
CONTROL DATA'8
CYBER 70 SERIES
6000 SERIES
COMPUTER SYSTEMS

APL-CYBER
REFERENCE MANUAL

CONTROL DATA
-. -.

REVISION RECORD
REVISION DESCRIPTION

A Oris-i nal printing

(6~73)

B Reflect current implementation· support KRONOS 2. 1 ooer-atina s vs tern, This nr intina obsoletes

(7-73) revision A.

Publication No.
19980400

© 1973
by Control Data Corporation

Printed in the United States of America

Address comments concerning this
manual to:

Control Data Corporation
Technical Publioations Department
4201 North Lexington Avenue
Arden Hills, Minne-sota 55112

or use Comment Sheet in the back of
this manual.

PREFACE

This is the reference rn ariu al. for APL~:~CYBER, version 1. O. APL~:~CYBER runs on all

models of CONTROL DATA® CYBER 70 Series and 6000 Series computers. and is current

ly implemented for use with the KRONOS operating system. No knowledge of any operating

system or hardware characteristics is required other than that included in the appendixes

of this manual.

19980400 A iii

CONTENTS

1 INTRODUCTION 1-1

APL - The Language 1-1

The APL*CYBER System 1-2

Special Notation 1-3

Note on Examples 1-4

2 DATA 2-1

Arrays 2-1
Data Types 2-1
Array Structures 2-1
Element Position 2-2
Visual Conventions 2-2

Absolute Element Order 2-3
Shape Determination 2-4

Number of Elements 2-4

Rank Determination 2-5

3 ARRAY CREATION AND VARIABLES 3-1

Literal Expressions 3-1

Variable Definition: Specification 3-3
Referencing Variables 3-3

4 DISPLAYING DATA 4-1

Syntax 4-1

Data Object Displays 4-1
Composite Data Object Displays 4-6

5 PRIMITIVE FUNCTIONS 5-1
Notation 5-1
Syntax 5-2

Domain and Range 5-2
Conformability 5-4
Origin 5-6
Subarray Operations - Indexed Functions 5-7

