class Objects : 2

1.3.1 Write Parameter Restriction : 3

1.3.2 Closures : 3

1.4 Anonymous Procedures { � Expressions : 4

1.5 Separate Compilation { Packages : 6

1.6 Bound Variables Are Local To Iterators : 7

1.7 Ada-Like Syntax : 8

1.8 Summary : 8

2 SETL2 Reference Manual 9

2.1 Introduction : 9

2.2 Notation and Terminology : 9

2.3 Lexical Conventions : 9

2.3.1 Comments : 9

2.3.2 Identi�ers : 9

2.3.3 Numeric Literals : 10

2.3.4 String Literals : 10

2.3.5 Operators : 11

2.3.6 Separators : 11

2.4 Overall Program Structure : 11

2.5 Declarations and Scope of Names : 12

2.5.1 Selectors : 13

2.6 Statement Lists : 13

2.7 Procedures : 13

2.7.1 Return Statements : 14

2.8 Basic Data Types : 15

2.8.1 Integers : 15

ii

2.8.2 Floating Point Numbers : 15

2.8.3 Strings : 16

2.8.4 Atoms : 16

2.8.5 Procedures : 16

2.8.6
 - Unde�ned Value : 16

2.9 Compound Data Types : 17

2.9.1 Sets : 17

2.9.2 Tuples : 17

2.9.3 Maps : 18

2.10 Set Forming Expressions : 18

2.10.1 Enumerated Set Formers : 19

2.10.2 Arithmetic Set Formers : 20

2.10.3 General Set Formers : 20

2.11 Tuple Forming Expressions : 22

2.12 Operator Precedence Rules : 22

2.13 Left Hand Sides : 22

2.14 Assignments : 24

2.15 Compound Operators : 24

2.16 Boolean Operations : 25

2.17 ? Operator : 25

2.18 Deletion Operations : 26

2.19 � Expressions : 26

2.20 Quanti�ed Expressions : 26

2.21 If Statements : 27

2.21.1 If Expressions : 27

2.22 Case Statements : 27

2.22.1 Case Expressions : 28

2.23 While and Until Loops : 28

2.23.1 Exit Statement : 29

2.23.2 Continue Statement : 29

2.24 For Loops : 29

2.25 Stop Statement : 30

CONTENTS iii

2.26 Assert Statement : 30

2.27 Null Statements : 30

2.28 Packages : 30

2.28.1 Package Speci�cations : 30

2.28.2 Package Bodies : 31

2.28.3 Importing a Package : 31

2.28.4 Compilation Units : 32

2.29 Built-In Procedures : 32

2.29.1 Atom Generation Procedure : 33

2.29.2 Arithmetic Functions : 33

2.29.3 Input - Output Procedures : 34

2.29.4 String Handling Procedures : 36

2.29.5 Type Finding Procedures : 38

2.29.6 Environment Access Procedures : 38

3 SETL2 Operation Manual 39

3.1 Introduction : 39

3.2 Libraries : 39

3.3 Installation : 40

3.4 Executing The Compiler : 40

3.5 Executing The Interpreter : 42

3.6 Environment strings : 43

3.7 Acknowledgements : 43

A A Random Number Generator 45

B The Stable Assignment Problem 49

C A Five Function Calculator 53

iv

1

1 An Introduction to SETL2

1.1 Overview

SETL2 is a very high level programming language using notation and data types from the theory
of �nite sets. It is evolved from SETL, developed at New York University by J. T. Schwartz. The
principal di�erences between SETL2 and SETL are:

� SETL2 allows full block structure of procedures, as in Pascal or Ada. SETL allows only one
level of procedures, as in C.

� A SETL2 procedure is a �rst class object with capabilities similar to procedure pointers in C,
but somewhat extended. A SETL procedure may only be called, as in Ada.

� In SETL2 an iterator introduces a block with the bound variables local to that block.

� The facilities for separate compilation in SETL2 borrow from Ada the idea of separate module
speci�cations and implementations. The syntax follows that of Ada, but is less complex. Since
SETL2 is weakly typed with no type declarations much of the complexity of Ada packages is
unnecessary.

� Several of SETL2's control structures use syntax closer to that of Ada.

� SETL2 does not have SETL's data representation sub-language, macros, or backtracking.

The SETL2 system is written in highly portable ANSI C. At present, implementations are avail-
able for six computers and operating systems, with more planned or underway.

In the �rst section of this document, we will explain in detail some of the areas in which SETL2

di�ers markedly from SETL. We will assume that the reader is familiar with SETL already. If not,
we suggest the reader refer to [SDDS86], which is the de�nitive reference on SETL.

1.2 Nested Procedures

In SETL procedures may not be nested, there is only a main program and procedures at the top
level of that program. SETL2 on the other hand allows procedures to be nested to any depth. The
syntax of a procedure de�nition corresponds closely to that of a program de�nition, as can be seen
in the program in �gure 1, which prints a recursive tuple using indentation to show its structure.

Notice that unlike many languages with full block structure, nested procedures in SETL2 appear
at the end of a procedure, not at the beginning. This makes it more convenient to read the program
in a top-down manner, and is more consistent with SETL.

1.2.1 Name Scoping

In SETL, a name declared in the main program is visible in all procedures and may not be declared in
any of them. An undeclared name is only visible in the program body, not in any procedures. SETL2
is slightly di�erent. SETL2 does allow declaration of a name declared in an enclosing procedure,
and such a declaration hides the previously visible name. Undeclared names are implicitly declared
(depending on a compiler option { see page 41) in every procedure in which they appear. The only

2 An Introduction to SETL2

program Nesting;

Tuple := [1,2,[3,4,[5,6,7],8],9,10];

Print_Tuple(Tuple);

procedure Print_Tuple(T);

Recursively_Print_Tuple(T,0);

procedure Recursively_Print_Tuple(T,Indent);

-- print Indent spaces

print(""+/[" " : i in [1 .. Indent]]);

-- if T is a tuple, print each element indented three more columns

if is_tuple(T) then

for x in T loop

Recursively_Print_Tuple(x,Indent+3);

end loop;

else

print(T);

end if;

end Recursively_Print_Tuple;

end Print_Tuple;

end Nesting;

Figure 1: Nested Procedure Example

way to make a name visible in a contained procedure is to explicitly declare it with a var declaration,
a const declaration, or a procedure de�nition.

It is possible to access hidden names using the construction <owner>.<name>, assuming <name>
would have been visible if not hidden. So for example in the program in �gure 2, the variable a in
the main program is hidden in both procedure one and procedure two. Either procedure can access
that variable by referring to it as Hidden.a, but neither procedure can refer to the other's variable
a by a similar construction.

1.3 Procedures As First Class Objects

Most SETL2 procedures are �rst class objects. This means that they have values which can be bound
to variables, inserted in aggregate data structures, and passed as parameters as well as simply being
called. The value of a procedure is accessed by refering to the name of the procedure only, without
an argument list. For example, the statement

x := time;

1.3 Procedures As First Class Objects 3

program Hidden;

var a;

...

procedure one;

var a;

...

end one;

procedure two;

var a;

...

end two;

end Hidden;

Figure 2: Hidden Name Example

assigns to x the procedure time, while the statement

y := time();

calls the procedure time and assigns the returned value to y. The procedure assigned to x above is
then called just as a procedure constant, i.e. with the expression x().

1.3.1 Write Parameter Restriction

We started this section with the statement that most procedures are �rst class objects. More
speci�cally, any procedure whose formal parameters are all read-only are �rst class objects, those
with any read-write or write-only parameters do not have an assignable value. To understand the
reason for this restriction, imagine that we did not have the restriction and consider the statement:

Lhs := f([x,-,y]);

This statement is perfectly legal if f is a procedure with a single write parameter. The problem
is, what if f is a variable which happens to be bound to a procedure? It seems we must check
this at run time unless the compiler is able to determine that f is indeed a procedure with a single
write parameter. In general the compiler can not make such a determination, so the small restriction
described above is imposed rather than paying the performance penalty required to check such things
at run-time.

1.3.2 Closures

There is a potential ambiguity when nested procedures are passed outside of the scope in which their
names are visible. To illustrate, consider the program in �gure 3.

In each call to Plant, the nested procedure Seedling is returned to the main program. When
that procedure is called via First_Crop(), the enclosing procedure, Plant, is no longer active. Since

4 An Introduction to SETL2

program Farm;

First_Crop := Plant("corn");

Second_Crop := Plant("oats");

print(First_Crop());

print(Second_Crop());

procedure Plant(Seed);

return Seedling;

procedure Seedling;

return Seed;

end Seedling;

end Plant;

end Farm;

Figure 3: Closure Example

Seedling returns Seed, which is local to Plant, what might First_Crop() return? There seem to
be three possiblilites:

1. It might return
, since there may be no binding for Seed when Plant is not active.

2. It might return "oats", since that was the last valid binding for Seed.

3. It might return "corn", since that was the binding for Seed at the time Seedling was copied.

In fact, the correct answer is 3. When a procedure value is used, SETL2 includes the closure of
that procedure, or the current activations of enclosing procedures at that point. When the procedure
is later called, those activations will be reinstated (assuming they are not already active) before the
procedure executes. So the farm program above will output:

corn

oats

A much more detailed explanation of closures may be found in [Mac87].

1.4 Anonymous Procedures { � Expressions

Conceptually, a � expression is an expression which yields a procedure where the procedure is de�ned
in the � expression. As an example, consider the program in �gure 4, which just prints the squares
of the integers from 1 to 10 using a more general procedure, Power.

The � expression is very similar to a standard procedure de�nition. It consists of a header,
declarations, a statement list, nested procedures, and a tail. A procedure will be declared in the

1.4 Anonymous Procedures { � Expressions 5

program Curry;

Square := lambda(x);

return Power(x,2);

end lambda;

for i in [1 .. 10] loop

print(Square(i));

end loop;

procedure Power(x,y);

return 1 */[x : i in [1 .. y]];

end Power;

end Curry;

Figure 4: � Expression Example

same scope of the expression with a compiler-generated name. Semantically, the program in �gure 4
is identical to the program in �gure 5, if the name of the procedure temporary were a compiler-
generated temporary name.

program Curry;

Square := temporary;

for i in 1 .. 10 loop

print(Square(i));

end loop;

procedure Power(x,y);

return 1 */[x : i in [1 .. y]];

end Power;

procedure temporary(x);

return Power(x,2);

end temporary;

end Curry;

Figure 5: Alternative Curry Program

The � expression is compiled by the SETL2 compiler, not interpreted as a character string. It is
less powerful than a � expression in LISP, or some other interpreted languages for that reason. It is
merely a syntactic convenience.

