
--. --
--~ -----, --_: - - --- -----=-' ~=:: ==.--=::: ---- - - -".,-.- --_-.--- -~-..- ----
~ _.- Program Product

APL\360
User's Manual
Program Nos. 5734-XM1

5736-XM1

GH20-0683-1

This publication provides information necessary
to use the APL\360 System. It discusses pro
cedures and equipment required for interacting
with the system, how to establish connection
between terminal and central computer, how to
start and end work sessions, and how to apply
system control features. Application of the
APL language to user problems is thoroughly
discussed and appendices give both elementary
and advanced examples of actual terminal
sessions.

Second Edition (March 1970

This edition, GH20-D683-1, is a reprint of H20-D683-D incorporating TNL GN20-2114, which changed
the order number prefix from H20 to GH20. This reprint does not obsolete the previous edition
as updated by GN20-2114.

This manual and the program to which it applies are distributed without warranty on an "as is"
basis by IBM under a modified License Agreement for IBM Program Products, and an Agreement
of Understanding. Reference should be made to those documents for information on the con
ditions under which this manual and the program are distributed.

A form has been provided at the back of this publication for readers' comments. If this form
has been removed, address comments to: IBM Corporation, Technical Publications Department,
1133 Westchester Avenue, White Plains, New York 10604.

© Copyright International Business Machines Corporation 1968, 1969

ACKNOWLEDGEMENTS

The APL language was first defined by
K. E. Iverson in A Programming Lan~uag~

(Wiley,l962) and has since been developed in
collaboration with A. D. Falkoff. The APL\360
Terminal System was designed with the
additional collaboration of L. M. Breed, who,
with R. D. Moore*, also designed the S/360
implementation. The system was programmed for
S/360 by Breed, Moore, and R. H. Lathwell,
with continuing assistance from L. J.
Woodrum t , and contributions by C. H. Brenner,
H. A. Driscoll t , and S. E. Krueger±. The
present implementation also benefitted from
experience with an earlier version, designed
and programmed for the IBM 7090 by Breed and
P. S. Abr ams **•

The development of the system has also
profited from ideas contributed by many other
users and colleagues, notably E. E. McDonnell,
who suggested the notation for the signQm and
the circular functions.

In the preparation of the present manual,
the authors are indebted to L. M. Breed for
many discussions and suggestions; to R. H.
Lathwell, E. E. McDonnell, and J. G. Arnold tt
for critical reading of successive drafts; and
to Mrs. G. K. Sedlmayer and Miss Valerie
Gilbert for superior clerical assistance.

A special acknowledgement is due to John
L. Lawrence, who provided important support
and encouragement during the early development
of APL implementation, and who pioneered the
application of APL in computer-related
instruction.

* I. P. Sharp Associates, Toronto, Canada.
t Systems Architecture, IBM Corporation,

Poughkeepsie, N.Yo
± Science Research Asosociates, Chicago,

Illinois.
** Computer Science Department, Stanford

University, Stanford, California.
n Industry Development, IBM Corporation,

White Plains, N.Y.

TABLE OF CONTENTS

PART 1: GAINING ACCESS

PHYSICAL EQUIPMENT
Preferred features

THE APL CHARACTER SET
Use of other character sets

THE RECORDING TERMINAL
ESTABLISHING A CONNECTION

Set up terminal, Dial computer
ENTRIES FROM THE KEYBOARD

Transmission signals, Mistakes, Transmission
errors, Special features of IBM 1050 terminals

STARTING AND ENDING A WORK SESSION
Sign-on, Limited use of the system, Disconnect
dial-up connection, Break any connection

1.1

1.3

1.4
1.4

1.6

1.8

PART 2: SYSTEM COMMANDS

WORKS PACES AND LIBRARIES
Workspaces, Libraries

NAMES
Local and global significance

LOCKS AND KEYS
ATTENTION
USE OF SYSTEM COMMANDS

Classification of commands, Normal response and
trouble reports, Clear workspace, Summary

TERMINAL CONTROL COMMANDS
Forced endings, The CONTINUE workspace,
Interrupted activities, Detailed description

WORKSPACE CONTROL COMMANDS
Application Packages, Groups, Detailed
description

LIBRARY CONTROL COMMANDS
Continuity of work, Workspace identification,
Library and account numbers, Storage allotment,
Use of the CONTINUE workspace, Purging a
workspace, Detailed description

INQUIRY COMMANDS
User codes, Detailed description

COMMUNICATION COMMANDS
Detailed description

2.1

2.2

2.3
2.4
2.5

2.8

2.13

2.22

2.28

2.32

PART 3: THE LANGUAGE

FUNDAMENTALS
Statements, Scalar and vector constants, Names
and spaces, Overstriking and erasure, End of
statement, Order of execution, Error reports,
No~es of primitive functions

SCALAR FUNCTIONS
Monadic and dyadic functions, Vectors, Index
generator

DEFINED FUNCTIONS
Introduction, Branching, Local and global
variables, Explicit argument, Explicit result,
The forms of defined functions, Use of defined
functions, Recursive function definition, Trace
control

MECHANICS OF FUNCTION DEFINITION
Labels, Revision, Display, Line editing,
Reopening function definition, Locked functions,
Deletion of functions and variables, System
command entered during function definition

SUSPENDED FUNCTION EXECUTION
Suspension, State indicator, Stop control

HOMONYMS
Variable names, Function names

INPUT AND OUTPUT
Evaluated input, Character input, Escape from
input loop, Normal output, Heterogeneous output

RECTANGULAR ARRAYS
Introduction, Vectors dimension catenation,
Matrices dimension ravel, Reshape, Uses of empty
arrays, Indexing, Indexing on the left, Index
origin, Array output

FUNCTIONS ON ARRAYS
Scalar functions, Reduction, Inner product,
Outer prcduct

MIXED FUNCTIONS
Introduction, Transpose, Monadic transpose,
Rotate, Reverse, Compress, Expand, Decode,
Encode, Index of, Membership, Take and drop,
Grade up and down, Deal, Comments

MULTIPLE SPECIFICATION
SYSTEM DEPENDENT FUNCTIONS

PART 4: LIBRARY FUNCTIONS

APPENDIX A: SAMPLE TERMINAL SESSION

APPENDIX B: ADVANCED EXAMPLES

BIBLIOGRAPHY

INDEX

3.1

3.5

3.10

3.17

3.20

3.22

3.23

3.26

3.33

3.37

3.45
3.46

4.1

A.l

B.l

LIST OF ILLUSTRATIONS
Page

Table 1.1 RECOMMENDED FEATURES AND 1.2
OPTIONS FOR TERMINALS

Figure 1.2 APL\360 KEYBOARD 1.3

Table 1.3 TELEPHONE NUMBERS 1.5

Table 2.1 SYSTEM COMMANDS 2.7

Table 3.1 ERROR REPORTS 3.4

Table 3.2 PRIMITIVE SCALAR FUNCTIONS 3.6-7

Table 3.3 FORMS OF DEFINED FUNCTIONS 3.15

Table 3.4 DIMENSION AND RANK VECTORS 3.27

Table 3.5 IDENTITY ELEMENTS OF PRIMITIVE 3.34
SCALAR DYADIC FUNCTIONS

Table 3.6 INNER PRODUCTS FOR PRIMITIVE 3.36
SCALAR DYADIC FUNCTIONS f AND g

Table 3.7 OUTER PRODUCTS FOR PRIMITIVE 3.36
SCALAR DYADIC FUNCTION g

Table 3.8 PRIMITIVE MIXED FUNCTIONS 3.38

Table 3.9 TRANSPOSITION 3.40

Table 3.10 SYSTEM DEPENDENT FUNCTIONS 3.47

PART 1

GAINING ACCESS

An APL\360 System comprises a £gnt~~l £QIDQ~tg~ and an
indefinite number of typewriter-like t~~IDiD9:!'§. A certain
number of these terminals may be simultaneously linked to
the computer, according to the number and type of access
QQ~t§ on the computer.

This part of the manual describes the terminal
equipment required for interacting with the system, tells
how to establish a connection between a terminal and the
central computer, and gives, in simplest form, the
procedures for starting and ending a work session.

PHYSICAL EQUIPMENT

A remote terminal for use with the system must be
either an IBM 2741 Communications Terminal, an IBM 2740-1
Communications Terminal equipped with the Transmit Control
feature, or an IBM 1050 Teleprocessing Terminal. It may
connect to the central computer through the dial-up
telephone network, by a leased telephone line, or by private
wire.

Dial-up connections are effected by means of a Western
:Electric Dataset #103A-2 or the equivalent, .o r a compatible
acoustic coupler. A leased telephone line connection
requires the use of a Western Electric Dataset #l03F-2 or
the equivalent. A direct-wired connection is effected by
means of an appropriate IBM line adapter (modem). In the
last case, two-wire connections should be avoided, if
possible, since their use rules out an interrupt facility.

~~~fg~~gg f~~ty~g.§. The APL\360 system will work with many
variations of the terminal types given above, but certain
features and options are desirable. Dial-up connections
provide the greatest ,f'leocibili ty, both in overall system
configuration, and in certain details of operation.
Similarly, although the APL printing element is based on a
12-pitch font, and is available in both Selectric~ and
PTTC/BCD keyboard encoding (i.e., the correspondence between

1 • 1



FEATURE OR OPTION

Control Unit
Voltage (115 AC), Non-lock plug
Dataset Attachment
Dial Up
Transmit Control
Automatic EOB
Typamatic Keys
Interrupt
Text Time-out Suppression
First Printer Attachment
Automatic Ribbon Shift Select
Typing Table

Printer-Keyboard
APL Printing Element, PTTC/BCD

or Standard Selectric~

Keys, APL Keyboard
Character Spacing, 10 per inch
Line Feeding, 6 per inch
Accelerated Carrier Return

1050

1051-2
9881
9114
NR
NR
RPQ E27283
NA
RPQ E27428
9698
4408
1295
9705

1052-2
1167988
NA
RPQ M40l74
9104
9435
1006

2740-1

9881
9114
3255
8028
Do not use
NA
RPQ F17913
NR
NR
NA
NR

1167988
1167987
RPQ M40174
9104
9435
NA

2741

9881
9114
3255
NR
NR
8341
4708
NR
NR
NA
NR

1167988
1167987
RPQ M40174
9104
9435
NA

Notes. NR: feature is standard equipment, or is not required.
NA: not available (July 1968).
The numbers are IBM-domestic identifications.

Table 1.1: RECOMMENDED FEATURES AND OPTIONS FOR TERMINALS

keyboard layout and character positions on the printing
element), specification of 10-pitch character spacing and
Selectrice encoding will allow a greater variety of printing
elements to be used with the terminal. While it is not
essential, the convenience of having the interrupt feature
cannot be overestimated.

Paper tape equipment (1054-1 Reader and 1055-1 Punch)
and punched-card equipment (1056-1 Reader and 1057-1 Punch)
can be used with IBM 1050 terminals. The punched-card
facilities should have Extended Character features 3861 and
3860, for reader and punch, respectively.

IBM identifications for recommended terminal features
and options are given in Table 1.1. Complete specifications
for terminals, and information on other options, should be
obtained from local IBM representatives.

1 .2



BACK
SPACE

RETURN
)
J

(
[

*p
K

o

J
l!4
H

V
GF

L
D

E
E

w
W

c :> n u 1- T I . · \, ·z x c V B N M , · /

a r
A S

r
.. - I < s z I > ~ I A I ~ I= v - •
1 2 3 4 5 6 7 8 9 0 + x

Figure 1.2: APL\360 KEYBOARD

THE APL CHARACTER SET

The APL\360 keyboard is shown in Figure 1.2. The
numerals, alphabetic characters, and punctuation marks
appear in their usual places, although the alphabet is used
in only a single case: letters print as upper-case italics,
but are produced only when the keyboard is in lower-case
position (i.e., not shifted).

The special characters, most of which are produced with
the keyboard shifted, generally have some mnemonic
connection with their alphabetic or numeric correspondents.
This may be appearance (w over W), Greek-Roman equivalence
(p over R), sequence « $ = ~ > ~ over 34 567 8), or some

possibly far fetched -- relationship between the APL
function represented by the symbol and the letter (* over P
for :gower, 1 over K for "kwot;e ", and rover S for .ceiling).

g§~ Qf Qth~~ ~bg~g~t~~ §gtS. The part numbers of APL
printing elements are given .in Table 1.1. However, any
printing element may be used with the APL system, since the
encoded characters generated by the keyboard and transmitted
to the computer are independent of the particular element
mounted on the terminal. Subject to programmed
intervention, the transmitted information will always be
interpreted according to the APL keyboard characters.

Non-APL printing elements are frequently useful in
conjunction with special-purpose APL programs designed to
exploit their character sets. Also, any element that
matches the keyboard encoding (Selectric~ or PTTC/BCD) of
the terminal can be used for straightforward numerical work,
since letters and digits print properly with such elements.
The visual interpretation of complex APL expressions is, of
course, awkward with any but an APL printing element.

1 • 3



THE RECORDING TERMINAL

As connections with remote terminals are established
and broken, and users start and end work sessions, a printed
record of this traffic is generated at the system's
~§gQ~ging t§~IDingl. This terminal, which is usually, but
not necessarily, located at the central computer site, is
ordinarily attended by an ~L QgeratQr who monitors the
operation of the system, and provides a common point of
contact for users.

There are certain supervisory functions, essential to
the operation of APL\360, which can be effected only from
the recording terminal. Thus, this terminal holds a
privileged position relative to others. The enrollment of
new users, and the allocation of library space, are examples
of this kind of function.

ESTABLISHING A CONNECTION

The directions that follow assume the use of a dial-up
connection with a dataset. Instructions for the use of
acoustic couplers should be obtained from their suppliers.
Where terminals are connected to the computer by leased
lines or private wires, instructions on dialing procedure
(EC2) are irrelevant, but local sources of information
should be consulted for equivalent procedures.

an APL
connect
source,

follows:

~~l-..! §g.!: .hlP ..tg~1!lj.D~l-:
Insert paper, mount
printing element,
terminal to power
and set switches as

IBM 2741 or 2740 Terminal

LCL/COM
Power

COM
ON

The power switch is at the
right of the keyboard. On
2741's, the LCL/COM switch
is on the left side of the
terminal stand, toward the
rear; on 2740's, it is to
the right of the power
switch.

1 • 4



IBM 1050 Terminal

ATTEND/UNATTEND
Keyboard
Printer
Reader 1
Punch 1
EOB
Line test
Single step
Line control
Power

A1:iTEND

SEND
SEND-RECEIVE

OFF
OFF

MANUAL
OFF
OFF

ON
ON

Not all 1050's have all
switches; those present must
be set as indicated. The
states of switches not
listed here are immaterial.

If it is known that RPO
E27283 (see Table 1.1) is
installed, set the EOB
switch to AUTO.

The line control switch is
inside the rear door of the
1051 Control Unit. The
power switch is on the left
side of the control unit,
toward the front.

On 2741 and 2740 terminals,
test to see if the keyboard
is locked by trying the
shift key. If the key is
operable, press the carrier
return and test again.

~~2~ ~~~1 £QID2Y~~±:
Set the telephone pushbutton
switch to TALK and follow
ordinary dialing procedure.
After two rings, at most,
the telephone will respond
with a steady, high-pitched
tone.

If the keyboard does not
lock after a carrier return,
check the switches and try
once more. If the switches
are set properly and the
keyboard remains unlocked,
the terminal is faulty.

Telephone numbers are given
in Table 1.3. If the line
is busy, try a different
number or call the APL
Operator to inquire about an
open line.

123 456-7890 123 456-7890
Insert a table of access
telephone numbers here.

An assistance number
should be included.

APL Operator: 123 456-7890

1.5

Table 1.3: TELEPHONE NUMBERS



Promptly set the pushbutton
switch to DATA by holding
the DATA button down firmly
for a moment and then
releasing.

Cradle the handset.

The DATA button should
light, and will remain lit
as long as the terminal is
connected to the computer.
If it does not light, check
the power connection to the
dataset. If it lights, but
quickly goes out, check the
power connection to the
terminal, the cable
connection to the dataset,
and the switch settings on
the terminal. Then retry
from Eel.

B§§~Qn§~: The keyboard will
unlock, indicating that the
computer is ready to accept
an entry from the terminal.

The connection established by the foregoing procedure
is only tentative, and will be broken by the central
computer if further communication does not take place within
60 seconds. Therefore, the next step the sign-on
procedure (EC3) given below -- should be executed promptly.

ENTRIES FROM THE KEYBOARD

After a connection is established, normal communication
between a terminal and the central computer is carried on by
means of entries from the typewriter keyboard, which
alternately locks and unlocks as each entry is made and the
computer completes its work. The general procedure is to
type an instruction or command, strike the g9~~i~~ ~gtY~D to
indicate the end of the message, and follow this by a
transmission signal.

1'!"E-!!.§m!e§.!.Q!! §.!g!!.§.l§. The transmission signal is generated
differently, according to the terminal type and its
equipment:

~111. A transmission signal is automatically generated in
the proper sequence (L, e. , after tr..e carrier retu.rn
signal) when the RETURN key is struck.

~11Q. The transmission signal is produced by striking the
EOT key after the RETURN key. (Do not use the the EOB
key, or the automatic EOB feature available on these
terminals. )

1 .6



lQ~D. On terminals equipped with an automatic EOB RPQ
(see Table ~.~J, the transmission signal is produced
automatically when the RETURN key is struck. Otherwise,
an EOB must be produced manually, by striking the
numeral-5 key, while the key marked ALTN CODING is
belg gQ~D. (Note that the automatic EOB fea±llr~ available
for 1050 terminals cannot be used with APL\360.)

A transmission signal does not cause a character to be
printed, and its omission will therefore be evidenced only
by the state of the terminal: the keyboard will remain
unlocked, and no response will be forthcoming from the
system.

In the remainder of this manual the need for carrier
return and transmission signal will not be explicitly
mentioned, since they are required for ~y~~ entry.

Mistak~~. Before the carrier return (and transmission
signal) that completes an entry, errors in typing can be
corrected as follows: backspace to the point of error and
then depress the linefeed button (marked ATTN on 2741
terminals). This will have the effect of erasing everything
to the right of, and including, the position of the carrier.
The corrected text can be continued from that point, on the
new line.

This procedure can be used at any time once the sign-on
(EC3) has been accomplished. In case of error in the
sign-on itself, the entry should be made as is. The system
will provide an appropriate ~rQYQle re~Qrt, following which,
a correct entry may be made.

T~gn§IDis§iQn grrQra. There are occasional transient
failures in the communication between a terminal and the
central computer. If the failure occurs during the
transmission from the terminal, the system will respond with
a f'~§.~ng s i.qn a Le on 1050 terminals, the RESEND warning
light will go on, and on other terminals the message RESEND
will be printed. In any case, the last entry from the
keyboard must be repeated. The warning light on the 1050
should first be extinguished by pressing the adjacent
button.

Failures in the other direction are usually evidenced
by the appearance of a spurious character, whose presence in
the printed output is obvious in most contexts. However,
there is no absolutely certain way of detecting such a
failure.

1.7



S~e~igl featYres Qf I~M lUSD terminals. The keyboard of a
terminal equipped with a REQURST button will not unlock,
when it otherwise should, until the button is depressed. On
terminals equipped with a timer, the keyboard will lock
before an entry is completed if approximately 18 seconds
have elapsed since the last keyboard action. Locking can be
forestalled by occasionally striking the shift key, but if
it does happen, the keyboard can be forced to unlock by
flipping the line-control switch inside the 1051 Control
Unit to OFF, and back to ON.

If a terminal is to be used exclusively with APL\360,
the Keyboard Request feature should be removed, and the Text
Time-out Suppression feature should be added.

STARTING AND ENDING A WORK SESSION

Each user of the system is assigned an _a..c_c-.9_u.1Lt _l1..UJJY:Le_r.
This number is used to effect the sign-on tLat initiates a
work session; serves to partially identify any work that the
user may store in the system between sessions; and is used
for accounting or billing purposes.

If the account number is not known, or if one of the
trouble reports given below is encountered and not
understood, a message of inquiry can be sent to the APL
Operator. This is accomplished by entering ) OPR followed by
a space and one line (not exceeding 120 characters) of an
appropriate text.

Such a message can be sent at any time after a
connection has been established. It causes the keyboard to
lock, awaiting a reply. If no reply is forthcoming, (and
the sign-on has not been completed), the connection will
have to be broken and re-established before further
communication with the system is possible. (After the
sign-on, the keyboard may be unlocked by an ~~~~~~~~

EiEE~J, described in Part 2.)

~~)-! .§JELl ..911:
Enter )
followed by an account
number, with a key (i.e., a
colon and password), if
required.

1 • 8

The use of passwords as
locks and keys is described
in Part 2. A new user will
have been advised if a key
is required for his first
sign-on.



£:.t.t§..9..t:
1. A workspace will be
activated for the terminal.

2. Accumulation of
charges will begin.

time

A workspace can be thought
of as both a notebook and a
scratch pad. The details
are explained in Part 2.

~'§P.911'§~:

1. A broadcast message from
the APL Operator may be
printed.

2. The port number, tin~ of
day, date, and user name
associated with the account
number will be printed on
one line. The system
identification will be
printed on another line.

1 .9

j1.!".9JJ!Ll~ .!"~.P.9-l:"J:..s:
NUMBER NOT IN SYSTEM
means either exactly what it
says, or that the number has,
a lock associated with it
and the wrong key was used.
The APL Operator should be
consulted if help is
required.

INCORRECT SIGN-ON
means the form of the
transmitted command was
faulty. Retry with a
properly formulated sign-on.

ALREADY SIGNED ON
means that a work session is
already in progress at the
terminal. To start a
session with a different
account number, use command
TC5 (see Part 2), which ends
the current session but
holds the connection, and
retry from the beginning of
EC3.

NUMBER IN USE
means just that, or a
temporary condition due to
delays in the central
computer. Retry from EC2
after two minutes. If the
condition persists, notify
the APL Operator.

NUMBER LOCKED OUT
means that authorization for
use of that number has been
withdrawn.



3. SAVED, followed by the
time of day and date that
the activated workspace was
last stored.

4. The keyboard will be
unlocked.

This response will be
omitted if the activated
workspace is ~l~gI (i.e.,
not holding information).
If the response is given,
the workspace is named
CONTINUE. The use of
workspace names is explained
in Part 2.

If this is the only reponse,
a transmission error has
occurred, or the entry did
not start with an APL right
parenthesis. In either
case, the ent.ry should be
repeated in correct form.
If the condition persists,
retry from EC2, possibly
dialing a different number.

A work session is started, and the full APL system
becomes available, once the sign-on is accomplished. Any
system command of Part 2 or APL operation of Part 3 may now
be entered for execution.

Limitgg Q~g Qi tUg S~~~gm. No
sign-on given here is required
3, and the reading of Part 2
only casual or restricted use
For the purpOses of such
conveniently be terminated
procedures:

AC!.IQN

EC~~ Qi§QQnn~Qt gigl=Y~

gQnnggtign:
Set the power switch to OFF.

~ff~9:t:
1. The active workspace will
be stored under the name
CONTINUE.

system command other than the
in order to make use of Part
may therefore be defeyred if
is to be made of the system.
use, a work session may

by one of the following

NOTES

Use this procedure for
dial-up connections QnlY.

If the workspace is clear,
it will not be stored at
this time. If it is stored,
it will be automatically
re-activated when the same
account number is next used
to sign on. See note for
EC3, Response 3.

1.10



2. The duration of the work
session and the amount of
computer time used will be
noted internally for later
accounting.

3. The
central
broken.

connection to the
computer will be

The DATA light will go out.

~Q2~ ~~~g~ ~ny gQnn~gtiQn:
Enter ) CONTINUE

~ff~Qt :
1. 2. and 3. The same as for
EC4.

This is command
detailed in Part 2.

TC4,

B~§'2Qn§~:

1. Time of day and date,
followed by CONTINUE

2. The port number, time of
day, date, and user code
will be printed.

3. Accounting information
will be printed.

~~QYQle ;r~2Q;rtQ.:
NOT WITH OPEN DEFINITION
INCORRECT COMMAND
The meanings of these
reports, and corrective
actions for them, are given
in Part 2.

User codes comprise three
characters which partially
identify users. Their use
is explained in Part 2.

If a dial-up connection is
being used, the DATA light
will go out.

1 • 11



PART 2

SYSTEM COMMANDS

APL operations deal with transformations of abstract
objects, such as numbers and symbols, whose practical
significance, as is usual in mathematics, depends uron the
(arbitrary) interpretation placed upon them. SY§1gm

gQIDIDgQ9§ in the APL\360 System, on the other hand, have as
their subject the structures which comprise the system, and
control functions and information relating to the state of
the system, and therefore have an immediate practical
significance independent of any interpretation by the user.

In this Part the structure of the APL\360 system is
described, and various notions essential to the
understa.nding of system commands are introduced. Finally,
the complete set of system commands is described in detail.

WORKSPACES AND LIBRARIES

WQ~~§E~9~§. The common organizational unit in the APL\360
system is the ~Q~k§2~9~. When in use, a workspace is said
to be ~gt~yg, and it occupies a block of working storage in
the central computer. The size of the block, which is
preset at a fixed value for a given system, determines the
combined working and storage capacity of each workspace in
that system. Part of each workspace is set aside to serve
the internal workings of the system, and the remainder is
used, as required, for storing items of information and for
containing transient information generated in the course of
a computation.

An active workspace is always associated with a
terminal during a work session, a~d all transactions with
the system are mediated by it. In particular, the names of
Yg~!~Ql~§ (data items) and g~f~ngg tYng~~Qn§ (programs) used
in calculations always refer to objects known by those names
in the active workspace; information on the progress of
program execution is maintained in the §t~~~ ing!gg~QX of
the active workspace; and control information affecting the
form of output is held within the active workspace.

2.1



~!Q~g~ig§. Inactive workspaces are stored in !i~~g~i~B'

where they are identified by arbitrary names. They occupy
space in secondary storage facilities of the central
computer and cannot be worked with directly. When required,
copies of stored workspaces can be made active, or selected
information may be copied from them into an active
workspace.

Libraries in APL\360 are either Qfiy~t§ or Q~gl!~.

Private libraries are associated with individual users of
the system, and are identified by the user's account number.
Access to them by other users is restricted in that one user
may not store workspaces in another person's library, nor
can he obtain a listing of the workspaces already stored
there. However, one user may activate a copy of another
user's (unlocked) workspace if he knows the library number
and workspace name.

Public libraries are identified by numbers below 1000.
They are not associated with individual users, although
certain ones may be reserved by general agreement for groups
of people working cooperatively. Anyone may store
workspaces in a public library, and a listing of workspace
names is available upon request if the library number is
known. However, a workspace stored in a public library
remains under the control of the user who put it there, and
cannot be altered by others.

NAMES

Names of workspaces, functions, variables, and groups
(see workspace control commands) may be formed of any
sequence of alphabetic (A to Z, and A to ~) and numeric (0
to 9) characters that starts with an alphabetic and contains
no blank. Only the first 11 characters of workspace names,
and the first 77 characters of other names are significant.
Longer names may be used, but additional characters beyond
these limits are ignored.

The environment in which APL operations take place is
bounded by the active workspace. Hence, the same name may
be used to designate different objects (i.e., groups,
functions, or variables) in different workspaces, without
interference. Also, since workspaces themselves are never
the subject of APL operations, but only of system commands,
it is possible for a workspace to have the same name as an
object it holds. However, the objects within a workspace
must have distinct names, except as explained below.

2.2



~Qgg! gng glQQgl ~ignifiggng~. In the execution of defined
functions it is often necessary to work with intermediate
results which have no significance either before or after
the function is used. To avoid cluttering the workspace
with a multitude of variables introduced for such transient
purposes, and to allow greater freedom in the choice of
names, the function definition process (see Part 3) provides
a facility for designating certain variables as !Qgg! to the
function being defined. Variables not so designated, and
all functions and groups, are said to be g!Qg~!.

A local variable may have the same name as
object, and any number of variables local to
functions may have the same name.

a global
different

During the execution of a defined function, a local
variable will supersede a function or global variable of the
same name, temporarily excluding it from use. If the
execution of a function is interrupted (leaving it either
§g§B~ng~g, or 2§nggnt, see Part 3), the local variables
retain their dominant position, during the execution of
subsequent APL operations, until such time as the b~lt§g

function is completed. System commands, however, continue
to reference the global homonyms of local variables under
these circumstances.

LOCKS AND KEYS

Stored workspaces and the information they hold can be
protected against unauthorized use by associating a !Q~~,

comprising a colon and a 2~§§~Q~g of the user's choice, with
the name of the workspace, when the workspace is stored. In
order to activate a locked workspace or copy any information
it contains, a colon and the password must again be used, as
a ~~y, in conjunction with the workspace name. Listings of
workspace names, including those in public libraries, never
give the keys, and do not overtly indicate the existence of
a lock.

Account numbers can be similarly protected by locks and
keys, thus maintaining the security of a user's private
library and avoiding unauthorized charges against his
account.

Passwords for locks and keys may be formed of any
sequence of alphabetic and numeric characters up to eight
characters long, without blanks. Characters beyond the
eighth are ignored. In use as either a lock or key, a
passwo.rd follows the number or name it is protecting, from
which it is set off by a colon.

2.3



ATTENTION

Printed output at a terminal can be cut off, or the
execution of an APL operation can be interrupted, and
control returned to the user, by means of an gtt~ntiQn

§~gQ~l. Since the keyboard is locked during printing or
computing, the signal must be generated by means other than
one of the standard keys.

On terminals equipped with an interrupt feature, the
attention signal is generated by depressing the appropriate
key once, firmly. On IBM 2741 terminals this key is usually
of a distinctive color, and is marked ATTN. (The same key
is used for linefeed when the keyboard is not locked.)

For terminals not so equipped, the attention signal is
generated by momentarily interrupting the connection to the
central computer. The method depends upon the type of
connection:

with dial-up telephones, uncradle the handset, set
the pushbutton switch to TALK for two to three
seconds, and then reset it to DATA;

with leased telephone lines, set the
switch to OFF and then back to ON,
speed.

terminal power
with deliberate

If the connection is broken, in either case, for more than
five seconds, the central computer will interpret this as a
signal to end the work session and will execute action EC4
of Part 1.

Following an attention signal the keyboard will unlock,
and the type carrier will return to the normal position for
input (six spaces from the left margin). If the carrier
does not do this, enter blank lines repeatedly until it
does. In some cases a line will be printed before the
keyboard unlocks, telling where a function in progress was
interrupted.

Except for communication commands (and then only if the
delivery of a message is delayed), the execution of system
commands, once entered, cannot be interrupted. However, the
printed responses or trouble reports following a system
command can be suppressed by a properly timed attention
signal.

2.4



USE OF SYSTEM COMMANDS

System commands and APL operations are distinguished
tg~9ti9g~11y by the fact that system commands can be called
for only by individual entries from the keyboard, and cannot
be executed dynamically as part of a defined function. They
are distinguished in iQxro by the requirement that system
commands be prefixed by a right parenthesis, which is a
syntactically invalid construction in APL.

There is some system control which it may be desirable
eo exert dynamically, and there are some items of system
information which can be profitably used during the
execution of a program. For these purposes APL\360 provides
appropriate §Y§tgID=ggp~n~gnt iYD9tiQD§ and li~x9ry

ign£tiQD§, which can be used like other APL operations.
These functions are described in Part 3 and Part 4,
respectively. Where a system command duplicates the action
of one of them, this fact will be noted in the description
of the system command in this Part.

All system commands can be executed when the terminal
is in the g~g9g.tiQn IDQgg, in which APL operations are
executed forthwith upon entry. However, in ggfin1tiQD IDQg~,

in which sequences of operations are being composed into
functions for later execution, commands which call for
storing a copy of the workspace, or which might otherwise
interfere with the definition process itself, are forbidden.
(The two terminal modes are treated more fully in Part 3.)

~1~§§iti£~tiQD Qt 9QIDID~D9§. System commands are
conveniently grouped into five classes with regard to their
effect upon the state of the system:

1. ~g~iD~1 £QDtXQ1 commands affect the relation of a
terminal to the system.

2. WQX~§pg£§ QQnt~Q1 commands affect the state of the
active workspace.

3. 1i9XgXY £QDtXQ1 commands affect the state of the
libraries.

4. IDgYi~ commands provide information
affecting the state of the system.

without

5. ~QIDIDYDiggtiQD commands effect the transmission of
messages among terminals.

2.5



The text that follows is based upon this
classification, although it will be seen that certain of the
terminal control commands also affect the libraries, and one
of the library control commands may sometimes affect the
state of the active workspace.

NQ~IDgl ~§§gQn§§§ ~ng t~QYQ1§ ~§QQ~t§. Any entry starting
with a right parenthesis will be interpreted by the system
as an attempt to execute a system command. When the command
is successfully executed, the nQ~ID~l ~§§2Qn§§, if any, will
be printed. The expected reponse is given with the
description of each command.

If, for any reason, a command cannot be executed, an
appropriate t~QYQ1§ ~§QQ~t will be printed. The most common
report is INCORRECT COMMAND. This means that the command
was incomplete, mis-spelled, used a wrong modifier, or was
otherwise malformed. The corrective action in every case is
to enter a properly composed command. The meanings and
corrective actions for other trouble reports are given in
the notes accompanying the description of each command.

Cl§g~ ~Q~~§2gg§~ There are certain transient failures of
the system which cause the active workspace to be destroyed.
If this should occur, the message CLEAR WS will be printed,
indicating that the active workspace has been replaced by a
gl§s~ workspace. (The attributes of a clear workspace are
given in the section on workspace control commands, see
WeI.) This situation rarely arises, but the probability of
its occurrence is slightly higher during the execution of
system commands.

Sgmmg~~. The purposes, forms, responses, and trouble
reports for all system commands are summarized in Table 2.1.
Where the first word of a command form is more than four
characters long, only the first four are significant. The
others are included only for mnemonic reasons, and may be
dropped or replaced, as desired. For example, )CLEAR,
)CLEA, ) CLEAVER , etc., are all equivalent.

In general, the elements of a command form must be
separated by one (or more) spaces. Spaces are not required
immediately following the right parenthesis, or on either
side of the colon used with passwords, but can be used
without harm.

2.6



Reference and Purpose
COMMAND FORM 1,2,3 NORMAL RESPONSE TROUBLE REPORTS'"

16

16

6 16

6 16

16

7 8 16

9 10 16

8 10 16

9 10 16

8 10 16

11 16

16

16

16

TCI Sigh on designated User and start aWbrk session.
)NUMBER [KEY] [TEXT]; PORT, TIME, DATE, USER; SYSTEM; [SAVED,TIME,DATE] 1 2 3 4 5

TC2 End work session.
)OFF [LOCK] PORT,TIME,DATE,USER CODE; TIME USED

TC3 End work session and hold dial-up connection.
)OFF HOLD [LOCK] PORT, TIME, DATE, USER CODE; TIME USED

TC4 End work session and store active workspace.
)CONTINUE [LOCK] [TIME,DATE,CONTINUE]; PORT,TIME,DATE,USER CODE; TIME USED

TC5 End work session, store active workspace, and hold dial-up connection.
)CONTINUE HOLD [LOCK] [TIME,DATE,CONTINUE]; PORT,TIME,DATE,USER CODE; TIME USED

WCl Activate a clear workspace.
)CLEAR CLEAR WS

WC2 Activate a copy of a stored workspace.
)LOAD WSID [KEY] SAVED,TIME,DATE

WC3 Copy a global object from a stored workspace.
)COPY WSID [KEY] NAME SAVED,TIME,DATE 6 7 8

WC3a Copy all global objects from a stored workspace.
)COPY WSID [KEY] SAVED,TIME,DATE 6 7

WC4 Copy a global object from a stored workspace, protecting active workspace.
)PCOPY WSID [KEY] NAME SAVED,TIME,DATE; [NOT COPIED:,LIST OF OBJECTS] 678

WC4a Copy all global objects from a stored workspace, protecting active workspace.
)PCOPY WSID [KEY] SAVED,TIME,DATE; [NOT COPIED:,LIST OF OBJECTS] 6 7

WC5 Gather objects into a group.
)GROUP NAME[S] NONE

WC6 Erase global objects.
)ERASE NAME[S] [NOT ERASED: ,LIST OF OBJECTS]

WC7 Set index origin for array operations.
)ORIGIN INTEGER,O-l WAS,FORMER ORIGIN

WC8 Set maximum for significant digits in output.
)DIGITS INTEGER,1-16 WAS,FORMER MAXIMUM

WC9 Set maximum width for an output line. TROUBLE REPORT FORMS
)WIDTH INTEGER,30-l30 WAS,FORMER WIDTH 1 NUMBER NOT IN SYSTEM 16

WClO Change workspace identification. 2 INCORRECT SIGN-ON
)WSID WSID WAS,FORMER WSID 3 ALREADY SIGNED ON 16

LCI Re-store a copy of the active workspace. 4 NUMBER IN USE
)SAVE TIME,DATE,WSID 5 NUMBER LOCKED OUT 6 12- 13 14 16

LCla Store a copy of the active workspace. 6 NOT WITH OPEN DEFINITION
)SAVE WSID [LOCK] TIME, DATE 7 WS NOT FOUND 6 12 13 14 16

LC2 Erase a stored workspace. 8 WS LOCKED
)DROP WSID TIME, DATE 9 OBJECT NOT FOUND 7 14 16

IQl List names of defined functions. 10 WS FULL
)FNS [LETTER] FUNCTION NAMES 11 NOT GROUPED. NAME IN USE 16

IQ2 List names of global variables. 12 NOT SAVED. WS QUOTA USED UP
)VARS [LETTER] VARIABLE NAMES 13 NOT SAVED, THIS WS IS WSID 16

IQ3 List names of groups. 14 IMPROPER LIBRARY REFERENCE
)GRPS [LETTER] GROUP NAMES 15 MESSAGE LOST 16

IQ4 List membership of designated group. 16 INCORRECT COMMAND
-)GRP NAME FUNCTION NAMES, VARIABLE NAMES 16

IQ5 List halted functions (state indicator).
)SI SEQu~NCE OF HALTED FUNCTIONS 16

IQ6 List halted functions and associated local variables (augmented state indicator).
)SIV SEQUENCE OF HALTED FUNCTIONS WITH NAMES OF LOCAL VARIABLES 16

IQ7 Give identification of active workspace.
)WSID WSID 16

IQ8 List names of workspaces in designated library.
)LIB [NUMBER] NAMES OF STORED WORKSPACES 14 16

IQ9 List ports in use and codes of connected users.
)POI:TS PORT NUMBERS AND ASSOCIATED USER CODES 16

IQlO List port numbers associated with designated user code.
)PORTS CODE PORT NUMBERS 16

CMl Address text to designated port.
)MSGN PORT [TEXT] SENT 15 16

CM2 Address text to designated port, and lock keyboard.
)MSG PORT [TEXT] SENT 15 16

CM3 Address text to recording terminal (APL Operator).
)OPRN [TEXT] SENT 15 16

CM4 Address text to recording terminal (APL Operator), and lock keyboard.
)OPR [TEXT] SENT 15 16

Notes: 1. Items in brackets are optlonal.
2. KEY or LOCK: a password set off from preceding text by a colon.
3. WSID: library number and workspace name, or workspace name alone, as required.
4. See insert table of trouble report forms.

Table 2.1: SYSTEM COMMANDS

2.7



TERMINAL CONTROL COMMANDS

There is one command for starting a work session, and
there are four commands for ending one. The variations in
ending allow for automatically storing a copy of the active
workspace, and for holding a dial-up telephone connection to
the central computer for an immediate start of another work
session. The starting command has been described in Part 1
(EC3) •

fQ~g~g ~nging§. Any action that interrupts a telephone
connection for more than five seconds will cause the work
session to end, and usually cause a copy of the active
workspace to be stored. This provides a safeguard against
loss of work in case of failure in the telephone circuits,
or accidental loss of power at the terminal. It is also the
basis of the gi§gQDD~gt action described in EC4 of Part 1.

A work session can also be stopped remotely, from the
system's recording terminal, in an action known as a ~QYng§.

As in a disconnect, a copy of the active workspace is
usually stored automatically. The bounce may be used when a
port is required for a special purpose, or to clear the
system of all users before stopping the APL\360 operation
completely.

If a work session is ended because of failure of the
central computer, the active workspace is not stored.

~hg fQE~£~Qg ~Q~~§2gg~. When the active workspace is stored
automatically, as a result of a disconnect, bounce, or one
of the gQn~iD~g commands described below, it goes into the
user's private library and is given the name CONTINUE. If
the active workspace had a password associated with it,
CONTINUE will be locked with the same password.

If CONTINUE is automatically stored, and is not locked,
it will be automatically activated at the next sign-oni
otherwise, a clear workspace is activated.

Since CONTINUE will replace any workspace that may have
been previously stored under that name, there is a danger
that repeated line failures, while working with a locked
workspace, could lead to a complete loss of information. To
protect against this possibility, a clear workspace is never
stored automatically.

2.8



Int~~~Y2t~9 gQtiYiti§§. An APL operation in progress at the
moment of occurrence of a bounce or disconnect mayor may
not be carried to its normal conclusion. A defined function
in progress at such a moment will be suspended, but its
progress can be resumed at a later work session in
accordance with the procedures given in Part 3. A system
command, once begun, will continue to completion regardless
of the state of the terminal.

If a bounce or disconnect occurs when the terminal is
in definition mode, the definition process is arbitrarily
terminated by the system. To proceed with the definition
when CONTINUE is next activated, the definition mode can be
re-established according to the procedures given in Part 3.
The continue commands will be rejected in definition mode.

Q~~~i!~9 9~§~~i2~!2~. The trouble reports NO SPACE and
LIBRARY TABLE FULL have been omitted from Table 2.1, and are
also omitted from the notes below, because their occurence
is infrequent, and no corrective action can be taken from a
remote terminal. They can arise in response to a continue
command or a save command (see section on library control),
and signify that certain of the physical resources of the
system have been exhausted.

Elapsed time or time of day, given as a system
response, is always in hours, minutes,· and seconds; two
digits for each, separated by periods. A date response is
given as month, day and year; two digits for each, separated
by slashes. Clock hours are counted continuously from
midnight of the indicated day, and if the system runs past
midnight it is possible to have time readings well above 24
hours. For example, 34 022 000 07/11/68 would be 22 minutes
past 10 AM on July 12, 1968.

T~1~ ~~~~t ~ ~Q~~ §~§§!QQ:
This is the §!gn=QD,
described in EC3 of Part 1.

2.9

See Part 1, EC3.



!~~~ ~ng ~Q~~ §~§§iQn:
Enter )OFF
followed by a colon and a
password, if desired.

~~f~~!::
1. The currently active
workspace will vanish.

2. The duration of the work
session and the amount of
computer time used will be
noted internally for later
accounting.

3. The password, if used,
will become a new lock on
the account number.

4. A dial-up connection to
the central computer will be
broken.

B§§QQn§~:
1. The port number, time of
day, date, and user code
will be printed on one line.

2. Accounting information
will be printed on two
lines, giving terminal
connection time and central
computer time.

2. 10

Passwords longer than eight
characters are accepted, but
only the first eight are
meaningful. Spaces around
the colon are neutral.

There is no effect on any
stored workspace.

Once applied, a lock stays
in effect until explicitly
changed by an ending command
that contains a colon.

An existing lock is removed
if no password follows the
colon.

If a colon is not used, the
existing lock, if any,
remains in force.

l'J;:QY12!~ J;:§QQl;!;:
INCORRECT COMMAND

The time used in this
session and cumulative time
since the last accounting
are given in the standard
format, for both terminal
ti.me and computer time.

The DATA light on telephone
datasets will go out.



!~l~ ~ng ~Q~~ §~§§i9g ~g9

hQ19 gi~1=Y2 9Qnn~9ti9n:
Enter )OFP HOLD
folLowed by a colon and a
password, if desired.

~t!~9!::
1. 2. and 3. Same as for
TC2.

4. The dial-up telephone
connection will be
maintained for 60 seconds,
pending a new sign-on.

B~§!?Qn§~:

1. and 2. Same as for TC2.