RELATIVE FUZZ: Use in Relationals 5-8

ABSOLUTE FU ZZ 5-11
SEED 5-13

19980400 A v

6 SELECTION PRIMITIVE FUNCTIONS 6-1

Indexing 6-2

Indexed Specification 6-4

Monadic Rho: Shape 6-6

Monadic Comma: Ravel 6-7

Dyadic Rho: Reshape 6-8

Dyadic Comma: Catenate 6-9

Take 6-12

Drop 6-14

Compress 6-16

Expand 6-18

Monadic Rotate: Reversal 6-21

Dyadic Rotate 6-22

Monadic Transpose. Dyadic Transpose 6-24

7 SCALAR PRIMITIVE FUNCTIONS 7-1

General 7-1

Scalar Monadic Functions 7-2

Scalar Dyadic Fune tiens 7-8

8 COMPOSITE FUNCTIONS 8-1

Reduction 8-2

Inner Product 8-6

Outer Product 8-8

9 MISCELLANEOUS PRIMITIVE FUNCTIONS 9-1

Monadic Iota: Interval 9-1

Dyadic Iota: Index of 9-2

Dyadic Epsilon: Membership 9-4

Dyadic Query: Deal 9-5

Grade Up 9-6

Grade Down 9-7

Base Value 9-8

Representation 9-10

Evaluate 9-12

Format 9-15

I-Beam 9-17

vi 19980400 A

10 APL EXPRESSIONS

Input Representation Fornlat

Conversion of Input Representation

Evaluation of Expressions

Displaying Expressions

11 APL SYSTEM/USER INTERACTION

Immediate Execution

Aborting Execution or Output

QUAD Input

QUAD-PRIME Input

Visual Fidelity

Line Editor

12 USER-DEFINED FUNCTIONS

Function Definition

Function Call

Function Execution

Environment of an Active Function

Nested Function Calls

A Note on Recursive C all s

13 FUNCTION EDITOR

Purpose

Invoking the Editor

Supplying Function Definition Body Lines

Replacement of an Existing Line

Deleting an Existing Line

Restriction on Editing Active Functions

Creating Separate Versions of a Function

Display Directives

Editing an Existing Line

Repositioning an Existing Line

Terminating the Function Editor

Documenting User-Defined Functions

Using System Commands while Editing

Function Editor One-Liners

Summary

19980400 A

10-1

10-1

10-1

10-2

10-5

11-1

11-1

11-1

11-2

11-5

11-7

11-8

12-1

12-1

12-2

12-2

1 ') c::;
... v

12-6

12-7

13-1

13-1

13-1

13-2

13-3

13-3

13-4

13-4

13-5

13-6

13-6

13-7

13-7

13-8

13-8

13-8

vii

14 SYSTEM COMMANDS

Introduction

Global Object Inventory

Groups

Erasing Global Objects

Debugging Aids

Environmental Parameters

Library Facilities

Terminating an APL Session

Display Device Parameters

APPENDICES

A TERl'vlINAL ACCESS TO APL*CYBER SYSTEM: ON KRONOS

B COMMUNICATING APL CHARACTERS

Methods

Overstrikes

Mnemonics

Compatibility

C NUMERIC REPRESENTATION ON CYBER COMPUTERS

viii

14-1

14-1

14-3

14-4

14-8

14-9

14-14

14-16

14-31

14-32

B-1

B-1

B-1

B-2

B-3

C-1

19980400 A

APL - THE LANGUAGE

INTRODUCTION 1

The Language APL and its acronym are derived from the mathematical language propound

ed by K. E. Iverson in a book entitled "A Programming Language" (John Wiley and Sons.

Inc. 1962).

The Language is essentially a large set of primitive. i, e •• predefined. functions for man

ipulating and performing computations on data. The notation used is very compact. A

single APL character conveys the primitive function desired. and function expressions

consist of an infix notation associating the arguments with the function being called. Prim

itive functions have one or two arguments. One argument appears to the right of the APL

character conveying the desired function. If a second argument is required it appears to

the left of this character. Arguments can themselves be function expressions. Evaluation

of the expression proceeds f'r o m right to left.

Unlike functions in other programming languages. most primitive functions in APL are

defined for general arguments. While scalar (single valued) arguments are possible as a

special case. in general the arguments are array data structures and the functions operate

in a predefined manner on these structures as a whole.

19980400 A 1-1

THE APL·CYBER SYSTEM

The implementation of APL on CYBER computers is known as the APL*CYBER system.

The principal component of the system is a conversationally interactive interpreter design-

ed for time sharing terminal operation. Upon gaining access to the system, APL expres ...

sions keyed on a terminal are evaluated and results, if requested, are displayed immediately.

In addition to operating the system as a sophisticated desk calculator, the following features

endow it with the capabilities of a complete programming system.

• A procedure exists for a user to define his own APL functions in terms of APL

expressions using previously defined or existing functions.

• A user library facility exists whereby such functions and previously input or pro

cessed data can be stored for subsequent use of for interchange with other users.

• Extensive diagnostics, debugging aids and editing facilities exist to make the APL

programmer extremely productive.

• Methods exist whereby a variety of terminal types can gain access to the

APL*CYBER system and exchange data and programs.

• Batch users may also employ the system in batch mode.

1-2 19980400 A

SPECIAL NOTATION

The following notation is not part of the APL language but rather is used in describing that

language.

iT indicates the contents are optionaUy Included.

{ } select one.

••• repeat as required.

< >indicates a descriptive term rather than a literal APL construct,

++ indicates identity, L e., that the expression on the left has the same

value as the expression on the right. If used in the context of a constraint,

the expressions must have the same value for the constraint to be satis

fied.

NOTE ON EXAMPLES

Where examples are shown in this manual, a clear workspace (see ')CLEAR') is understood

to exist prior to input of the first line, unless otherwise stated or implied by the example

itself.

19980400 A 1-3

ARRAYS

DATA 2

All data in APL is handled in the form of arrays. An ARRAY is a finite, ordered set of

data elements, arranged in a multi-dimensional structure of mutually orthogonal coordinate

axes.

The number of dimensions, or coordinate axes, is called the RANK of the array. This

number is necessarily a non-negative integer. The value of a particular dimension is the

number of element positions within the array along the corresponding coordinate axis, and

is termed the LENGTH of the coordinate axis. This number is also necessarily a non

negative integer. The set of coordinate lengths is called the SHAPE of the array.

For example, a 3 by 4 matrix is a rank 2 array. Its dimensions, or coordinate lengths,

are 3 and 4. and its shape is 3 4.