6 An Introduction to SETL2

1.5 Separate Compilation { Packages

The SETL system uses modules to implement separate compilation, but SETL2 uses a subset of the
Ada package system for that purpose. The general idea is the same, but packages make it much
more convenient to import separately compiled modules.

A SETL2 package is normally in two separate compilation units: the package speci�cation and the
package body. A package speci�cation contains the names of constants, variables, and procedures
which will be visible in any units importing the package, but it will not contain the bodies of any
procedures in the package. To illustrate, look at the classic stack package in �gure 6. It uses tuples
to implement stacks, providing the normal push and pop functions.

-- package specification

package Stack_Module;

procedure Push(rw Stack,Item);

procedure Pop(rw Stack);

end Stack_Module;

-- package body

package body Stack_Module;

procedure Push(rw Stack,Item);

Stack with:= Item;

end Push;

procedure Pop(rw Stack);

if #Stack = 0 then

return om;

else

return Item frome Stack;

end if;

end Pop;

end Stack_Module;

Figure 6: Package Example

The package speci�cation includes the headers of the two procedures visible to importing units.
It could also have contained variable declarations and constant declarations if there were any which
should be visible in those units. A program or other package may import a package as follows:

program something;

use Stack_Module;

...

end something;

1.6 Bound Variables Are Local To Iterators 7

The use clause imports all the names in the package speci�cation into the program. It must
immediately follow the program or package header, before any const or var declarations or state-
ments.

A potential ambiguity occurs when two packages contain a common name, and a program im-
ports both of those packages. SETL2 adopted Ada rules to handle that occurrence: the names
will hide each other. The values bound to those names are still accessible using the construction
<package name>.<name>

1.6 Bound Variables Are Local To Iterators

In SETL, the scope of a bound variable in an iterator is the same as any other name. So after
executing the instruction:

y := {x in S | x > 10};

the value of x would be
. It would have been set to each element of S during the iteration which
built the set, yielding
 when all elements had been exhausted. In SETL2 the variable x would have
been locally declared in the iterator, so after the same statement x would have the same value it
had before the statement.

This characteristic has implications for the for loop and quanti�er expressions as well. Consider
the following loop:

for i in [1 .. 10], [x,-,y] in S loop

...

if ... then exit; end if;

...

end loop;

The bound variables i, x, and y are visible only within the for loop. If there are other variables
with the same name outside that loop, they will be hidden within the for. This means that there is
no way to determine whether or not the exit statement was taken. There are two ways to handle
this situation. First, we could explicitly set shadow variables for the bound variables and test them
when the loop terminates. Second, we could use the value of the for loop as follows:

i := for i in [1 .. 10], [x,-,y] in S loop

...

if ... then exit i; end if;

...

end loop;

Now the exit statement returns a value, the bound variable i. This value is returned as the
value of the for loop and assigned to another variable i which is outside the iterator, and so will
be available at the termination of the loop. If no exit is taken, or an exit without a return value is
taken, the value of a for loop is
.

The only exception to the rule that bound variables are local to iterators is in the exists

expression. That expressions does set its bound variables on exit, to the value found if successful or

 if unsuccessful.

8 An Introduction to SETL2

1.7 Ada-Like Syntax

Many of the control structures in SETL2 di�er from those in SETL in that the syntax is more
Ada-like. In particular, the for loops, while loops and case statements and expressions are more
Ada-like. There is no strong justi�cation for this, we simply believe this syntax is more aesthetically
appealing. See the next section for the speci�c syntax. It is fairly straightforward.

1.8 Summary

SETL2 is a somewhat modernized version of SETL, with syntax and name scoping moved slightly
toward those of Ada. It remains a powerful, high-level language with a rich set of built-in data
structures and robust operators.

9

2 SETL2 Reference Manual

2.1 Introduction

This section describes in more detail the syntax and semantics of the SETL2 programming language.
We will try to avoid operation details and implementation dependencies as much as possible, and
defer that to the next section of this document. There are relatively few such dependencies so the
various implementations are very compatible.

A word of advice to the reader: It is generally di�cult to learn a programming language from a
document written at this level. If you are not familiar with SETL and are unwilling to read a more
detailed book on SETL (such as [SDDS86]), then turn to the sample programs in the appendicies
and try to use the manual to help you understand them. In the process you will learn the language
with less pain than simply reading the manual.

2.2 Notation and Terminology

The description that follows uses square brackets ([and]) to enclose optional items, angle brackets
(< and >) to denote items to be replaced by variable text, and elipses (...) to indicate that the
preceeding item may be repeated any number of times. This is occasionally confusing because the
symbols [,], <, and > are also valid SETL2 separators and operators. To minimize the confusion
we will use <left bracket> and <right bracket> to denote the SETL2 separators [and], and
provide examples to make our intention clear.

2.3 Lexical Conventions

There are �ve classes of lexical tokens: identi�ers, numeric literals, string literals, operators, and
other separators. Blanks and non-graphic control characters other than an end of �le character (if
one exists on the operating system being used) are ignored except as token separators.

2.3.1 Comments

Comments begin with a double dash (--) and extend to the end of a line. They are ignored
completely by the SETL2 compiler.

2.3.2 Identi�ers

Identi�ers are used as names and as reserved words. They must begin with a letter, and be followed
by a sequence of letters, digits, or underscores. Both upper and lower-case letters are permitted,
but case is not signi�cant, so for example word_count, WORD_COUNT, and Word_Count all represent
the same name. A list of reserved words appears in table 1.

10 SETL2 Reference Manual

and arb assert body case

const continue domain else elseif

end exit find for forall

from fromb frome if in

incs lambda less lessf loop

max min mod not notin

npow null or otherwise package

pow procedure program range rd

return rw sel stop subset

then until use var when

while with wr

Table 1: Reserved Words

2.3.3 Numeric Literals

The de�nition of numeric literals was taken from Ada (see [Ada83] or [Bar82] for a more detailed
description).

There are two forms of integer literals: decimal and based. A decimal integer literal is simply a
sequence of the digits 0 - 9, with optional underscores in all but the �rst position. The underscores
are ignored, and the value of the literal is just the standard base 10 interpretation of the symbol.

A based integer literal is a sequence of digits, a sharp sign (#), another sequence of digits, and a
�nal sharp sign. The �rst sequence of digits is considered to be the base (it must be between 2 and
36) and the second is the value of the literal in the given base. Alphabetic characters in either case
are used for the digits 10 - 36. As with decimal literals, underscores may appear in all but the �rst
position of a sequence of digits, and will be ignored.

Floating point literals may also be decimal or based. A decimal literal is a sequence of digits,
a decimal point, and another sequence of digits with the normal base 10 interpretation. A based

oating point literal is a sequence of digits, a sharp sign, a sequence of digits, a decimal point, a
sequence of digits, and another sharp sign. The interpretation is analogous to based integer literals.
Either form may be followed by an exponent, which is an `E' or `e', an optional sign, and a sequence
of digits. The exponent is a decimal power of the base.

Some examples of valid numeric literals are:

12 0 123_456 16#1a# -- value 26 decimal

1.5 1.5e10 1.5E-10 2#1.1111_1111_111#e11 -- value 4095.0 decimal

The maximum length of an integer literal is 256 characters. Note that larger integers may be
represented internally: the restriction is only on literals, not all integers. The maximum size of a

oating point literal is implementation dependent.

2.3.4 String Literals

String literals consist of any sequence of characters surrounded by double quotes. They may not
include newlines, end of �le characters, or unescaped double quotes. Escape sequences allow char-
acters to be included which are di�cult or impossible to include by typing them in directly. The
escape sequences recognized by SETL2 and the characters that they stand for are given in table 2.

2.4 Overall Program Structure 11

String literals are limited to 256 characters in length. Any size string may be represented inter-
nally, but longer strings must be constructed with the concatenation operator (+). Note that unlike
C, a null does not terminate a character string. Nulls are simply characters which may be embedded
in strings.

nn Backslash.

n0 Null (a zero byte).

nn Newline. Newlines are a single line feed character, but are translated to carriage
return - line feed pairs on output on systems where that is conventional.

nr Carriage Return.

nf Form feed.

nt Tab.

n" Double quote. Note that double quotes embedded in string literals must be
escaped.

nxdd Hexadecimal code. Here d must be a hexadecimal digit 0 .. 9, A .. F in either
upper or lower case.

Table 2: String Escape Sequences

2.3.5 Operators

Although some keywords are operators, most operators are made up of one or more graphic characters
other than letters and digits. A complete list of non-keyword operators is:

+ - * / **

:= # ? = /=

< <= > >=

2.3.6 Separators

Separators are also made up of graphic characters other than letters and digits, but do not denote
any operation to be performed. A complete list of separators is:

; , : ()

{ } [] .

.. | =>

2.4 Overall Program Structure

The overall structure of a SETL2 program is as follows:

program <program name> ;

<use section>

<constant and variable declaration section>

12 SETL2 Reference Manual

<program body>

<procedure section>

end [<program name>] ;

The <use section> is a sequence of clauses of the form use package name. See 2.28.3 for
more details. The <constant and variable declaration section> de�nes names which will be
visible throughout the program. The <program body> is a list of statements making up the main
procedure of the program. And �nally <procedures> is a list of procedures visible at the top level of
the program. An unnecessarily complex SETL2 hello world program showing this overall structure
is:

program hello_world;

var hello,

world;

hello := return_hello();

world := return_world();

print(hello," ",world);

procedure return_hello;

return "hello";

end return_hello;

procedure return_world;

return "world";

end return_world;

end hello_world;

2.5 Declarations and Scope of Names

There are two kinds of data declarations in SETL2: variable declarations and constant declarations.
The syntax of a variable declaration is as follows:

var <v1> [:= <expression 1>]

[, <v2> [:= <expression 2>]] ... ;

The names <v1>, <v2> ... will be declared as variables in the current unit (a program, package, or
procedure). Any variables with associated value expressions will be initialized to the values of those
expressions when the unit is activated, exactly as if there were corresponding assignment statements
inserted in front of the unit body. Any names declared with a var clause will be visible in all nested
procedures. This is an important point: SETL2 allows variables to be implicitly declared (depending
on a compiler option { see page 41). Variables which are implicitly declared are not visible in nested
procedures, those which are explicitly declared are.

The syntax of a constant declaration is as follows:

const <c1> := <expression 1>

[, <c2> := <expression 2>] ... ;

2.6 Statement Lists 13

The names <c1>, <c2> ... will be declared as constants in the current unit. They may be used in
expressions but not in left hand side contexts. The associated value expressions must only contain
literals and previously de�ned constants as operands, although most of the operators are valid. They
may not use constants in imported packages, only constants within the current compilation unit.
Constants are visible in all nested procedures, as well as the unit in which they are declared.