~~~~ ~ng ~Q~~ §§§§iQn~~9
§~Q~~ ~£!:iY~ ~Qf~§2~9~:
Enter) CON1 IINUE'

followed by a colon and a
password, if desired.

See note at TC2.

An attention signal at this
time may cause the
connection to be broken.

1'J;"QY!21§ J;"g12QX.t:
INCORRECT COMMAND

See note at TC2.

A bounce has the same effect
and response as this
command. A disconnect has
the same effect, but no
response.

When the workspace is saved
it replaces any workspace
previously stored with the
name CONTINUE.

~ff§gt:
1. A copy of the currently
active workspace will be
stored in the user's private
library with the name
CONTINUE. If the workspace
had been activated from a
stored workspace with a
lock, the same lock will be
applied to CONTINUE.

2. 3. and 4. Same as for
TC2.

2. 11

This effect
place if
workspace is
information.

will not take
the active
not holding

B~§I?QQ§~:
1. Time of day and date,
followed by CONTINUE.

2. and 3. Same as for TC2,
response 1 and 2.

~~2~ ~Qg ~Qr~ §§§§!QDL
§tQ~g 9gt!y§ ~Q~~§2~g§L ~D9

hQ!g g~~l=~E ~Qg~§ft!Qg:
Enter)CONTINUE HOLD
followed by a colon and a
password, if desired.

~f~~£t:
1. Same as for TC4.

2. and 3. Same as for TC2.

4. Same as for TC3.

Bg§2QQ§~:

1. 2. and 3. Same as for
TC4.

2. 12

This response will be
omitted if the workspace was
not saved. See note at
Effect 1.

~~Q!df?l~ f:~2Qf:1§:
NOT WITH OPEN DEFINITION
means that the terminal is
in definition mode. Close
the definition by entering
the character v. (See
mechanics of function
definition in Part 3.)

INCORRECT COMMAND

See note at TC2.

~±:Q~Q1:§ f:~2Qf:t§:
NOT WITH OPEN DEFINITION
See TC4.

INCORRECT COMMAND

wQrk§~gg§§. Information
one workspace can be made

means of the gQgy and
reproduce within the active
workspace. These are two

WORKSPACE CONTROL COMMANDS

The commands in this class can replace the active
workspace with a clear one, or with a copy of a stored
workspace; bring together in the active workspace
information from many stored workspaces; form grQYQ§ within
the active workspace; remove unwanted objects from the
active workspace; and set controls governing certain
operations. No command in this class affects any but the
active workspace¢

~QQ!ig~~iQQ Q~gk~g§§. The usefulness of a terminal system
is enhanced by the availability of many different
collections of functions and variables, each of which is
organized to satisfy the computational needs of some area of
work; for example, standard statistical calculations,
exercises for teaching a scholastic subject, complex
arithmetic, business accounting, text editing, etc. The
workspace-centered organization of APL\360 lends itself to
such packaging, because each collection moves as a coherent
unit when the workspace containing it is stored or
activated.

The gQQY commands provide a convenient way to assemble
packages from components in different workspaces. The
grQyg command makes it convenient to have a multiplicity of
more specialized packages in a single workspace, sharing
common elements, but available individually by copying the
appropriate group.

G~Qyg§. The grQyg command assigns a single name to a
collection of names, in order to provide more convenient
reference to selected functions and global variables. The
group name can subsequently be used fOL three purposes: to
nLove a copy of the entire set of referenced objects between
workspaces, to incorporate the group members within another
group, and to erase, in a single operation, all objects
referenced by the group. Each of these is further explained
below, in connection with the relevant operation.

InfQ~gtiQn tr9Q§k§r Q§tw~§n
entered or developed within
available within another by
grQt§QtiDg=9Qg~ commands, which
workspace objects from a stored

2.13

sets of parallel commands which differ only in their
treatment of an object in the active workspace which has the
same name as an object being reproduced: the copy commands
will replace the existing object, whereas the
protecting-copy commands will not make the replacement.

A copy command of either type can be applied to an
entire workspace or to a single object (i.e., a function,
variable, or group). When an entire workspace is copied,
all the functions and global variables within it are subject
to the operation, but its index origin and output control
settings, state indicator, and local variables are left
behind.

When a group is copied without protection, both its
definition (i.e., the group name and the collection of names
composing the group), and the objects referenced by the
names within it, are reproduced in the active workspace.
When copied with protection, the group itself, or any of the
objects referenced by its members, will be omitted in order
to protect an object in the active workspace. If the group
definition is successfully copied under these circumstances,
the names composing it will refer to the global objects by
those names in the active workspace, regardless of whether
they were copied with the group or present before .

..Q§.!:.£til§g J)§§.Q];"ip..ti-.9Il. The te rm ~.9%lc-pp§..Q§ ig§l1..tij:i..9§...ti.9l1 is
used here to mean either a library number followed by a
workspace name, or a workspace name alone. When a name is
used alone, the reference is to the user's private library.
A k§Y is a colon followed by a password.

F~]'~ h.9.!:i--Y.£t!-.?
~.9~J5:EPE.9~:
Enter) CLEAR.

~ii~.9!-:
1. A clear workspace will be
activated, replacing the
presently active workspace.

2.14

This command is used to make
a fresh start, discarding
whatever is in the active
workspace.

A clear workspace has no
variables, groups, or
defined functions.

Its control settings are:
index origin, 1; significant
digits, 10; line width, 120.

Its workspace identification
does not match that of any
stored workspace. (See
section on library control.)

B~.§I?Q.Q'§~:

1. CLEAR WS

¥!~~~ S.9.tiY9:.t~ 9: .9QI2Y Qf 9:
§1Q£~g ~Q£~'§I2§.9§:
Enter)LOAD
followed by a space and a
workspace identification
(with the key, if required).

£;tf~g.t:
1. A copy of the designated
workspace will be activated,
replacing the presently
active workspace.

!r.J;"QJJbl~ ID~.§.§gg.§:
INCORRECT COMMAND

This command may be used to
obtain the use of any
workspace in the system
whose identification (and
password) is known.

B~'§PQn.§g:

1. SAVED, followed by the
time of day and the date
that the source workspace
was last stored.

TXQYQ1~ IDg§§g9~§:
WS NO Ii FOUND
means there is
workspace with
identification.

no stored
the given

WS LOCKED
means that no key, or the
wrong key, was used when one
was required.

INCORRECT COMMAND

When applied to a group, all
copy commands operate both
on the group definition and
on objects referenced by the
group members.

W~~~ ~Q2Y g glQQgl QQjggt
f~QID g §tQ~gg ~Q~k§2~gg:
Enter)COpy
followed by a space and a
workspace identification
(with the key, if required),
followed by a space and the
name of the object to be
copied.

A global object may
group, function, or
variable.

be a
global

~ft~g~:
1. A copy of the designated
object will appear in the
active workspace with global
significance, replacing
existing global homonyms.

2.15

Members of a group do not
necessarily have referents;
but a group member without a
referent in the source
workspace may find one in
the active workspace.

g].gf?.£l]'
§.!:g.!"§.Q.

B~§wn~~:
1. SAVED, followed by the
time of day and the date
that the source workspace
was last stored.

Y!~]~~ ~.Qpy

.Q.Qj~9.t.§ from
!t.Q.!'~J?P~..9g:
Enter)COPY
followed by a space and a
workspace identification
(with the key, if required).

~tig.9.!::
1. A copy of all functions,
groups, and global variables
in the source workspace will
appear in the active
workspace with global
significance, replacing
existing global homonyms.

2. 16

~~QYQlg ID~~~g9§§:
NOT WITH OPEN DEFINITION
means that the terminal is
in definition mode. Either
close the definition by
entering V, or defer the
copy operation.

WS NOT FOUND
See WC2.

WS LOCKED
See WC2.

OBJECT NOT FOUND
means that the designated
workspace does not contain a
global object with the given
name.

WS FULL
means that the active
workspace could not contain
all the material requested:
if copied at all, a variable
will be copied completely; a
partially copied function
will leave the terminal in
definition mode; some
objects may be completely
overlooked. Status may be
determined by using appro
priate inquiry commands.

INCORRECT COMMAND

See notes at WC3 •

Local variables, the state
indicator, and settings for
origin, significant digits,
and width are not copied.

Sg.§!?Q!1§§:
l~ SAVED, followed by the
time of day and the date
that' the source workspace
was last stored.

~~A~ ~Q2Y 9 glQQ91 QQjggt
i~QID g '§~Q~~g NQ~~~29gg,

2~Q1g~~1D9 thg gg~iyg

NQ~~.§!?g.gg:

Enter)PCOpy
followed by a space and a
workspace identification
(with the key, if required),
followed by a space and the
name of the object to be
copied.

~!fg,gt:

1. A copy of the designated
object will appear in the
active workspace unless
there is an existi~g global
homonym.

Bg§12Qn§~:

1. SAVED, followed by the
time of day and the date
that the source workspace
was last stored.

2. NOT COPIED:, followed by
the names of objects not
copied, will be printed if
appropriate.

2. 17

l'XQy.Q].g IDg§§9gg~:

NOT WITH OPEN DEFINITION
WS NOT FOUND
WS LOCKED
WS FULL
INCORRECT COMMAND
See We3 for all meanings.

See notes at We3.

When a group definition is
copied, any member whose
referent was blocked will,
perforce, refer to the
referent of its homonym.

~~Q~Ql§ ID§§§gg§~:

NOT WITH OPEN DEFINITION
WS NOT FOUND
WS LOCKED
OBJECT NOT FOUND
WS FULL
INCORRECT COMMAND
See We3 for all meanings.

N~~~~ ~Q2Y gIl glQggl
QQj~gt§ from g §tQ~~g

NQi~§2g9~, 2~Qt~gting th~
~Qt!y~ ~Q~~§2~£~:
Enter)PCOPY
followed by a space and a
workspace identification
(with the key, if required).

~!f~gt:
1. A copy of all global
objects in the source
workspace which do not have
global homonyms in the
active workspace will appear
in the active workspace.

B~§I2Qn§~:
1. SAVED, followed by the
time of day and the date
that the source workspace
was last stored.

2. NOT COPIED:, followed by
the names of objects not
copied, will be printed if
appropriate.

2. 18

See notes at WC3.

See note at WC3a, Effect 1.

See note at WC4, Effect 1.

~~QYQ1§ ID~§§~9~§:
NOT WITH OPEN DEF1NITION
WS NO IT FOUND
WS LOCKED
WS FULL
INCORRECT COMMAND
See WC3 for all meanings.

W~~.!. ~~:!;hgJ;:
gJ;:QY2:
Enter)GROUP
followed by a
or more names
spaces.

space and one
separated by

~ft~9:!;:
1. The first name will be
the name of a group having
the other names as members,
subject to the rules given
in the adjacent notes. An
existing group with the same
name will be superseded.

2. If only one name is used
in the command, no group is
formed, and an existing
group by that name is
dispersed.

2. 19

The first name used in the
command must not be the name
of a function or global
variable.

Any name may be a member of
a group; names of groups,
functions, and global
variables, and names without
current global referents are
all acceptable.

Members may be added to an
existing group by using the
group name twice in the
command: as the first name
and as another.

When a group is dispersed
the group definition is
destroyed, but the referents
of the group members are
unaffected.

~I:QYQ1§ I:§!2QI:t§:
NOT GROUPED, NAME IN USE
means that the first name
used in the command is the
name of a function or global
variable. Erase the
offending object, or use a
different name.

INCORRECT COMMAND

Wg~~ ~~~~~ g!Q~~! QQj~9~~:
Enter)ERASE
followed by a space and the
names of objects to be
deleted, separated by
spaces.

~;:~~~~:
1. Named objects having
global significance, other
than pendent functions, will
be expunged.

This is the only way to
remove a global variable,
and the most convenient way
to remove a collection of
objects.

Names which do not refer to
global objects are ignored.

When a group is erased, both
the group and the referents
of its members are expunged.

B~§I?Q!H~§ :
NOT ERASED:,
names of
erased will
appropriate.

followed by the
functions not
be printed, if

~fQyQ1§ f~2Qf!;:
INCORRECT COMMAND

¥!5;1~ .sg~ .!!!.Q.~~ Q!".!g.!!1 iQ!"
~!"l;~Y QBg];'g~.!.Q!!§: Enter the
characters)ORIGIN
followed by a space and a 0
or 1.

~!!~9!:
1. First elements of arrays
in the workspace will be
numbered zero or one, as
indicated, and subsequent
use of index-dependent APL
operations will be
appropriately affected.

.Bst§1?Qn.§~:
1. WAS, followed by the
former origin.

2.20

A dynamically executable
equivalent function is
available (see Part 4).

These matters are explained
in Part 3.

~I"Qyl?l.e .I'.eI?Q.I'.t:
INCORRECT COMMAND

rJ~~~ .Q§.t IDg.~iIDYID :fg~ .§l:g=
n!.f!.9g..~t gigi.t.§ in Qy.t12JJ..t:
Enter)DIGITS
followed by a space and an
integer between 1 and 16
inclusive.

~:f:f§£t:
1. Subsequent output of
numbers will show no greater
number of significant digits
than indicated.

.B§'§2QQ.§§ :
1. WAS, followed by the
former maximum.

!i~~~ .Q§!:: IDg~iIDYID ~ig!::h tg~
g,Q QY!::QY!:: .!!!!~:
Enter)WIDTH
followed by a space and an
integer between 30 and 130
inclusive.

~tt§£t:
1. Subsequent output of all
kinds, except messages
between terminals, will be
limited to a line width no
greater than the number of
spaces indicated.

.B§.§QQ!!.§§:
1. WAS, followed by the
former maximum width.

2.21

A dynamically executable
equivalent function is
available (see Part 4).

This command has no effect
on the precision of internal
calculations, which is
approximately 16 decimal
digits.

1~QYQlg ~§2Q~.:t.J.
INCORRECT COMMAND

A dynamically executable
equivalent function is
available (see Part 4).