All elements in the array must be of the same DATA TYPE (see below>. The VALUE of

an array is determined by its data type, its shape, and the values of all the elements in

the array.

DATA TYPES

Two data types are defined in APL*CYBER: numeric and character. The value of a num

eric data type is a single number (e. g., the number 5. 3 >. The value of a character data

element is a single character (e. g., the character "A", or "+", or "1 ").

ARRAY STRUCTURES

The most primitive array is an array of rank zero. This structure is the classical

SCALAR of tensor analysis, and is analogous to a point in geometry. A scalar has no

dimensions and exactly one element.

Example:

19980400 A

4 (a numeric scalar)

2-1

The most common multi-element array is the one-dimensional array. This structure,

called a VECTOR, is analogous to a line in geometry. As a line may have arbitrary length,

so a vector may have an arbitrary number of elements.

Example: 7 1.3 5 (a three-element numeric vector)

A MATRIX is much like a vector, except that the structure has two orthogonal coordinate

axes instead of one, as in a plane versus a line. A matrix can be thought of as a set of row

vectors arranged along a vertical coordinate axis, or as a set of column vectors arranged

along a horizontal coordinate axis. The first coordinate axis. by convention, is usually

considered the "vertical" axis, and the second the "horizontal" axis.

Example: 1 7 12

16 2 3

(a 2 by 3 numeric matrix)

Higher rank arrays are built in a similar fashion. The language does not define any limit

to the rank of an array. However, the APL*CYBER implementation will not allow the user

to create arrays of rank greater than 127. Any attempt to exceed this limit will result in

an error message (usually a RANK ERROR).

ELEMENT POSITION

The position of an element within an array is determined by a set of ordinals, one for each

coordinate axis, called the COORDINATES of the element. The value of a particular co

ordinate is the ordinal for the position of the element on the corresponding coordinate axis.

The ordinal values used to designate a specific element depend on the setting of ORIGIN

(q. vv), In ORIGIN 1 the first position is denoted by 1, the second by 2, etc.

VISUAL CONVENTIONS

In vectors, the last (and only) coordinate axis is considered to be horizontal, with the left

most position being considered the first. Thus, if X is the vector 7 5 10 , X [1] (see

INDEXING) is the element 7.

In matrices, the last coordinate axis is considered to be horizontal, and the second -to-last

(namely, the first) is considered to be vertical. The first column is the left-most, and the

first row is the top row.

2-2 19980400 A

For example, suppose that X is the 3 by 4 array below:

1 7 12 5

16 2 10 9

11 4 3 15

Then, X[2; 3] (see INDEXING) is the element which is in position 2 on the first coordinate

axis (namely, row 2) and position 3 on the second coordinate axis (namely, column 3). The

value of this element in the above example is 10.

F or arrays of rank 3 or greater, visual conventions do not exist, because today's displays

are two-dimensional (however, see DISPLA YING DATA).

ABSOLUTE ELEMENT ORDER

For most operations, the elements of an array do not form a well-ordered set. That is,

given any two elements in an array. it is not generally possible to state which comes before

the other. Ho\vever, t'vTlO important exceptions should be noted

Ihe RAVEL function (q. v.) creates a vector of the elements in an array. The first

element of the resulting vector is the element in the first position on all coordinate

axes of the argument. The elements following this are chosen along the last co

ordinate axis of the argument. When these are exhausted, they are followed by the

elements along the last coordinate axis in the next position of the next-to-last co

ordinate, and so on until all coordinate axes have been accounted for. This ordering

is called ROW MAJOR order.

Example:

x

1 2 3 4

5 678

9 10 11 12

.x
1 2 3 4 5 6 7 8 9 10 11 12

19980400 A 2-3

The RESHAPE function (see RESHAPE) creates an array of the specified shape

from the elements in the order given. This operation may be thought of as an

inverse operation to RAVEL.