2.5.1 Selectors

Unlike most other programming languages, SETL2 has no record data type. Tuples are generally
used in situations where records are used in other languages, but these are somewhat less convenient
since the components of a tuple are numbered rather than named. To recapture the ability to name
elements of a tuple as �elds would be named in a record, SETL2 provides selector declarations. The
syntax of a selector declaration is:

sel <n1> (<integer literal>)

[, <n2> (<integer literal>)] ... ;

For example, here is a valid selector declaration:

sel first_elem(1),

second_elem(2),

third_elem(3);

After a selector declaration is made, the parser will translate expressions of the form .<name>

into (<integer>). So continuing with the example above, the expression Tuple.first_elem is
translated into Tuple(1). It is important to note that this translation is not restricted to tuples.
Selectors can also be used to reference string and map values, and even to call procedures. They are
overloaded to the extent parentheses are overloaded.

2.6 Statement Lists

Statement lists are used as program and procedure bodies as well as clauses in some kinds of
statements. A statement list is just a sequence of statements with each statement in the list followed
by a semicolon. Notice that semicolons are used as terminators in SETL2, not as separators as in
Pascal.

2.7 Procedures

A procedure is a named unit containing local data and statements which may be executed by calling
the procedure. The syntax of a procedure de�nition is:

procedure <procedure name> [([<formal list>])] ;

<constant and variable declaration section>

<procedure body>

<procedure section>

end [<procedure name>] ;

14 SETL2 Reference Manual

where the <formal list> is:

[<mode 1>] <formal 1> [, [<mode 2>] <formal 2>] ...

The <mode>'s and their meanings are:

rd or empty read-only parameters
rw read-write parameters
wr write-only parameters

As an example in the following discussion look at the procedure below.

procedure doverylittle(a, rd b, rw c, wr d);

var e, f;

d := c * a;

c := b;

end doverylittle;

The �rst parameter, a, has no mode and the second parameter, b is declared rd. These are
read-only parameters. Any callers of doverylittle must provide values for these parameters, and
within the body of doverylittle these are constant.

The third parameter, c, is declared rw. The actual parameter the caller provides must be valid
both in left and right hand side contexts. The value provided will be copied into c on entry to
doverylittle. The procedure is free to modify that parameter just as any other variable, and on
return the value of c will be copied into the caller's actual parameter.

The fourth parameter, d is declared wr. The caller must use a valid left hand side for this
parameter. On entry to the procedure, d will be initialized to
. The procedure is free to modify
that parameter just as any other value, and on return the value of d will be copied into the caller's
actual parameter.

Note that in SETL2, parameters are transfered by copying, not by reference.

Procedures are called by giving the name of the procedure followed by a parenthesized list of
actual arguments. For example, a call to the procedure above might be

doverylittle(1,2,x,[a,-,b]);

Notice that we could not have used a literal as the third or fourth actual arguments, and that the
fourth argument need not have a right hand side value.

Procedures with no formal parameters are called with empty parentheses (for example: f()) in
right hand side contexts. When used as statements however, the parentheses are optional.

2.7.1 Return Statements

Within the body of a procedure there may appear one or more return statements, which cause an
immediate termination of the procedure and a return to the caller. The syntax of a return statement
is as follows:

2.8 Basic Data Types 15

return [<expression>]

The optional <expression> is returned to the caller as the value of the procedure call. If the
procedure call was a statement, this return value is discarded. If the procedure call was an expression
and no return value is given,
 will be returned. If no return statement is encountered and control
reaches the end of the procedure,
 will be returned.

2.8 Basic Data Types

There are six basic data types in SETL2: integers,
oating point numbers, character strings, atoms,
procedures, and an unde�ned value.

2.8.1 Integers

SETL2 provides support for integers, just as most programming languages do, but with one important
di�erence: in SETL2 the size of an integer is limited only by available memory, which for practical
purposes is in�nite. Table 3 lists the valid operations on integers.

-i Yields the negative of i.

i + j Yields the sum of i and j.

i - j Yields the di�erence of i and j.

i * j Yields the product of i and j.

i / j Yields the integer part of the quotient of i by j. An error results if j is zero.

i ** j Yields i to the jth power. An error results if j is negative.

i mod j Yields the remainder of i divided by j. An error results if j is zero.

i max j Yields the larger of i and j.

i min j Yields the smaller of i and j.

i = j Yields true if i and j are the same, false otherwise.

i /= j Yields true if i and j are di�erent, false otherwise.

i > j Yields true if i is greater than j, false otherwise.

i < j Same as j > i.

i >= j Yields true if i is no smaller than j, false otherwise.

i <= j Same as j >= i.

Table 3: Integer Operators

2.8.2 Floating Point Numbers

SETL2 supports
oating point numbers with the usual limitations. The
oating point representation
varies with the implementation, but is always just an approximation to a
oating point number.
Rounding errors apply, so for example (x / 100.0) * 100.0 does not necessarily equal x. Table 4
lists the valid operations on
oating point numbers.

16 SETL2 Reference Manual

-i Yields the negative of i.

i + j Yields the sum of i and j.

i - j Yields the di�erence of i and j.

i * j Yields the product of i and j.

i / j Yields the quotient of i by j. An error results if j is zero.

i ** j Yields i to the jth power. An error results if j is negative.

i max j Yields the larger of i and j.

i min j Yields the smaller of i and j.

i = j Yields true if i and j are the same, false otherwise.

i /= j Yields true if i and j are di�erent, false otherwise.

i > j Yields true if i is greater than j, false otherwise.

i < j Same as j > i.

i >= j Yields true if i is no smaller than j, false otherwise.

i <= j Same as j >= i.

Table 4: Floating Point Operators

2.8.3 Strings

A string is simply a sequence of characters. The length of a string is limited only by available
memory, which for practical purposes is in�nite. Table 5 lists the valid operations on strings.

2.8.4 Atoms

Atoms are generated values used primarily as one might use a pointer in other languages. They
are generated by calling the built-in procedure newat, which returns a new unique atom value with
each call. They may then be used as unique keys in maps. The only operations valid on atoms are
assignment and equality tests.

2.8.5 Procedures

Procedures all of whose formal parameters are read-only are �rst class objects in SETL2. They
can be passed as parameters, assigned to variables, and stored in sets, maps, or tuples as well as
being executed. They can not be written to �les and read back in during a di�erent execution, the
arithmetic operations will fail if they are used as operands, and the text of a procedure can not be
changed. Generally, if you consider atoms to be �rst class objects then procedures are �rst class
objects. Similar restrictions apply.

2.8.6
 - Unde�ned Value

SETL2 has a constant, om (
), which stands for the unde�ned value. It is generally used as the result
of failing operations. Most operations cause an abnormal program end if
 is used as an operand.

2.9 Compound Data Types 17

#s Yields the length of s.

s(i) Yields the ith character of the string s. If i is less than or equal to zero, an
error results and the program is terminated. If i is greater than the length of
the string the expression yields
.

s(i .. j) Yields the slice of s from the ith to the j th character. If i = j + 1 then a null
string is returned. If i is less than or equal to zero, i > j + 1, or j is greater
than the length of s an error results and the program is terminated.

s(i ..) Yields the slice of s from the ith character to the end of the string. If i is one
more than the length of s then a null string is returned. If i is less than or equal
to zero or i is greater than the length of s plus one an error results and the
program is terminated.

s + ss Concatenates the strings s and ss.

s * i Concatenates i successive copies of s. The * operation is commutative.

s = ss Yields true if s and ss are the same, false otherwise.

s /= ss Yields true if s and ss are di�erent, false otherwise.

s > ss Yields true if s is greater than ss, false otherwise. This and the other ordering
tests are dependent upon the particular character set used by the system. In
the current implementations that is ASCII, but it should not be assumed that
all future implementations will use ASCII.

s < ss Same as ss > s.

s >= ss Yields true if s is no smaller than ss, false otherwise.

s <= ss Same as ss >= s.

s in ss Yields true if s is a substring of ss, false otherwise.

s notin ss Yields false if s is a substring of ss, true otherwise.

Table 5: String Operators

2.9 Compound Data Types

There are two compound data types in SETL2: sets and tuples. SETL2 also supports special opera-
tions on maps, which is a subset of the set data type.

In this section we will describe the compound types from a high level, defering to 2.10 a discussion
of the ways that they may be created.

2.9.1 Sets

A set in SETL2 closely matches the mathematical idea of a �nite set. It is simply an unordered
collection of distinct SETL2 values. Table 6 lists the valid operations on sets.

2.9.2 Tuples

A tuple is a sequence of SETL2 values, indexed from 1 to 1. The length of a tuple is limited only
by available memory, which for practical purposes is in�nite. We always think of tuples as having
in�nite length. It is always possible to assign or refer to elements past the internal length of the

18 SETL2 Reference Manual

#s Yields the cardinality of the set s.

arb s Yields an arbitrarily selected element of the set s.

pow s Yields the power set of set s. Be a bit careful with this operator. There are a
number of algorithms which can be elegantly expressed using the pow operator,
but they can be disastrously expensive to execute unless the source set is very
small.

s + ss Yields the union of the sets s and ss.

s - ss Yields the di�erence of the sets s and ss, i.e. the set of all elements of s which
are not elements of ss.

s * ss Yields the intersection of the sets s and ss.

s mod ss Yields the symmetric di�erence of two sets s and ss, i.e. the set of all elements
which are in s or ss, but not in both.

s npow i Yields the set of all subsets of s which contain exactly i elements. If k is
negative an error results and the program is terminated. The npow operator is
commutative.

s with v Yields the set s
S
fvg.

s less v Yields the set s � fvg.

v in s Yields true if v 2 s, false otherwise.

v notin s Yields false if v 2 s, true otherwise.

s = ss Yields true if s and ss are the same, false otherwise.

s /= ss Yields true if s and ss are di�erent, false otherwise.

s subset ss Yields true if s � ss, false otherwise.

s incs ss Yields true if s � ss, false otherwise.

Table 6: Set Operators

tuple. Those elements simply contain
. Table 7 lists the valid operations on tuples.

2.9.3 Maps

Conceptually, maps in SETL2 are similar to the mathematical notion of maps, i.e. a set of ordered
pairs. They are implemented in the language as sets of tuples, with each tuple having exactly
two elements. Notice that from the programmer's perspective there is not a dedicated type, map.
Rather, maps are just special kinds of sets. Table 8 lists the speci�c operations on maps, but keep
in mind that since a map is just a special kind of set all of the set operations are available as well.

2.10 Set Forming Expressions

Sets are created in SETL2 with set forming expressions, which describe the elements of the set.
There are three basic types of these: enumerated set formers, arithmetic set formers, and general
set formers.