This affects neither the
mechanical margin stops nor
the allowable length of
input lines.

1~Qyl;?l.§ .!"§Q9~.:t.i
INCORRECT COMMAND

followed by the
workspace

W~1Q~ ~h~gg ~Q~~§2~9~
ig~!:!~it!9g~iQ!:!:
Enter)WSID
followed by a space and a
workspace identification.

~if~9j;:
1. The active workspace will
assume the specified
identification. A lock
associated with the
workspace will be retained.

B~§12Qn§.§:

1. WAS,
former
identification.

LIBRARY CONTROL COMMANDS

This command can be used to
guard against inadvertently
changing a stored workspace
that has just been loaded;
and conversely, to enable
the replacement of a stored
workspace without first
using the drop command, when
the active workspace came
from a different source.
(See section on library
control commands.)

See command LCI for the
implications of this.

~!:QYQ!§ !:§2QX;.t:
INCORRECT COMMAND

There are two basic operations performed by the
commands in this class. The EEY§ commands cause a copy of
an active workspace to be stored in a library, and the gS9P
command causes such a stored copy to be destroyed.

The save commands and the load command are symmetric,
in the sense that a load command destroys an active
workspace by replacing it with a copy of a stored workspace,
while a save command may destroy a stored workspace by
replacing it with a copy of the active workspace •

..9.Q!?-..!:l-.!1..Y-l1:.Y pi ~..9.!'l<.. When a workspace is stored, an exact
copy of the active workspace is made, including the state
indicator and intermediate results from the partial
execution of halted functions. These functions can be
restarted without loss of continuity (see Part 3), which
permits considerable flexibility in planning use of the

2.22

system. For example, lengthy calculations do not have to
be completed at one terminal session; student work can be
conducted over a series of short work periods, to suit class
schedules; and mathematical experimentation or the
exploration of system models can be done over long periods
of time, at the investigator's convenience.

Yl9f".!5-EPES::'§ i-.9~.!.1!-i-Ji-S::E!-i-.9lJ.. A library number and a name,
together, uniquely identify each stored workspace in the
system. An active workspace is also identified by a library
number and a name, and as copies of stored workspaces are
activated, or copies of the active workspace are stored, the
identification of the active workspace may change according
to the following rules:

1. A workspace activated from a library assumes the
identification of its source.

2. When a copy of the active workspace is stored, the
active workspace assumes the identification assigned to
the stored copy.

3. The library number and name may be arbitrarily
changed by the use of command WelD.

4. A clear workspace activated by a clear command, a
sign-on, or a system failure is called CLEAR WS, which
cannot be the name of a stored workspace.

The identification of active workspaces is used in two
ways. First, as a safeguard against the inadvertent
replacement of a stored workspace by an unrelated one: an
attempt to replace, by a copy of the active workspace, any
stored workspace other than the one with the same
identification (or the one named CONTINUE), will be stopped.
Second, as a convenience when the active workspace is to be
re-stored with changes: the use of the command)SAVE,
without modification, implicitly uses the identification of
the active workspace.

1.!Q!"9-!"Y 9-ng 9f:9QY.D-,"t !n~ID.QgX,§. A user's account number is
also the number of his private library. The numbers of
public libraries range from 1 to 999, and do not correspond
to any account number.

Each stored workspace has implicitly associated with it
the account number signed on at the terminal from which the
save command was entered, and may not be either replaced or
erased, except from a terminal signed on. with the same
account number. Thus, a user is pzeverrt.ed from affecting

2.23

the state of another user's private library, or tampering
with public library workspaces which he did not store. He
may, of course, activate a copy of any workspace stored in
the system, if he knows the library number and name (and
password, if required).

§~Q~gg~ g!1QtID~n~. A user of APL\360 is assigned library
space in terms of the maximum number of stored workspaces he
may have at one time. This quota applies to the combined
total of workspaces stored either in his private library or
in public libraries. The allotment for each user is
determined by those responsible for the general management
of a particular system, and can be changed from the
recording terminal, as required, within the bounds of the
physical resources of the system.

Up to the number in his quota, a user may assign
arbitrary names to the workspaces he stores. Beyond that
point he always has available one workspace named CONTINUE
in his private library.

Q§g Qt thg QQMfINQ& ~Q~~§2gg~. This workspace
property that it may be freely replaced by an
workspace having any identification whatsoever. It
always available as temporary storage, but carries
the danger of being easily replaced, as described
section on terminal control commands.

has the
active

is thus
with it
in the

The attributes of the CONTINUE workspace are the same
whether stored as a result of a continue command,
disconnect, or bounce, or stored by virtue of a save command
using that name. In the last case, the active workspace
assumes the name CONTINUE, as it would any other name under
like circumstances.

~y~g!ng g ~Q~~~2~~g. The sequence of commands,
)SAVE ABC123,)CLEAR,)COPY ABC123, will purge the active

workspace, clearing it of all but its functions, groups, and
global variables, and reset its controls (see WeI). This
often results in more usable space than can otherwise be
realized. Subsequently, the commands)WSID ABC123 and
)SAVE may be used to store a copy of the purged workspace
under its former name.

2.24

Detailed Deac~ptian. The term ~o~kapace identification
will be used with the same significance as for L~e workspace
control commands.

AC'!I.Q:t:i

LC1.... Re:::.s.tQI:e. a C.Q1l.~ of th.e.
ac.tiY:e. YlQI:ksp.ac.e.:
Enter)SAVE

Eff.e.c.t:
1. A copy of the active
workspace will replace the
stored workspace with the
same identification.

2. A password associated
with the active workspace
will continue in effect, and
the stored. workspace will be
locked with this password.

Reapanae:
1. The time of day, date,
and workspace identification
will be printed.

NQ'!E5.

New workspaces can be stored
by this command only if the
identification of the active
workspace has been changed
by wcro ,

This forestalls inadvertent
omission of a lock while
actively engaged with a
confidential workspace.

T~ouble ~e.p.oI:ta:

NOT WITH OPEN DEFINITION
means that the terminal is
in function definition mode.
Either close the definition
by entering v, or defer the
save operation.

NOT SAVED, WS QUOTA USED UP
means that the allotted
number of stored workspaces
has previously been reached.
Unless this is increased,
the workspace can be stored
only by replacing a
workspace already stored.
CONTiNUE may be replaced
directly; any other must be
erased firEt, or the
identification of the active
workspace must be made to
match by WelD.

2.25

LCla_ StQ~e a CQP¥ of the
acti~e ~Q~k5pace:

Enter)SAVE
followed by a space and a
workspace identification,
with a colon and password,
if desired.

Effect.:
1. A copy of the active
workspace will be stored
with the designated
identification, and with the
assigned lock, if a password
was used.

2. The active workspace will
assume the workspace
identification used in the
command.

2.26

NOT SA VED, THI S WS IS
CLEAR WS

results from the fact that
CLEAR WS.cannot be the name
of a stored workspace.
Either change the name by
WelD, or use Lela.

IMPROPER LIBRARY REFERENCE
means that an attempt was
made either to replace a
stored workspace that is not
under control of the account
number signed on at the
terminal, or to store into a
non-existent library.

INCORRECT COMMAND

This form of the save
command allows new
workspaces to be added to a
library more conveniently,
and permits locks to be
added or removed from
workspaces already present.

A stored workspace with the
same identification will be
replaced.

A lock on a stored workspace
will not be retained if the
command does not include a
lock explicitly.

To this extent only, this
command may affect the state
of the active workspace.

Re.s.pans.e:
1. The time of day and date
will be printed ..

LC2~ Erase a stored work=
s.pace:
Enter)DROP
followed by a space and a
workspace identification.

Trouble reports.:
NOT WITH OPEN DEFINITION
means the same as for LCI.

NOT SAVED, WS QUOTA USED UP
means the same as for LCI.

NOT SAVED, THIS WS IS
followed by identification
of the active workspace,
means a stored workspace
with the identification used
in the command exists, but
this identification does not
match that of the active
workspace.

IMPROPER LIBRARY REFERENCE
means the same as for LeI.

INCORREC'l' COMMAND

Since a key is not used, a
locked workspace whose key
has been los t can always be
removed from the system.

Effect.:
1. The designated stored
workspace will be expunged.

This command has
on the active
regardless
identification.

no effect
workspace,

of its

Re.sponse:
1. The time of day and date
will be printed.

2.27

Trouble re.~orts.:
IMPROPER LIBRARY REFERENCE
means that an attempt was
made to drop a workspace
stored by another user.

WS NOT FOUND
means that there is no
stored workspace with the
identification used in the
command.

INCORRECT COMMAND

INQUIRY COMMANDS

Most of the commands in this class concern the state of
the a9tive workspace. Of the others, one command lists the
names of workspaces in libraries, and two commands are
useful for locating another user at a connected terminal, in
order to communicate with him.

y§§~ QQQ§§. The communication commands described in the
next section require that the port number of the person to
be addressed be known. The inquiry commands that provide
this information operate through the device of y§g± 9QQg§,
which serve within the system as partial identification of
users. (The user account numbers, which completely identify
users within the system, are not used for this purpose, and
are treated as private information.) A user code comprises
the first three characters of his name, as it appears in the
sign-on response (Part 1, EC3, Response 2).

A user code is considered to be only partial
identification because it may not be unique. Therefore,
these commands should be used advisedly: before addressing
substantive messages to a terminal which has been identified
by a user code, further confirmation of the receiver's
identity should be sought.

!Ql~ ~!§t ~~~~§ Q! 9~!!~~9
fg!19i:!Q!1§:
Enter)FNS
followed by an alphabetic
character, if desired.

B~§2Q~§~:
1. The names of defined
functions in the active
workspace will be printed
alphabetically, starting
with the specified letter.
If a letter was not used,
all function names will be
listed.

2.28

1'!'QgQl~ ~~§§.§.g~:
INCORRECT COMMAND

!Q~~ ~!§~ n~ID~~ Qf glQ~~!
Y~!,!gQl~§:
Enter) VARS
followed by an alphabetic
character, if desired.

B§§QQn.§§:
1. The names of global
variables in the active
workspace will be printed
alphabetically, starting
with the specified letter.
If a letter was not used,
all names of global
variables will be listed.

IQJ~ ~!§~ n~IDg.§ Qf g!'QY2.§:
Enter)GRPS
followed by an alphabetic
character, if desired.

B§§QQQ.§§:
1. The names of groups in
the active workspace will be
printed alphabetically,
starting with the letter
used. If a letter was not
used, all group names will
be listed.

~f'QYQ1§ ID§§§'9g~:
INCORRECT COMMAND

!!'QY!;?l§ ID§§§~g~:
INCORRECT COMMAND

2.29

!Q1~ ~i§t ID§mQ§~§h!~ Qf
9~§1gg§:t:gg gfQ!JI2:
Enter)GRP
followed by the name of the
group.

B§§PQr!§g:
1. The names in the group
will be printed.

IQ~~ 1i§~ h~2t~g iYD9tiQD§:
Enter)51

~fi~9t: None.

Bg.§I?9D.§§:
1. The names of halted
functions will be listed,
most recent ones first.
With each name will be given
the line number on which
execution stopped. Suspend
ed functions will be
distinguished from pendent
functions by an asterisk.

There will be no response if
there is no group with the
designated name in the
active workspace.

~~Q!J!21§ ID§§§9:9§:
INCORRECT COMMAND

The line numbers on which
halted functions have
stopped are available for
dynamic use through the
system-dependent functions
I26 and I27. (See Part 3.)

This display is the §tg~~

ingjg§t9±; its significance
and use is explained in Part
3.

.T!"9JJl>]'~ ID§§§§9§:
INCORRECT COMMAND

2.30

JQ.Q.£ LiB1- D§lt§.Q, fYJ1.gtiQD.?
~ith ngID~§ Qf 1 QgBl
Y.9.6",i.9f2.J§§:
Enter)SIV

B§§PQn§~:

1. The response will be the
same as for IQ5, except that
with each function listed
there will appear a listing
of its local variables.

JQ1~ ~iy§ ig§ntifi~§tiQD Qf
ggtiy§ ~Q~~§2Bg§:
Enter)WSID

~ff§gt: None.

B§§9QD§~:

1. The identification of the
active workspace will be
printed. The library number
will be included only if it
differs from the account
number associated with the
terminal.

JQ~.£ Li§t D§ID§§ Qf §tQ~§g
WQI.'~§ggg§§:

Enter)LIB
followed, if necessary, by a
library number.

B§§2Qn§~:

1. The names of workspaces
in the designated library
will be printed. If no
number was used, the account
number associated with the
terminal will be taken as
the library number.

1~Q.YQl.§ ID§§§g9§:
INCORRECT COMMAND

~~QYQ1~ ID§§§§9§:
INCORRECT COMMAND

A library number is not
required for listings of the
user's private library.

~I.'QYQl§ ID§§§g9§§:
IMPROPER LIBRARY REFERENCE
means that an attempt was
made to obtain a listing of
another user's private
library, or of a
non-existent library.

INCORRECT COMMAND

2.31

IQ2~ ~i§t QQ~te in Ye§ gng
QQg§§ Qf QQnn§Qt§g Ye§~§:

Enter)PORTS

J;;ff§~t: None.

nYmQ§~§

g§eig=

B§§wn§§:
1. Port numbers in use will
be printed with the
associated user code.

IQ1Q£ ~i§t QQ~t

ge§QQigt§g ~ith

ngj~§Q Ye§~ QQQ§:
Enter)PORTS
followed by the user code.

~ff§Qt: None.

B§§QQn§§:
1. The port numbers of
connected users identified
by the code will be prLnt.ed ,

COMMUNICATION COMMANDS

£~QYQ1§ ID§§§g9§:
INCORRECT COMMAND

User codes are not
necessarily unique, and the
information derived from
this command and IQ9 should
be used advisedly.

£~QYQlg ID§§§g9g:
INCORRECT COMMAND

There are two pairs of commands in this class.
pair addresses any connected terminal, and one
addresses only the system recording terminal.

One
pair

A message can be received by a terminal only when its
keyboard is locked, and except for public address
announcements from the system recording terminal, only if it
is also not in the process of function execution. Hence, to
facilitate two-way communication, one of each pair of
communication commands results in locking the keyboard of
the sending terminal, pending the receipt of a reply. A
keyboard so locked can be unlocked by an attention signal.

Incoming messages from the system recording terminal
are prefixed by OPR:, and public address messages are
prefixed by PA!: •

2.32

If the interaction at a terminal must be interrupted
for a prolonged period while the terminal is still
connected, it is good practice to lock the keyboard so that
a message may be received. This can be done by addressing a
message' of the proper type to the terminal's own port
number.

D~~9il~g g~§g~i2~iQn. The length of a message is restricted
to a single line, not exceeding 120 characters in length.
However, messages are not subject to the width settings of
either the sending or receiving terminal.

~Ml~ hsJg~~§.§ .:t:§~~.:t:Q g§.§.!g=
Dg.t~g 2Q~.t:

Enter)MSGN
followed by a port number
and anyone-line text.

A message addressed to an
unused or non-existent port
will be reflected back to
the sending terminal, which
then plays the role of both
sender and receiver •

.r;.f.f§.9~:

1. The keyboard will
while the text is
transmi tted.

lock
being

2. The text will be printed
at the receiving terminal,
prefixed by the port number
of the sending terminal.

3. The keyboard will unlock
when the transmission is
completed.

.B§.§2QD.§g:
1. SENT

2.33

l'~Q'ygl~ ID§.§.§g9g:
MESSAGE LOST
means just that. It happens
when attention is signalled
before a message is
de~ivered, or an equivalent
transmission disturbance.
occurs.

INCORRECT COMMAND

~M~~ bgg±~§§ 1~~t tQ g~§ig=

n~t~g QQ±t gng lQ9~ ~§y=
QQg!"g:
Enter)MSG
followed by a port number
and anyone-line text.

~ff~~t:
1. Same as CMl effect 1.

2. Same as CMI, Effect 2,
except for a prefix H, to
indicate that a reply is
awaited.

3. The keyboard will remain
locked after the response is
printed.

B§§QQll§'§:
1. SENT

~MJ~ ~gg~~§§ tg~t 1;Q §Y§1;§ID
±ggQ~9iIl9 tg~ingl:
Enter)OPRN
followed by anyone-line
text.

~ff§gt:

1. 2. and 3. Same as CMl.

B§§QQn§§:
1. SENT

See note at CMl.

The keyboard can be
unlocked, before receiving a
reply, by means of an
attention signal •

.'l'±QyQ1g m§§§gg~:

MESSAGE LOST
See CMl.

INCORRECT COMMAND

See note at eMl.

IrQYQ1~ ID§§§g9g:
MESSAGE LOST
See CMl.

INCORRECT COMMAND

2.34

~M1~ ~gg~g§~ tg~t

~~gQ~ging t~~IDiQ~l

Js~YQQg±:g:

Enter)OPR
followed by any
text.

tQ §Y§t~ID

g~H~ lQgJs

one-line

See note at CMl.

~fh~g:!;:

1. 2. and 3. Same as CM2.

B~§I2Qn§~:

1. SEN'l'
~;l;:Q1!Ql~ ID~§.§g9~:
MESSAGE LOST
See CMl.

INCORRECT COMMAND

2.35

PART 3

THE LANGUAGE

The APL\360 Terminal System executes system commands or
mathematical statements entered on a terminal typewriter.
The system commands were treated in Part 2i the mathematical
statements will be treated here.

Acceptable statements may employ either ~I~~
_f.J:lll~j:j...9.D...? (e. g. + - x +) which are provided by the sys tern,
or 9§t5~~ ~.J:l~~i..9.D...?, which the user provides by entering
their definitions on the terminal.

If system commands are not used, the worst that can
possibly result from erroneous use of the keyboard is the
printing of an §XI..9X x§~~r~. It is therefore advantageous
to experiment freely and to use the system itself for
settling any doubts about its behavior. For example, to
find what happens in an attemped division by zero, simply
enter the expression 4+0. If ever the system seems
unusually slow to respond, execute an attention signal to
interrupt execution and unlock the keyboard.

The Sample Terminal Session of Appendix A shows actual
intercourse with the system which may be used as a model in
gaining facility with the terminal. The examples follow the
text and may well be studied concurrently. More advanced
programming examples appear in Appendix B.

The primitive functions and the defined functions
available in libraries can be used without knowledge of the
means of defining functions. These means are treated in the
four contiguous sections beginning with Defined Functions
and ending with Homonyms. These sections may be skipped
without loss of continuity.

FUNDAMENTALS

~.t..§...t§IDg.D..t..§. Statements are of two main types, the .br.an.cb
(denoted by ~ and treated in the section on Defined
Functions), and the ~p~~i~i~~iQD. A typical specification
statement is of the form

X+-3x4

This statement assigns to the Ygrigbl~ X the value resulting
from the expression to the right of the ~p~~i£i~~ioD ~rD~.

3. 1

If the variable name and arrow are omitted, the resulting
value is printed. For example:

12

Results typed by the system begin at the left margin
whereas entries from the keyboard are automatically
indented. The keyboard arrangement is shown in Figure 1.2.

S~91~~ 9ng y~gtQr ~Qn~t~nt~. All numbers entered via the
keyboard or typed out by the system are in decimal, either
in conventional form (including a decimal point if
appropriate) or in exponential form. The exponential form
consists of an integer or decimal fraction followed
immediately by the symbol E followed immediately by an
integer. The integer following the E specifies the power of
ten by which the part preceding the E is to be multiplied.
Thus 1 044E2 is equivalent to 144.

Negative numbers are represented by a negative sign
immediately preceding the number, e.g., 1.44 and -144E-2
are equivalent negative numbers. The negative sign can be
used only as part of a constant and is to be distinguished
from the n~g~tiQn function which is denoted, as usual, by
the minus sign -.

A constant vector is entered by typing the constant
components in order, separated by one or more spaces. A
character constant is entered by typing the character
between quotation marks, and a sequence of characters
entered in quotes represents a vector whose successive
components are the characters themselves. Such a vector is
printed by the system as the sequence of characters, with no
enclosing quotes and with no separation of the successive
elements. The quote character itself must be typed in as a
pair of quotes. Thus, the abbreviation of CANNOT is
entered as 'CAN"T' and prints as CAN'T.

NgID§e ~ng SpaQes. As noted in Part 2, the name of a
variable or defined function may be any sequence of letters
or digits beginning with a letter and not conta~ning a
space. A letter may be any of the characters A to Z, or any
one of these characters underscored, e.g., ~ or ~.

Spaces are not required between primitive functions and
constants or variables, or between a succession of primitive
functions, but they may be used if desired. Spaces are
needed to separate names of adjacent defined functions,
constants, and variables. For example, the expression 3+4
may be entered with no spaces, but if F is a defined

3.2

function, then the expression 3 F 4 must be entered with the
indicated spaces. The exact number of spaces used in
succession is of no importance and extra spaces may be used
freely.

Qy~~~t~ikiug aud araaure. Backspacing serves only to
position the carriage and does not cause erasure or deletion
of characters. It can be used:

1. to insert missing characters (such as parentheses)
if space has previously been left for them,

2. to form compound characters by overstriking (e.g.
~ and !), and

3. to position the carriage for erasure, which is
effected by striking the linef.eed (marked ATTN on IBM
2741 terminals). The linefeed has the effect of
erasing the character at the position of the carriage,
and all characters to the right.

~Uq Qt a~qh~m~U~. The end of a statement is indicated by
striking the carriage return (followed, on some terminals,
by an explicit transmission signal as described in Part 1).
The typed entry is then interpreted aKaQtL~ as it appears on
the page, regardless of the time sequence in which the
characters were typed.

~~9§~ 9% §~§~~~19~. In a compound expression such as
3 x4+6+2, the functions are executed (evaluated) from
rightmost to leftmost, regardless of the particular
functions appearing in the expression. (The foregoing
expression evaluates to 21.) When parentheses are used, as
in the expression W+(3rQ)+XxY-Z, the same rule applies, but,
as usual, an enclosed expression must be completely
evaluated before its results can be used. Thus, the
foregoing expression is equivalent to W+(3rQ)+(Xx(Y-Z)).

In general, the rule can be expressed as follows: every
function takes as its righthand argument the entire
expression to its right, up to the right parenthesis of the
pair that encloses it.

~~~9~ ~§P9~1§. The attempt to execute an invalid statement
will cause one of the error reports of Table 3.1 to be typed
out. The error report will be followed by the offending
statement with a caret typed under the point in the
statement where the error was detected. If the caret lies
to the right of a specification arrow, the specification has
not yet been performed.

3.3



TYPE

CHARACTER

DEPTH

" DOMAIN

DEFN

INDEX

LABEL

LENGTH

RANK

RESEND

SYNTAX

SYMBOL
TABLE

FULL

SYSTEM

VALUE

WS FULL

Cause; CORRECTI\~ ACTION

Illeqitimate overstrike.

Excessive depth of function execution. CLEAR STATE
INDICATOR.

Arguments not in the domain of the function.

Misuse of V or 0 symbols:
1. V is in some position other than the first.
2. The function is pendent. DISPLAY STATE
INDICATOR AND CLEAR AS REQUIF.ED.
3. Use of other than the function name alone in
reopeninq a definition.
4. Improper request for a line edit or display.

Index value out of range.

Name of already defined function used as a label,
or colon used other than in function definition
and between label ana statement.

Shapes not conformable.

Ranks not conformable.

Transmission failure. RE-ENTER. IF CHRONIC,
REDIAL OR HAVE TERMINAL OR PHONE REPAIRED.

Invalid syntax; e.g., two variables juxtaposed;
function used without appropriate arguments as
dictated by its header; unmatched parentheses.

Too many names used. ERASE SOME FUNCTIONS
OR VARIABLES, THEN SAVE, CLEAR, AND COPY.

Fault in internal overation of APL\ 360. RELOAD
OR SAVE, CLEAR, AND COPY. SEND TYPED RECORD,
INCLUDING ALL WORK LEADING TO THE ERROR, TO THE
SYSTEM MANAGER.

Use of name which has not been assigned a value.
ASSIGN A VALUE TO THE VARIABLE, OR DEFINE THE
FUNCTION.

Workspace is filled (perhaps by temporary values
produced in evaluating a compound expression).
CLEAR STATE INDICATOR, ERASE NEEDLESS OBJECTS, OR
REVISE CALCUlATIONS TO USE LESS SPACE.

Table 3.1 ERROR REPORTS

3.4



If an invalid statement is encountered during execution
of a defined function, the error report includes the
function name and the line number of the invalid statement.
The recommended procedure at this point is to enter a right
arrow (+) alone, and then retry with an amended statement.
The matter is treated more fully in the section on Suspended
Function Execution.

N~§§ gf ~~iIDitiY§ iYngtjQn~. The primitive functions of
the language are summarized in Tables 3.2 and 3.8, and will
be discussed individually in subsequent sections. The tables
show one suggested name for each function. This is not
intended to discourage the common mathematical practice of
vocalizing a function in a variety of ways (for example,
X+Y may be expressed as "X divided by Y", or "X over Y").
Thus, the expression pM yields the gim~n~jQn of the array M,
but the terms .§.i1;;§ or .§h§,~§ may be preferred both for their
brevity and for the fact that they avoid potential confusion
with the g1m§n.§.igDgl.ity or ~gDk of the array.

The importance of such names and synonyms diminishes
with familiarity. The usual tendency is toward the use of
the name of the symbol itself (e.g., "rho" (p) for "size",
and "iota" (1) for "index generator n ) , probably to avoid
unwanted connotations of any of the chosen names.

SCALAR FUNCTIONS

Each of the primitive functions is classified as either
§g~l~r or m1~gg. Scalar functions are defined on scalar
(i.e., individual) arguments and are extended to arrays in
four ways: element-by-element, reduction, inner product, and
outer product, as described in the section on Functions on
Arrays. Mixed functions are discussed in a later section.

The scalar functions are summarized in Table 3.2. Each
is defined on real numbers or, as in the case of the logical
functions §,ng and Q~, on some subset of them. No functional
distinction is made between "fixed point" and "floating
point" numbers, this being primarily a matter of the
representation in a particular medium, and the user of the
terminal system need have no concern with such questions
unless his work strains the capacity of the machine with
respect to either space or accuracy.

Three different representations for numbers are used
internally, and transformations among them are carried out
automatically. Integers less. than 2 to the power 52 are
carried with full prec Ls Ionr larger numbers and non-integers
are carried to a p:r:ecision of about 16 decimal digits.

3.5



THIS PAGE INTENTIOj\TALLY LEFT BLANK

3.6



Monadic form fB f Dyadic form AfB

Definition
or example

+B +~ O+B

-B +~ O-B

Name

Plus

Negative

Name

+ Plus

Minus

Definition
or example

2+302 +-+ 5.2

2-3.2 +~ 1.2

xB +~ (B>O)-(B<O)

+B +~ 1 +B

Signum

Reciprocal

x Times

Divide

2x3.2 +~ 6.4

2+3.2 +~ 0.625

B rB LB
3.14 4 3

- --3.14 3 4

Ceiling

Floor

r Maximum

L Minimum

3r7 +~ 7

3L7 +~ 3

*B +~ (2.71828 . • )*B Exponential * Power 2*3 +~ 8

'-3014 +~ 3014

Natural
logarithm

Magnitude

$ Logarithrn

I Residue

A$B +~ Log B base A
A~B +~ (~B)+$A

Case AlB
A~O B-( IA)xLB+IA
A=O,B~O B
A=O,B<O Domain error

!O +~ 1 Factorial
! B +~ B x ! B-1
or !B +~ Gamma(B+1)

! Binomial A!B +~ (!B)+(!A)x!B-A
coefficient 2!5 +~ 10 3!5 +~ 10

?B +~ Random choice Roll
from 1B

oB +~ Bx3.14159. e. pi times

? Deal

o Circular

A Mixed Function (See
Table 3.8)

See Table at left

"'1 +~ 0 "'0 +~1 Not

Table of Dyadic 0 Functions

Relations
Result is 1 if the
relation holds, 0
if it does not:

3:::;7 +~ 1
7:::;3 +~ 0

( -A) oB A

(1-B*2)*05 0
Arcsin B 1
Arccos B 2
Arctan B 3

-( 1+B*2)*05 4
Arcsinh B 5
Arccosh B 6
Arctanh B 7

AoB
(1-B*2)*.5
Sine B
Cosine B
Tangent B
(1+E*2)*05
Sinh B
Cosh B
Tanh B

A

V

f'(

If!'

=

And
Or
Nand
Nor

Less
Not greater
Equal
Not less
Greater
Not Equal

A B AAB
000
010
100
1 1 1

AVB
o
1
1
1

1
1
1
o

1
o
o
o

Table 3.2: PRIMITIVE SCALAR FUNCTIONS

3.7



For operations such as floor and ceiling, and in
comparisons, a "fuzz" of about 1E-13 is applied in order to
avoid. anomalous results that might otherwise be engendered
by doing decimal arithmettc on a binary machine.

Two of the functions of Table 3.2, the relations ~ and
= are defined on characters as well as on numbers.

MQn~~iQ ~n~ dyadiQ funQtiQns. Each of the functions defined
in Table 3.2 may be used in the same manner as the familiar
arithmetic functions + - x and -. Most of the symbols
employed may denote either a mQn~giQ function (which takes
one argument) or a d~gdiQ function (which takes two
arguments). For example, ry denotes the monadic function
Q§iling applied to the single argument Y, and Xry denotes
the dyadic function mg~imYm applied to the two arguments X
and Y. Any such symbol always denotes a dyadic function if
possible, i.e., it will take a left argument if one is
present.

At this point it may be helpful to scrutinize each of
the functions of Table 3.2 and to work out some examples of
each, either by hand or on a terminal. However, it is not
essential to grasp all of the more advanced mathematical
functions (such as the hyperbolic functions sinh, cosh, and
tanh, or the extension of the factorial to non-integer
arguments) in order to proceed. Treatments of these
functions are readily available in standard texts.

Certain of the scalar functjons deserve brief comment.
The ±g§idye function AlB has the usual definition of residue
used in number theory. For positive integer arguments this
is equivalent to the remainder obtained on dividing B by A,
and may be stated more generally as the smallest
non-negative member of the set B-NxA, where N is any
integer.

This formulation covers the case of a zero left
arqument as shown in Table 3.2. The conventional definition
is extended in two further respects:

1. The left argument A need not be positive; however,
the value of the result depends only on the magnitude
of A.

2. The arguments need not be integral. For example,
112.6 is 0 06 and 1.518 is 0.5.

The expression -8*05 (square root of 8) yields a
domain error, but -8*1+3 has the value 2. More generally,
A*B is valid for A<O if the right argument is (a close
approximation to) a rational number with an odd denominator
not greater than 85.

3.S



The factorial function !N is defined in the usual way
as the product of the first N positive integers. It is also
extended to non-integer values of the argument N and is
equivalent to the Gamma function of N+1.

The function A!B (pronounced A out of B) is defined as
(!B)f(!A)x!B-A. For integer values of A and B, this is the
number of combinations of B things taken A at a time. (It
is related to the Complete Beta function as follows:
Beta(P,Q) +~ fQx(P-1)!P+Q-1.)

The symbols < ~ = ~ > and ~ denote the relations
1~§§ th9Q, 19§§ th9n Q~ ~gg91, etc., in the usual manner.
However, an expression of the form A <B is treated not as an
assertion, but as a function which yields a 1 if the
proposition is true, and a if it is false. For example:

1

o

When applied to lQgiggl arguments (i.e., arguments
whose values are limited to a and 1), the six relations are
equivalent to six of the logical functions of two arguments.
For example, ~ is equivalent to IDgt§rigl imgliQatiQn, and ~

is equivalent to ~~Qlg§iY§-Qr. These six functions together
with the 9ng, Q~, Dgng, and DQr shown in Table 3.2 exhaust
the nontrivial logical functions of two loqical arquments.

Y@QtQr§. Each of the monadic functions of Table 3.2 applies
to a vector, element by element. Each of the dyadic
functions applies element by element to a pair of vectors of
equal dimension or to one scalar and a vector of any
dimension, the scalar being used with each component of the
vector. For example:

!~9~~ g~n~~~tQ~. If N is a non-negative integer, then 1N
denotes a vector of the first N integers. The dimension of
the vector 1N is therefore N; in particular, 11 is a vector
of length one which has the value 1, and 10 is a vector of

3.9



dimension zero, also called an gIDQty vector.
vector prints as a blank. For example:

The empty

14
1 2 3 4

1 5
1 2 3 4 5

1 0
Empty vector prints as a blank

6-16
5 4 3 2 1 0

2 X10 Scalar applies to all (i.e., 0) elements
of 10, resulting in an empty vector

2 X16

2 4 6 8 10 12

The index generator is one of the class of mixed
functions to be treated in detail later; it is included here
because it is useful in examples.

DEFINED FUNCTIONS

~~~~Qg~~~iQ~. It would be impracticable and confusing to
attempt to include as pxi.mi, tives in a language all of the
functions which might prove useful in diverse areas of
application. On the other hand, in any particular
application there are many functions of general utility
whose use should be made as convenient as possible. This
need is met by the ability to define and name new functions,
which can then be used with the convenience of primitives.