Example:

3 4p1 2 3 4 5 6 7 8 9 10 11 12

1 2 3 4

5 6 7 8

9 10 11 12

SHAPE DETERMINATION

The shape of an array is represented by a vector, each element of which is the value of

the corresponding dimension of the array. The shape of a 3 by 4 matrix is 3 4 . The

shape of a six-element vector is 6. In general, the shape of an array may be found by the

monadic Rho function (see SHAPE):

p1 3 7 6 12 4

6
X+2 3p1 3 7 6 12 4

pX

2 3

NUMBER OF ELEMENTS

The number of elements in an array may be found from the shape of the ravel of the array:

P.X

6

An array which has one or more zero length dimensions contains no elements and is said

to be EMPTY:

X+2 0 3p1 3 7 6 12 4

pX

203

P.X

o

2-4 19980400 A

Since a scalar has no dimensions, its shape is empty. Note the difference between a

scalar. which has one element and no dimensions. and an empty array, which has no ele

ments and one or more dimensions:

X~5

p,X

SPAFT'+pX

p,SHAPE

o

RANK DETERMINATION

~ince the rank of an array is the number of dimensions, it is also the number of elements

in t n e snape 01 t n e array:

RAllK~p,pX

Further, since

found from:

Example:

19980400 A

p X is always a vector, the ravel is unnecessary, and the rank may be

RANK~ppX

pp1 3 7 6 12 4

1

X+2 3p1 3 7 6 12 4

ppX

2

pp5

2-5

ARRA Y CREAliON AND VARIABLES 3

Arrays are created by the APL interpreter by evaluating APL expressions. An APL

expression is a syntactic construct of APL language elements which together totally detail

the construction of an array.

Evaluation of an APL expression involves one of three processes within the interpreter.

singly or in combination depending on the complexity of the APL expression.

1. APL language elements exist from which literal expressions may be formed.

These are interpreted directly and result in arrays having the value as stated

in the expression.

2. An expression may state a function to be called with designated arguments. The

interpreter executes the function which in turn produces an array as its result.

3. An expression may reference a currently defined variable. Such reference results

in the interpreter making available an array having the value of the one being

referenced.

LITERAL EXPRESSIONS

Literal expressions allow explicitly valued scalars and vectors to be directly expressed.

LITERAL CHARACTER EXPRESSIONS

A character scalar is expressed by placing the desired character in quote marks. thus:

'A'

A character vector is expressed by placing zero. two. or more characters within quote

marks.

'AB'

'ABCDE'
, ,

a 2-element character vector

a 5-element character vector

a 0 -element character vector

To indicate that a character appearing within quote marks is the quote character itself. two

consecutive quote marks are used to represent the single character.

19980400 A

'DON"T'
, , ,. a 5-element character vector DON'T

a character scalar '

3-1

LITERAL NUMERIC EXPRESSIONS

A numeric scalar is expressed by formulating a numeral from the 13 APL characters

0123456789. -E

• Unsigned integer and decimal numerals are formed in the usual manner.

• A negative value is indicated with the negative symbol character "_" (read as

'negative' or 'neg').

• The character E is used to 'convey base 10 exponentiation and can be read

'times 10 to the'.

-6

3.14159625

4.325E17 I
2. 59376E-3 ~
10E-5 J
.475

473

exponent must be an integer

Note: embedded spaces
are not allowed.

Numbers having any number of digits may be expressed. but the system will retain values

of only 14 (in some cases 15) significant digits. Proper scaling will always take place.

Numbers conveying a magnitude exceeding the representation capability of CYBER com

puters will result in a DOMAIN ERROR. (See appendix C.)

A numeric vector is expressed by formulating a list of two or more numbers each separat

ed by one or more space characters.

2.37 5493 -2. 86E47

I-element vectors. 0 -element numeric vectors and arrays of rank 2 or greater cannot

be conveyed in a literal expression. Such structures can only be expressed by a call of a

suitable function with appropriate arguments. or by referencing an existing array having

such a shape.

3-2 19980400 A

VARIABLE DEFINITION: SPECIFICATION

The process of variable definition is called specification. The APL language syntax is:

<identifier> ~ <APL expression>

In this process. a variable is created whose name is the identifier given. and whose value

is the value of the array created by the APL expression.

Examples:

COUNT+1

The variable COUNT now has the value of the numeric scalar 1.

TEXT+'THIS IS IMPORTANT'

The variable TEXT now has the value of the character vector: 'THIS IS IMPORTANT'

RULES FOR FORMING IDENTIFIERS

• Names may be from one to 112 characters in length.

• The first character must be an alphabetic character (A to Z. a to z. 6. or b).

• The remaining characters (if any) may be any alphabetic character or digit. or the

underscore character ().