2.10 Set Forming Expressions 19

#t Yields the length of t. In a sense tuples really have in�nite length, this is the
index of the last non-
 element.

t(i) Yields the ith element of the tuple t. If i is less than or equal to zero, an error
results and the program is terminated. If i is greater than the length of the
tuple the expression yields
.

t(i .. j) Yields the slice of t from the ith to the j th element. If i = j + 1 then a null
tuple is returned. If i is less than or equal to zero, i > j + 1, or j is greater than
the length of t an error results and the program is terminated.

t(i ..) Yields the slice of t from the ith element to the end of the tuple. If i is one
more than the length of t then a null tuple is returned. If i is less than or equal
to zero or i is greater than the length of t plus one an error results and the
program is terminated.

t + tt Concatenates the tuples t and tt.

t * i Concatenates i successive copies of t. The * operation is commutative.

t with v Appends the element v to the tuple t.

t = tt Yields true if t and tt are the same, false otherwise.

t /= tt Yields true if t and tt are di�erent, false otherwise.

v in t Yields true if v is one of the elements of t, false otherwise.

v notin t Yields false if v is one of the elements of t, true otherwise.

Table 7: Tuple Operators

2.10.1 Enumerated Set Formers

The simplest kind of set former is one in which we just enumerate all of the elements in a set. The
syntax is

{ <v1> [, <v2>] ... }

Some examples of enumerated set formers are:

{1,2,3} {"a",1,3.0} {1,{1,{1,2},2},2,{3}}

domain m Yields the set of all the left elements of the pairs in m.

range m Yields the set of all the right elements of the pairs in m.

m(v) If there is exactly one pair in m with the value v as the left element then m(v)
yields the right element of that pair. If there is no such pair or more than one
the value is
.

m(v1,v2,...vn) Same as m([v1,v2,...vn])

mfvg Yields the set of values, y, such that the pair [v,y] is in the map m. mfvg is
called the image set of m at the point v.

mfv1,v2,...vng Same as mf[v1,v2,...vn]g

Table 8: Map Operators

20 SETL2 Reference Manual

Notice that sets need not be homogeneous (elements may be of di�erent types). Also notice that
sets may contain embedded sets or tuples, as in the third example above.

2.10.2 Arithmetic Set Formers

An arithmetic set former creates a set of integers from two endpoints and an intermediate point
which de�nes an increment. The syntax is

{ <v1> [, <v2>] .. <v3> }

The set created will contain the integers <v1>, <v2>, <v2> + (<v2> - <v1>) ... <v3>. The middle
element is optional and defaults to <v1> + 1.

Some examples of enumerated set formers are:

{1 .. 10} {5,4 .. 1}

The �rst set above is the set of integers from 1 to 10 and the second is the set of integers from 1 to
5.

2.10.3 General Set Formers

A general set former has the form

{ [<expression> :] <iterator> [| <condition>] }

The <iterator> produces values from one or more sources, the <condition> weeds out values
which should not be included in the set, and <expression> is a function of the values which should
be inserted in the set. This is somewhat complex to explain, so let's start with a fairly full example
and see how it works. Look at the expression

{x**y : x in S1, y in S2 | x < 5 and y > 2}

Assume S1 and S2 are sets. Then in the iteration part, each element of S1 will be produced in x

and each element of S2 will be produced in y. If S1 and S2 have the values {3,4,5} and {2,3,4}

respectively, then the following pairs of values will be produced:

x = 3, y = 2 x = 3, y = 3 x = 3, y = 4

x = 4, y = 2 x = 4, y = 3 x = 4, y = 4

x = 5, y = 2 x = 5, y = 3 x = 5, y = 4

The <condition> part of the set former determines which of these values will be kept, so con-
tinuing with the example we have

x = 3, y = 3 x = 3, y = 4

x = 4, y = 3 x = 4, y = 4

2.10 Set Forming Expressions 21

Finally, the <expression> part of the set former determines the values which will actually be
inserted in the set, which in this case is:

{3**3, 3**4, 4**3, 4**4}

Now let's look in a bit more detail at <iterators>, since they are the most complex component
of a set former. An iterator has the general form:

<iterator spec> [, <iterator spec>] ...

where an <iterator spec> has one of the two following forms:

<lhs1> in <source1>

<lhs2> = <source2> (<lhs3>)

In the �rst form, source1 may be either a set, a tuple, or a string. If a set, then each element of
the set will be assigned to <lhs1> in an arbitrary order. If a tuple, then each element of the tuple
will be assigned to <lhs1> in the order in which they appear in the tuple. If a string, then each
character of the string will be assigned to <lhs1> from the left of the string to the right.

In the second form, <source2> must be a map, a tuple, or a string. If a map, the iterator will
produce each pair in the map, assigning the left element of the pair to <lhs3> and the right element
to <lhs2>. If a tuple or string, <lhs3> will be assigned the integers 1 to #<source2> and <lhs2>

will be assigned the corresponding elements of the source.

Each of <lhs1>, <lhs2>, and <lhs3> may have two distinct forms:

<name>

<left bracket> <lhs1> [, <lhs2>] ... <right bracket>

In the �rst case the simple variable <name> will be assigned the successive elements of the source.
In the second, each element of the source must be a tuple. Then <lhs1>, <lhs2>, ... are set to
the corresponding elements of that tuple. Any of <lhs1>, <lhs2> ... may be -, in which case the
corresponding tuple element is skipped. An example of the second form is

[a,-,[b,c],d]

In this example, the source should produce tuples four elements in length. The third element of
each tuple should be a tuple of length two, the others may be anything.

We refer to the simple variables in the left hand sides as bound variables. They are repeatedly
bound to values from the source. These variables are only visible within the set former, and hide
any variables outside the set former with the same names.

Now we can return to the other components of set forming expressions, namely <expression> and
<condition>. The <condition> is any SETL2 expression which yields a boolean value. All values
produced by the iterator which cause the condition to yield true will be kept. The <condition>

22 SETL2 Reference Manual

may be omitted only if the initial <expression> is used, since otherwise we can not distinguish a
general set former from an enumerated set former.

The <expression> is any SETL2 expression, and de�nes the actual values inserted in the set. It
may be omitted only if two conditions are satis�ed:

1. The <condition> is used. Otherwise we can not distinguish a general set former from an
enumerated set former.

2. The <iterator> is of the form <lhs> in <source>. If there is than one iterator clause, or if
a map iterator is used it is necessary to include an <expression> to de�ne what value must
actually be placed in the set.

If <expression> is omitted then the left hand side of the iterator is inserted in the set.

2.11 Tuple Forming Expressions

A tuple forming expression is nearly identical to a set forming expression. The only di�erence is
that the outer braces are replaced by square brackets. Each value produced will be placed in the
created tuple in sequence. Duplicates will not be discarded, as they would in a set former. Some
examples of tuple forming expressions are:

[x**y : x in S1, y in S2 | x < 5 and y > 2]

[x in S | x /= om]

2.12 Operator Precedence Rules

We have listed a variety of operators with the types upon which they are de�ned, but so far not
given any information about how they may be combined in expressions. Generally, the operators
may be combined as in SETL, Pascal, or other programming languages. Table 9 lists all the operator
precedences. We have fewer precedence levels than SETL, but even so there are probably too many
levels to remember easily. We strongly encourage the use of parentheses to clarify the intent, even
when those parentheses are not required by the language.

2.13 Left Hand Sides

Left hand sides get their name from the fact that they are the expressions which may appear on the
left of an assignment symbol. They are somewhat more general than that however, they are really
the set of expressions to which we can assign a value in any context. We will refer to this value as
the right hand side value for now. In SETL2 left hand sides take a variety of forms. The simplest
form is just a variable name. If this form is used then the variable is assigned the right hand side
value directly. The second form of left hand side is:

<lhs> (<expr1>)

In this form the value of <lhs> must be a map, a tuple, or a string. If a map, the value of the map at
<expr1> is set to the right hand side value. If a tuple or string, then the value of <expr1> must be

2.13 Left Hand Sides 23

8 := (on left side), assignment operators on left side.

7 FROM FROMB FROME

6 All unary operators.

5 ** (Note: associates to the right, not left.)

4 * / MOD ?

3 + - MAX MIN

2 = /= < <= > >= in notin subset incs

1 AND OR (Note: AND and OR do not associate. Parentheses must be given when
these are mixed in an expression.)

0 := (on right side), assignment operators on right side.

Table 9: Operator Precedences

an integer, and the corresponding element of the tuple or string is set to the right hand side value.
A similar construction which only works on maps is

<lhs> (<expr1> , <expr2> [, <expr3>] ...)

This is semantically equivalent to

<lhs> (<left brace> <expr1> , <expr2> [, <expr3>] ... <right brace>)

That is, we make a tuple of the arguments and use that as the key to the map. The next form is

<lhs> (<expr1> .. <expr2>)

In this form the value of <lhs> must be a tuple or a string, both <expr1> and <expr2> must be
integers, and the right hand side value must have the same form as <lhs>. A slice of <lhs> from
<expr1> to <expr2> is set to the right hand side value. A variant of the slice assignment is the tail
assignment, which has this syntax:

<lhs> (<expr1> ..)

In this form the value of <lhs> must be a tuple or a string, <expr1> must be an integer, and the
right hand side value must have the same form as <lhs>. A slice of <lhs> from <expr1> to the end
is set to the right hand side value. Another assignment to maps is the image set assignment, which
has the following syntax:

<lhs> { <expr1> }

In this form the value of <lhs>must be a map and the right hand side value must be a set. Any pairs
with <expr1> as the left hand element are �rst removed from the map. Then pairs with <expr1>

on the left and elements from the right hand side value are created and added to the map. Like the
other form of map assignment, we may have a list of expressions inside the braces, which will be
made into a tuple. The last form of left hand side is used to disassemble tuples. It has the syntax:

24 SETL2 Reference Manual

<left bracket> <lhs1> [<lhs2> ...] <right bracket>

In this form the right hand side value must be a tuple. Then <lhs1>, <lhs2>, ... are set to the
corresponding elements of that tuple. Any of <lhs1>, <lhs2> ... may be -, in which case the
corresponding tuple element is skipped. For example, in the expression

[a,b,-,c] := [1,2,3,4]

a is assigned 1, b is assigned 2, and c is assigned 4.

As mentioned above, the most common use of left hand side expressions is in assignments, but
they are also used as actual parameters to procedures with write-only formal parameters.

2.14 Assignments

The general form of an assignment is

<left hand side> := <expression>

where <expression> is some value-yielding expression, and <left hand side> is one of the forms
described above. Any form of assignment may be used either as a statement or as an expression. If
used as an expression the value yielded is the value of the expression on the right hand side of the
assignment symbol, not the left as in some other languages.