This section introduces the basic notions
definition and illustrates the use of defined
Most of the detailed mechanics of function
revision, and display, are deferred to the
section.

The sequence

VSPHERE
[lJ SURF+4x3.14159xRxR
[2J VOL+SURFxR~3

[3 J v

of function
functions.

definition,
succeeding

is called a f~~~tiQ~ g~ti~itiQ~; the first V (pronounced
q~l) marks the beginning of the definition and the second V
marks the conclusion: the name following the first V (in
this case SPHE'RE) is the name of the function defined, the
numbers in brackets are ~~~~~m~u~ U~mQe~a, and the
accompanying statements form the QQ~ of the function
definition.

3. 10

The act of defining a fUnctlOn neither executes nor
checks for validity the statements in the body; what it does
is make the function name thereafter equivalent to the body.
For example:

[lJ
[2J
[3J

VSPHERE
SURF+4x3014159xRxR
VOL+S URFxR~ 3
V
R+2
R

Definition of the
function SPHERE

Specification and display
of the argument R

2
SURF

VALUE ERROR
SURF
A

SPHERE
SURF

50 026544

VOL
33,51029333

R+1
SPHERE
SURF

12 056636

VOL
40188786667

SURF has not been
assigned a value

Execution of SPHERE
SURF and VOL now have
values assigned by the
execution of-SPHERE

Use of SPHERE for
a new value of the
argument R

~£~D9Ei~g. Statements in a function are normally executed
in the order indicated by the statement numbers, and
execution terminates at the end of the last statement in the
sequence. This normal order can be modified by D±~D~h~§.

Branches make possible the construction of iterative
procedures.

The expression ~4 denotes a D~~D~h to statement 4 and
causes statement 4 of the function to be executed next. In
general, the arrow may be followed by any expression which,
to be effective, must evaluate to an integer. This value is
the number of the statement to be executed next. If the
integer lies outside the range of statement numbers of the
body of the function, the branch ends the execution of the
function.

If the value of the expression to the right of a branch
arrow is a non-empty vector, the branch is determined by its
first component. If the vector is empty (i.e., of zero
dimension) the branch is vacuous and the normal sequence is
followed.

3. 11

The following examples illustrate various methods of
branchinq used in three equivalent functions (SUM, SUM1, and
SUM2) for determining S as the sum of the first N integers:

[lJ
[2 J
[3 J
[4 J
[5 J
[6J
[7J

1

3

15

[1 J
[2 J
[3 J
[4J
[5 J
[6 J
[7 J

15

[1 J
[2 J
[3J
[4J
[5 J
[6 J

\lSUM
S+-O
I+-l
+4xI<S,N
S+-S+I
I+-I+l
+3
\I
N+-l
SUM
S

N+-2
SUM
S

N+-5
SUM
S

\lSUMl
S+-O
I+-l
+OxlI>N
S+-S+I
I+-I+l
+3
\I
N+-5
SUMl
S

\lSUM2
S+-O
I+-O
S+-S+I
I+-I+l
+3 X1I<S,N

\I

Branch to 4xl (i.e., 4) or to 4xO (out)

Unconditional branch to 3

Equivalent to SUM

Branch to O(out) or continue to next
line since OX10 is an empty vector

Unconditional branch to 3

Equivalent to SUM

Branch to 3 or fall through(and out)

From the last two functions in the foregoing example,
it should be clear that the expression Xl occurring in a
branch may often be read as "if". For example, +3 X1I<S,N may
be read as "Branch to 3 if I is less than or equal to N."

3. 12

b.Q9.£l1 ED.Q. glgp§]. YE.±"i.£l1?].g§. A variable is normally glgR.91
in the sense that its name has the same significance no
matter what function or functions it may be used in.
However, the iteration counter I occurring in the foregoing
function SUM is of interest only during execution of the
function; it is frequently convenient to make such a
variable lQ9.£l1 t.Q .£l iYD~~iQD in the sense that it has
meaning only during the execution of the function and bears
no relation to any object referred to by the same name at
other times. Any number of variables can be made local to a
function by appending each (preceded by a semicolon) to the
function header. Compare the following behavior of the
function SUM3, which has a local variable I, with the
behavior of the function SUM2 in which I is global:

VSUM3 ;I VSUM2

[1 J S+-O [1J S+-O
[2J I+-O [2 J I+O
[3 J S+-S+I [3 J S+-S+I
[4 J I+-I+1 [4J I+I+1
[5J +3X1I~N [5 J +3X1I~N

[6 J V [6 J V
I+-20 I+-2 0
N+-5 N+-5
SUM3 SUM2
S S

15 15
I I

20 6

Since I is local to the function SUM3, execution of SUM3 has
no effect on the variable I referred to before and after the
use of SUM3.

However, if the variable K is local to a function F
then any function G used within F may refer to the same
variable K, unless the name K is further localized by being
made local to G. For further treatment of this matter, see
the section on Homonyms.

3.13

~~El!~!~ ~fggm~~~. A function definition of the form

VSPH X
[1J SUR+4x3014159xXxX
[2J V

defines SPH as a function with an explicit argument;
whenever such a function is used it must be provided with an
argument. For example:

SPH 2
SUR

50026544
SPH 1
SUR

12056636

Any explicit argument of a function is automatically
made local to the function; if E is any expression, then the
effect of SPH E is to assign to the local variable X the
value of the expression E and then execute the body of the
function SPHo Except for having a value assigned initially,
the argument variable is treated as any other local variable
and, in particular, may be respecified within the function.

~~E!!~!~ ~~~~1t. Each of the primitive functions produces a
result and may therefore appear within compound expressions.
For example, the expression +Z produces an explicit result
and may therefore appear in a compound expression such as
X++Zo A function definition of the form

VZ+SP X
[1J Z+4x3014159xXxX
[2 J V

defines SP as a function with an explicit result; the
variable Z is local, and the value it assumes at the
completion of execution of the body of the function is the
explicit result of the function. For example:

Q+3 xSP 1
Q

37 069908

R+2
(SP R)xR+3

33.51029333

3. 14

The forms Qf ggiiD§g iYn~tiQn§. Functions may be defined
with-2~1~ ot'o explicit arguments and either with or without
an explicit result. The form of header used to define each
of these six types is shown in Table 3.3. Each of the six
forms permits the appending of semicolons and names to
introduce local variables. The names appearing in anyone
header must all be distinct; e.g., the header Z+F Z is
invalid.

Number of Number of Results
Arguments 0 1

0 \IF \lZ+F
1 \IF Y \lZ+F Y
2 \IX F Y \lZ+X F Y

Table 3.3: FORMS OF DEFINED
FUNCTIONS

It is not obligatory either for the arguments of a
defined function to be used within the body, or for the
result variable to be specified. A function definition
which does not assign a value to the result variable will
engender a yglY§ §~~Q~ report when it is used within a
compound expression. This behavior permits a function to be
defined with a restricted domain, by testing the argument(s)
and branching out in certain cases wjthout specifying a
result. For example:

\lZ+SQRT X
[1J +OX1X<O
[2J Z+X*o5\1

Q+SQRrp 16
Q

4
Q+SQRT 16

VALUE ERROR
Q+SQRT 16

1\

3. 15

Q§~ Qf g~fingg fyngtiQnB. A defined function may be used in
the same ways that a primitive function may. In particular,
it may be used within the definition of another function.
For example, the function HYP determines the hypotenuse of a
right triangle of sides A and B by using the square root
function SQRT:

VZ+SQRT X
[1J Z+X*~5V

VH+A HYP B
[1J H+SQRT (A*2)+B*2V

5 HYP 12
13

A defined function must be used with the same number of
arguments as appear in its header.

B~Qg~§iY~ fYngt~Qn g~finit~Qn~ A function F may be used in
the body of its own definition, in which case the function
is said to be ~g£Y~§~Y~ly defined. The following program
FAC shows a recursive definition of the factorial function.
The heart of the definition is statement 2, which determines
factorial N as the product of Nand FAC N-1, except for the
case N=O when it is determined (by statement 4) as 1:

VZ+FAC N
[1J -+4 X 1N = 0
[2J Z+NxFAC N-1
[3 J -+0
[4J Z+1V

~~~g~ £Qnt~Ql. A t~~g~ is an automatic type-out of
information generated by the execution of a function as it
progresses. In a complete trace of a function P, the number
of each statement executed is typed out in brackets,
preceded by the function name P and followed by the final
value produced by the statement. The trace is useful in
analyzing the behavior of a defined function, particularly
during its design.

The tracing of P is controlled by the t~~Q§ Y§QtQ~ for
P, denoted by T~P. If one types T~P+2 3 5 then statements
2,3,and 5 will be traced in any subsequent execution of P.
More generally, the value assigned to the trace vector may
be any vector of integers. Typing T~P+O will discontinue
tracing of P. A complete trace of P is set up by entering
T~P+1N, where N is the number of statements in P.

3. 16



MECHANICS OF FUNCTION DEFINITION

When a function definition is opened (by typing a V
followed by a header), the system automatically types
successive statement numbers enclosed in brackets and
accepts successive entries as the statements forming the
body of the definition. The system is therefore said to be
in g~ijDj~jgD mode, as opposed to the ~x~~~iQn mode which
prevails outside of function definition.

There are several devices which may be used during
function definition to revise and display the function being
defined. After function definition has been closed, there,
are convenient ways to re-open the definition so that these
same devices may be used for further revision or display.

~E~~l§. If a statement occurring in the body of a function
definition is prefaced by a name and a colon, then at the
end of the definition the name is assigned a value equal to
the statement number. A variable specified in this way is
called a 19b~l. Labels are used to advantage in branches
when it is expected that a function definition may be
changed for one reason or another, since a label
automatically assumes the new value of the statement number
of its associated statement as statements are inserted or
deleted.

E~yj~jQn. Any statement number (including one typed by the
system) can be overridden by typing [N], where N is any
positive number less than 10000, with or without a decimal
point and with at most four digits to the right of the
decimal point. If N is zero, it refers to the header line
of the function.

If any statement number is repeated, the statement
following it supersedes the earlier specification of the
statement. If any statement is empty that is, the
bracketed statement number was immediately followed by both
a linefeed and a carriage return (a carriage return alone is
vacuous) -- it is deleted.

When the function definition mode is ended, the
statements are reordered according to their statement
numbers and the statement numbers are replaced by the
integers 1,2,3, and so on. Labels are assigned appropriate
values.

3. 17



The particular statement on which the closing V appears
is not significant, since it marks only the end of the
definition mode, not necessarily the last line of the
function. Moreover, the closing V may be entered either
alone or at the end of a statement.

Qi§plgy. During function definition, statement N can be
displayed by overriding the line number with [NO]o After
the display, the system awaits replacement of statement N.
Typing [OJ displays the entire function, including the
header and the opening and closing v, and awaits entry of
the next statement; typing [ON] displays all statements from
N onward and awaits replacement of the l~st statement.
Executing an attention signal will stop any display.

Ling ggiting. During function definition, statement N can
be modified by the following mechanism:

1. Type [NOM] where M is an integer.

2. Statement N is automatically displayed and the
carriage stops under position M.

3. A letter or decimal digit or the symbol/may be
typed under any of the positions in the displayed
statement. Any other characters typed in this mode
are ignored. The ordinary rules for backspace and
linefeed apply.

4. When the carriage is returned, statement N is
re-displayed. Each character understruck by a I is
deleted, each character understruck by a digit K is
preceded by K added spaces, and each character
understruck by a letter is preceded by 5xR spaces,
where R is the rank of the letter in the alphabet.
Finally, the carriage moves to the first injected
space and awaits the typing of modifications to the
statement in the usual mgnDe~. The final effect is to
define the statement exactly as if the entry had been
made entirely from the keyboard; in particular, a
completely blank sequence leaves the statement
unchanged.

If the statement number itself is changed during the
editing procedure, the statement affected is determined by
the new statement number; hence statement N remains
unchanged. This permits statements to be moved, with or
without modification.

3. 18



B§.9.P~lli.!)...9 -fJJl.l~J:i.Q.D g~-fj..Dj..tj..Q.D. If a function R is already
defined, the definition mode for that function can be
re-established by entering VR alone; the rest of the
function header must not be entered. The system responds by
typing [N+1], where N is the number of statements in R.
Function definition then proceeds in the normal manner.

Function definition may also be established with
editing or display requested on the same line. For example,
VR[3JX~X+1 initiates editing by entering a new line 3
irrunediately. The system responds by typing [4J and awaiting
continuation. The entire process may be accomplished on a
single line. Thus, VR[3JX~X+1V opens the definition of R,
enters a new line 3, and terminates the definition mode.
Also, VR[DJV causes the entire definition of R to be
displayed, after which the system returns to execution mode.

Similar expressions involving display are also
permissible, for example, VR[03Jv or VR[OJ or VR[2D10J.

-YQ.9t§.9 iJJ.n~..tign.§. If the symbol 'iii' (formed by a V overstruck
with a ~ and called del-tilde) is used instead of V to open
or close a function definition, the function becomes ~Q~~~~.

A locked function cannot be revised or displayed in any way.
Moreover, an error stop within the function will print only
the function name and statement number, not the statement.
Finally, the associated stop control (see next section) and
trace control vectors cannot be changed after the function
is locked.

Locked functions are used to keep a function definition
proprietary. For example, in an exercise in which a student
is required to determine the behavior of a function by using
it for a variety of arguments, locking a function prevents
him from displaying its definition.

P§l§tiQn Qk iJJ.n~tiQn§ gng ygrigbl~~. A function
locked or not) is deleted by the command )ERASE F
2.1). It may also be deleted by deleting every
statements. A variable may be deleted only by
command.

F (whether
(see Table
one of its

the erase

SY~t~ID .9QIDIDgng ~Dt~r~g gYring iYD~~iQD ~~fini~iQD. A system
command entered during function definition will not be
accepted as a statement in the definition. Some commands,
such as )COPY, will be rejected with the message
NOT WITH OPEN DEFINITION (see Table 2.1); most will be
executed immediately.

3. 19



SUSPENDED FUNCTION EXECUTION

Sg§p§n~iQn. The execution of a function F may be stopped
before completion in a variety of ways: by an error report,
by an attention signal, or by the stop control vector S6F
treated below. In any case, the function is still active
and its execution can later be resumed. In this state the
function is said to be §Y§9~Dg~g. Typing +K will cause
execution of the suspended function to be resumed, beginning
with statement K.

Whatever the reason for suspension, the statement or
statement number displayed is the next one to have been
executed. A branch to that statement number will cause
normal continuation of the function execution, and a branch
out (+0) will terminate execution of the function.

The function I26 (described in the section on System
Dependent Functions) yields the number of the statement next
to be executed. Hence the expression +I26 provides a safe
and convenient way to cause normal resumption of execution.

In the suspended state all normal activities are
possible. In particular, the system is in a condition to:

1. execute statements or system commands.

2. resume execution of the function at an arbitrary
point N (by entering +N).

3. reopen the definition of any function which is not
Q§ng§nt. The term ~engent is defined in the
discussion of the state indicator below.

If function execution is interrupted by a disconnect,
the function is suspended and the resulting active workspace
is automatically saved under the name CONT1NUE, as noted in
Part 2.

St9:t~ ingiggtQJ;:. Typing )ST causes a display of the state
ingiQstQ~; a typical display has the following form:

)SI
H [7] *
G[2]
F[3]

The foregoing display indicates that execution was
halted just before executing statement 7 of the function H,

3.20



that the current use of function H was invoked in statement
2 of function G, and that the use of function G was in turn
invoked in statement 3 of F. The * appearing to the right
of H[7] indicates that the function H is suspended; the
functionsG and F are said to be ~endent.

Further functions can be invoked when in the suspended
state. Thus if G were now invoked and a further suspension
occurred in statement 5 of Q, itself invoked in statement 8
of G, a subsequent display of the state indicator would
appear as follows:

)51
Q[5] *
G[8]
H[7] *
G[2]

F[3]

The entire sequence from the last to the preceding
suspension can be cleared by typing a branch with no
argument (that is, +). This behavior is illustrated by
continuing the foregoing example as follows:

)5I
H[7] *
G[2]

F[3]

Repeated use of + will clear the state indicator completely.
The cleared state indicator displays as a blank line.

l'.t.QI? ~QD.t.f.91. The §.tQP y§~.t.Q];" for a function P is denoted
by 5~P. It is set in the same manner as the trace vector
(i.e., by 5~P+I, where the vector I specifies the numbers of
the statements controlled), and stops execution just ~~tg];"§

each of the specified statements. At each stop, the
function name and the line number of the statement next to
be executed are printed. After the stop the system is in
the normal suspended state; resumption of execution may
therefore be initiated by a branch.

Trace control and stop control can be used in
conjunction. Moreover, either of the control vectors may
be set within functions. In particular, they may be set by
expressions which initiate tracing or halts only for certain
values of certain variables.

3.21



HOMONYMS

Y~~i~gl~ ~~m~§. The use of local variables introduces the
possibility of having more than one object in a workspace
with the same name. Confusion is avoided by the following
rule: when a function is executed, its local variables
supersede, for the duration of the execution, other objects
of the same name. A name may, therefore, be said to have
one ~gtiy~ referent and (possibly) several 19t~Dt referents.

The complete set of referents of a name can be
determined with the aid of the SIV list (state indicator
with local variables), whose display is initiated by the
command )SIV. The SIV list contains the information
provided by the command )SI, augmented by the names of the
variables local to each function. A sample display follows:

)SIV
GL7] * z X I
F[4] P J
Q[3] * c X T
R[2] P
G[3] z X I

If the SIV list is scanned downward, from the top, the
first occurrence of a variable is the point at which its
active referent was introduced; lower occurrences are the
points at which currently latent referents were introduced;
and if the name is not found at all, its referent is global,
and should be sought for with the commands )FNS, )VARS, or
)GRPS.

As the state indicator is cleared (by ~,or by the
continuation to completion of halted functions), latent
referents become active in the sequence summarized, for the
preceding SIV list, by the following diagram:

z X I P J C T A B
G + + + I I I I I I
F I I I + + I I I I
Q I + I I I + + I I
R I I I + I I I I I
G + + + I I I I I I

Global + + + + + + + + +

The currently active referent of a name holds down to
and including the execution of the function listed at the
point of the first arrow, because of localization of the

3.22



name within tha.t function. The first latent referent
becomes active when that function is completed, and holds
down to the next arrow; and so forth until the state
indicator is completely cleared, at which point there are no
longer any latent referents, and all active referents are
g 10balob j e c t s •

E!:!n~!=!Q!:! g~!Il§~. All function names are global. In the
foregoing example; therefore, a function named P cannot be
used within the function R or within any of the functions
employed by R, since the local variable name P makes the
function P inaccessible. However, even in such
circumstances, the openinq of function definition for such a
function P is possible. (Moreover, as stated in Part 2,
system commands concern global objects only, regardless of
the current environment.)

This scheme of homonyms is easy to use and relatively
free from pitfalls. It can, however, lead to seeming
anomalies as indicated by the followinq example (shown to
the aut.ho rs by J. C. Shaw) of two pairs of functions which
differ only in the name used for the arqument:

VZ+-F X VZ+-F X
[ 1 J Z+-X+YV [1J Z+-X+YV

VZ+-G Y VZ+-G R
[1J Z+-F YV [ 1 J Z+-F RV

Y+-3 Y+-3
G 4 G 4

8 7

INPUT AND OUTPUT

The following
amount; A invested
years:

function determines the value
at interest B[1J for a period

of an
of B [2 J

VZ+-A CPI B
[1J Z+-Ax(1+001 xB[1J)*B[2JV

For example:

1000 CPI 5 4
1215 050625

3.23



The casual user of such a function might, however, find
it onerous to remember the positions of the various
arguments and whether the interest rate is to be entered as
the actual rate (e.g., .05) or in percent (e.g., 5). An
exchange of the following form might be more palatable:

CI
ENTER CAPITAL AMOUNT IN DOLLARS
0:

1000
ENTER INTEREST IN PERCENT
0:

5
ENTER PERIOD IN YEARS
0:

4
RESULT IS 1215 050625

It is necessary that each of the keyboard entries
(1000, 5, and 4) occurring in such an exchange be accepted
not as an ordinary entry (which would only evoke the
response 1000, etc.), but as data to be used within the
function CI. Facilities for this are provided in two ways,
termed ~Y~ly~t~g ingyt, and gh9~9~t~~ inpyt.

The definition of the function CI is shown at the end
of this section.

~Y~lg~t~g ingyt. The quad symbol 0 appearing anywhere other
than immediately to the left of a specification arrow
accepts keyboard input as follows: the two symbols 0: are
printed, the paper is spaced up one line, and the keyboard
unlocks. Any valid expression entered at this point is
evaluated and the result is substituted for the quad. For
example:

VZ+F
[1J Z+4xD*2
[2J V

F
0:

3
36

F
0:

3f2
9

3.24



An invalid entry in response to request for a quad
input' induces an appropriate error report, after which input
is again awaited at the same point. A system command
entered will be executed, after which (except in the case of
one which replaces the active workspace) a valid expression
will again be awaited. An empty input (i.e., a carriage
return alone or spaces and a carriage return) is rejected
and the system again prints the symbols 0: and awaits input.

The symbols D: are printed to alert the user to the
type of input expected; they can be changed by the library
function SFEI as described in Part 4.

~h~~~Qt~~ inQ~t, The quote-quad symbol ~ (i.e., a quad
overstruck with a quote) accepts character input: the
keyboard unlocks at the left margin and data entered are
accepted as characters. For example:

X+~

CAN'T
X

CAN'T

(Quote-quad input, not indented)

~~Q~2~ f£Qill iITQ~t lQQQ. If evaluated or character input
occurs within an endless loop in a function, it may be
impossible to escape by the usual device of striking the
attention button. Escape from 0 input can be achieved by
entering +. Escape from ~ input can be achieved by typing
the three letters OUT, in that order, but with a backspace
between each pair so that they all overstrike. The effect
is exactly as if the symbol + were entered while suspended.

~Q£ill~l Q~tQ~t. The quad symbol appearing immediately to the
left of a specification arrow indicates that the value of
the expression to the right of the arrow is to be printed.
Hence, D+X is equivalent to the statement X. The longer
form D+X is useful when employing multiple specification.
For example, D+Q+X*2 assigns to Q the value X*2 and then
prints the value of X*2.

The page width (measured in characters) may be set to
any value N in the range 30-130 by entering the command
)WIDTH N. It may also be set by the library function WIDTH

which may be used within a defined function. (See Part 4.)

3.25



B~t§~99§g§g~E g~tpgt. A sequence of expressions separated
by semi-colons will cause the values of the expressions to
be printed, with no intervening carriage returns or spaces
except those implicit in the display of the values.

The primary use of this form is for output in which
some of the expressions yield numbers and some yield
characters. For example, if X+2 14 , then:

'THE VALUE OF X IS ';X
THE VALUE OF X IS 2 14

A further example of mixed output is furnished by the
definition of the function CI which introduced the present
section:

VCI;A;I;Y
[1J 'ENTER CAPITAL AMOUNT IN DOLLARS'
[ 2 J A*-O
[3 J 'ENTER INTEREST IN PERCENT'
[ 4 J I*-O
[5J 'ENTER PERIOD IN YEARS'
[ 6 J Y*-O
[7J 'RESULT IS ';Ax(1+.01 xI)*YV

RECTANGULAR ARRAYS

!gt~Q9~9tiQg. A single element of a rectangular array can
be selected by specifying its ingig§~; the number of indices
required is called the dimensionality or ~gDk of the array.
Thus a vector is of rank 1, a IDgt~i~ (in which the first
index selects a row and the second a column) is of rank 2,
and a scalar (since it permits no selection by indices) is
an array of rank O. Rectangular arrays of higher rank may
be used, and are called 3-dimensional, 4-dimensional, etc.

This section treats the reshaping and indexing of
arrays, and the form of array output. The following sect jon
treats the four ways in which the basic scalar functions are
extended to arrays, and the next section thereafter treats
the definition of certain mixed functions on arrays.

3.26



y~g~Q~§, gim~g§iQg, ggt§ggtiQg~ If X is a vector, then pX
denotes its dimension. For example, if X+2 3 5 7 11, then
pX is 5, and if Y+'ABC' , then pY is 3. A single character
entered in quotes or in response to a ~ input is a scalar,
not a vector of dimension 1; this parallels the case of a
single number, which is also a scalar.

~~t§n~tiQn chains two vectors (or scalars) together to
form a vector; it is denoted by a comma. For example:

X+2 3 5 7 11
X,X

2 3 5 7 11 2 3 5 7 11

In general, the dimension of
number of eleGents in X and Y.
catenated with a character
Heterogeneous Output.)

X,Y is equal to the total
A numeric vector cannot be
vector. (However, see

M~tIig§§, Qim§n~iQn, I~ygl. The monadic function p applied
to an array A yields 1~he ~i~§ of A, that is, a vector whose
components are the dimensions of A. For example, if A is
the matrix

1 234
5 678
9 10 11 12

of three rows and four columns, then pA is the vector 3 4.

Since pA contains one component for each coordinate of
A, the expression ppA is the rank of A. Table 3.4
illustrates the values of pA and ppA for arrays of rank 0
(scalars) up to rank 3. In particular, the function p
applied to a scalar yields an empty vector.

Type of Array pA ppA pppA

Scalar 0 1
Vector N 1 1
Matrix M N 2 1
3-Dimensional L M N 3 1

Table 3.4: DIMENSION AND
RANK VECTORS

3.27



The monadic functjon ~gygl is denoted by a comma; when
applied to any array A it produces a vector whose elements
are the elements of A in row order. For example, if A is
the matrix

246 8
10 12 14 16
18 20 22 24

and if V·f-,A then V is a vector of dimension 12 whose
elements are the integers 2 4 6 8 10 12 24. If A
is a vector, then ,A is equivalent to Ai if A is a scalar,
then ,A is a vector of dimension 1.

Bg§h~g. The dyadic function p ~~~hg2§§ its right argument
to the dimension specified by its left argument. If M+DpV,
then M is an array of dimension D whose elements are the
elements of V. For example, 2 3p1 2 3 4 5 6 is the matrix

123
456

If N, the total number of elements required in the
array Dp V, is equal to the dimension of the vector V, then
the ravel of Dp V is equal to V • If N is less than p V, then
only the first N elements of V are used; if N is greater
than p V, then the elements of V are repeated cyclically.
For example, 2 3p1 2 is the matrix

1 2 1
2 1 2

and 3 3p 1 0 0 0 is the identity matrix

1 0 0
0 1 0
0 0 1

3.28



More generally; if A is any
equivalent to Dp ,A. For example, if A

123
456

then 3 5pA is the matrix

1 2 345
61234
5 612 3

array; then DoA
is the matrix

is

The expressions opX and 0 3pX and 3 OpX and 0 OpX are
all valid; anyone or more of the dimensions of an array may
be zero.

jJE~E 9.% ~J!lpj:'y E..J:"..J:"_a'y..? •
no components and is
expressions which yield
applied to any scalar.
line.

A vector of dimension zero contains
called an ~IDP~~ Y~~~~I. Three
empty vectors are 1 0 and ' , and p

An empty vector prints as a blank

One important use of the empty vector has already been
illustrated: when one occurs as the argument of a branch,
the effect is to continue the normal sequence.

The following function for determining the
representation of any positive integer N in a base B number
system shows a typical use of the empty vector in
initializing a vector Z which is to be bu.ilt up by
successive catenations:

'VZ+B BASE N
[lJ Z+10
[ 2 J Z+ (B IN) , Z
[ 3 J N+LN~B

[4 J -+2xN>0'V
10 BASE 1776

1 7 7 6
8 BASE 1776

3 3 6 0

Empty arrays of higher rank can be usefu.l in analogous
ways in conjunction with the ~~PED§i9D function described in
the section on Mixed Functions.

3.29



Jgg~~ing. If X is a vector and I is a scalar, then XCI]
denotes the Ith element of X. For example, if X+2 3 5 7 11
then X [ 2] is 3.

If the index I is a vector, then XCI] is the vector
obtained by selecting from X the elements indicated by
successive components of I. For example, X[1 3 5J is
2 5 11 and X[5 4 3 2 1 J i s 11 7 5 3 2 and X [ 1 3 ] is 2 3 5.
If the elements of I do not belong to the set of indices of
X, then the expression XlIJ induces an iDg~Z ~rrQr report.

In general, pX[IJ is equal to pI. In particular, if I
is a scalar, then XCI] is a scalar, and if I is a matrix,
then XCI] is a matrix. For example:

A+' ABCDEFG'
M+4 3p3 1 4 2 1 4 4 1 2 4 1 4
M

314
214
412
414

A [MJ

CAD
BAD
DAB
DAD

If M is a matrix, then M is indexed by a two-part list
of the form I;J where I selects the row (or rows) and J
selec·ts the column (or columns). For example, if M is the
matrix

1 2 3 4
5 678
9 10 11 12

then M[2;3J is the element 7 and Ml1 3; 2 3 4J is the matrix

234
10 11 12

3.30



In general, pM[I;JJ is equal to (pI),pJ. Hence if I
and J are both vectors, then M[I;JJ is a matrix; if both I
and J are scalars, M[I;JJ is a scalar; if I is a vector and
J is a scalar (or vice versa), M[I;JJ is a vector. The
indices are not limited to vectors, but may be of higher
rank. For example, if I is a 3 by 4 matrix, and J is a
vector of dimension 6, then M[I;JJ is of dimension 3 4 6,
and M[J;IJ is of dimension 6 3 4. In particular, if T and P
and Q are matrices, and if R+T[P;QJ, then R is an array of
rank 4 and R[I;J;K;LJ is equal to T[P[I;JJ;Q[K;LJJ.

The form M[I;J indicates that all columns are selected,
and the form M[;JJ indicates that all rows are selected.
For example, M[2;J is 5 6 7 8 and M[;2 1J is

2 1
6 5

10 9

The following example illustrates the use of a matrix
indexing a matrix to obtain a three-dimensional array:

M+4 3p3 1 4 2 1 4 4 1 2 4 1 4
M

3 1 4
2 1 4
4 1 2
4 1 4

M[M; J

4 1 2
3 1 4
4 1 4

214
314
414

4 1 4
314
214

414
314
4 1 4

3.31



Permutations are an interesting use of indexing. A
vector P whose elements are some permutation of its own
indices is called a R~~~~q~~QQ Q~ Q~q~~ pP. For example,
3 1 4 2 is a permutation of order 4. If X is any vector of
the same dimension as P, then X[PJ produces a permutation of
X. Moreover, if pP is equal to (pM)[1J, then M[P;J permutes
the column vectors of M (L; e., interchanges the rows of M)
and is called a Q..o_l.-'lJ1I.l.Il. R~~m.~"t-q"t-:lQQ. Similarly, if p P equals
( pM) [ 2 J, then M[; PJ is a ~Q~ R~:gQ~"t-C!.."t-.:Lo_Q of M.