REFERENCING VARIABLES

Whenever the identifier of a variable appears in an APL expression. it refers to that

variable. On detecting the presence of a variable identifier. the APL interpreter makes

available an array having the value of the variable being referenced.

If the variable has not been defined. a reference to it results in a VALUE ERROR.

A~2. 3 -570 3 4E3

X6.17a~A

In the first line above. A is specified as the variable identifier for the vector 2. 3 -57. 3

4E3 o The appearance of A in the second line refers to the variable stated above. The

reference makes available a vector 2 03 -57. 3 4E3 which is then associated with a data

identifier X6.17a. Two variables now exist having the same value. one identified by A. the

other by X6.17a. Su.bsequent occurrences of A or X6.17a in APL expressions refer to the

corresponding variables.

19980400 A 3-3

RESPECIFICATION

If a new value is given to the variable A by means of a subsequent specification. for example:

A-'NEW A'

the previous value of A is no longer r-eferenceable, and hence no longer exists. Note that

there are no restrictions on the type or shape of the value newly specified to A. It need bear

no relation as to type or shape of the previous value of A. A new specification for A in no

way alters the specification for X617a. It still is associated with vector 2.3 -57.3 4E3.

3-4 19980400 A

DISPLAYING DATA

SYNTAX

The APL language provides a facility for displaying data. The language syntax for con

veying this process is:

D~<APL EXPRESSION>

4

The character 0 is called QU AD. If the left-most operation indicated in an APL source

line is other than a specification, display of the evaluated APL expression is implicit, and

the construct 0 -- need not be present in this case.

0+2+2

4

DATA OBJECT DISPLAYS

4

2+2

All data displays consist of a tabular arrangement of character representations of the

elements of the array. For character data, each data element, being a character, is dis

played as that character (or by the mnemonic for that character where it cannot be formed

on the terminal being used; see appendix B).

Note that character arrays are displayed without enclosing quote marks:

'A '

A

'ABC'

ABC

Note that single quote marks are displayed as such:

, , , ,

'DON' 'T'

DON'T

For numeric data, each data element is represented by a suitable format of characters

which together convey the value of the numeric element.

All displays begin at the left margin and element representations are displayed left to right

in element order. Scalars are displayed in the same manner as a one-element vector.

19980400 A 4-1

Each rank 1 subarray display occupies at least one display line. If the number of charac

ters required to display a complete rank 1 subarray exceeds WIDTH (see SYSTEM

COMMANDS). its display will continue on subsequent lines with an appropriate indication of

continuation (usually an indentation of 6 character positions). Each data element represent

ation will be complete on one line.

Rank n-l subarrays of rank n arrays are displayed in structure order.

Between subarrays of rank 2 and higher a blank line is displayed.

NUMERIC ELEMENT FORMATTING

The amount of significance used in formatting numeric arrays is controlled by an environ

mental parameter known as DIGITS. The normal setting for this parameter in APL*CYBER

is 10. Numeric elements are formatted into one of two possible forms, decimal or

exponential, depending on the value to be represented and on the setting of DIGITS. A

rounded representation of the element value in the form of DIGITS digits is obtained, the

left-most being non-zero unless the value is zero. Any value whose magnitude when round

ed as above is less than 10 and not less than 0.001 will always be expressed in decimal

form regardless of the setting of DIGITS.

Numeric Format Rules

• No more than DIGITS digits may be printed, unless they are leading zeros.

• No more than three leading zeros may be printed.

Decimal Form

[-] <integral part> [. <fraction part>]

• Magnitude scaling is indicated by insertion of a decimal point after the appropriate

digit position.

• If the magnitude of the element value is less than I, the integral part is represented

by a single zero.

• Trailing zeros in the fraction part are suppressed.

• If the fraction part is entirely zero, the decimal point is suppressed.

• Negative values are indicated with a leading negative symbol char-acter"?",

4-2 19980400 A

Examples:

WAS 10

1.235

42.93

)DIGITS 4

1.2348

-42.927

7.0004

7

.0012365

0.001237

.0012365

0.001237

0.123

Exponential Form

.123 .00099997

0.001

In all cases where decimal form is unsuitable, exponential form is used.

<coefficient> E <exponent>

• The coefficient is formed from the DIGITS digits stated above for decimal form.