There is also an assignment form of binary operator, which looks like

<left hand side> <binary operator> := <expression>

For example, x +:= y;. Semantically, expressions of this form are identical to

<left hand side> := <left hand side> <binary operator> <expression>

This is merely a syntactic convenience.

2.15 Compound Operators

A compound operator is used to combine the elements of a set or tuple using a binary operator. The
syntax of a compound operator is

<binary operator> / <source>

The value of this expression is the value of the expression formed by listing the elements of the
source and placing the binary operator between each pair of elements, For example,

+/{1,2,3,4,5} = 1+2+3+4+5 = 15

2.16 Boolean Operations 25

Note that if the source is a set, the elements will appear in an unspeci�ed order, but if the source is a
tuple they will appear from left to right. Any binary operator may be used in a compound operator,
but they are most useful in summing or �nding a largest or smallest value. If the source operand
contains no elements, the value of a compound operation is
. If it contains only one element then
the value of the operation is that element.

There is also a set of binary compound operators with the syntax

<first> <binary operator> / <source>

which is semantically equivalent to

<first> <binary operator> (<binary operator> / <source>)

It merely provides a �rst element for the compound operator.

2.16 Boolean Operations

SETL2 has three boolean operators, and, or, and not. The and operator is an in�x binary operator
which always evaluates its left operand, evaluates its right operand if the left operand is true, and
yields the logical conjunction of the two operands. Similarly, the or operator is an in�x binary
operator which always evaluates its left operand, evaluates its right operand if the left operand is
false, and yields the logical disjunction of the two operands. Note that each of these operators will
not evaluate their right operands if not necessary to determine the result of the operation. If the
evaluation of the right operand has a side e�ect, that side e�ect might not occur.

The and and or operators do not associate without parentheses controlling the order of evaluation.
So for example, the expression

a = b and c = d or e = f

will produce a syntax error rather than automatically associating as

(a = b and c = d) or e = f

as some languages will allow.

The not operator simply produces the logical negation of its operand.

2.17 ? Operator

The question mark operator allows an economical expression of the most common form of conditional
assignment. It evaluates its left operand, and if that is not
 yields it as the result. Otherwise it
evaluates the right operand and yields that result. So the following two expressions assigne the same
value to a:

a := x?y;

a := if (t := x) /= om then t else y end if;

26 SETL2 Reference Manual

2.18 Deletion Operations

There are three deletion operators, from, fromb, and frome. They are used as follows:

<lhs1> from <lhs2>

Here <lhs1> can be any left hand side value, but <lhs2> must be valid in both left and right hand
side contexts. In particular, the tuple disassembly form is not valid. The from operator deletes an
unspeci�ed element from <lhs2> and assigns that element to <lhs1>. The value of <lhs2> must be
a set, tuple, or string.

The fromb and frome operators perform a similar operation on tuples and strings. fromb takes
the �rst item in the right hand side value and frome takes the last.

The from expressions may be used either as statements or expressions. If used as expressions
they yield the value extracted from the right hand side.

2.19 � Expressions

Conceptually, a � expression is an expression which yields a procedure where the procedure is de�ned
in the � expression. The syntax of a � expression is:

lambda [([<p1> [, <p2>] ...])];

<procedure body>

end lambda

The parameter list [([<p1> [, <p2>] ...])] is similar to the parameter list in a procedure
header, except that modes are not allowed. All parameters are read-only. The <procedure body>

may include local declarations, a statement list, and nested procedures, just as a normal procedure
can. The names visible within the procedure are those visible at the point of the expression. The
procedure de�ned has no name, so must be used in a value-yielding context. For example, the
statement

f := lambda(x);

return p(x,5);

end lambda;

assigns to f an unnamed procedure which takes a single argument. The procedure may then be
called with an expression like f(a).

2.20 Quanti�ed Expressions

There are two quanti�ed expressions: exists and forall. The exists expression has the following
syntax:

exists <iterator> | <condition>

2.21 If Statements 27

The <iterator> is the same as <iterator> in set formers (see 2.10). Each of the values produced
by the iterator is checked to see whether <condition> is true. If so, the iteration stops and the
value of the exists expression is true. The bound variables of the iterator will remain set to the
values found. If no such set of values is found, the value of the exists expression is false and the
values of the bound variables will be
.

The syntax of a forall expression is as follows:

forall <iterator> | <condition>

This is semantically equivalent to

not(exists <iterator> | not(<condition>))

with the exception that bound variables in a forall expression are local to the expression. They
do not remain set on exit.

2.21 If Statements

The syntax of an if statement is:

if <expr1> then

<statement list 1>

[[elseif <expr2> then

<statement list 2>] ...]

[else

<statement list 3>]

end if

First <expr1> is evaluated, which should yield either true or false. If true, then the �rst
statement list is executed. If false and there is a following elseif clause then that is evaluated as
if it were an if statement. If there is no following elseif clause but there is an else clause then
<statement list 3> is executed.

2.21.1 If Expressions

if expressions are nearly identical to if statements. The di�erence is that the statement lists are
replaced by single expressions. Note that no semicolons are necessary after the expressions. An
example of an if expression is:

x := if y > 5 then y else z end if;

2.22 Case Statements

There are two distinct forms of the case statement. The �rst is

28 SETL2 Reference Manual

case <expr1>

when <expr2> [, <expr3>] ... =>

<statement list 1>

[when <expr4> [, <expr5>] ... =>

<statement list 2>] ...

[otherwise =>

<statement list 3>]

end case;

This is a multi-way branch, or switch statement as found in most programming languages. First
<expr1> is evaluated. If that value is the same as <expr2> or <expr3> ... then <statement list 1>

is executed. If the value of <expr1> is the same as <expr4> or <expr5> ... then <statement list 2>

is executed, and so on. If <expr1> does not match any when clause then <statement list 3> is
executed.

There is one di�erence from most languages we would like to point out here: <expr2>, <expr3>,
etc. need not be constant expressions. If they happen to be constant expressions the compiler
will build a jump table, and execution will be faster. But variable expressions are allowed by the
language.

The second form of case is

case

when <expr1> =>

<statement list 1>

[when <expr2> =>

<statement list 2>] ...

[otherwise =>

<statement list>]

end case;

This is similar to a guarded statement. Each of <expr1>, <expr2>, etc. is evaluated in an
unspeci�ed order. When one is found which evaluates to true, the associated statement list is
executed. If none of the expressions evaluate to true then the otherwise clause is taken.

Notice that we said that the clauses are evaluated in an unspeci�ed order, not a random order.
The order can not be controlled by the programmer but is not random.

2.22.1 Case Expressions

As with the if statement, there is an expression form of the case statement. Just replace each of
the statement lists by expressions in the case statement. The value returned will be the value of
the when clause executed.

2.23 While and Until Loops

The syntax of a while loop is:

while <expression> loop

2.24 For Loops 29

<statement list>

end loop

The execution of a while loop is just like that in any other programming language: the <expression>
is evaluated, and if it yields false the loop stops. Otherwise the statement list is executed and the
loop repeats. There is also an expression form of a while loop. See the exit statement for a
description of the value of while loops used in this manner.

The until statement and expression is like the while statement and expression, except that the
test is reversed and at the end of the loop.

2.23.1 Exit Statement

The exit statement provides for an abnormal termination of while, until, and for loops. The
syntax is:

exit [<expression>]

When encountered, an exit immediatelybreaks out of the loop. If it has an associated <expression>,
the value of the <expression> is yielded as the value of the loop. If there is no <expression> or
the loop terminates without encountering an <exit> then the value of the loop is
.

The exit statement is illegal except within a loop.

2.23.2 Continue Statement

The continue statement causes a branch to the end of a while, until, or for loops. It is frequently
used to avoid deeply nested if statements within such loops. The syntax is simply

continue

The continue statement is illegal except within a loop.

2.24 For Loops

The syntax of a for loop is:

for <iterator> [| <condition>] loop

<statement list>

end loop

The <iterator> is the same as in set forming expressions (see 2.10). Values are produced by the
<iterator> and screened with the <condition> exactly as in a set former. If <condition> is
omitted then all values will be used. For each set of values produced the statement list is executed.
The scope of any bound variables in the <iterator> is limited to the loop.

30 SETL2 Reference Manual

2.25 Stop Statement

The stop statement immediately terminates the program. It may be used within the main program
or within procedures. It normally is used in a severe error condition, in which the programmer
doesn't see any reasonable way to continue.

2.26 Assert Statement

The assert is most useful during debugging, when it is used to enforce program invariants. The
syntax of an assert is

assert <expression>

The <expression> should yield either true or false, and the action taken depends upon a com-
mand line option on the interpreter (see 3.5). There are three choices, assertions may be skipped
altogether, successful assertions may be skipped but failing assertions stop the program, or successful
assertions may be logged with failing assertions stopping the program.

2.27 Null Statements

It is occasionally useful to have an empty statement list, as in the following (illegal) statement

if all_is_well then

else print("O my gosh");

end if;

The grammar of SETL2 does not allow empty statement lists, so to handle those situations it provides
the null statement so the above could (legally) be written as

if all_is_well then null;

else print("O my gosh");

end if;

2.28 Packages

A package is a module at the same level as a program which provides variables, constants, and
procedures which may be imported by other packages or programs. There are two components to
the source of a package: a package speci�cation and a package body. The package speci�cation
describes the names which are visible outside the package, and the package body de�nes local data
and the de�nitions of the procedures in the package.

2.28.1 Package Speci�cations

The syntax of a package speci�cation is

2.28 Packages 31

package <package name> ;

<variable and constant declarations>

<procedure declarations>

end [<package name>] ;

The <variable and constant declarations> include var, const, and sel declarations just as in
a program. The names declared will be available to any unit importing the package. The procedure
declarations are the headers of any procedures in the package. The package speci�cation must be
compiled before the associated package body.

2.28.2 Package Bodies

A package body contains data visible throughout the package, but not outside the package, along
with the complete de�nitions of the procedures in the package. The syntax of a package body is

package body <package name> ;

<use section>

<constant and variable declaration section>

<procedure section>

end [<package name>] ;

The <use section> is a sequence of clauses of the form use package name. See 2.28.3 for more
details. The <constant and variable declaration section> de�nes names which will be visible
within the package, but not outside the package. And �nally the <procedure section> is a list of
procedure de�nitions including all procedures listed in the package body, and possibly others visible
only within the package. An example illustrating all of these components is in �gure 7, and a more
useful but less comprehensive example is in Appendix A.