~~~~~~~ ~Q ~Q~ ~~~~. An array appearing to the left of a
specification arrow may be indexed, in which case only the
selected positions are affected by the specification. For
example:

X+-2 3 5 7 11
X[1 3J+-6 8
X

6 3 8 7 11

The normal restrictions on indexing apply; in
particular, a variable which has not already been assigned a
value cannot be indexed, and an out-of-range index value
cannot be used.

JDg§~ Q~igin. In 1=Q~j9jD indexing, XC1J is the leading
element of the vector X and X[pX] is the last element. In
~~g~igiD indexing, X[oJ is the leading element and X[-1+pX]
is the last. a-origin indexing is instituted by the command
)ORIGIN o. The command)ORIGIN 1 restores I-origin
indexing. The index origin in effect applies to all
coordinates of all rectangular arrays.

The function ORIGIN in Library 1 WSFNS may also be used
to control the inde~ origin. It may be executed within a
function. (See Part 4.)

In certain expressions such as +/[JJM and K~[JJM (to be
treated more fully in the two following sections), the value
of J determines the coordinate of the array M along which
the function is to be applied. Since the numbering of
coordinates follows the index origin, a change of index
origin also affects the behavior of such expressions.

The index origin also affects four other functions, the
monadic and the dyadic forms of ? and 1. The expression 1N
yields a vector of the first N integers beginning with the
index origin. Hence X[lNJ selects the first N components of
X in either origin. Moreover, 11 is a one-element vector
having the value 0 in a-origin and 1 in I-origin; 10 is an
empty vector in either origin.