• A decimal point is inserted to the right of the left-most digit. Coefficients thus

always have a magnitude less than 10 and greater than or equal to one.

• Suppression of trailing zeros and the decimal point, and use of the negative symbol

are the same as for decimal form.

• The exponent is an integer with appropriate value to indicate proper scaling of the

coefficent as formatted, with a leading negative sign if the exponent is negative.

Examples:

19980400 B

)DIGITS 4

WAS 10

12348

1.235E4

-429273.8

-4.293E5

lE4

9999.5

4-3

NUMERIC DATA OBJECT FORMATTING

All numeric data objects are formatted as if they were matrices. A vector is formatted as

a matrix with one rank 1 subarray. A scalar is formatted identically to a one- element

vector. An array B of rank greater than two is treated as a restructured matrix Bl formed

as follows:

Elements within each column of the above matrix are formatted uniformly as follows:

• The same element representation form (decimal or exponential) is used. Unless

one or more elements must be formatted in exponential form, either by the criteria

stated in numeric element formatting or as a consequence of the following format

ting rules, decimal form will be used.

• Decimal points are aligned (I, e , , occur in the same character position) for all

element representations. This may entail appending one or more spaces to the left

and one or more zeros (and decimal point) to the right of the fraction part as

appropriate. If this causes a violation of the Numeric Format Rules stated above,

exponential format is used for the column.

DISPLAYING NUMERIC DATA OBJECTS

Recall that all data objects consist of line displays of the rank 1 subsets in subset order,

with element representations appearing left to right in element order beginning at the left

margin.

Since all elements within each column of the numeric matrix are uniformly formatted and

aligned, all such element representations will appear in vertically aligned and uniformly

formatted columns, appearing left to right in matrix column order, with two blanks between

adjacent columns.

Where displays are continued on indented lines, these should be visualized as additional

columns that conceptually belong increasingly to the right of the display. See example on

opposite page.

4-4 19980400 B

Example:

)DIGITS 5

WAS 10

WAS 72

X+.275396 14.3E3 692738 12345 678

X

0.275396 14300 692738 12345 678

)WIDTH 30

WAS 60

X

0.275396 14300 692738 12345

678

.1+3 2p42 1.7E9

)WIDTH 60

WAS 30

r

42.00 1.7000E9

173.52 6.8345E-10

0.90 O.OOOOEO

)DIGITS 4

rlAS 5

(display continuation indented)

173.52 6.8345E-l0 .9 0

19980400 B

.1

4.200El

1.735E2

9.000E-l

1.700E9

6.835E-10

O.OOOEO

4-5

COMPOSITE DATA OBJECT DISPLAYS

Several evaluated expressions can be displayed in sequence in one composite display by

arranging the expressions in desired display sequence and separating them with semicolons:

<expression>; <expression>; ••• ; <expression>

Each APL expression is evaluated starting with the right-most and proceeding to the left

most.

If the display syntaxD~ occurs within the expression, the expression evaluated at that

point is displayed immediately.

After the left-most expression is evaluated, a composite display is output for all those

expressions set up for display in reverse order to that in which evaluated; i, e., in the

left to right order in which the expressions appear on the line.

For consecutive displays of scalars or vectors, output is displayed contiguously on the

same output line. Displays of expressions of higher rank are displayed in a vertical

format. Continuation lines are indicated in the same manner as for a single display.

Both numeric and character expressions may be formatted in the same composite display.

This feature provides the main use of composite displays. With this feature, result dis

plays can be annotated with character descriptions in the style of an edited report.

Examples:

QUANTITY+3

UNIT_PRICE+1. 50

'COST OF 'iQUANTITYi' UNITS IS 'iQUANTITYxUNIT_PRICE

COST OF 3 UNITS IS 4.5

5+D+\3i'ZXC'iB+21 9iD+'XYZ'i23p\6

XYZ (first QU AD)

1 2 3 (second QUAD)

6 7 8ZXC2 1 9HZ]
1 2 3 (composite display)

4 5 6

4-6 19980400 B

PRIMITIVE FUNCTIONS 5

The basis of the APL language is a large set of predefined functions. Because they are

part of the language, they are termed primitive functions.

NOTATION

The notation used in describing the syntax of APL constructs is as follows:

•

•

•

•

•

•

•

The right argument of a function is indicated by the meta-identifier "B". It is

understood that any valid APL expression may be used in place of this meta-identi

fier.