2.28.3 Importing a Package

To import a package a use clause is placed before the declaration section of a program or package
body. The syntax of a use clause is

use <package name 1> [, <package name 2>] ... ;

For example, a program importing the package in �gure 7 is

program Something;

use Anything;

visible_proc(1,2);

end Something;

32 SETL2 Reference Manual

package Anything;

var visible_var;

const visible_const := 5;

procedure visible_proc(p1,p2);

end Anything;

package Anything;

var hidden_var;

const hidden_const := 10;

procedure visible_proc(p1,p2);

print("Hello");

end visible_proc;

procedure hidden_proc(p1,p2);

print("Goodbye");

end hidden_proc;

end Anything;

Figure 7: Package Example

2.28.4 Compilation Units

Programs, package speci�cations and package bodies are all compilation units. One or more of them
can appear in a source �le. Package speci�cations must be compiled before the associated package
bodies or any other units that import the package. When a package speci�cation is compiled,
the associated package body and any units that import the package are invalidated, and will need
recompilation. This is particularly important to keep in mindwhen working withmutually dependent
packages. Consider the packages in �gure 8.

In this example package a imports b, and vice versa. The only way this can be compiled is if both
package speci�cations are compiled before either package body. They could still appear in a single
source �le, but in this situation the most convenient arrangement is to have four source �les, one
for each compilation unit.

2.29 Built-In Procedures

SETL2 has a number of built-in procedures. Those without write parameters may be used as �rst
class objects. They are all declared as part of a default scope, so the names may be hidden by any
local declarations of variables with the same name.

2.29 Built-In Procedures 33

package a;

var va;

procedure pa;

end a;

package body a;

use b;

procedure pa;

print(vb);

end pa;

end a;

package b;

var vb;

procedure pb;

end b;

package body b;

use a;

procedure pb;

pa();

end pb;

end b;

Figure 8: Package Dependencies

2.29.1 Atom Generation Procedure

The procedure newat generates a value not yet produced in the program. This value can be used as
a unique key in maps, as pointers might be used in other languages.

v := newat() Generates a unique atom value.

2.29.2 Arithmetic Functions

Most of the arithmetic functions accept numeric arguments and return a numeric result. None have
write parameters so all may be used as �rst class objects.

r := abs(v) v must be either an integer, a
oating point number, or a
one character string. If numeric, the return value will be
the absolute value of v. If a character, the return value will
be an integer corresponding to that character in the sys-
tem's character set. At present, all the implementations
use the ASCII character set so this function is portable. It
should not be assumed that future implementations will
use ASCII, however.

34 SETL2 Reference Manual

r := sign(v) v must be either an integer or
oating point value. The
return value will be 1 if v is zero or positive and -1 if it
is negative.

b := even(i) i must be an integer. The return value will be true if i
is even and false otherwise.

b := odd(f) i must be an integer. The return value will be true if i
is odd and false otherwise.

r := float(i) i must be an integer. The return value will be i as a

oating point number. Note that because integers have
in�nite precision while
oating point numbers are approx-
imations the value of r may be di�erent from i.

r := sqrt(f) f must be a
oating point number. The return value will
be the square root of f.

r := log(f) f must be a
oating point number. The return value will
be the natural logarithm of f.

r := exp(f) f must be a
oating point number. The return value will
be e raised to the power f.

r := trigfunction(f) There are a variety of trigonometric functions available,
each with the same form. f must be a
oating point num-
ber, and the return value will also be
oating point. The
trigfunction's available are:

cos sin tan acos asin atan tanh

r := atan2(f,g) f and g must both be
oating point numbers. The return
value will be the arc tangent of f/g.

i := fix(f) f must be a
oating point number. The return value will
be the integer part of f. If the precision of f does not
extend to the units position, then an error results and the
program is terminated.

i := floor(f) f must be a
oating point number. The return value
will be the largest integer less than or equal to f. If the
precision of f does not extend to the units position, then
an error results and the program is terminated.

i := ceil(f) f must be a
oating point number. The return value will
be the smallest integer greater than or equal to f. If the
precision of f does not extend to the units position, then
an error results and the program is terminated.

2.29.3 Input - Output Procedures

SETL2 presently provides support for two distinct classes of �les: text and binary. We think of
a text �le as a stream of lines made up of graphic characters. This stream may be a sequence of
SETL2 values, or simply a sequence of character strings. If accessed as a sequence of SETL2 values,
the input functions (read, reada, and reads) will work similarly to the SETL2 lexical analyzer. For

2.29 Built-In Procedures 35

example, if the call read(i,f,s1,s2,t) is executed and the operator responds to the input prompt
with the following string:

16#1f# 1.5e15 "hello world" {1,2,3,4,5} [1,2,3,4,5]

then the value of i will be the integer 31, the value of f will be the
oating point number
1500000000000000.0, the value of s1 will be the string hello world, the value of s2 will be the set
{1,2,3,4,5}, and the value of t will be the tuple [1,2,3,4,5]. Strings may be entered without
quotes if they follow SETL2 rules for identi�ers: they must begin with an alphabetic character, and
consist only of letters, digits, and underscores. SETL2 operators and separators may not be read
other than within quoted strings.

Binary �les are also sequential, but contain an internal representation of SETL2 values. They
can not be read with a simple text editor, but may be accessed more e�ciently by SETL2 programs.

There are some restrictions on the I/O operations on internal SETL2 values, in particular atoms
and procedures. These may be written to text �les, but will not be written in a form in which they
can be re-read. They will be human-readable, although cryptic. Those values may be written to
binary �les and re-read within the same program execution. If an attempt is made to read them in
a di�erent execution or within a di�erent program, an error results and the program will stop. The
lifetime of these values is restricted to the program execution which creates them.

h := open(f,m) f must be a string whose value is a valid �le name for the
operating system being used and m must be a string whose
value is one of the following:

"text-in" File will be opened for input in
text, or formatted, mode. It may
then be accessed with reada or
geta.

"text-out" File will be opened for output in
text, or formatted, mode. It may
then be accessed with printa.

"binary-in" File will be opened for input in
binary mode. It may then be ac-
cessed with getb.

"binary-out" File will be opened for output in
binary mode. It may then be ac-
cessed with putb.

open prepares a �le for access by other input/output pro-
cedures. It returns h, an atom, which must be used as a
handle in subsequent procedure calls. If h has the value

, then the open failed, either because the �le did not
exist or the user did not have permission for the type of
access requested.

close(h) hmust be a �le handle created with a call to open. The �le
will be closed and the associated bu�ers will be returned
to the operating system. The handle will no longer be
accepted by input/output procedures.

36 SETL2 Reference Manual

print(v1,v2...) Each of the values v1,v2... will be printed on the stan-
dard output device (usually the terminal). There will be
no spaces or newlines between the values but a newline
will be printed at the end.

printa(h,v1,v2...) h must be a �le handle created with a call to open. Each
of the values v1,v2... will be written to that �le. There
will be no spaces or newlines between the values but a
newline will be printed at the end.

read(wr v1,wr v2...) Each of the arguments v1,v2... must be a valid left
hand side. Values will be read from standard input and
assigned to the variables in sequence. If an end of �le is
reached, all subsequent variables will have the value om,
and a call to eof() will return true.

reada(h,wr v1,wr v2...) h must be a �le handle created with a call to open. Each
of the arguments v1,v2... must be a valid left hand
side. Values will be read from the �le associated with h

and assigned to the variables in sequence. If an end of �le
is reached, all subsequent variables will have the value
,
and a call to eof() will return true.

reads(rw s,wr v1,wr v2...) This is really a string scanning procedure, since it does
no I/O, but it's behavior is closer to read than the other
string scanning procedures. s must be a string, and each
of the arguments v1,v2... must be a valid left hand side.
Values will be scanned from the string s and assigned to
the variables in sequence. If an end of string is reached, all
subsequent variables will have the value
. The scanned
portion of s will be removed. reads is most useful in
converting numbers from character form to internal, but
it works with sets, tuples, and identi�ers as well.

get(wr v1,wr v2...) Each of the arguments v1,v2... must be a valid left hand
side. Lines will be read from standard input and assigned
to the variables in sequence. If an end of �le is reached,
all subsequent variables will have the value
, and a call
to eof() will return true.

geta(h,wr v1,wr v2...) h must be a �le handle created with a call to open. Each
of the arguments v1,v2... must be a valid left hand
side. Lines will be read from the �le associated with h

and assigned to the variables in sequence. If an end of �le
is reached, all subsequent variables will have the value
,
and a call to eof() will return true.

eof() eof returns true if the last read operation encountered
and end of �le and false otherwise.

2.29.4 String Handling Procedures

The procedures str and char produce character strings from other SETL2 values.

2.29 Built-In Procedures 37

s := str(v) v may be any SETL2 value. The return value will be the
character string representation of v, as would be printed
by print.

s := char(i) i must be an integer. The return value will be the single
character corresponding to that integer in the system's
character set. At present, all the implementations use
the ASCII character set so this function is portable. It
should not be assumed that future implementations will
use ASCII, however.

SETL2 provides a variety of string scanning procedures similar to those found in SNOBOL4.

r := len(rw s,n) s must be a string and n must be an integer. len returns
a string consisting of the �rst n characters of s. If the
length of s is less than n the entire string is returned.
The return string is removed from s.

r := any(rw s,c) s and c must be strings. any returns the �rst charac-
ter of s if that character is in c, and removes it from s.
Otherwise it returns a null string and s is unchanged.

r := notany(rw s,c) s and cmust be strings. notany returns the �rst character
of s if that character is not in c, and removes it from s.
Otherwise it returns a null string and s is unchanged.

r := span(rw s,c) s and c must be strings. span �nds an initial substring
of s consisting only of characters in c and returns it. The
substring will be removed from s. r will be an empty
string if the �rst character of s is not in c.

r := break(rw s,c) s and c must be strings. break �nds an initial substring
of s consisting only of characters not in c and returns it.
The substring will be removed from s. r will be an empty
string if the �rst character of s is in c.

r := match(rw s,c) s and c must be strings. match returns c if c is the initial
substring of s and removes c from the front of s. Other-
wise it returns a null string and s is unchanged.

r := lpad(s,n) s must be a string and n must be an integer. lpad pads
s with blanks until its length is n. If the length of s is
greater than n then s itself is returned.