3.32

The index origin remains associated with a workspace;
in particular j the index origin of an active workspace is
not affected by a copy command. A clean workspace provided
on sign-on or by the command)CLEAR is in I-origin. All
definitions and examples in this text are expressed in
I-origin.

~~~~Y Qgt2~t. Character arrays print with no spaces between
components in each row; other arrays print with at least one
space. If a vector or a row of a matrix requires more than
one line, succeeding lines are indented.

A matrix prints with all columns aligned and with a
blank line before the first row. A matrix of dimension N~l

prints as a single colu~~.

FUNCTIONS ON ARRAYS

There are four ways in which the scalar functions of
Table 3.2 extend to arrays; element-by-element, reduction,
inner product, and outer product. Reduction and outer
product are defined on any arrays, but the other two
extensions are defined only on arrays whose sizes satisfy a
certain relationship called ~QnfQrmabilit¥. For the
element-by-element extension, conformability requires that
the shapes of the arrays agree, unless one is a scalar. The
requirements for inner product are shown in Table 3.6.

~£919~ fygQtiQll§. All of the scalar functions of Table 3.2
are extended to arrays element by element. Thus if M and N
are matrices of the same size, f is a scalar function, and
P+MfN, then P[I;J] equals M[I;JJfN[I;J], and if Q+fN, then
Q[I;J] is equal to fN[I;J]o

If M and N are not of the same size, then MfN is
undefined (and induces a l~llgth or rgnk grrQr report) unless
one or other of M and N is a scalar or one-element array, in
which case the single element is applied to each element of
the other argument. In particular, a scalar versus an empty
array produces an empty array.

An expression or function definition which employs only
scalar functions and scalar constants extends to arrays like
a scalar function.

B@gygtbQg. The §Ym-~~gygtiQn of a vector X is denoted by
+IX and defined as the sum of all components of X. More
generally, for any scalar dyadic function f, the expression
fiX is equivalent to X[1]fX[2]f. o.fX[pX], where evaluation
is from rightmost to leftmost as usual. A user-defined
function cannot be used in reduction.

3.33



If X is a vector of dimension zero, then fiX yields the
identity element of the function f (listed in Table 3.5) if
it exists; if X is a scalar or a vector of dimension 1, then
fiX yields the value of the single element of X.

The result of reducing any vector or scalar is a
scalar.

Dyadic Identity Left-
Function Element Right

Times x 1 L R
Plus + 0 L R
Divide .. 1 R
Minus - 0 R
Power * 1 R
Logarithm G9 None

-Maximum r 7 0237 0 0 cE75 L R
Minimum L 7.2370 e cE75 L R
Residue I 0 L
Circle 0 None
Out of ,

1 L
Or v 0 L R
And A 1 L R
Nor l<f None
Nand 1'< None...
Equal = 1 Apply L R
Not equal ~ 0 for L R
Greater > 0> logical R
Not less ~ 1 arguments R
Less < 0 only L
Not greater :S: 1 L

Table 3.5: IDENTITY ELEMENTS OF
PRIMITIVE SCALAR
DYADIC FUNCTIONS

For a matrix M, reduction can proceed along the first
coordinate (denoted by f/[1]M) or along the second
coordinate (f/[2]M)0 The result in either case is a vector;
in general, reduction applied to any non-scalar array A
produces a result of rank one less than the rank of A (hence
the term ~~Qyg~!Qn). The numbering of coordinates follows
the index origin, and an attempt to reduce along a
non-existent coordinate will result in an index error.

3.34



Since +/[1]M scans over the row index of M it sums each
gQ!gmn vector of M, and +/[2]M sums the ~Q~ vectors of M.
For example, if M is the matrix

123
456

then +/[1]M is 5 7 9 and +/[2]M is 6 15.

In reducing along the last coordinate of an array, the
coordinate indicator may be elided thus +/M denotes
summing over each of the rows of M and +/V denotes summing
over the last (and only) coordinate of the vector V.

Reduction over the first coordinate of M by a function
f may be obtained by using the expression flM. The symbol I
is formed by overstriking the solidus with the minus sign.

!gg~~ E~Q~~9~. The familiar matrix product is denoted by
C~A+oxB. If A and B are matrices, then C is a matrix such
that C[I;J] is equal to +/A[I;]xB[;JJo A similar definition
applies to Af.gB where f and g are any of the standard
scalar dyadic functions.

If A is a
such that C[J]
A is a matrix,
+/ A [I; ] xB 0 If
scalar +/AxB~

vector and B is a matrix, then C is a vector
is equal to +/AxB[ ;J]. If B is a vector and
then C is a vector such that C[I] is equal to

both A and B are vectors, then A+.xB is the

The last dimension of the pre-multiplier A must equal
the first dimension of the post-multiplier B, except that if
either argument is a scalar, it is extended in the usual
way. For non-scalar arguments, the dimension of the result
is equal to (-1+pA),1+pB. (See the function .Q.J;QI? in the
section on Mixed Functions.) In other words, the dimension
of the result is equal to (pA),pB except for the two inner
dimensions (-1tpA and 1tpB), which must agree and which are
eliminated by the reduction over them.

Definitions for various cases are shown in Table 3.6.

Q~~~~ 2~Q9~9~. The outer product of two arrays X and Y with
respect to a standard scalar dyadic function g is denoted by
X 0 0 g Y and yields an array 0 f dimens ion (p X) , pl' , formed by
applying g to every pair of components of X and Y.

3.35



Conformability Definition
pA oB oAf.gB requirements Z+-A f. gB

Z+-f/AqB
V Z+-f/AgB

U Z+-f/AgB
U V U=V Z+-f/ AqB

V W w Z[1J+-f/AgB[ ;1J
T u T Z[1J+-f/A[I; JgB

U V W W U=V Z[I J«f / AgB [ ; I J
T U V T U=V Z[I J+-f / A[ I ; JgB
T U V W T W U=V Z[1;JJ+-f/A[1;JgB[;JJ

-Table 3.6: INNER PRODUCTS FOR PRIMITIVE SCALAR
DYADIC Fu~CTIONS f AND g

If X and Yare
equal to X[1JgY[JJo

X+-13
Y+-14
XooxY

1 2 3 4
246 8
3 6 9 12

Xoo~Y

100 0
110 0
1 1 1 0

vectors and
For example:

Z+-Xo ogY, then Z[1;JJ is

If X is a vector and Y is a matrix, and Z+-Xo,gY, then
Z[1;J;KJ is equal to X[IJgY[J;KJo Definitions for various
cases are shown in Table 3.7.

Definition
pA pB p A° 0 gB Z+-A ° . gB

Z+-AgB
V V Z[1J+-AgB[IJ

u u Z[I J+-A [I JgB
U V U V Z[1;JJ+-A[IJgB[JJ

V W V w Z[1;JJ+-AgB[1;JJ
T u T U Z[ I ; J J +-A [I; J JgB

U V W U V w Z[1;J;KJ+-A[1JgB[J;KJ
T u V T U V Z[I;J;KJ+-A[1;JJgB[KJ
T u V W T U V w Z[1;J;K;LJ+-A[l;JJgB[K;LJ

Table 3.7: OUTER PRODUCTS FOR PRIMITIVE
SCALAR DYADIC FUNCTION g

3.36



MIXED FUNCTIONS

Introduction. The §~~1~£ functions listed in Table 3.2 each
t.ake-a--scalar argument (or arguments) and yield a scalar
result; each is also extended element by element to arrays.
The ~i~~9 functions of Table 3.8, on the other hand, may be
defined on vector arguments to yield a scalar result or a
vector result, or may be defined on scalar arguments to
yield a vector result. In extending these definitions to
arrays of higher rank, it may therefore be necessary to
specify which coordinate of an array the mixed function is
applied to. The expression [J] following a function symbol
indicates that the function is applied to the Jth
coordinate. If the expression is elided, the function
applies to the last coordinate of the argument array. These
conventions agree with those used earlier in reduction.

The numbering of coordinates follows the index origin.

T±".9-.!!§p.Q.§g. The expression 2 1~M yields th.e 1:£.9-.!!'§P.Q..§.§ of the
matrix M; that is, if R+2 1~M, then each element R[I;J] is
equal to M[J;I]. For example:

M
1 2 3 4
5 678
9 10 11 12

2 1~M

159
2 6 10
3 7 11
4 8 12

If P is any permutation of order ppA, then P~A is an
array similar to A except that the coordinates are permuted:
the Ith coordinate becomes the P[I]th coordinate of the
result. Hence, if R+P~A, then (pR)[P] is equal to pA. For
example:

A+2 3 5 7P1210
pA

2 3 5 7
P+2 3 4 1
pP~A

7 2 3 5

3.37



Name Sign l Definition or example 2

Size pA pP +--+ 4 p E +--+ 3 4 p5 +--+ 10

Reshape

Ravel

VpA

,A

Reshape A to dimension V
12pE +--+ 112 OpE +--+ 10
,A +--+ (x/pA)pA ,E +--+112

3 4P112 +--+ E

p,5 +--+ 1

Catenate V,V
V[A J

P,12 +--+ 2 3 5 71 2 'T' ~'HIS' +--+ 'THIS'
~ P[2] +--+3 P[4 3 2 1J +--+7 5 3 2

Index lS
generator3

Take VtA

Drop V+A
Grade up5 ~A

Grade dowrr' VA

Comp r e s sf VIA

2 5
4 5
5 5

ABC
EFG

2 3tX +--+

5 1
P1E +--+ 3 5

5 5

- 2tP +--+ 5 7
~3 5 3 2 +--+ 4 1 3 2

V3 5 3 2 +--+ 2 1 3 4

+--+ 1

14 +--+ 1 2 3 4
10 +--+ an empty vector

ABCD
'ABCDEFGHIJKL'[E] +--+ EFGH

IJKL

P13 +--+2

E[1 3;3 2 1J +--+ 3 2 1
11 10 9

1 3
1 0 1 otE +--+ 5 7

9 11
1 0 1/[1JE +--+ 1 2 3 4 +--+ 1 0 11E

9 10 11 12

1 0 1 OIP +--+ 2 5

4 414

}

Th e permutation which
would order A (ascend
ing or descending)

}

Ta k e (drop) I V[IJ first
elements on coordinate
I • ( La s t if V[ I J < 0 )

)-

E[ 1 ; ] +--+ 1 2 3 4
E[ ; 1 J +--+ 1 5 9

..
First S integers

I
Least index of A
in V, or 1+p V

A [A ; ••
• e ; A J

V1A

M[A;AJIndex 3 4

Index of 3

Expand5

Reverse 5-

Rotate5

V\A

A¢A

1 0 1\11 +--+ 1 0 2

DCBA
¢x +--+ HGFE

LKJI ¢p

3¢P +--+ 7 2 3 5 +--+

A BCD
1 0 1 1 1\X +--+ E FGH

I JKL
IJKL

¢[1JX +--+ eX +--+ EFGH
+--+ 7 5 3 2 ABCD

BCDA
-1¢P 1 0 -1¢X +--+ EFGH

LIJK

Transpose

V<\>A Coordinate I of A
becomes coordinate
V[I] of result

AEI
2 1<\>X +--+ BFJ

CGK
1 1<\>E +--+ 1 6 11 DHL

Transpose last two coordinates ~E +--+ 2 1~E

Membership

Decode V1. V

o 1 1 0
pWEY +--+ pW EEP +--+ 1 0 1 0
PE14 +--+ 1 1 0 0 0 0 0 0
101.1 7 7 6 +--+ 1776 24 60 601.1 2 3 +--+ 3723

Encode
Deal 3

VTS
S?S

Table 3.8: PRIMITIVE MIXED FUNCTIONS (see adjacent notes)

3.38



1. Restrictions on argument ranks are indicated by: S for
scalar, V for vector, M for matrix, A for Any. Except as
the first argument of SlA or SeA], a scalar may be used
instead of a vector. A one-element array may replace any
scalar.

2. Arrays used 1 2 3 4 ABeD
in examples: P +--+ 2 3 5 7 E +--+ 5 6 7 8 X +--+ EFGH

9 10 11 12 IJKL
3. Function depends on index origin.

4. Elision of any index selects all along that coordinate.

5. The function is applied along the last coordinate; the
symbols I, ~, and e are equivalent to I, \, and ¢,
respectively, except that the function is applied along the
first coordinate. If [5] appears after any of the symbols,
the relevant coordinate is determined by the scalar S.

Notes to Table 3.8

More generally, QQA is a valid expression if Q is any
vector of dimension ppA wnose elements are chosen from (and
exhaust) the elements of 1 r I Q. For example, if p pA is. equal
to 3, then 1 1 2 and 2 1 1 and 1 1 1 are suitable values for
Q but 1 3 1 is not. Just as for the case PQA where P is a
permutation vector, the Ith coordinate becomes the Q[IJth
coordinate of QQA. However, in this case two or more of the
coordinates of A may map into a single coordinate of the
result, thus producing a diagonal section of A as
illustrated below:

A+-3 3Pl9
A

1 2 3
4 5 6
7 8 9

1 1QA
1 5 9

3.39



Table 3.9 shows the detailed
transposition for a variety of cases.

definitions of

MQ!:!~91g j;;r~!:!'§2Q§g. The expression ~A yields the array A
with the last two coordinates interchanged. For a vector V,
matrix M, and three dimensional array T, the following
relations hold:

~V is equivalent to 1~V (and hence to V)
~M is equivalent to 2 1~M (ordinary matrix transpose)
~T is equivalent to 1 3 2~T

BQtgtg. If K is a scalar or one-element vector and X is a
vector, then K¢X is a cyclic rotation of X defined as
follows: K¢X is equal to X[1+(pX)I-1+K+1PXJo For example,
if X+2 3 5 7 11, then 2¢X is equal to 5 7 11 2 3, and -2¢X
is equal to 7 11 2 3 5. In a-origin indexing, the
definition for K¢X becomes X[(pX)IK+1PXJ.

If the rank of X exceeds 1, then the coordinate J along
which rotation is to be performed may be specified in the
form Z+K¢[JJX. Moreover, the dimension of K must equal the
remaining dimensions of X, and each vector along the Jth
coordinate of X is rotated as specified by the corresponding
element of K. A scalar K is extended in the usual manner.

Case pR Definition

R+1~V pV R+V
R+1 2~M pM R+M·
R+2 1~M ( pM) [ 2 1 J R[I;JJ+M[J;IJ
R+1 1~M L /pM R[IJ+M[I;IJ
R+1 2 3~T pT R+T
R+1 3 2~T (pT)[1 3 2J R[I;J;KJ+T[I;K;JJ
R+2 3 1~T (p7J)[3 1 2J R[I;J;KJ+T[J;K;IJ
R+3 1 2~T (pT)[2 3 1J R[I;J;KJ+T[K;I;JJ
R+1 1 2~T (L/(pT)[1 2J),(pT)[3] R[I;J]+T[I;I;JJ
R+1 2 1~T (L/(pT)[1 3]),(p21)[2J R[I;J]+T[I;J;I]
R+2 1 1~T (L/(pT)[2 3J),(pT)[1] R[I;J]+T[J;I;I]
R+1 1 1~T L /p T R[I]+T[I;I;I]

Table 3.9: TRANSPOSITION

3.40



For example, if pX is 3 4 and J is 2, then K must be of
dimension 3 and ZCI;J is equal to K[I]¢X[I;]o If J is 1,
then pK must be 4, and Z[;I] is equal to K[I]~X[;I]. If X is
a three-dimensional array, then K must be a matrix or a
scalar. For example:

M 0 1 2 3¢[1]M 1 2 3<p[2]M

1 2 3 4 1 6 11 4 2 3 4 1
5 6 7 8 5 10 3 8 7 8 5 6
9 10 11 12 9 2 7 12 12 9 10 11

The expression Kex denotes rotation along the first
coordinate of X. The symbol e is formed by overstriking a 0

with a minus sign.

B§Y§~~~. If X is a vector and R+¢X, then R is equal to X
except that the elements appear in reverse order. Formally,
R is equal to X[1+(pX)-lpX]. In o-origin indexing, the
appropriate expression is X[-1+(pX)-lpX].

If A is any array, J is a scalar or one-element vector,
and R+¢[J]A, then R is an array like A except that the order
of the elements is reversed along the Jth coordinate. For
example:

A
123
456

¢[1]A
456
123

¢[2]A
321
654

The expression ¢A denotes reversal along the last
coordinate of A, and eA denotes reversal along the first
coordinate. For example, if A is of rank 3, then ¢A_ is
equivalent to ~[3]A, and eA is equivalent to ¢[1]A.

f~~.!"~EE. The expression U/ X denotes ~Q!IlP.!"~E§jg.!) of X by U •
If U is a logical vector (comprising elements having only
the values 0 or 1) and X is a vector of the same dimension,
then U/X produces a vector result of +/U elements chosen
from those elements of X corresponding to non-zero elements
of U. For example, if X+2 3 5 7 11 and U+1 0 1 1 0 then
U/ Xis 2 5 7 and ('" U) / xis 3 11 0

To be conformable, the dimensions of the arguments must
agree, except that a scalar (or one-element vector) left
argument is extended to apply to all elements of the right
argurnent., Hence 1/Xis equal to X and 0/ Xis an empty
vector. A scalar right argument is not extended. The
result in every case is a vector.

3.41



If
supplied
array of
expansion
along the
See Table

If M is a matrix, then U/[1]M denotes compression
~1Q~g the first coordinate, that is, the compression
operates on each column vector and therefore deletes certain
rows. It is called ~Q1gIDD compression. Similarly, U/[2]M
(or simply U/M) denotes ~Q~ compression. The result in
every case is a matrix. As in reduction, U/M denotes
compression along the last coordinate, and VIM denotes
compression along the first.

~~2E~g. Expansion is the converse of compression and is
denoted by U\Xo If Y+U\X, then U/Y is equal to X and (if X
is an array of numbers) (~U)/Y is an array of zeros. In
other words, U\X expands X to the format indicated by the
Q~~~ in U and fills in zeros elsewhere. To be conformable,
+/U must equal pX.

x is an array of characters, then spaces are
rather than zeros, i.e., if Y+U\X then (~U)/Y is an
the space character' '. Again, U\~J]M denotes
along the Jth coordinate, U\M denotes expansion
last, and U,M denotes expansion along the first.
3.8 for examples of expansion.

A scalar left argument is not extended.

g~£Qg~. The expression R~X denotes the value of the vector
X evaluated in a number system with radices
R[1J,R[2],0 03 ,R[pR]o For example, if R+24 60 60 and
X+1 2 3 is a vector of elapsed time in hours. minutes, and
seconds, then R~X has the value 3723, and is the
corresponding elapsed time in seconds. Similarly,
10 10 10 10 ~ 1 7 7 6 is equal to 1776, and 2 2 2 ~ 1 0 1 is
equal to 5. Formally, R~X is equal to +/WxX, where W is the
weighting vector determined as follows: W[pW] is equal to
1, and W[I-1] is equal to R[I]xW[I]. For example, if R is
24 60 60, then W is 3600 60 1.

The result is a scalar.

The arguments R and X must be of the same dimension,
except that either may be a scalar (or one-element vector).
For example, 10 ~ 1 7 7 6 is equal to 17760 The arguments
are not restricted to integer values. If X is a scalar,
then X~C is the value of a polynomial in X with coefficients
C, arranged in order of descending powers of X.

The decode function is commonly applied in work with
fixed-base number systems and is often called the Qg§~

y~!g~ function.

3.42



~~£QQ~. The ~Q~Qg~ function RTN denotes the representation
of the scalar N in the base-R number system. Thus, if
Z+RTN, then (xIR)IN-RiZ is equal to zero. For example,
2 2 2 2 T 5 is 0 1 Oland 2 2 2 T 5 is 1 Oland 2 2 T 5 is
o 1. The dimension of RTN is the dimension of R. The
encode function is also called ~gQ~§§§DtgtiQD.

!~Q~~ Qf. If V is a vector and S is a scalar, then J+V1S
yields the position of the earliest occurrence of S in V.
If S does not equal any element of V, then J has the value
(ll)+pV.Clearly, this value depends, as does any result of
this function, on the index origin, and is one greater than
the largest permissible index of V.

If S is a vector, then J is a vector such that J[I] is
the index in V of S[IJ~ For example:

tABCDEFGHt1tGAFFE'
7 1 665

If X is a numerical vector, then the expression X1flX
yields the index of the (first) maximum element in X. For
example, if X is the vector 8 3513 2 7 9, then fiX is 13
and Xl r /Xis 4.

The result in every case has the same dimensions as the
righthand argument of 1. For example, if Z+VlS, and S is a
matrix, then Z[I;J] is equal to VlS[I;JJ.

~~mQ~~§hiQ. The function XEY yields a logical array of the
same dimension as X. Any particular element of XEY has the
value 1 if the corresponding element of X belongs to Y, that
is, if it occurs as some element of Y. For example,
(17)E3 5 is equal to 0 0 1 0 1 0 0 and 'ABCDEFGH'E'COFFEE'
equals 0 0 1 0 1 1 0 o.

If the vector U represents the universal set in some
finite universe of discourse, then UEA is the characteristic
of the set A, and the membership function is therefore also
called the £h~~~£t~~~~t~Q function.

The size of the result of the function E is determined
by the size of the left argument, whereas the size of the
result of the dyadic function 1 is determined by the size of
the right argument. However, the left arguments of both
frequently play the role of specifying the universe of
discourse.

3.43



Tg~~ gn9 dXQP. If V is a vector and 3 is a scalar between 0
and pV, then 3tV takes the first 3 components of V. For
example, if V+17, -then 3tV is 1 2 3 and OtV is 10, and 8tV
yields a domain error.

If 3 is chosen from the set -lPV, then 3tV takes the
last 13 elements of V. For example, -3tV is 5 6 7.

If A is an array, then WtA is valid only if W has one
element for each dimension of A, and WeI] determines what is
to be taken along the Ith coordinate of A. For example, if
A + 3 4Pl12, then 2 -3tA is the matrix

234
678

The function g~Qg (+) is defined analogously, except
that the indicated number of elements are dropped rather
than taken. For example, 1 l+A is the same matrix as the
one displayed in the preceding paragraph.

The rank of the result of the take and drop functions
is the same as the rank of the right argument. The take and
drop functions are similar to the transpose in that the left
argument concerns the dimension vector of the right
argument.

~~gg§ YQ ~ng 9QWn. The function ~V produces the permutation
which would order V, that is V[~VJ is in ascendinq order.
For example, if V is the vector 7 1 16 5 3 9, then ~V is the
vector 2 5 4 1 6 3, since 2 is the index of the first in
rank, 5 is the index of the second in rank, and so on. The
symbol ~ is formed by overstriking I and ~.

If P is a
permutation inverse
elements, then the
is determined by
~5 3 7 3 9 2 is the

permutation vector, then ~P is the
to P. If a vector D contains duplicate
ranking among any set of equal elements
their positions in D. For example,
vector 6 2 4 1 3 5.

The right argument of ~ may be any array A of rank
greater than zero, and the coordinate J along which the
grading is to be applied may be indicated by the usual
notation ~[JJA. The form ~A applies as usual to the last
coordinate. The result of ~A is of the same dimension as A.

The g~gg§ gQ~n function t is the same as the functlon ~
except that the grading is determined in descending order.
Because of the treatment of duplicate items, the expression
A/(~V)=¢,V has the value 1 if and only if the elements of
the vector V are all distinct.

3.44



Q~~l. The function M?N produces a vector of dimension M
obtained by making M random selections, without replacement,
from the population IN. In particular, N?N yields a random
permutation of order N. Both arguments are limited to
scalars or one-element arrays.

~Q@l]@nt§.. The lamp symbol ~, formed by overstriking nand
0, signifies that what follows it is a comment, for
illumination only and not to be executed; it may occur only
as the first character in a statement, but may be used in
defined functions.

MULTIPLE SPECIFICATION

Specification (~) may (like any other function) occur
repeatedly in a single statement. For example, the
execution of the statement Z+XxA~3 will assign to A the
value 3, then multiply this assigned value of A by X and
assign the resulting value to Z.

Multiple specification is
variables. For example:

X~Y~1+Z+0

sets X and y to 1 and Z to O.

useful for initializing

A branch may occur in a statement together with one or
more specifications, provided that the branch is the last
operation to be executed (i.e., the leftmost). For example,
the statement ~SxlN>I+I+1 first augments I, and then
branches to statement S if N exceeds the new value of I.

In the expression Z+(A+B)x(C+D) it is immaterial
whether the left or the right argument of the x is evaluated
first, and hence no order is specified. The principle of no
specified order in such cases is also applied when the
expressions include specification. Since the order here is
sometimes material, there is no guarantee which of two or
more possible results will be produced.

Suppose, for example, that A is assigned the value 5
and the expression Z+(A~3)xA is then executed. If the left
argument of x is executed first, then A is assigned the
value 3, the right argument then has the new value 3 and Z
is finally assigned the value 9. If, on the other hand, the
right argument is evaluated first it has the value 5
initially assigned to A, the value 3 is then assigned to A
and multiplied by the 5 to yield a value of 15 to be
assigned to Z.

3.45



SYSTEM DEPENDENT FUNCTIONS

There are three main types of information about the
state of the system which are of value to the user:

1. general information common to all users, such as
date, time of day, and the current number of terminals
connected to the system.

2. information specific to the particular work
session, such as the time of sign-on, the central
computer time used, and the total keying time.

3. information specific to the active workspace, such
as the amount of storage available, and the condition
of the state indicator.

This information is provided by a single family of
functions denoted by I (formed by overstriking T, and ~),

and called the ~=B~gID functions. The individual member
function is selected by the argument as shown in Table 3.10.
Times are all in units of one-sixtieth of a second, the date
is given as a six-digit integer in which the successive
digit pairs specify the month, day, and year, and the
available storage is given in b~~~~.

The byte is a unit of storage equal to 8 binary digits.
A variable requires for storage a small number of bytes of
overhead, plus a certain number of bytes per element
depending upon the form of its representation: 1 if the
elements are characters, 0.125 if the elements are logical,
4 if the elements are integers less than 2*31 in magnitude,
and 8 for other numbers.

In designing an algorithm for a particular purpose, it
frequently happens that one may trade time for space; that
is, an algorithm which requires little computer time may
require more storage space for intermediate results, and an
algorithm which requires little storage may be less
efficient in terms of time. Hence, the information provided
by the functions I21 (computer time used) and I22 (available
storage space) may be helpful in designing algorithms. For
example, the function TIME of Appendix B can be used to
determine the computer time used in the execution of a
function.

Moreover, since the functions I21 and I22 can, like all
of the I-beam functions, be used within a defined function,
they can be used to make the execution dependent upon the
space available or the computer time used.

3.46



X Definition of IX
19 Accumulated keying time (time during which the keyboard

has been unlocked awaiting entries) during this session.
20 The time of day.
21 The central computer time used in this session.
22 The amount of available space (in bytes).
23 The number of terminals currently connected.
24 The time at the beginning of this session.
25 The date.
26 The first element of the vector I27.
27 The vector of statement numbers in the state indicator.
NOTES

1. All times in 1~60 seconds
2. Date is represented by a 6-digit integer; successive
digit pairs represent month, day, and year.
3. I27 yields a vector; all other results are scalars.

Table 3.10: SYSTEM DEPENDENT FUNCTIONS

~§Y~D9 ~iID§ is defined as the total accumulated time
since sign-on during which the keyboard has been unlocked
awaiting entry. The associated function (I19) may be used
in conjunction with 0 or ~ input to determine the amount of
time taken by a student in responding to a question. The
following example shows the definition and use of a
multiplication drill which tells the student how long he has
taken (in whole minutes and seconds) to answer each
question:

VMULTDRILL N;X;Y;TIME
[1J D+-Y+-?N
[2J TIME+-I19
[ 3 J X+-D
[4J TIME+-(I19)-TIME
[5J -+8 xlX;rx/Y

[ 6 J ' TIME: '; 2 t 6 0 6 0 6 0 TTL ME