The left argument of a function (if one exists) is indicated by the meta-identifier "A ".

as for "B" above.

If the function produces a result, that fact is indicated by the meta-construct "R« I;

It is understood that no actual specification of the result need take place.

The function itself and any associated APL characters required are indicated by the

symbols in question. These symbols must be used as shown.

Function Indices (see INDEXED FUNCTIONS) are indicated by the meta-identifier

"K" enclosed in square brackets following the function to be indexed. Any valid APL

expression may be substituted for "K". If "K" is elided, the square brackets must

also be elided.

If a syntax involves a general primitive function, this function is represented by the

meta-symbol "r", Any valid APL primitive function may be substituted for "f",

subject to the restrictions specified in the case in question.

If a second general primitive function is used in the syntax, it is represented by the

meta-symbol "g", as for "f".

• Other syntactic constructs are indicated by a description of the construct enclosed

in angular brackets (e. g. , < index list>). It is understood that any syntactic con

struct Iollowing the rules specified in the case in question may be substituted for the

meta-construct 'above.

Exceptions to this notation are indicated where they occur.

19980400 A 5-1

Example:

i?o(-~[K]B

In this example, the function "<1>", modified by the function index "[K]", with right argument

liB" and left argument "A ", produces a result "R". Following this form, here is a possible

usage of the above function:

34>[1]1 2 3 4

4 123

Since the result was not specified after completion, it was displayed.

SYNTAX

Primitive functions are of two types: monadic (L e. ~ having one argument); and dyadic

U. e., having two arguments). The syntax for calling each type is:

monadic:

<special APL char-actero-car-gument expression>

dyadic:

<argument expr-eastorc-cspectal APL character><argument expression>

Most of the special APL characters used in designating monadic APL primitive functions

are also used in designating some dyadic APL primitive function. In most cases, but not

all, there is some similarity between the function procedure invoked in each case. The

actual function called in each instance is, however, quite distinct.

DOMAIN AND RANGE

The class of arguments and the class of results of a given function are called its domain

and range, respectively.

The domain for character arguments and the range for a character result is the APL charac

ter set.

The largest numeric class currently defined for APL*CYBER is the set of real numbers

for which an exact or approximate representation exists on CYBER computers. Complex

and other non-real number classes are not currently defined for any APL primitive

functions.

5-2 19980400 A

Certain numeric arguments and results of function are confined to a subclass of the defined

real numbers, namely the integers. Ordinals (see below) are members of this class.

Other numeric arguments and results of functions are confined to a subclass of the integers

consisting of the integers 0 and 1. This subclass is known as the logical or Boolean class.

(See Boolean numbers.)

Each of the foregoing classes is clearly a subclass of each class preceding it, and any

function defined on a class clearly applies to any of its subclasses.

Any argument supplied to a function which is not in its domain of definition or for which the

result is not in the defined range of definition results in a OOMAIN ERROR message.

ORDINALS

Ordinal numbers are the numbers used to state position or ranking in an ordered set. The

names of these positions are first, second, third, etc.

It is customary to assign values to represent these positions identical to those used to

represent the positive integers:

First 1

Second 2

Third 3

It is sometimes more convenient to assign the values as follows:

First 0

Second 1

Third 2

Once the value for first has been decided upon, second is assigned the next higher integer

value, and so on.

The two schemes indicated are classified according to the value assigned for first, and are

known respectively as ORIGIN 1 and ORIGIN O.

The scheme to be followed can be designated by using the system command)ORIGIN

(see ORIGIN command).

Various APL functions are defined which use ordinal arguments. Some others produce

ordinal results.

The domain of definition of such functions for such arguments is the positive integers for

ORIGIN 1 and the positive integers and zero for ORIGIN O.

19980400 A 5-3

BOOLEAN NUMBERS

Boolean numbers are truth values and are usually defined for logical systems of two values

as true and false. It is customary by convention. to represent the Boolean' number'

(i, e •• truth value) true by the number 1 and false by O.

This convention has been followed in the implementation of APL. The domain of definition

of functions defined for such arguments and the range of those functions yielding such re

suits are the numbers 1 and O.

Such functions must be given arguments whose elements consist of the appropriate number

of ones and zeros.