Each of the procedures above scan their arguments from left to right. There are corresponding
procedures which perform similar functions but scan their arguments from right to left. Those
procedures are:

rlen rany rnotany rspan rbreak rmatch rpad

38 SETL2 Reference Manual

2.29.5 Type Finding Procedures

In many programming languages the type of a variable can be determined at compile time and
is enforced at run time. These languages are called strongly typed. SETL2 on the other hand is
weakly typed: it's variables may be bound to values of more than one type during the execution of
a program. Because of weak typing, it is frequently useful to test the type of a value at run time.
The following procedures provide that capability.

b := is type(v) There are a variety of boolean functions which test whether
a SETL2 value is of a certain type. They each return true

if the value is of the given type and false otherwise. The
functions available are:

is atom is boolean is integer

is real is string is set

is map is tuple is procedure

s := type(v) v may be any SETL2 value. The procedure will return
a character string representation of the type of v. The
possible return values are:

"ATOM" "BOOLEAN" "INTEGER" "REAL"

"STRING" "SET" "TUPLE" "PROCEDURE"

2.29.6 Environment Access Procedures

SETL2 provides a few procedures which return information about the program's environment.

v := date() The return value will be a character string representation
of the date maintained by the operating system.

v := time() The return value will be a character string representation
of the time maintained by the operating system.

b := fexists(f) f must be a string whose value is a valid �le name for
the operating system being used. The return value will
be true if the �le exists and false otherwise.

system(s) s must be a string whose value is a valid command for
the operating system being used. The command will be
passed to the operating system and execution suspended
until the command is complete. WARNING: No error
checking is done on the command string. This is not a
safe procedure, so should be used sparingly!

command line command_line is not a procedure at all, but a built-in
constant. The value of command_line will be a tuple of
character strings containing the arguments passed to the
interpreter on the command line.

39

3 SETL2 Operation Manual

3.1 Introduction

In this section we provide operating instructions for several implementations of SETL2. At present,
implementations are available for the following machines and operating systems:

1. MS-DOS versions 3.0 and higher.

2. Apple Macintosh.

3. Sun 3 systems running Unix.

4. Sun 4 systems running SunOS.

5. DEC VAX systems running VMS.

6. DEC VAX systems running BSD Unix.

We have tried to provide a common user interface on all these systems, to the extent that is
possible, so much of what follows is applicable regardless of the computer and operating system being
used. Where there are computer or operating system dependencies we will give speci�c instructions
for each.

Before describing the speci�c commands used to compile and execute SETL2 programs, we must
describe libraries. While not demanded by the semantics of the language, libraries are the usual
way of implementing packages, so it is important that the concept be clearly understood before
proceeding.

3.2 Libraries

Most programming languages force the programmer to specify within the text of a program the
names and types of all names imported from external modules to be linked with that program.
When that is the case it is not necessary for the compiler to have access to those modules, only the
linker needs such access. SETL2 on the other hand, is similar to Ada, which allows the programmer
to import all the public names from another module simply by specifying the name of the module
to import. In order to do that the SETL2 compiler must have access to all imported modules. There
are at least two ways to implement this: The programmer could be forced to specify any linked
modules on the compiler command line, or he could compile all modules into libraries, and let the
compiler access them from the libraries. The implementations described here all use libraries, since
that is much more convenient for the programmer.

A SETL2 library contains lists of public names, imported packages, object code, and some control
information about compiled modules. There is no linker at present, programs are executed directly
from the libraries and bound during program load.

The compiler uses libraries in two distinct ways. There is a single library which will be updated,
and a list of libraries to be searched for any imported packages. The programmer can specify both
the updated library and the input libraries on the compiler command line, in environment strings, or

40 SETL2 Operation Manual

can accept the system default. It is very unlikely that the system default will be acceptable, unless
all SETL2 programs are kept in a single directory, and it is a nuisance to specify library names
on the command line for each compilation. We highly recommend that as part of the installation
process a command to set the appropriate environment strings is placed in your .login shell script
(or autoexec.bat �le, login.com �le, or whatever is appropriate for the system being used).

3.3 Installation

There are three general steps to be performed before SETL2 may be used:

1. The executable �les must be installed where commands are kept on the system being used.

2. A library must be created.

3. An environment string should be set containing the name of the library to be used.

For VMS and Unix users it is quite likely that the system administrator will have to install the
executable �les. Check with him or a local guru to see how to get started.

MS-DOS users must copy the executable �les from the distribution diskettes to their hard disks.
While it is possible to use SETL2 on diskette based systems, it is quite inconvenient, so we assume
a hard disk with at least one megabyte of free space is available.

To install SETL2, all executable �les must be loaded from the distribution diskettes to some
directory in the search path for executable �les. Set the current directory to something in your
PATH, so that you will be able to execute these �les from any directory. Then copy all the .exe

�les from the distribution diskettes to that directory. There should be three of those: stll.exe,
stlc.exe, and stlx.exe.

One of the command �les distributed with SETL2 is a library utility program. Eventually, this
should perform a variety of functions, but at the moment it is only used to create empty libraries.
To do that, change to any directory where you keep data �les and enter the following command:

stll -c <library name>

A normal <library name> is setl2.lib.

Finally, you should set the environment string SETL2_LIB to tell SETL2 where your default
library is. The command to do this is best placed in the startup command �le for your system. For
the operating systems supported now the commands are:

Operating System Startup File Command
MS-DOS autoexec.bat set SETL2 LIB <library name>

Unix .login setenv SETL2 LIB <library name>

VMS login.com de�ne SETL2 LIB <library name>

3.4 Executing The Compiler

The command to compile a SETL2 source program is:

3.4 Executing The Compiler 41

stlc <options> <file specifier> [<file specifier> ...]

You may use wild cards in specifying the �les to be compiled. The following options are recog-
nized:

-s Produce a listing of the program with line numbers and error messages.
By default errors will be printed on standard output. If this option is
given a listing �le with the extension .lis will be produced.

-t n Set tab width to n. This is generally an unnecessary option. Error mes-
sages include both line and column numbers, and the column numbers will
be incorrect if the source �le uses tabs not set at eight column intervals.
If an editor is used which can move the cursor to the line and column of
an error, it will need that information. By setting this option any tab
interval may be used. If line number information is su�cient (which is
generally the case) this option can be ignored.

-i Disable implicit declarations. SETL implicitly declared any names for
which it did not �nd an explicit declaration. SETL2 continued this by
default, but for other than quick and dirty programs that may not be
desireable. When this option is set all variables must be declared.

We do make implicit declarations by default, since we feel that the compile
commands for larger programs will generally be in make �les, which do
not have to be changed very often. The compile command should be
convenient for short programs, in which case implicit declarations will
probably be desired. If you disagree with this philosophy, you can set the
environment string to your own desired defaults.

-f Toggle use of intermediate �les. By default, the compiler stores inter-
mediate forms of the program on disk for MS-DOS systems and in core
on Unix systems. This option reverses that setting. If you are using an
operating system with virtual memory, you will probably �nd it faster to
compile in core only. If you are using a PC, this is not recommended,
since at present the compiler does not make use of extended or expanded
memory and there is not much extra memory in a PC. The best thing you
can do with expanded or extended memory is to use a RAM disk, and set
the environment option to force intermediate �les to be stored there.

-l �le name Updated library name. This string must be a valid �le name on the system
you are using. If there are embedded spaces you must use quotes to make
the �le name a single string.

-p �le path Library search path. This is a list of semicolon-delimited �le speci�ers
which describe a list of �les to be searched for any imported packages.
Each speci�er may contain wildcards if desired. You should note that the
compiler will search only until it �nds a package with the name given in
a use clause. It will not check for duplicates. When wildcards are used,
the order of search will depend on the disk subsystem (system calls are
used to expand the �le speci�ers).

42 SETL2 Operation Manual

3.5 Executing The Interpreter

After the program is successfully compiled it may be executed with the command:

stlx <options> <program name> [<argument> ...]

CAUTION: When you execute a program, you give the name of the program, not the name of the
�le which contained it. For example: if the following program:

program this_is_a_junk_program;

var some_trash;

...

end this_is_a_junk_program;

is in the �le junk.stl, then you would compile that program with the command

stlc junk

but you would execute the program with the command

stlx this_is_a_junk_program

The arguments after the program name will be gathered into a tuple, and will be available to
the SETL2 program as command_line.

The options available are:

-a mode This sets the assert mode. There are two possible values for mode: f is
used if failing assertions should stop the program but succeeding assertions
should be skipped, and l is used if succeeding assertions should be logged.

-l �le name Updated library name. The library is not actually updated, this is provid-
ed for consistency with the compiler. This library will be searched before
those in the search path.

-p �le path Library search path. This is a list of semicolon delimited �le speci�ers
which describe a list of �les to be searched for any imported packages.
Each speci�er may contain wildcards if desired. You should note that the
compiler will search only until it �nds a package with the name given in
a use clause. It will not check for duplicates. When wildcards are used,
the order of search will depend on the disk subsystem (system calls are
used to expand the �le speci�ers).

3.6 Environment strings 43

3.6 Environment strings

The following is a list of useful environment strings recognized by the SETL2 compiler and interpreter.

SETL2 LIB This lets you place the name of your update library in the environment,
rather than specifying it on the command line. You should probably
place a command in your .login script or autoexec.bat �le to set
this for you when you log on.

SETL2 LIBPATH This is a list of libraries which will be searched for imported packages.
The default is empty, which will probably be OK generally. It is just a
string of comma-delimited �le speci�ers, which may include wildcards.

SETL2 TMP This string is a pre�x used to specify where temporary �les should be
stored. It is primarily useful on a PC, where you should use this to
hold the letter of your RAM disk, if you have one. For example, if your
RAM disk is logical drive d, you would place in your autoexec.bat
�le the command "set SETL2_TMP d:".

STLC OPTIONS This is a string of options which will be read in front of the command
line by the compiler. You can use this to change the default for implicit
declarations, tab width, or anything else.

STLX OPTIONS This is a used just like the previous string, but is used by the inter-
preter.

3.7 Acknowledgements

Many of the changes made in SETL2 were motivated by comments and ideas voiced in the SETL
meetings at New York University. I would like to thank all who attended those meetings and
participated in the discussions, in particular Robert Dewar, Fritz Henglein, Bob Paige, Ed Schonberg,
and Matthew Smosna.

I would also like to thank Jack Schwartz, who o�ered many helpful comments and suggestions,
and gave the system its most thorough test.

44 SETL2 Operation Manual

45

A A Random Number Generator

SETL provided a built-in operator to produce random numbers, but SETL2 does not provide such
an operator. An alternative in SETL2 is to create a package to do the same thing, which is what
we will do here. It is not su�ciently powerful for all users, but serious users of random number
generators can modify this fairly easily. See [Knu81] for discussion of pseudo-random numbers.

There are two things to make note of in this example. The �rst is the general idea of using
packages to encapsulate a function, and the second is the way in which the data for a speci�c
random number stream is hidden within the package. We used atoms to identify streams, and these
atoms are the only values accessible from outside the package.

--

-- RANDOM NUMBERS

-- ==============

--

-- This package is meant to replace the "random" built-in procedure in

-- SETL. It is somewhat different conceptually from that procedure.