[7J -+1
[8J 'WRONG, TRY AGAIN'
[9J -+3V

MULTDRILL 12 12
6 3
0:

18
TIME: 0 3
4 5

30
WRONG, TRY AGAIN
0:

-+

3.47



Such a drill could be expanded to accumulate statistics of
the student's response times or to use some function of the
response times to control the difficulty of the questions
posed.

Since times are expressed in units of 1+60 seconds, the
time in hours, minutes, and seconds can be determined by an
expression of the form 3t24 60 60 60TI21. Similarly, a
3-element vector representing the date can be obtained from
the expression (3p100)TI25.

The expression I27 provides the vector of statement
numbers in the state indicator, with the first position
occupied by the number of the statement on which the
innermost function is suspended. If no functions are
suspended, the vector I27 is empty.

The expression I26 yields a scalar which is the first
element of I27. It is therefore equal to the number of the
statement being, or about to be, executed and is
particularly useful in branches. For example, ~N+I26 causes
a forward jump of N statements. Moreover, entering ~I26 is
a safe way to resume execution without having to read and
enter the statement number printed at the point of the last
suspension. It is even more convenient to resume by
entering ~C, after first defining the function C as follows:

VZ+-C
[1J Z+-(I27)[2Jv

3.48



PART 4

LIBRARY FUNCTIONS

A user may load or copy functions from any workspace
for which he knows the library number and workspace name
(and password, if any). Moreover a listing of the

workspaces in Library N can be obtained by the command
)LIB N for any 2g~lig library, i.e., for any library whose
number is below 1000.

A public library may be used for the casual sharing of
functions among a group of co-workers. When intended for
more general use, a library function should be thoroughly
tested and well-documented, and should incorporate messages
for the guidance of the user. It is therefore good practice
to restrict certain of the public libraries to such
functions as are of general interest and have passed
appropriate acceptance tests.

In the APL\360 system as distributed, Library 1 is
restricted in this manner. This section treats each of the
workspaces in this library by loading each and displaying
the descriptions contained in the workspaces themselves.
Further information on the functions in each workspace can
(except in the case of the locked functions in WSFNS) be
obtained by displaying the function definitions.

FC
INVP
POL

F
INV
PO

ENTER
IN
PERM
ZERO

DTH
HTD
PER
TRU'TH

COMB
HILB
PALL
TIME

BIN
GCV
LOOKUP
RESET

)LOAD 1 ADVANCEDEX
ADVANCEDEX SAVED 07/14/68

)FNS
ASSOC
GCD
LFC
POLYE

AH
GC
IN1
POLY

DESCRIBE

EACH OF THE VARIABLES OF THIS WORKSPACE WHICH BE'GINS WITH THE
LETTER D IS THE DESCRIPTION OF THE FUNCTION WHOSE NAME IS
OBTAINED BY REMOVING THE Do FOR FURTHER DE1'AIL8 SEE APPENDIX
B OF THE APL\360 MANUALo

4. 1



)LOAD 1 PLOTFORMAT
PLOTFOR Nil] T SA VED 0 7 /2 0 / 6 8 3 1 0 0 7 0 2 7

)FNS
AND DESCRIBE DFT EFT

DESCRIBE

PLOT VS

THE FUNCT~ONS INCLUDED IN THIS WORKSPACE ARE LISTED BELOW:

SYNTAX

Z+-A AND B

Z+-A DFT B

Z+-A EFT B

A PLOT B

Z+-A VS B

DESCRIPTION

ESSENTIALLY A COLUMN-CATENA']'OR, WITH SOME EXTRA
EFFECTS WH EN THE ARGUMENTS ARE NO,]; MA']'RICE'S 0

THIS FUNCTION IS DESIGNED TO BE USED EITHER
INDEPENDENTLY, OR IN CONJUNCTION WITH VS. IT
PROVIDES A CONVENIENT WAY OF FORMING INPUT
TO DFT AND EFT 0

FORMS FIXED-POIN2' OUTPUTo MORE DETAILED DIREC
TIONS CAN BE FOUND IN THE VARIABLE HOWFORMAT,

FORMS EXPONENTIAL OUTPUT 0 MORE DETA ILED DIREC
TIONS CAN BE FOUND IN THE VARIABLE HOWFORMATo

GRAPHS ONE OR MORE FUNCTIONS SIMULJ..'ANEOUSLY 0

DIRECTIONS FOR USING PLOT CAN BE FOUND IN THE
VARIABLE HOWPLOTo

ESSENTIALLY A COLUMN-CATENATOR, SIMILAR TO AND,
EXCEPT THAT THE R1GHT-HAND ARGUMENT MUST BE OF
RANK ~ 10 IT IS DESIGNED PRIMARILY TO PROVIDE
CONVENIENT FORMATION OF INPUT TO PLOT FUNC
TION. WHETHER USED BY ITSELF OR WITH AND, VS
WILL CAUSE ITS RIGHT ARGUMENT TO APPEAR AS THE
LEFTMOST COLUMN OF THE RESULTANT ARRAY. (THE
RESULTANT WILL BE AN ARRAY OF RANK THREE,
CONSISTING OF A SINGLE PLANE)~

BOTH AND AND VS WORK WITH EITHER 1 OR O-ORIGIN INDEXING,

4.2



HOWFORMAT

THE FUNCTIONS DPT AND EFT WILL ARRAY NUMBERS IN DECIMAL AND
EXPON~NTIAL FORM~ RESPECTIVELY~ FOR TABULAR OUTPUTo THEY
MAY BE USED TO GENERA']1E IMMEDIATE OUTPUT ~ OR TO STORE AN
IMAGE FOR LATER PRINTING, THE TWO FORMS ARE:

PATTERN DFT TABLE
PATTERN EFT TABLE

AND
IMAGE+PATTERN DFT TABLE
IMAGE+PATTERN EFT TABLE

THESE FUNCTIONS WORK PROPERLY ONLY WITH 1-0RIGIN INDEXING?

RIGHT ARGUMEN']1: AN ARRAY TO BE' FORMED?

IT MUST BE NUMERICAL~ AND OF RANK ~ 3. THE FIRST
PLANE OF A 3 -DIMENSIONAL ARRAY WILL BE TREA1'ED AS A
MA11RIX

~ AND ALL OTHEH PLANES WILL BE DISREGARDED 0

ARRAYS OP HIGHER RANK WILL BE SIGNALLED AS A 'RANK
PROBLEM 0 '

LEFT ARGUMENT: ONF: OR MORE INTEGERS TO CON'1'ROL THE FORMAT.
FRACTIONAL NUMBERS WILL BE SIGNALLED AS A 'DOMAIN
PROBLEM 0 '

A SINGLE INTEGER:
D?T: SPECIFIES THE NUMBER OF DIGITS TO THE' RIGHT OF
THE DECIMAL POINT IN DECIMAL FORMAT.
EF'T~ SPECIFIES THE NUMBER OF SIGNIFICANT DIGITS IN
EXPONENTIAL FORMATo ONt DIGIT ALWAYS APPEARS TO THE
LEFT OF THE DECIMAL POINTo COLUMNS WILL BE SPACED
UNIFORMLY~ WITH SPACING SUCH THAT THERE WILL BE TWO
SPACES BETWEEN THE CLOSEST NUMBERS.

A PAIR OF IN'l'EGERS: THE FIRST SPECIFIES THE TOTAL
NUMBER OF SPA CES TO BE ALLOCATED TO EACH COLUMN ~ AND
THE SECOND IS USED AS ABOVE.
DFT: THE FiRST NUMBER MUST BE AT LEAST TWO LARGER
THAN THE SECOND 0

EFT: THE FIRST NUMBE'R MUST BE AT LEAST SIX LARGER
THAN THE SECONDo IF THE LEFT NUMBER IS TOO SMALL~

THIS WILL BE SIGNALLED AS A 'DOMAIN PROBLEM 0'

MORE THAN ONE PAIR OF INTEGERS: THERE MUST BE ONE PAIR
FOR EACH councu OF OUTPUT (OR EACH ELEMEN'l' OF A VEC
TOR)o EACH PAIR WILL BE INTERPRETED AS ABOVE, AND
WILL APPLY TO THE LAYOUT OF THE CORRESPONDING COLUMN.
IF THE NUMBER OF PAIRS DOES NOT MATCH THE NUMBER OF
COLUMNS~ THIS WILL BE SIGNALLED AS A 'LENGTH PROBLEM.'

4.3



HOWPLOT

THE FUNCTION PLOT WILL GRAPH ONE OR MORE FUNCTIONS
SIMULTANEOUSLY, AUTOMATICALLY SCALING THE VALUES TO FIT
APPROXIMATELY WITHIN SCALE DIMENSIONS SPECIFIED BY THE USER 0

IT WILL WORK ONLY IN i-ORIGIN INDEXING.

THE FORM IN WHICH PLOT IS USED IS~

SCALESIZE PLOT FUNCTION

LEFT ARGUMENT: ONE OR TWO NUMBERS o

THE FIRST NUMBER SPECIFIES THE APPROXIMATE SIZE OF THE
VERTICAL AXIS AND THE SECOND NUMBER DOES THE SAME
FOR THE HORIZONTAL AXIS o

IF ONLY ONE NUMBER IS SUPPLIED, 1'1' IS APPLIED TO BOTH
AXES 0

THERE IS NO BUILT-IN LIMIT TO THE DIMENSIONS, AND A
HORIZON2~L AXIS LARGER THAN THE WORKSPACE WIDTH WILL
CAUSE SOME POINTS TO BE PRINTED ON THE NEXT LOWER
LINEe

RIGHT ARGUMENT: A RECTANGULAR ARRAY WiTH RANK S 3.

SCALAR: WILL BE TREATED AS A VEC'1'OR OF LENGTH ONE o

VECTOR: WILL BE PLOTTED AS ORDINATE AGAINST ITS OWN
INDICES AS ABSCISSAo

MATRIX: THE LEF'l'MOS'P COLUMN WILL BE TAKEN AS THE
ABSCISSA AND ALL OTHER COLUMNS WILL BE PLOTTED AS
ORDINATESo A DIFFERENT PLOTTING SYMBOL UP TO THE
NUMBER OF SYMBOLS AVAILABLE WILL BE USED FOR EACH
COLUMNo IN CASE TWO ORDINATES HAVE A COMMON POINT,
THE SYMBOL FOR THE COLUMN FUR'PHES'l' TO THE RIGHT WILL
BE USEDo

3-DIMENSIONAL ARRAY: THE FIRST PLANE WILL BE PLOTTED
AS A MATRIX, AND ALL OTHER PLANES WILL BE DISREGARDED o

4.4



AUXILIARY FUNCTIONS: THE FUNCTIONS AND AND VS CAN BE
USED TO GENERATE THE RIGHT ARGUMENT IN THE PROPER FORM
FOR PLOTo FOR EXAMPLE:

20 PLO'P Z AND Y VS X

PLOT CHARACTERS: THE SYMBOLS USED ARE ASSIGNED TO THE
VARIABLE EQ IN LINE 1 OF PLOT. THE ALPHABET
SUPPLIED IS 'O*oV~O' 0 THIS ALPHABET MAY BE EXTENDED
AND MODIFIED AS DESIRED, USING THE NORMAL
FUNCTION-EDITING PROCEDURES: EITH~'R CHANGE L1NE 1 OF
THE FUNCTION, OR DELETE IT AND INDEPENDENTLY SPECIFY
A VALUE FOR EQ 0

HISTOGRAMS; PLOT CAN BE USED
SETTING THE VARIABLE
FUNCTION. ALTERNATIVELY,
fl§. CAN BE SET EXTERNALLY 0

TO GENERATE HISTOGRAMS BY
HS TO 1 IN LINE 2 OF THE

LINE 2 CAN BE DELETED, AND

)LOAD 1 APLCOURSE
APLCOURSE' SAVED 07/19/68

)FNS
B1X CHECK DESCRIBE
EASY EASYDRI LL
INTER LOG QUES
SETPARAMETERS TEACH

DESCRIBE

FORM
RANDOM
TRACE

DIM DRILL
FUNDRILL
REDSCAPATCH

DYAD1
GET
REPP

DYAD2
INPUT

THE MAIN FUNCTIONS IN THIS LIBRARY WORKSPACE ARE:

TEACH
EASYDRILL

ALL OTHER FUNCTIONS ARE SUBFUNCT10NS AND ARE NOT
SELF -CON'l'AINED 0

SYNTAX DESCRIPTION

TEACH

EASYDRILL

AN EXERCISE IN APL FUNCTIONS USING SCALARS
AND VECTORS 0 THE FUNCTION PRINTS OUT THE
CHOICES AND OPTIONS AVAILABLE o EXAMPLES
ARE SELECTED AT RANDOM WITH A RANDOM
STARTING POINT.

THIS IS THE SAME AS TEACH EXCEP'l' THAT THE
PROBLEMS SELECTED ARE GENERALLY SIMPLER IN
STRUCTURE 0 PROBLEMS INVOLVING VECTORS OF
LENGTH ZERO OR ONE ARE EXCLUDED.

4.5



NOTE: FOR EITHER FUNCTION, A RESPONSE OF - PLEASE - WILL
DISCLOSE THE PROPER ANSWERo A RESPONSE OF - STOP - WILL
TERMINATE THE DRILLo

TEACH
ARE YOU ALREADY FAMILIAR WITH THE INSTRUCTIONS? (TYPE
Y FOR YES AND N FOR NO,)
N

THIS IS AN EXERCISE IN SIMPLE APL EXPRESSIONS. YOU WILL
FIRST HAVE THE OPPORTUNITY TO SELECT THE FEATURES YOU WISH
TO BE DRILLED TAl

-LLV o THE EXERCISE THEN BEGINS, FOR EACH
PROBLEM YOU MUST ENTER THE PROPER RESULT. ANSWERS WILL
CONSIST OF SCALAR INTEGERS IF EXERCISES WITH VECTORS ARE NOT
DESIRED; OTHERWISE ANSWERS WILL CONSIST OF SCALARS OR
VECTORS, A VECTOR OF LENGTH ZERO REQUIRES THE RESPONSE lO,
A VECTOR OF LENGTH ONE REQUIRES THE RESPONSE X, WHERE X IS
THE VALUE OF THE ELEMENT. YOU HAVE THREE TRIES FOR EACH
PROBLEM o TYPE STOP AT ANY TIME TO TERMINATE THE EXERCISE
AND PRODUCE A RECORDING OF YOUR PERFORMANCE. TYPING
STOPSHORT WILL TERMINATE THE EXERCISE BUT WILL NOT PRODUCE
A RECORD OF PERFORMANCE, TYPING PLEASE FOR ANY PROBLEM
WILL LET YOU PEEK AT THE ANSWERSo TYPE Y UNDER EACH
FUNCTION FOR WHICH YOU WANT EXERCISE;

SCALAR DYADIC FUNCTIONS
+-x-;.*fL<~=~>7~ II\VfJ91'<lt/J

YYYYY Y
SCALAR MONADIC FUNCTIONS
+-x-;.fL!I'"

YY
TYPE Y IF EXERCISES ARE TO USE VECTORS, N OTHERWISE
N

0:
18

0:
2

TRY AGAIN
0:

3
0+ 7

0:
STOPSHORT

4.6



)LOAD 1 WSFNS
WSFNS SAVED 07/20/68

)FNS
DELAY DESCRIBE

DESCRIBE

DIGITS ORIGIN SETLINK SFEI WIDTH

THE FUNCTIONS ORIGIN, WIDTH, AND D1GITS ARE EACH
SIMILAR TO THE COMMAND OF THE SAME NAME, EXCEPT THAT EACH IS
A FUNCTION RATHER THAN A COMMAND AND MAY THEREFORE BE USED
WITHIN OTHER FUNCTIONS. EACH HAS AN EXPLICIT RESULT WHICH
IS THE PREVIOUS VALUE OF TH~ RELEVANT SYSTEM PARAMETER.

FOR EXAMPLE, THE FOLLOWING FUNCTION:

\IF X
[lJ X+-ORIGIN X
[2J G
[3J X+-ORIGIN xv

WILL EXECUTE THE FUNCTION G WITH WHATEVER INDEX ORIGIN IS
SPECIFIED BY THE ARGUMENT OF F, AND WILL RESTORE THE INDEX
ORIGIN TO THE' VALUE THAT IT HAD BEFORE THE EXECU'TION OF F.

THE FOLLOWING FUNCTIONS ARE ALSO AVAILABLE:

Z+-SETLINK X

DELAY X

SFEI X

SETS THE VALUE OF THE LINK IN THE CHAIN OF
NUMBERS GENERATED IN THE USE OF THE ROLL AND
DEAL FUNCTIONS. THE EXPLICIT RESULT PRODUCED
BY SETLINK IS THE PREVIOUS VALUE OF THE LINK.

THt RESULTS PRODUCED BY THE ROLL AND DEAL
FUNCTIONS ARE NOT THE LINKS THEMSELVES, BUT
RATHER SOME FUNCTION OF THEM. THE LENGTH OF
THE CHAIN (BEFORE REPETITION) IS -1+2*31.

DELAYS EXECUTION FOR X SECONDS.

SETS THE SIGNAL MESSAGE FOR EVALUATED INPUT
(SEE THE SECTION ON INPUT AND OUTPUT, PART 3
OF THE APL\360 USER'S MANUAL). THE ARGUMENT
MUST BE A LINE OF NO MORE THAN 7 CHARACTERS.

4.7



)LOAD 1 TYPEDRILL
TYPEDRILL SAVED 07/14/68

)FNS
DESCRIBE
S'PATISTICS

DESCRIBE

IN
TIME

INSTRUCTIONS
TJPEDRILL

MA 2'CH
WS

PR'l QUERY

THE MAIN FUNCTION IN THIS WORKSPACE IS TJPEDRILL; ALL
OTHERS ARE SUBFUNCTl ONS 0 TO USE IT, SIMPLY ENTER

TYPEDRILL

TYPEDR1LL IS A TIMED TYPING EXERCISE. THE SYSTEM
RESPONDS WITH THE STATEMENT 'YOU ARE IN CONTROL STATE' 0

FOUR COMMANDS ARE AT YOUR DISPOSAL: ENTER, DRILL, STAT, AND
STOP. ENTERING ONE OF THEM BRINGS YOU INTO THAT STATE~

ENTER: YOU MAY ENTER ONE-LINE SENTENCES OR
EXPRESSIONS ON WHICH YOU WISH TO BE' DRILLED 0 ENTERING
A BLANK LINE (CARRIAGE RETURN ONLY) RETURNS YOU TO THE
CONTROL STATE 0

DRILL: ONE OF THE LINES ENTERED VIA THE ENTER STATE IS
SELECTED A~F RANDOM AND PRINTED. YOU ARE THEN EXPECTED
TO ENTER THE SAME LINEo IF IT IS CORRECT, THE TIME
TAKEN IS PRINTED (IN SECONDS), IF NOT YOU ARE ASKED TO
RETYPE ITo A BLANK LINE CAUSES RETURN TO THE CONTROL
STATE o

STAT: THE ACCUMULATED STATISTICS ARE PRINTED o THE
HORIZONTAL AXIS SHOWS THE TRIAL NUMBERS AND THE
VERTICAL SHOWS THE TIME IN SECONDS o A VERTICAL ARROW
INDICATES THA21 THE TIME EXCEEDED THE LIMITS OF THE
GRAPH" THE RE'l'URN TO THE CONTROL STA'TE IS AUTOMATIC.

STOP: STOPS THE DRILL AND PRINTS THE STATISTICS.

4.8



TYPEDRILL
CONTR0 L WOR DS ARE : ENTER, DR ILL, S '1'AT, AND STOP 0

YOU ARE IN CONTROL STATE
ENTER
NOW IS THE TIME FOR ALL GOOD MEN TO COME TO
I SING OF OLAF GLAD AND BIG
x+-I f pxQ+Y*Rs 5

YOU ARE IN CONTROL STA'l'E
DRILL
NOW IS THE TIME FOR ALL GOOD MEN TO COME TO
NOW IS THE TIME OFR ALL GOOD MEN TO COME TO

/\

NOW IS THE TIME FOR ALL GOOD MEN TO COME TO
16 09

X+-I fPxQ+Y*Rs5
X+-I fPxQ+Y*Rs5
19 09

I SING OF OLAP GLAD AND BIG

YOU ARE IN CONTROL STA'l'E
STOP

4.9



Appendix A

SAMPLE TERMINAL SESSION

)1776
010) 19 032 036 07/03/68 JANET

APL\ 360

FUNDAMENTALS

3x4
12

X+3x4

x
12

Y+-5

X+Y
7

1~44

P+1 2 3 4
pxp

1 4 9 16
pxy

5 10 15 20
Q+'CATS'
Q

CATS
YZ+5
Y~1+5

YZ+Y~l

10
3+4x5+6

v
+5+6

18
X+3
Y+4
(XxY)+4

16
XxY+4

24

A. 1

Entry automatically indented
Response not indented
X is assigned value of

the expression

Value of X typed out
Negative sign for negative

constants

Exponential form of constant

Four-element vector
Functions apply element by element

Scalar applies to all elements

Character constant (4-element
vector)

Multi-character names

Correction by backspace
and linefeed

Executed from right to left



x Y
SYNTAX ERROR

X Y
A

XY
VALUE ERROR

XY
A

12

24
X+15
X

1 2 345
10

Y+5-X
Y

43210
XfY

4 3 345
X~Y

1 1 0 0 0
01

3 0141592654

O-i-l 2
3 0141592654 1 0570796327

X+45 90
OX-i-180

0 07853981634 1.570796327
101

0.8418'709848
201 2

0.5403023059 0 04161468365

301
1.557407725

-301
0 07853981634

30-3017
1 2 3 4 567

Y+l 2
40Y

1 0414213562 2 0236067977

OO-i-Y
o 0 08660254038

701 2
0 0761594156 0 09640275801

-70701 2
1 2

A.2

Entry of invalid expression
Shows type of error committed
Retypes invalid statement with

caret where execution stopped
Multi-character name (not XxY)

XY had not been assigned a value

SCALAR FUNCTIONS

Dyadic maximum

Monadic ceiling

Index generator function

Empty vector
prints as a blank line

All scalar functions extend
to vectors

Relations produce
logical (0 1) results

Pixl

pi-i-l 2

Conversion of X to radians

Sin 1

Cos 1 2

Tan 1

Arctan 1

Tan Arctan 1 2 3 4 5 6 7

( 1 +Y * 2 ) * 0 5,

Tanh 1 2

Arctanh Tanh 1 2



[lJ
[2J

s

10

20

[ 1 J
[ 2 J

1

1

1

[lJ
[ 2 J

VZ+X F Y
Z+((X*2)+Y*2)*~S

V
3 F 4

P+7
Q+(P+1)F P-1
Q

4x 3 F 4

VB+G A
B+(A>O)-A<O
V
G 4

G 6

VH A
P+(A>O)-A<O
V
H 6
P

DEFINED FUNCTIONS

Header (2 args and result)
Function body
Close of definition
Execution of dyadic function F

Use of F with expressions
as arguments

G is the signum function
A and B are local variables

Like G but has no explicit result
P is a global variable

1
Y+H-6

VALUE ERROR
Y+H 6

/\

VZ+FAC N;I
[lJ Z+l
[2J I+O
[3J L1:I+I+1
[4J -+Ox lI>N
[SJ Z+ZxI
[6J -+L1
[ 7 J V

FAC 3
6

FAC S
120

T!1FAC+3 S
X+FAC 3

FAC[3J 1
FAC[SJ 1
FAC[3J 2
FAC[SJ 2
FAC[3J 3
FAC[SJ 6
FAC[3J 4

T!1FAC+O

H has no explicit result
and hence produces a value
error when used to right
of assignment

FAC is the factorial function

LI becomes 3 at close of def
Branch to 0 (out) or to next

Branch to LI (tha.t is, 3)

Set trace on lines 3 and 5 of FAC

Trace of FAC

Reset trace control

A.3



VG+M GCD N
[1J G+N
[ 2 J M+MIN
[ 3 J -+4 xM;t: 0
[4J [1JG+M
[ 2 J [ 4 IN+G
[ 5J [10J
[ 1 J G+M
[ 1 J [OJ

V G+M GCD N
[ 1 ] G+M
[ 2 J lvJ+L'vj lTv
[ 3 ] -+4xM;tO
[ 4 ] N+G

V
[ 5] -+1
[6J V

36 GCD 44
4

VGCD
[6J [4 01JM,N

[ 4 0 2 J [OJ
V G+M GCD N

[ 1 J G+M
[2J M+MIN
[ 3 J -+4xM;t:O
[4J N+G
[ 4 0 1 J M,N
[ 5J -+1

V
[6J V

36 GCD 44
8 36
4 8
4

VGCD[DJV
V G+M GCD N

[1J G+M
[ 2 J M+MIN
[3J -+4xM;t:O
[4J N+G
[ 5J M,N
[ 6 J -+1

V
VGeD

[7J [ 5J
A

V

MECHANICS OF
FUNCTION DEFINITION

Greatest common divisor
function based on the
Euclidean algorithm

Correction of line 1
Resume with line 4
Display line 1

Display entire GCD Function

Close of display, not close of def
Enter line 5
Close of definition
Use of GCD
4 is GCD of 36 and 44
Reopen def (Use V and name only)
Insert between 4 and 5
Display entire function

Fraction stays until close of def

End of display
Close of definition

Iterations printed by
line 5 (was line 4.1)

Final result
Reopen, display, and close GCD

Line numbers have been
reassigned as integers

Close (Even number of V's in all)
Reopen definition of GCD
Delete line 5 by linefeed

Close definition

1\. 4



[ 1 J
[ 2 ]

[ 1 J

[ 1 J
[ 2 J

V Z+-AB C X
Z+-(33 xQ+(R x5)-6
[109J
Z+-(33 xQ+(R x5)-6

/ 1 /1
Z+-(3 xQ)+(Tx5)-6
V
FAC 5

A function to show line editing
A line to be corrected
Initiate edit of line I
Types line, stops ball under 9
Slash deletes, digit inserts spaces
Ball stops at first new

space. Then enter) T
FAC still defined

120
)ERASE FAC
FAC 5

SYNTAX ERROR
FAC 5
A

VZ+-BIN N
[lJ LA~Z+-(Z,O)+o,Z

[2J -+LAxN?pZV
B1N 3

VALUE ERROR
BIN[lJ LA:Z+-(Z,O)+o,Z

A

Z+-l
-+1

1 3 3 1
BIN 4

VALUE ERROR
BIN[lJ Ll:Z+-(Z,O)+o,Z

A

VBIN[ 01JZ+-1V
)SI

BIN[lJ *
-+1

14641
VBIN[D]v

V Z+-B IN N
[lJ Z+-l
[2J LA:Z+-(Z,O)+o,Z
[3J -+LAxN?pZ

S!1BIN+-2
Q+-BIN 3

BIN[2J
Z

1
-+2

BIN[2J
-+2

BIN[2J
-+0

Erase function FAC
Function FAC no longer exists

An (erroneous) function for
binomial coefficients

Suspended execution

Assign value to Z
Resume execution
Binomial coefficients of order 3

Same error (local variable Z
does not retain its value)

Insert line to initialize z
Display state indicator
Suspended on line 1 of BIN
Resume execution (BIN now correct)

Display revised function
and close definition

Set stop on line 2
Execute BIN

Stop due to stop control
Display current value of Z

Resume execution

Stop again on next iteration
Resume

Stop again
Branch to 0 (terminate)

A.5



37
WRONG, TRY AGAIN
0:

[lJ
[ 2 J
[3J
[4J
[ 5 J
[ 6 J
[ 7 J

2 10
0:

\/MULTDRILL N;Y;X
Y+?N
Y
X+D
-+OX1X='St
-+lX=X/Y
'WRONG, TRY AGAIN'
-+3\/

MULTDRILL 12 12

INPUT AND OUTPUT

A multiplication drill
pN random integers
Print the random factors
Keyboard input
stop if entry is the letter S
Repeat if entry is correct product
Prints if preceding branch fails
Branch to 3 for retry
Drill for pairs in range 1 to 12

Indicates that keyboard entry
is awaited

20
6 7
0:

's'
\/Z+ENTERTEXT

[ 1 J Z+' ,
[2J D+pZ
[3J Z+Z,[!]
[4 J -+2xD~p Z
[ 5] \/

Q+ENTE'RTEXT
THIS IS ALL

CHARACTER INPUT

Q

THIS IS ALL CHARACTER INPUT
N+5
'NOTE: l';N;' IS ';IN

NOTE: 15 IS 1 2 3 4 5

P+2 3 5 7
pP

4
T+'OH MY'
pT

5
P,P

2 3 5 7 2 3 5 7
T,T

ON MYOH MY
T,P

DOMAIN ERROR
T,P
/\

Entry of letter S stops drill
Example of character ([!]) input
Make Z an empty vector
D is the length of Z
Append character keyboard entry
Branch to 2 if length increased

(i.e., entry was not empty)

Keyboard
entries

Empty input to terminate
Display Q

Mixed output statement

RECTANGULAR ARRAYS

Dimension of P

Character vector

Catenation

Characters cannot be catenated
wi th numbers

A.6



M+-2 3p 2 3 5 7 11 13
M

2 3 5
7 11 13

2 4pT

OH M
YOH

6pM
2 3 5 7 11 13

,M
2 3 5 7 11 13

P+-,M
P[3J

5
P[l 3 5J

2 5 11
P[13J

2 3 5
P[ pP J

13
M[1;2J

3
M[l;J

2 3 5
M[ 1 1 ; 3 2J

5 3
5 3

A+-'ABCDEFGHIJKLMNOPQ'
A[MJ

BCE
GKM

A[M[l 1;3 2JJ

ED
EC

M[1;J+-15 3 12
M

15 3 12
7 11 13

A. 7

Reshape to produce a 2x3 matrix
Display of an array of rank >1

is preceded by a blank line

A 2x4 matrix of characters

A matrix reshaped to a vector

Elements in row-major order

Indexing (third element of P)

A vector index

The first three elements of P

Last element of P

Element in row I, column 2 ofM

Row 1 of M

Rows 1 and I, columns 3 2

The alphabet to Q
A matrix index produces

a matrix result

Respecifying the first row of M



Q+-3 1 5 2 4 6 A permutation vector
P[Q] Permutation of P

5 2 11 3 7 13
Q[Q] A new permutation

5 3 4 1 2 6
P[3] Present index origin is 1

5
)ORIGIN 0 Set index origin to 0

WAS 1
P[3]

7
P[O 1 2 ] First three elements of P

2 3 5
1 5 Result of index generator

0 1 2 3 4 begins at origin
)ORIGIN 1

WAS 0
1 5

1 2 3 4 5

FUNCTIONS ON ARRAYS

V+-?3p9
M+-?3 3p9
N+-? 3 3 p 9

V
2 1 7

M

vector of 3 random integers (1-9)
Random 3 by 3 matrix
Random 3 by 3 matrix

7 9 4
5 8 1
1 5 7

N
1 4 1
4 7 6
9 8 5

M+N Sum (element-by-element)

8 13 5
9 15 7

10 13 12

A.8



MrN

7 9 4
5 8 6
9 8 7

M~N

0 0 0
0 0 1
1 1 0

+/V
10

x/V
14

+/ [ 1]M
13 22 12

+/[2]M

20 14 13
+/M

20 14 13
riM

9 8 7
X+-1 o 5
+/(1 20X)*2

1
0/1 2, X

0 007067822453

Y+-O/O 2, X
Y

0,9974949866
Y=1oX

1

M+ 0 xN

79 123 81
46 84 58
84 95 66

M+,~N

1 1 1
1 1 1
2 3 2

M+, x V
51 25 56

A.9

Maximum

Comparison

Sum-reduction of V

Product-reduction

Sum over first coordinate of M
(down columns)

Sum over second coordinate of M
(over rows)

Sum over last coordinate

Maximum over last coordinate

Sin squared plus Cos squared

Sin Cos X

( 1- ( CO s X) * 2 ) * o 5

An identity

Ordinary matrix (+,x inner)
product

An inner product

+,x inner product with vector
right argument



V
2 1 7

VC'ox15 Outer product (times)

2 4 6 8 10
1 2 3 4 5
7 14 21 28 35

Voo::S;19 Outer product

0 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1
0 0 0 0 0 0 1 1 1

Vo. xM An outer product of rank 3

14 18 8
10 16 2

2 10 14
A blank line between planes

7 9 4
5 8 1
1 5 7

49 63 28
35 56 7

7 35 49

MIXED FUNCTIONS

Q+?10p5 A random 10 element vector
Q (range 1 to 5)

1 4 3 4 5 4 2 1 4 2
+/[ 1JQo c =15 Ith element of result is number

2 2 1 4 1 of occurences of the
value I in Q

2 1~M Ordinary transpose of M

7 5 1
9 8 5
4 1 7

~M Ordinary transpose of M (monadic)

7 5 1
9 8 5
4 1 7

A.10



T+2 3 4p1.24
T

1 2 3 4
5 6 7 8
9 10 11 12

13 14 15 16
17 18 19 20
21 22 23 24

3 1 2?s(T

1 13
2 14
3 15
4 16

5 17
6 18
7 19
8 20

9 21
10 22
11 23
12 24

1 1?s(M
787

1 1 2?s(T

1 234
17 18 19 20

X+O(O,15)-i-6
)DIGITS 4

WAS 10
?s(1 2 3 o noX

An array of rank 3

Transpose of T (dimension
of result is 3 4 2)

Diagonal of M

Diagonal section in first
two coordinates of T

Set number of output digits to 4

O.OOOEO
50000E-1
8,,660E-1
1.000EO
8 0660E-1

5.000E-1

1 0000EO
80660E-1
50000E-1
1,,744E-16
50000E-1
8,,660E-1

OoOOOEO
50774E-1
l o732EO

50734E15
1.732EO
5.774E-l

A.11

Table of sines, cosines,and
tangents in intervals
of 30 degrees



Q
1 4 3 4 5 4 2 1 4 2

3<PQ Rotate to left by 3 places
4 5 4 2 1 4 2 1 4 3

-3<PQ Rotate to right by 3 places
1 4 2 1 4 3 4 5 4 2

0 1 2<p [ l]M Rotate columns by
different amounts

7 8 7
5 5 4
1 9 1

-2<p[2]M Rotation of rows all
by 2 to right

9 4 7
8 1 5
5 7 1

1 2 3 <pM Rotation of rows

9 4 7
1 5 8
1 5 7

<PQ Reversal of Q
2 4 1 2 4 5 4 3 4 1

¢[l]M Reversal of M along
first coordinate

1 5 7
5 8 1
7 9 4

<PM Reversal along last coordinate

4 9 7
1 8 5
7 5 1

A.12



U+-Q>4
U

o 0 001 0 000 0
U/Q

5
( "'U) / Q

1 4 344 2 142
+/U/Q

5
1 0 1/[1]M

7 9 4
157

1 0 1/M

7 4
5 1
1 7

(,M>5)/,M
7 9 8 7

V+-1 0 1 0 1
V\ 13

10203
V\M

7 0 9 0 4
50801
10507

V\ 'ABC'
ABC

10.11 7 7 6
1776

8.11 7 7 6
1022

(4p10)T1776
1 7 7 6

(3p10)T1776
776

10 10T1776
7 6

10T1776
6

24 60 60.11 3 25
3805

24 60 60T3805
1 3 25

2.11 0 1 1 0
22

A.13

Compression of Q by logical
vector U

Compression by not U

Compression along first
coordinate of M

Compression along last
coordinate

1M is 7 9 4 5 8 1 1 5 7
All elements of M which exceed 5

Expansion of iota 3

Expansion of rows of M

Expansion of literal vector
inserts spaces

Base 10 value of vector 1 7 7 6

Base 8 value of 1 7 7 6

4 digit base 10 representation
of number 1776

3 digit base 10 representation
of 1776

Mixed base value of 1 3 25
(time radix)

Representation of number 3805
in time radix

Base 2 value



M

7 9 4
5 8 1
1 5 7

)ORIGIN 0

WAS 1
M[2;0]

1
( ,lvj) [( plvi).12, 0 ]

1
)ORIGIN 1

WAS 0
P

2 3 5 7 11 13
t , 7

4
P16

7
P14 5 6 7

7 3 7 4
Q+5 1 3 2 4
R+Q 1 1 p Q
R

24351
Q[R]

1 2 345
A+'ABCDEFGHIJKLMNOPQ'
A+A, 'RSTUVWXYZ'
A

ABCDEFGHIJKLMNOPQRSTUVWXYZ
A 1 'C'

3

Indexing of matrix in a-origin.
Note relation to indexing of
ravel of M

Restore I-origin

Index of 7 in vector P
7 is 4th element of P
6 does not occur in P, hence

result is l+pP

A permutation vector
R is the permutation inverse to Q

A is the alphabet

Rank of letter C in alphabet is 3

3 1
A[J]
CAT

J+Al 'CAT'
J
20

A.14



M+3 5p'THREESHORTWORDS'
M

A matrix of characters

3?5
512

6?5
DOMAIN 8RROR

6?5
/\

X+8?8
X

4 6 7 2 518 3
~X

6 4 8 1 5 2 3 7
X[~X]

1 2 3 4 5 6 7 8
X[WX]

876 5 432 1
U+ AE ' NOW I5' THE TIME'
'Ol'[l+U]

00001001100011100011001000
UIA

EHIMNOSTW
(18)E375

o 0 1 0 1 0 1 0

THREE
SHOR'j1
WORDS

J+A1M
J

20 8 18
19 8 15
23 15 18

A[J]

THREE
SHORT
WORDS

5 5
18 20

4 19

Ranking of M produces a matrix

Indexing by a matrix produces
a matrix

Random choice of 3 out of 5
without replacement

A random permutation vector

Grading of X

Arrange in ascending order

Arrange in descending order

Membership

A.15



Appendix B

ADVANCED EXAMPLES

This section presents a set of examples less elementary
than those of Appendix A. These examples are all contained
in Workspace ADVANCEDEX of Library 1. A user may therefore
load, use, and trace any of the functions as an aid to
understanding their behavior. Displays of intermediate
results may also be inserted. For example, the statement

P+-CP,O)+O,P

occurring in a function could be changed Cperhaps by the use
of line editing) to the following form:

D+-P+-CD+-P,O)+D+-O,P

Each execution of the statement will now perform as before,
except that each of the results O,P and P,O and P will be
typed out as well (in that sequence).

Programming techniques can be learned from a similar
study of any well-written set of functions. ' All of the
workspaces of library 1 may be used as a source of functions
for such study.

The index origin in the workspace ADVANCEDEX is set to
1.

)LOAD 1 AD VANCEDEX
ADVANCEDEX SAVED 07/20/68 28 012 010

)FNS
AH ASSOC BIN COMB DTH ENTER F FC
GC GCD GCV HILB HTD IN INV INVP
IN1 LFC LOOKUP PACK PALL PER PERM PO
POL POLY POLYB RESET TIME TRUTH UNPACK ZERO

)VARS
DAH DASSOC DBIN DCOMB DDTH DENTER DESCRIBE
DF DFC DGC DeCD DGCV DHILB DHTD DIN
DINV DINVP DIN1 DLPC DLOOK UP DPACK DPALL DPER
DPERM DPO DPOL DPOLY DPOLYB DTIME DTRUTH DUNPACK
DZERO TIMER

DESCRIBE

EACH OF THE VARIABLES OF THIS WORKSPACE WHICH BEGINS WITH THE
LETTER D IS THE DESCRIPTION OF THE FUNCTION WHOSE NAME IS
OBTAINED BY REMOVING THE Do FOR FURTHER DETAILS SEE APPENDIX
B OF THE APL\360 USER'S MANUALc

B. 1



DPACK
THE FUNCTIONS PACK AND UNPACK ILLUSTRATE THE USE OF THE

ENCODE AND'DECODE FUNCTIONS IN TRANSFORMING BETWEEN A FOUR
NUMBER ENCODING OF SERIAL NUMBER (1 TO 9999), MONTH, DAY,
AND YEAR, AND A SINGLE-NUMBER ENCODING OF THE SAME DATA,

VPACK[O]V
V Z+-PACK X

[1] Z+- 10000 12 31 100 ~X-l

V

VUNPACK[OJv
V Z+-UN PACK X

[1] Z+-l+ 10000 12 31 100 TX
V

P-+-PACK 2314 7 17 68
P

86063867
UNPACK P

2314 7 17 68
UNPACK PACK 2311 9 21 72

2311 9 21 72
PACK UNPACK 92137142

92137142
PACK 1 1 31 1

3000
UNPACK 3000

1 1 31 1

B.2



DENTER

THE FUNCTIONS ENTER, LOOKUP, AND RESET ILLUSTRATE A METHOD
OF CONSTRUCTING AND USING LISTS OF VARIABLE LENGTH DATA~

REPRESENTING EACH LIST BY A VECTOR OF CHARACTERS AND A
VECTOR OF INDICES, ENTER AND LOOKUP EACH REQUEST INPUT (BY ~)

UNTIL AN EMPTY VECTOR (CARRIAGE RETURN ALONE) IS ENTERED,

RESET
ENTER
LOOKUP

RESETS LISTS (USE BEFORE ENTER AND LOOKUP).
ACCEPTS SUCCESSIVE ITEMS OF NAMES AND DA1'A.
PRINTS DATA ASSOCIATED WITH EACH NAME ENTERED,

X+,l:!J
-+OX10=pX
J+«(1iP1)--1iPi)=pX)/1-1+pP1
J+(NAMES[P1[JJo~+lpXJA.=X)/J

-+(01 =pJ)/ 10 8
-+1,PU+'MORE THAN ONE SUCH NAME'
DATA[P2[JJ+l-/P2[1 0 +JJJ
-+1
'NO SUCH NAME'
-+1

VLOOKUP[OJv
V LOOKUP;X;J

, ? '[1J
[ 2 J
[ 3 J
[4 J
[ 5 J
[6J
[7J
[8J
[9J
[10J
[11J

V

-+1

VENTER[OJv
V ENTER;X

'ENTER NAME'
X+,l:!J
-+OX10=pX
NAMES+NAMES,X
P1+P1 , P NAMES
'ENTER DATA'
DATA+DATA,[!]
P2+P2,pDATA, ,

[1J
[2J
[ 3 J
[ 4 J
[ 5 J
[6J
[ 7 J
[8J
[9J
[10J

V

VRESET[OJv
V RESET

[1J NAMES+DATA+pP1+P2+0

RESET
ENTER

ENTER NAME
J 0 ARMSTRONG
ENTER DATA
PRESIDENT

ENTER NAME
n . LEVINE
ENTER DATA
VICE-PRESIDENT

ENTER NAME

LOOKUP
?
H. LEVINE
VICE-PRESIDENT
?
t., YAVNER
NO SUCH NAME
?

13.3



DIN

THE FUNCTIONS IN AND INl TAKE TWO ARGUMENTS; THE FIRST IS A
WORD (IoEo, A VECTOR) WHOSE OCCURRENCES IN THE SECOND
ARGUMENT ARE TO BE DETERMINED 0 THE RESULT IS A VECTOR OF
INDICES OF THE FIRST LETTER OF' EACH OCCURRENCEo THE
FUNCTION IN DETERMINES ~~~ OCCURRENCES, WHEREAS INl
DETERMINES ONLY ALL NON-OVERLAPPING OCCURRENCES BY FIRST
APPLYING THE FUNCTION IN AND THEN SUPPRESSING ALL OVERLAPS.

VIN[OJv
V Z+-A IN B;J

[lJ J+-(A[lJ=B)/lpB
[2J J+-(J~l+(pB)-pA)/J

[3J Z+-(B[Joo+-l+1pAJA o=A)/J
V

VIN1[OJv
V T+-A INl B

[1 J T+-A IN B
[ 2 J -+ 2 xJ <p T+- ( '"( 1P11

) E J +-1 + ( ( p A ) > I - / [ 1 J ( 2 , 1 +p T ) p T) 11 ) / T
V

W+-' THE'
T+-'THE MEN THEN WENT HOMEo
W IN T

1 9
W INl T

1 9
'ABA' IN 'NOWABABABABABABABA'

4 6 8 10 12 14 16
'ABA' INl 'NOWABABABABABABABA'

4 8 12 16

DTRUTH

THE FUNCTION TRUTH PRODUCES THE MA11RIX OF ARGUMENTS OF THE
TRUTH TABLE FOR N LOGICAL VARIABLES 0

VTRUTH[ OJ V
V Z+-TRUTH N

[lJ Z+-2IL(-1+12*N)oof2*N-1N

TRUTH 3

0 0 0
0 0 1
0 1 0
0 1 1
1 0 0
1 0 1
1 1 0
1 1 1

( TRUTH 3)+ox¢2* - 1+13
0 1 2 3 4 5 6 7

.l3.4



DGCD

THE FUNCTIONS GCD AND GC EACH EMPLOY THE EUCLIDEAN ALGORITHM
TO PRODUCE THE GREATEST COMMON DIVISOR. GCD EMPLOYS TWO
SCALAR ARGUMENTS, WHEREAS GC EMPLOYS A SINGLE ARGUMENT WHICH
IS EXPECTED TO BE A TWO-ELEMENT VECTOR 0

THE FUNCTION GCV YIELDS THE GREATEST COMMON DIVISOR OF ALL
ELEMENTS OF A VECTOR OF TWO OR MORE ELEMENTS.

VGCD[OJv
V Z+-M GCD N

[ 1 J Z+-M
[2J M+-MIN
[3J N+-Z
[ 4 J -+07:M

VGC[DJv
V Z+-GC M

[1J -+07:1+M+-~M[1J,z+-I/M

VGCV[D]v
V Z+-GCV W;A

[1J -+17:pW+-Z,CA7:0)/A+-CZ+-L/W) IN
V

84 GCD 90
6

90 GCD 84
6

GC 90 84
6

GCV 90 84
6

GCV 90 84 105
3

DBIN

THE FUNCTION BIN PRODUCES ALL BINOMIAL COEFFICIENTS UP TO ORDER N

VBIN[DJv
V Z+-BIN N

[1J Z+-LQCO,lN)oo~O,lN

V

BIN 4

1 0 000
1 1 0 0 0
12100
1 3 310
1 4 6 4 1

13.5



DPOLY

THE FUNCTIONS POLY, POL, PO, AND POLYB EACH EVALUATE A
POLYNOMIAL (OR POLYNOMIALS) , WHOSE COEFFICIE NTS ARE
DETERMINED BY THE FIRST ARGUMENT, AND WHOSE POINT (OR
POINTS) OF EVALUATION IS DETERMINED BY THE SECOND ARGUMENT.
THE COEFFICIENTS ARE IN ASCENDING ORDER OF ASSOCIATED
POWERS,

POLY
POL
POLYB
PO

SCALAR RIGHT ARGUMENT ONLY,
SCALAR RIGHT ARGUMENT ONLY (USES INNER PRODUCT) 0

SCALAR RIGHT ARGUMENT ONLY (USES BASE VALUE),
APPLIES TO ARGUME NTS OF ANY RANK, THE VECTORS ALONG
THE FIRST COORDINATE OF THE FIRST ARGUMENT ARE THE
COEFFICIENTS OF THE POLYNOMIALS WHICH ARE EVALUATED
FOR EACH ELEMENT OF THE SECOND ARGUMENT,

VPOLY[DJv VPOLYB[OJV
V Z+C POLY X V Z+C POLYB X

[ 1 J Z++/CxX* 1+1P,C [1 J Z+X..L<PC
V V

VPOL[OJV VPO[OJV
V Z+C POL X V Z+C PO X

[ 1 J Z+(X* - 1+1P,C)+,xC [ 1 J -Z+(Xo o* 1+11p pC)+, xC
V V

C+1 2 3 4
C POLYB 3

142
(C POLY 3)A o=(C POLYB 3) , (C POL 3),C PO 3

1
C PO 1 2 3 4 5 6

10 49 142 313 586 985
D+M+ls(BIN 5

1 1 1 1 1 1
0 1 2 3 4 5
0 0 1 3 6 10
a 0 0 1 4 10
0 0 0 0 1 5
0 0 0 0 0 1

LM PO 1 6

1 2 4 8 16 32
1 3 9 27 81 243
1 4 16 64 256 1024
1 5 25 125 625 3125
1 6 36 216 1296 7776
1 7 49 343 2401 16807

B.6



DTIME

THE FUNCTION TIME YIELDS THE AMOUNT (IN MINUTES, SECONDS,
AND 60THS OF A SECOND) OF CPU TIME USED SINCE ITS LAST
PREVIOUS EXECUTIONo IT IS USEFUL IN MEASURING THE EXECUT10N
TIMES OF OTHER FUNCTIONSc THE VARIABLE 'TIMER' IS ASSIGNED
THE VALUE OF THE CUMULATIVE CPU TIME AT EACH EXECUTION OF
THE FUNCTION TIMEc

VTIME[OJV
V Z+TIME;T

[lJ Z+ 60 60 60 T(T+r21)-TIMER
[2J TIMER+T

DCOMB

THE FUNCTION COMB EMPLOYS R~'CURSIVE DEFINITION TO PRODUCE A
2!N BY 2 MATRIX OF ALL POSSIBLE PAIRS OF ELEMENTS FROM IN.

THE FUNCTION FC SHOWS AN ALTERNA1iE METHOD WHIC H YIE LDS THE
SAME PAIRS BUT IN A DIFFERENT ORDER c

THE FUNCTION LFC EMPLOYS FC TO GENERAflE LETTER PAIRS.
VCOMB[OJV

V C+COMB N;A;B
[lJ -+OxlN<2
[2J -+OxlN=2 x1pC+ 1 2 p 1 2
[3J A+COMB N-1
[4J C+( (pA)+(N-l) ,O)p( ,A),,( IN-1)o 0 rO,N

VFC[OJv
V C+FC N;A;B

[lJ B+-(lN)oc+NpO
[2J A+(lN)on+1N
[3J C+(2,NxN)p(,B)"A
[4J C+-~(C[2;J~N)/C

V
VLFC[OJv

V Z+LFC N
[lJ Z+'ABCDEFGHIJKLMNOPQRSTUVWXYZ'[FC NJ

V
TIME

0 0 35
TIME

0 0 2
COMB 4 FC 4 LFC 4

1 2 1 2 AB
1 3 1 3 AC
2 3 1 4 AD
1 4 2 3 Be
2 4 2 4 BD
3 4 3 4 CD

TIME TIME TIME
0 0 12 0 0 8 0 0 7

B.7



Z+-COMB 15 Z+-FC 15
pZ pZ

105 2 105 2
TIME TiME

0 1 4 0 0 29

DDTH

THE FUNCTiONS DTH, HTD, AND AH CONCERN HEXADECIMAL NUMBERS
LIMIT/}'D TO 8 DIGITS AND EMPLOYING THE CHARACTERS
0123456789ABCDEF" NEGATiVE NUMBERS ARE REPRESENTED IN 2'S
COMPLEMEN2' FORM, WITH ANY OF THE CHARACTERS 8 THROUGH F IN
THE LEFTMOST POSITION (OF EIGHT)c LEADING ZEROS MAY BE
OMITTED 0

D,]'H CONVERTS DECIMAL TO HEXADECIMAL"
HTD CONVERTS HEXADECIMAL TO DECIMALQ
AH ADDS HEXADECIMAL NUMBERSo

VDTH[OJv
V R+-DTH X

[ 1 J R+-, ( , 0123456789 ABCD EF' ) [ 1 +( 8 o 16 ) T XJ
V

VHTD[OJv
V R+-HTD X

Lt l R+-( (8-p ,X)p' 0' ),X
l2J R+-L(16~-1+'0123456789ABCDEF'lR)-(2*32)xR[lJE'89ABCDEF'

[3J ~4x~A/XE'0123456789ABCDEF'

[ 4] R+-' ,
[5 J 'NUMBER IS NOT HEX'

V
VAH[OJv

V R+-A AH B
[ 1 J R+-D1;H( H'];D A) +HTD B

V
Z+-DTH 1776
Z

000006FO
HTD Z

1776
Z AH Z

OOOOODEO
HTD Z AH Z

3552
HTD '000006FO'

1776
HTD '90000000'

1879048192
liTD '00049HFG'

NUMBER IS NOT HEX

U.8



DZERO

THE FUNCTIUN ZERO EMPLOYS THE METHOD OF FALSE POSITION TO
DETERMINE TO WITHIN A TOLERANCE TOL A ROOT OF THE FUNCTION F
LYINJ BETWEEN THE BOUNDS B[lJ AND B[2Jo IT IS ASSUMED THAT
F B[lJ AND F B[2J ARE OF OPPOSITE SIGNo THE FUNCTION F IS A
SPECIFIC POLYNOMIAL, BUT CAN BE CHANGED TO ANY DESIRED
FUNCTION 0

V'ZERO[OJV'
V' Z+TOL ZERO B;T

[lJ ~OxlTOL~IT+F Z+Oo5x+/B
[2J ~1,B[2~(0<T)~0<F BJ+Z

V'

V'F[OJV'
V' Z+F X

[lJ Z+ -20 18 3 5 1 PO X
V'

O+X+-4+19
3 2 -1 0 1 2 3 4 5

F X
169 12 29 20 3 4 7 36 145

TIME
o 1 19

O+R+IE-6 ZERO 2 1
1 0845121413

TIME
o 2 36

F R
7 014140814E 7

TIME
002

O+FO+R+IE-I0 ZERO 1 2
1 026397094

-l,813305062E 11
TIME

o 3 46
D+FO+R+IE--6 ZERO 1 2

1 0263970852

-8051888359E 7
TIME

o 2 13

B.9



DHILB

THE FUNCTION HILB PRODUCES A HILBERT MATRIX OF ORDER No

VHILB[OJV
V Z+-HILB N

[1J Z+-f-1+(lN)oo+lN

HILB 3

1
0 05

0 03333333333

0 05

0 03333333333
0 0 25

003333333333
0 025

0 02

DINV

THE FUNCTIONS INV AND INVP EACH PRODUCE THE INVERSE OF THE
MATRIX ARGUMENT SUPPLIED, EMPLOYING GAUSS-JORDAN (IoEo,
COMPLETE) ELIMINATION 0 INVP EMPLOYS PIVOTING AND INV DOES
NOTo

UNIT VECTOR l~lN AS THE LAST
SECOND LINE (LINE 4 IN INVP)
OF THE N COMPLETE INVERSIONS

OF IVERSON, A ERQQHdMMI~Q

THE FIRST LINE APPENDS THE
COLUMN OF THE ARGUMENT AND THE
PERFORMS AT EACH ITERATION ONE
REQUIRED. SEE EXERCISE 1 040
~d~Q~dQ~, WILEY, 1962 0

VINV[OJV
V Z+-INV M;I;J

[1J M+-~(l 0 +pM)p(,~M),~J+-l<iI+-1tpM

[2J M+-1~(J,1)~[1JM-(JxM[;1J)ooxM[1;J+-M[1;JfM[1;lJ

[3J ~2X10~I+-I-1

[4J Z+-M[;lltpMJ

VINVP[OJv
V Z+-INVP M;I;J;K;P

[1J M+-~(l 0 +pM)p(,~M),~J+-1<P+-1I+-ltpM

[ 2 J M[ K, 1 ; 1 P PJ+-M I:. 1 , K+- ( IMI:. 1 I ; 1 J ) 1 r/ IM[ 1 I ; 1 J ; 1 PPJ
[3J P+-1~P,OpP[K,1J+-P[1,KJ

[4J M+-1~(J,1)~[1JM-(JxM[;lJ)ooxM[1;J+-M[1;JfM[1;lJ

[5J ~2X10~I+-I-1

[ 6 J Z+-M [ ; t! PJ

O+-N+-INV M+-HILB 3

9

36
30

M+. «N

36
192
180

30
180
180

1 0000000000EO
l o421085472E-14
4.662936703E-15

2 0842170943E-14

1 0000000000EO

3 0197442311E-14

60039613254E-14
10065814104E-14
lo000000000EO

B. 10



DPALL

THE FUNCTION PALL PRODUCES THE MATRIX OF ALL PERMUTATIONS OF
ORDER Nv THE FUNCTION PERM WHICH IT USES PRODUCES THE B-TH
PERMUTATION OF ORDER N BY A METHOD DUE TO LoJoWOODRUM o

THE FUNCTION PER EMPLOYS RECURSIVE DEFINITION , AND PRODUCES
ALL PERMUTATIONS BY A METHOD MUCH FASTER THAN THAT USED IN
THE FUNCTION PALLo THE PERMUTATIONS ARE PRODUCED IN THE
OPPOSITE ORDER 0

\7PA LL[O J \7
\7 Z+PALL N;I

[1J Z+((!N),N)pO
[ 2 J I +1
[3J Z[I;J+N PERM I
[4J +3x(!N)~I+I+l

\7
\7PERM[OJ\7

\7 Z+A PERM B; I ; Y
[1J I+pZ+1+(¢lA)TB-1
[2J +Oxl0=I+I-1
[3J Z[YJ+Z[YJ+Z[IJ~Z[Y+I+1A-IJ

[4J +2
\7

\lPER[OJ\7
\7 P+PER M;X;Y;Z

[1J +OxlM=P+ 1 1 p1
[2 J Z+PER M-1
[3J P+1X+0
[4J +OxlM<X+X+1
[5J Y+(~(lM)EX)\Z

[6J Y[;XJ+M
[ 7 J P+( (X x !M-1 ) , M) p ( , P) , , Y
[8J +4

\7
PALL 3

1 2 3
1 3 2
2 1 3
2 3 1
3 1 2
3 2 1

TIME
0 3 7

Z+PALL 3
TIME

0 0 49
Z+PALL 5
TIME

0 25 10
Z+PER 5
TIME

0 1 12
B.11



DASSOC

THE FUNCTION ASSOC TESTS ANY PUTATIVE GROUP MULTIPLICATION
TABLE M (ASSUMING GROUP ELEMENTS 11ppM) FOR ASSOCIATIVITY
AND YIELDS A VALUE 1 IF IT IS ASSOCIATIVE, 0 OTHERWISE 0

VASSOC[Olv
V Z+-ASSOC M

[1J Z+-A/,M[M;J=Ml;MJ
V

M+-(15)<p5 5P15
M

2 3 4 5 1
3 4 5 1 2

4 5 1 2 3
5 1 2 3 4
1 2 3 4 5

TIME
0 0 13

ASSOC M
1

TIME
0 0 9

M+-O o 1 o O<j)M
M

2 3 4 5 1
3 4 5 1 2

5 1 2 3 4
5 1 2 3 4
1 2 3 4 5

ASSOC M
0

TIME
0 0 10

M+-?10 1 Op 10
pM

10 10
TIME

0 0 3
ASSOC M

0
TIME

0 0 45

B.12



)LOAD 1 NE~IS

SAVED 10 044 008 07/12/68

DESCRIBE

THIS WORKSPACE PROVIDES INFORMATION ABOUT THE OPERATION AND
USE OF APL. THE FUNCTIONS OF INTEREST TO THE USER ARE
APLNOW, INDEX, PRINT, AND SCHEDULE.

APLNOW TAKES AS ITS SINGLE ARGUMENT A THREE-ELEMENT VECTOR
REPRESENTING A DATE, AS MONTH, DAY, YEAR. APLNOW PRINTS
NOT"6'S ON THE STA'J..1US OF THE APL SYSTEM; FOR INSTANCE,
RECENTLY ADDED FEATURES, TEMPORARY RES'l'RICTIONS, OR ADVICE
ON PROGRAMMING OR TERMINAL OPERAT10N. ONLY THOSE NOTES
ENTERED INTO APLNOW ON OR AFTER THE DATE GIVEN AS AN
ARGUMENT ARE PRINTED.

INDEX TAKES NO ARGUMENT. IT PRINTS INDICES, DATES, AND THE
FIRST FEW WORDS OF EACH NOTE IN APLNOW o

PRINT TAKES AS ITS SINGLE ARGUMENT THE INDEX (AS INDICATED
BY THE INDEX FUNCTION) OF A NOTE FROM APLNOW, AND PRINTS THE
NOTE.

SCHEDULE TAKES NO ARGUMENT. IT INDICATES THE REGULAR DAILY
APL SCHEDULE, AND ALL ANTICIPATED DEVIATIONS FROM THE NORMAL
SCHEDULE 0

1:3. 13



BIBLIOGRAPHY

Berry, P.C., APL\360 Primer, IBM Corporation, 1968.

Berry, P.C., APL\1130 Primer, IBM Corporation, 1968.

Breed, L.M., and R.H. Lathwell, "The Implementation
of APL\360", ACM Symposium on Experimental
Systems for Applied Mathematics, Academic Press,
1968.

Falkoff, A.D., and K.E. Iverson, "The APL\360 Terminal
sys t.em? , ACM Symposium on Experimental Systems
for Applied Mathematics, Academic Press, 1968.

Falkoff, A.D., K.E. Iverson, and E.H. Sussenguth, "A
Formal Description of System/360", IBM Systems
Journal, Volume 3, Number 3, 1964.

Iverson, K.E., A Programming Language, Wiley, 1962.

Iverson, K.E., Elementary Functions: an algorithmic
treatment, Science Research Associates, 1966.

Iverson, K.E., "The Role of Computers in Teaching",
Queen's Papers in Pure and Applied Mathematics,
Volume 13, Queen's University, Kingston, Canada,
lq sn,

Lathwell, R.H., APL\360:
Corporation, 1968.

Operator's Manual, IBM

Lathwell, R.H., APL\360: System Generation and
Library Maintenance, IBM Corporation, 1968.

Pakin, S., APL\360 Reference Manual, Science Research
Associates, 1967.

Rose, A.J., Videotaped APL Course, IBM Corporation,
1968.

Smillie, K.W., Statpack 1: An
Package, Publication No.9,
Computing Science, University
Edmonton, Canada, 1968.

APL Statistical
Department of

of Alberta,



INDEX

A.5 B.5
3.10-11

Absolute value
see I"1agnitude

Account number 1.8 2.2-3 2.23
2.28

Accounting information 1.11 2.10
ALREADY SIGNED ON 1.9 2.7
And 3.5 3.7 3.9 3.34
Announcements, public address 1.9

2.32

Caret 3.3
Catenation 3.27 3.29 3.38 4.2
Ceiling 3.7-8 A.2
Character
error 3.4
input 3.24-25
output 3.26 3.33

Characteristic 3.43
Circle function 3.34
Circular functions 3.7
CLEAR 2.7 2.14 3.33
CLEAR WS 2.6 2.15
Column 3.30-32 3.35 3.42 A.7
Column catenator 4.2
Colon 2.2-3 2.10 2.14 3.17
Combinations B.7
Comma 3.27-28
Commands 2.5-7
table 2.7

APL
character set 1.3
exercise 4.5-6
information B.13
operations 2.1-3 2.5

Application packages 2.13
Arccos 3.7
Arccosh 3.7
Arcsin 3.7
Arcsinh 3.7
Arctan 3.7 A.2
Arctanh 3.7 A.2
Arguments 3.5 3.8-9 3.11 3.14-16

3.28 3.37 3.41-44
left 3.8
right 3.3

Array 3.26-33 A.6-8
extend scalar functions to 3.5

3.33
functions on 2.20 3.33-36 4.3

A.8-10
Arrow 3.1-5 3.21 3.24
Associativity test B.12
Asterisk 2.30 3.21
Attention 1.7 2.4 3.1 3.18

Data button 1.6
Date 3.47
Date response 2.9-10
Deal 3.7 3.38 3.45
Decimal form 3.2 4.3
Decode 3.38 3.42 B.2
Defined function 2.3 3.1-16 A.3

example 3.11 A.3
exp1i~it argument and result 3.14

3.15
list names of 2.28
start and end 3.10
table of forms 3.15
use 3.16
variables made local to 3.13

Definition mode 2.5 3.17
end 3.18 A.3
reestablish 3.19

DEPN ERROR 3.4
Del 3.10 3.17-19
Del tilde 3.19
Delete 3.17-19
DEPTH ERROR 3.4
D~agona1 3.39 A.11
DIGITS, output maximum 2.7 2.21

4.7
Dimension 3.5 3.26-29 3.35
Dimension and rank table 3.27
Disconnect 1.10 2.8 2.11
Display 3.17-18 A.4
Divide 3.7 3.34
DOMAIN ERROR 3.4 3.44 4.3
Drop 3.38 3.44
DROP 2.7 2.22 2.27
Dyadic functions 3.7-8 3.34 3.36
Dyadic circle function table 3.7

Comment 3.45
CommQnication commands 2.5 2.32-33
action and notes 2.33-35
table 2.7

Comparison 3.8 A.9
Complete beta function 3.9
Compound character 3.3
Compound expression 3.3 3.14
Compress 3.38 3.41-42 A.13
Computer

access 1.1
failure 2.8
time used 1.11 3.47

Con formability 3.33 3.36
Connection

broken 1.6 2.4 2.8 2.10
computer 1.1
establish 1.4-6
hold 2.11-12

Constants 3.2
CONTINUE 1.11 2.7-9 2.11-12
Continuity of work 2.22
Coordinates of array 3.32 3.35

3.37
COpy 2.7 2.13-14 3.33
action and notes 2.15-18

Correction 1.7 A.1 A.4
Cosh 3.7
Cosine 3.7 A.2

3.45

Backspace 1.7 3.3
Base value 3.42 A.13
Beta function 3.9
Binomial coefficient 3.7
Body of defined function

A.3
Bounce 2.8-9 2.11
Brackets 3.10 3.17
Branch 3.1 3.11 3.20-21

A.3
example 3.12

Business accounting 2.13
Byte 3.46-47



Halted function 2.3 2.22 2.30-31
Header 3.13 3.15-19 A.3
Hexadecimal number B.8
Homonyms 2.3 3.22-23
Hyperbolic functions

see Circular functions

Gamma function 3.9
Gauss-Jordan elimination B.IO
Global object 2.3 2.15-20 3.23
Global variable 2.13-14 2.29 3.13

A.3
Grade up and down 3.38 3.44
Graph 4.2 4.5
Greater 3.7 3.9
Greatest common divisor A.4 B.5
GROUP 2.7 2.13-14 2.19 2.29
GRP, CRPS 2.7 2.29-30 3.22

Factorial 3.7 3.9 3.16 A.3
Floor 3.7-8
FNS 2.7 2.28 3.22
Function name 2.19 3.2 3.11

3.23
Function definition 3.10-11

3.17-19 A.4-6
Functions

see Circular, Defined, Dyadic,
Halted, Library, Locked, Mixed,
Monadic, Pendent, Primitive,
Recursive definition, Scalar,
Suspended, System dependent

Fuzz 3.8

Label 3.17
LABEL ERROR 3.4
LENGTH ERROR 3.4 3.33 4.3
Less 3.7 3.9
LIB 2.7 2.31
Library 2.2

see Private, Public
LIBRARY 1 4.1

ADVANCEDEX B.1-12
APLCOURSE 4.5
NEWS B.13
TYPEDRI LL 4. 8-9
WSFNS 3.32 4.7

Library control command 2.5
2.22-24

action and notes 2.25-27
table 2.7

Library function 2.5 4.1-9
Library number 2.14 2.23
LIBRARY TABLE PULL 2.9
Line width 2.21
List, construct and use B.3
LOAD 2.7 2.22
Local variable 2.3 3.13 3.22
Lock 2 • 3 2 • 10
Locked function 3.5 3.9
Locked keyboard 1.6-8 2.4 2.32-33
Logarithm 3.7
Logical function 3.5 3.9
Logical result A.2

Key 1.8 2.3 2.14
Keyboard L 3

locked 1.6-8 2.32-33
unlocked 1.10 2.4 2.34 3.24

Keying time 3.47

~-beam functions 3.20 3.46-48
Identity element table 3.34
IMPROPER LIBRARY REFERENCE 2.7

2.26-27 2.31
INCORRECT COMMAND 2.6-7
INCORRECT SIGN-ON 1.9 2.7
Index 3.26 3.38
INDEX ERROR 3.4 3.30 3.34
Index generator 3.9 3.38 A.2
Indexing 3.26 3.30-33 A.14-15
Index of 3.38 3.43
Index origin 2.20 3.32-34 A.8
Inner product 3.5 3.33 3.35 A.9

table 3.36
Input
character 3.25
escape from loop 3.25
evaluated 3.24
position 1.8 2.4

Input and output 3.23-26 A.6
Inquiry command 1.8 2.5 2.28
action and notes 2.28-32
table 2.7

Insert by backspacing 3.3
Interrupt 1.1 2.4 2.9 3.20
Iota
see Index generator, Index of

Iteration counter 3.13

A.2
3.33
3.29
B.2

3.24

e
see Exponential

Edit
in function definition 3.18-19

A.5
text 2.13

Element-by-element 3.5 3.9 3.33
A.l

Empty array 3.29
Empty vector 3.10
Encode 3.38 3.43
Entries 1.6-7 3.2
Epsilon

see Characteristic
Equal 3.7-9 3.34
Equipment 1.1 1.2
Erase 1.7 2.27 3.3
ERASE 2.7 2.13 2.20 3.19 A.5
Error 1. 7
Error report 3.3 3.5

during defined function 3.5
table 3.4

Evaluated input 3.24
Evaluation, order of

see Order of execution
Exclusive or 3.9
Execution mode 2.5 3.19
Execution, order of

see Order of execution
Expand 3.29 3.38 3.42 A.13
Exponential 3.7
Exponential form 3.2 4.2-3 A.l
Expression, compound 3.3 3.14



Magni tude 3. 7- 8
Material implication 3.9
Mathematical statements 3.1
Matrix 3.26-27 3.33 3.35 A.7

A.15
Hilbert B.10
~aximum 3.7 3.34 A.9
Membership 2.30 3.38 3.43 A.15
Message 1.8 2.21 2.32-33
MESSAGE LOST 2.7 2.33
Minimum 3.7 3.34
Minus 3.2 3.7 3.34
Mixed functions 3.37-45

names 3.5
sample A.10-15
table 3.38-39

Monadic functions 3.7-8
Monadic transpose 3.40
MSG, MSGN 2.7 2.33-34

Names 2.2-3 2.14 2.19 2.23
3.10 3.13

active and latent referents 3.22
3.23

to obtain lists of 2.28-31
Nand 3.7 3.9 3.34
Natural logarithm 3.7
Negation function 3.2
Negative number 3.2 3.7 A.l
NO SPACE 2.9
Nor 3.7 3.9 3.34
Not 3.7
Not equal 3.7-9 3.33
Not greater 3.7 3.9 3.34
NOT GROUPED, NAME IN USE 2.7 2.19
Not less 3.7 3.9 3.34
NOT SA VED, THIS WS IS wsid 2.7

2.27
NOT SAVED, WS QUOTA USED UP 2.7

2.27
NOT WITH OPEN DEFINITION 2.7 2.16

2.25 3.19
NUMBER IN USE 1.9 2.7
NUMBER LOCKED OUT 1.9 2.7
NUMBER NOT IN SYSTEM 1.9 2.7
Number of terminals connected 3.47
Numbers 3.2 3.5 3.26

OBJECT NOT FOUND 2.7 2.16
Occurrences B.4
OFF 2.7 2.10-11
Operator 1.4-5 1.8
OPR, OPRN 1.8 2.7 2.34-35
Or 3.5 3.7 3.9 3.34
Order of execution 3.45

compound expression 3.3 A.l
defined function 3.11

ORIGIN 1.7 2.7 2.20 3.32 4.7
Out of 3.34
Outer product 3.5 3.33 3.35-36
Output 2.1 2.21 3.23 3.25

array 3.33
fixed point 4.2
heterogeneous 3.26
maximum digits 2.21

Overstrike 3.3-4 3.19 3.25
3.35 3.41 3.45

Parentheses in expre sion 3.3
Parenthesis, right .8 2.5-6
Password 1.8 2.3 .10
PCOpy 2.13 2.18
Pendent function 2.3 2.30 3.21
Permutation 3.32 3.37 A.8 A.14

B.ll
Pi times 3.7
Plus 3.7 3.34
Polynomial B.6
Ports 1.1
PORTS 2.7 2.32
Power 3.7 3.34
Precision of numbers 2.21 3.5
Primitive functions 3.1 3.7 3.14

3.38
names 3.5
see Mixed, Scalar

Printing element 1.1-3
Private library 2.2-3 2.23
Programming examples B.1-12
Protecting copy command 2.13 2.18
Public library 2.2 2.23 4.1

Quad 3.24-25 3.47
Quotation mark 3.2
Quote quad 3.25 3.47

Radices 3.42
Random 3.7 3.45 A.15
RANK ERROR 3.4 3.33 4.3
Rank of array 3.26-27 A.14
Ravel 3.27-28 3.38
Reciprocal 3. 7
Recording terminal 1.4 2.8 2.24

2.32 2.34-35
Recursive definition 3.16 B.7

B.ll
Reduction 3.5 3.33-35 A.9
Representation 3.43 A.13
Request button on 1050 terminal 1.8
RESEND 1. 7 3.4
Reshape 3.28 3.38 A.7
Residue 3.7-8 3.34
Response 1.9-11 2.6 2.10 A.l
table 2.7

Results 3.2 3.14-15
Return 1.6-7 3.3
Reverse 3.38 3.41 A.12
Revise 3.17
Rho
see Reshape, Size

Roll 3.7
Rotate 3.38 3.40 A.12
Row 3.30-32 3.35 3.42 A.7

SAVE 2.7 2.22 2.25-26
Scalar 3.27 3.37
Scalar functions 3.5-10
extend to arrays 3.33-36
sample A.2
table 3.7

Security 2.3
Semicolon 3.13 3.26



SI, SIV 2.7 2.30-31 3.20-22
Sign on 1.8-10 2.7
Signum 3.7 A.3
Sine 3.7 A.2
Sine, cosine, tangent table A.l1
Sinh 3.7
Size 3.5 3.27 3.38
Spaces 2.6 3.2
Specification 3.1
multiple 3.45

State indicator 2.1 2.22 3.20-21
3.48 A.5

with local variables 3.22
Statement 3.1
end of 3.3
invalid 3.3 3.5 A.2
number 3.10-11 3.17-18 3.48

Statistical calculations 2.13
Stop control 3.19 3.21
Storage 2.1 2.24 3.46
store workspace 2.25-26
Suspended function 2.30 3.20-21

3.48
Symbols 3.5 3.7 3.24-25 3.38

3.45
SYMBOL TABLE FULL 3.4
SYNTAX ERROR 3.4
System command 2.1 2.5-6
during function definition 3.19
table 2.7

System dependent function 2.5 2.30
3.46-48

table 3.47
SYSTEM ERROR 3.4
System information 1.9 3.46-48

Tabular output 4.3
Take 3.38 3.44
Tangent 3.7 A.2
Tanh 3.7
Teaching 2.13
Telephone nQ~ber 1.5
Terminal

table of features and options 1.2
1050 1.1 1.5 1.7-8
2740 1.4- 6
2740-1 1.1
2741 1.1 1.4-6 2.4

Terminal control command 2.5 2.8-9
action and notes 2.9-12
table 2.7

Terminal, sample session at A.1-l5
Terminal modes 2.5
Time 1.9 1.11 2.9 3.46-48 B.7
Timer on 1050 terminal 1.8
Times 3.7 3.33
Time, student response 3.47

Trace 3.16 3.19 3.21 A.3
Transmission signal 1.6-7
Transpose 3.37-41 A.lO-ll
Transposition table 3.40
Trigonometric functions
see Circular functions

Trouble report 1.7 2.6
table 2.7

Typewriter entry 1.6-7 3.2 3.24
x.;

User code 1.11 2.28

Value 3.11 3.14-15 3.17 3.25
3.45

VALUE ERROR 3.4 3.15
Variables
local and global 2.3 3.13 3.22
names 2.1-2 2.19 3.22-23
value 3.1 3.14 3.32

VARS 2.7 2.29 3.22
Vectors 3.9-10 3.26-27 3.35 A.l
mixed functions apply 3.37
numerical and character constant

3.2 A.l
scalar functions apply 3.9

WIDTH 2.7 2.21 3.25 4.7
Work session

forced end 2.8
to end 1.10-11 2.10-12
to start 1.8

Workspace 1.9 2.1-2
activate 2.14-15
active 2.13 2.28
capacity 2.1
clear 1.10 2.6 2.14
continue 1.10 2.8 2.24
identification 2.14 2.23 2.31
identification change 2.22-23
index origin 3.33
information transfer between 2.13
in libraries 4.1
name 2.2-3
purge an active 2.24
replace stored with active 2.25
stored 2.2-3 2.23

Workspace control command 2.5
2.13-14

action and notes 2.15-22
WS FULL 2.7 2.16 3.4
WSID 2.7 2.31
WS LOCKED 2.7 2.15
WS NOT FOUND 2.7 2.15 2.27

Zero of a function B.9



APL\360 User's Manual

READER'S COMMENT FORM

GH20-0683-1

Please comment on the usefulness and readability of this publication, suggest additions and
deletions, and list specific errors and omissions (give page numbers). All comments and sugges
tions become the property of IBM. If you wish a reply, be sure to include your name and address.

COMMENTS

fold

fold

• Thank you for your cooperation. No postage necessary if maiied in the U.S.A.
FOTn ON TWO LINES STAPLE AND MAIL.

fold

fold



GH20-o683-1

YOUR COMMENTS PLEASE •••

Your comments on the other side of this form will help us improve future editions of this pub
lication. Each reply will be carefully reviewed by the persons responsible for writing and pub
lishing this material.

Please note that requests for copies of publications and for assistance in utilizing your IBM

system should be directed to your IBM representative or the IBM branch office serving your
locality.

fold fold
.........................................................................................................................

FIRST CLASS

PERMIT NO. 1359

WHITE PLAINS, N. Y.

BUSINESS REPLY MAIL
NO POSTAGE NECESSARY IF MAILED IN THE UNITED STATES

POSTAGE WILL BE PAID BY ...

IBM Corporation

1133 Westchester Avenue

White Plains, N.Y. 10604

........................................................................................................................ :

Attention: Technical Publications

fold

International Business Machines Corporation
Data Processing Division
1133 Westchester Avenue, White Plains, New York 10604
[U.S.A. only]

IBM World Trade Corporation
821 United Nations Plaza, New York, New York 10017
[International]

fold



GH20-0683-1

International Business Machines Corporation
Data Processing Division
1133 Westchester Avenue, White Plains, New York 10604
[U.S.A. only]

I BM World Trade Corporation
821 United Nations Plaza, New York, New York 10017
[International]


	001
	002
	003
	004
	005
	006
	1-01
	1-02
	1-03
	1-04
	1-05
	1-06
	1-07
	1-08
	1-09
	1-10
	1-11
	2-01
	2-02
	2-03
	2-04
	2-05
	2-06
	2-07
	2-08
	2-09
	2-10
	2-11
	2-12
	2-13
	2-14
	2-15
	2-16
	2-17
	2-18
	2-19
	2-20
	2-21
	2-22
	2-23
	2-24
	2-25
	2-26
	2-27
	2-28
	2-29
	2-30
	2-31
	2-32
	2-33
	2-34
	2-35
	3-01
	3-02
	3-03
	3-04
	3-05
	3-06
	3-07
	3-08
	3-09
	3-10
	3-11
	3-12
	3-13
	3-14
	3-15
	3-16
	3-17
	3-18
	3-19
	3-20
	3-21
	3-22
	3-23
	3-24
	3-25
	3-26
	3-27
	3-28
	3-29
	3-30
	3-31
	3-32
	3-33
	3-34
	3-35
	3-36
	3-37
	3-38
	3-39
	3-40
	3-41
	3-42
	3-43
	3-44
	3-45
	3-46
	3-47
	3-48
	4-01
	4-02
	4-03
	4-04
	4-05
	4-06
	4-07
	4-08
	4-09
	A-01
	A-02
	A-03
	A-04
	A-05
	A-06
	A-07
	A-08
	A-09
	A-10
	A-11
	A-12
	A-13
	A-14
	A-15
	B-01
	B-02
	B-03
	B-04
	B-05
	B-06
	B-07
	B-08
	B-09
	B-10
	B-11
	B-12
	B-13
	Bibliography
	Index-1
	Index-2
	Index-3
	Index-4
	replyA
	replyB
	xBack