--

-- We allow the creation and access of `streams' of random numbers. To

-- create a stream, call start_random passing it some kind of source and

-- an initial seed. The source should be one of the following:

--

-- 1. An integer. In this case we return integers from 1 to that

-- integer.

--

-- 2. A real. We return reals from 0.0 to that real.

--

-- 3. A set. We return random elements from that set.

--

-- 4. A tuple. We return random elements from that tuple.

--

-- The seed may be an integer, or om. If it is om we use the time as

-- the initial seed.

--

package Random_Numbers;

procedure Start_Random(Source,Seed);

procedure Random(Handle);

end Random_Numbers;

package body Random_Numbers;

const Modulus := 2 ** 64 - 59,

Multiplier := 2 ** 60 - 93,

Increment := 2 ** 15 - 19;

var Stream_Set := {},

Source_Map := {},

Seed_Map := {};

46 A Random Number Generator

--

-- Start_Random

-- ------------

--

-- This procedure is called to initialize a stream of random numbers.

-- It returns a handle which is used to access the stream.

--

procedure Start_Random(Source,Seed);

var Handle;

--

-- Allocate a handle for this stream.

--

Handle := newat();

Stream_Set with := Handle;

--

-- Set the initial seed. If we get one from the caller, use that.

-- Otherwise use the time.

--

if Seed = om then

t := Time();

hour := t(1 .. 2);

reads(hour,num_hour);

minute := t(4 .. 5);

reads(minute,num_minute);

second := t(7 ..);

reads(second,num_second);

Seed_Map(Handle) := num_hour * 60 ** 2 +

num_minute * 60 +

num_second;

elseif not is_integer(Seed) then

print("Invalid seed in Start_Random => ",seed);

stop;

else

Seed_Map(Handle) := Seed;

end if;

--

-- Save the source in a map.

--

case type(Source)

when "INTEGER", "REAL", "TUPLE" =>

47

Source_Map(Handle) := Source;

when "SET" =>

Source_Map(Handle) := [x : x in Source];

otherwise =>

print("Invalid source in Start_Random => ", Source);

stop;

end case;

return Handle;

end Start_Random;

--

-- Random

-- ------

--

-- This procedure returns a single random number (or element from set

-- or tuple).

--

procedure Random(Handle);

--

-- Validate the handle.

--

if Handle notin Stream_Set then

print("Invalid handle for Random");

stop;

end if;

--

-- Find a random integer (linear congruential method).

--

New_Seed := (Seed_Map(Handle) * Multiplier + Increment) mod Modulus;

Seed_Map(Handle) := New_Seed;

Source := Source_Map(Handle);

--

-- Return the random number.

--

return case type(Source)

when "INTEGER" =>

(New_Seed mod Source_Map(Handle)) + 1

when "REAL" =>

float(New_Seed) / float(Modulus) * Source_Map(Handle)

when "TUPLE" =>

48 A Random Number Generator

Source((New_Seed mod #Source) + 1)

end case;

end Random;

end Random_Numbers;

49

B The Stable Assignment Problem

The following program is an implementation of the Gale-Shapely stable assignment problem (see
[SDDS86] for the SETL version of this program). It is a good illustration of the power of set-forming
expresssions.

--

-- STABLE ASSIGNMENT PROGRAM

-- =========================

--

-- This program matches students with colleges in such a way that the

-- following three conditions are satisfied:

--

-- 1. No college accepts more than quota(c).

-- 2. A college never admits a student if it has filled its quota

-- and there exists an unassigned student to whom the college is

-- acceptable and the college prefers.

-- 3. There is not situation in which two students each prefer the

-- other's college, and each college prefers the other's student.

--

-- The algorithm is due to David Gale and Lloyd Shapley.

--

program gale_shapley;

-- colleges

const A := "NYU", B := "Harvard", C := "Princeton", D := "MIT";

-- student preferences

stud_pref := {[1,[A,B,C]],[2,[B,C,A,D]],[3,[C,A,B]],[4,[B,A,C]]};

-- college preferences

coll_pref := {[A,[1,2,3,4]],[B,[4,3,2,1]],[C,[2,4,3]],[D,[1,2,3]]};

-- college quotas

quota := {[A,2],[B,1],[C,1],[D,2]};

-- perform the assignment and print results

print(assign(stud_pref,coll_pref,quota));

--

-- Assign

-- ------

--

-- Make the stable assignment.

--

50 The Stable Assignment Problem

procedure assign(rw stud_pref,coll_pref,quota);

colleges := domain quota;

active := {[c,[]] : c in colleges}; -- active list by college

applicants := domain stud_pref; -- initialize applicant list

-- we may need as many rounds as there are colleges

for j in [1 .. #quota] loop

new_applicants := applicants;

-- each student who has a college to apply to does so

for s in applicants | stud_pref(s) /= [] loop

first_choice fromb stud_pref(s);

active(first_choice) with:= s;

new_applicants less:= s;

end loop;

applicants := new_applicants;

-- drop all over quota applicants

for c in colleges | #active(c) > quota(c) loop

active(c) := pref_sort(active(c),coll_pref(c));

for k in [quota(c)+1 .. #active(c)] loop

applicants with:= active(c)(k);

end loop;

active(c) := active(c)(1 .. #active(c) min quota(c));

end loop;

if not (exists s in applicants | stud_pref(c) /= []) then

exit;

end if;

end loop;

return [active,applicants];

end assign;

--

-- Pref_sort

-- ---------

--

-- Sort applicants by college choice.

--

procedure pref_sort(apvect,order);

51

applicants := {x : x in apvect};

return [x in order | x in applicants];

end pref_sort;

end gale_shapley;

52 The Stable Assignment Problem

53

C A Five Function Calculator

The following program is a simple �ve-function calculator, which accepts expressions from the stan-
dard input and evaluates them. It illustrates a possible use of procedure values. In this program,
procedures are embedded in tuples and maps.

--

-- CALCULATOR

-- ==========

--

-- This is a simple five function calculator. It handles valid SETL2

-- expressions made up of +, -, *, /, and **. The error handling is

-- rather crude.

--

program Calculator;

var Operator_Info;

--

-- Operator information map. The general form is

--

-- [operator, [in-stack-priority,in-coming-priority,handler]]

--

Operator_Info := {["(",[0,4,om]],

[")",[om,om,om]],

["+",[1,1,Binop_Plus]],

["-",[1,1,Binop_Minus]],

["*",[2,2,Binop_Times]],

["/",[2,2,Binop_Divide]],

["**",[3,4,Binop_Power]]};

--

-- main loop -- get a line, find the result, print it

--

while true loop

get(Input_Line);

if eof() then

exit;

end if;

print(Input_Line," = ",Solve(Input_Line));

end loop;

--

-- Solve

-- -----

--

-- This procedure accepts a character string containing an

-- expression, evaluates it, and returns the result.

54 A Five Function Calculator

--

procedure Solve(Input_Line);

Work_Line := Input_Line;

Operand_Stack := [];

Operator_Stack := [];

while #Work_Line > 0 loop

-- skip white space

span(Work_Line,""+/[char(i) : i in [0 .. abs(" ")]]);

-- pick off the next operand

if Work_Line(1) in {str(i) : i in [0 .. 9]}+{"{","[","\""} then

reads(Work_Line,Token);

Operand_Stack with:= Token;

continue;

end if;

-- we didn't find an operand, we had better find an operator

Token := "";

while #Work_Line > 0 and

Operator_Info(Token+Work_Line(1)) /= om loop

Token +:= throwaway fromb Work_Line;

end loop;

if Operator_Info(Token) = om then

print("Invalid operator => ",Token);

stop;

end if;

--

-- when we find a closing parenthesis, we evaluate until we

-- find the corresponding opening parentheses

--

if Token = ")" then

while #Operator_Stack > 0 and

Operator_Stack(#Operator_Stack) /= "(" loop

Operator frome Operator_Stack;

if #Operand_Stack < 2 then

print("Invalid expression");

stop;

end if;

right frome Operand_Stack;

55

left frome Operand_Stack;

Operand_Stack with :=

Operator_Info(Operator)(3)(left,right);

end loop;

if #Operator_Stack = 0 then

print("Invalid expression");

stop;

end if;

Operator frome Operator_Stack;

continue;

end if;

--

-- we evaluate while the stack priority of the top operator is

-- greater than the incoming operator

--

while #Operator_Stack > 0 loop

Operator frome Operator_Stack;

if Operator_Info(Operator)(1) >= Operator_Info(Token)(2) then

if #Operand_Stack < 2 then

print("Invalid expression");

stop;

end if;

right frome Operand_Stack;

left frome Operand_Stack;

Operand_Stack with :=

Operator_Info(Operator)(3)(left,right);

else

Operator_Stack with:= Operator;

exit;

end if;

end loop;

Operator_Stack with:= Token;

end loop;

--

-- we've exhausted the input string, evaluate any remaining

-- operators

--

56 A Five Function Calculator

while #Operator_Stack > 0 loop

Operator frome Operator_Stack;

if Operator = "(" then

print("Invalid expression");

stop;

end if;

if #Operand_Stack < 2 then

print("Invalid expression");

stop;

end if;

right frome Operand_Stack;

left frome Operand_Stack;

Operand_Stack with :=

Operator_Info(Operator)(3)(left,right);

end loop;

if #Operand_Stack /= 1 then

print("Invalid expression");

stop;

end if;

--

-- the result is on the top of the operand stack

--

return Operand_Stack(1);

end Solve;

--

-- Operator Procedures

-- -------------------

--

-- The following simple procedures just implement the primitive

-- functions of the calculator.

--

procedure Binop_Plus(left,right);

return left + right;

end Binop_Plus;

procedure Binop_Minus(left,right);

return left - right;

end Binop_Minus;

procedure Binop_Times(left,right);

return left * right;

end Binop_Times;

57

procedure Binop_Divide(left,right);

return left / right;

end Binop_Divide;

procedure Binop_Power(left,right);

return left ** right;

end Binop_Power;

end Calculator;

58 A Five Function Calculator

REFERENCES 59

References

[Ada83] United States Department of Defense, New York, NY. Ada Programming Language Ref-

erence Manual, 1983. (ANSI/MIL-STD-1815A).

[Bar82] J. G. P. Barnes. Programming in Ada. Addison-Wesley Publishing Company, London,
1982.

[Knu81] D. E. Knuth. The Art of Computer Programming: Seminumerical Algorithms. Addison-
Wesley, Reading, MA, 1981.

[Mac87] B. J. MacLennan. Principles of Programming Languages. Holt, Rinehart, and Winston,
New York, NY, 1987.

[SDDS86] J. T. Schwartz, R. B. K. Dewar, E. Dubinsky, and E. Schonberg. Programming with Sets:

An Introduction to SETL. Springer-Verlag, New York, NY, 1986.