It should be understood that the meaning of a 1 or 0 is that of the truth value - true or false

when it is the argument of a Boolean function, regardless of the fact that it may be the re

sult of some prior numeric computation.

CONFORMABILIIY

As stated in the introduction, a key feature of APL is the fact that the primitive functions

are defined for general arguments; i, e, , the arguments are arrays. usually of more than

one element, and the functions operate in a predefined manner on the array structure as a

whole.

For most primitive functions there is some constraint placed on the generality of the argu

mentfs), Any rule which limits the generality of shape of an acceptable argument of a

function is called a conformability rule. Conformability rules are classified as either sin

gular or dual.

• Singular Conformability: A conformability rule for a monadic function or one which

pertains to a specific argument of a dyadic function independent of any shape for the

other argument is said to be singular.

• Dual Conformability: A conformability rule for a dyadic function which states a

relationship between the shapes of the two arguments is said to be dual. Certain

dual conformability rules also implicity convey a singular conformability require

ment for one of the arguments.

Conformability rules are stated as part of the description of each primitive function where

one or more apply.

5-4 19980400 A

Violation of a conformability rule results in a RANK ERROR or LENGTH ERROR as approp

riate unless overriding rules are applicable.

OVERRIDING CONFORMABILITY RULES

Confonnability rules are subject to the following overriding rules, whereby a conforma-

bility rule may be relaxed or somewhat altered.

The following rules have precedence in the order listed.

1. The following singular conformability rules are inviolate:

•
•

A scalar cannot be indexed.

The left argument of DYADIC IOTA must be a vector•

2. A scalar is treated as a one-element vector where singular conformability requires

a vector argument. This process is known as scalar extension.

3. A one-element vector is treated as a scalar where singular conformability requires

a scalar argument.

""1:. Whe re a dual conf'o r mability rule a scalar or one ~elerllent vector ar-gument

is treated for function execution as a restructured array having the minimum rank

and number of elements required to meet all conformability requirements. This is

another form of scalar extension. The restructured shape will not result in an empty

data object unless that is specifically required.

Exceptions:

• The left argument of TAKE, DROP, EXPAND and TRANSPOSE, and the right

argument of COMPRESS.

This rule, when applied to INDEXED SPECIFICATION (q, v.). relates to the implied

shape of the index list taken as a whole, and not to individual elements which make

up the list. Note that this may relult in an indexed expression with bad form if

multiple specification to the- same indexed element is implied.

19980400 B 5-5

ORIGIN

In an ordered set, specific members are designated by an integer called an ordinal speci

fying the order position in the set. The ordinal of each member is one greater than the

ordinal of its predecessor. The ORIGIN parameter is the value designated to the ordinal of

the first member of the set. APL*CYBER allows the ORIGIN to be set to either 0 or 1.

The normal setting for ORIGIN in APL*CYBER is 1. To change the setting of ORIGIN, see

the system command)ORIGIN.

The first element of the result returned by monadic IOTA (q, vv) is ORIGIN. Thus the

setting of ORIGIN may be found from 11 :

\1
1

)ORIGIN 0
WAS 1

11
0

Since the ORIGIN designates the value of the ordinal of the first member of any set, any

function that uses ordinals as an argument or returns ordinals as a result is said to be

origin dependent.

Currently there are six primitive functions defined in APL that return ordinals as a result.

These are:

1. monadic iota tB

2. dyadic iota A\B

3. monadic query ?B

4. dyadic query A ?B

5. grade up .8
6. grade down rB

The primitive function dyadic transpose requires the left argument to be a vector of ordinals.

dyadic transpose A~B

All forms of indexing employ ordinals as indices.

1. expression indexing A[B]

2. indexed specification A[B]--

3. indexed primitive functions f [K] Band Af [K]B

5-6 19980400 B

SUBARRAY OPERATIONS - INDEXED FUNCTIONS

Nearly all primitive functions in APL are defined for array arguments. In most cases,

the basic operation is defined in terms of arrays of a specific structure, and extended to

arrays of other structure by performing the operation in parallel on all basic subarrays of

the array given.

All scalar functions are defined in terms of scalars. For higher rank arrays, the opera

tion is carried out using corresponding scalar subarrays of the argument(s) (see SCALAR

FUNCTIONS).

Many non-scalar functions are defined in terms of vectors (catenation, reduction, compres

sion, etc.). If the array given is of lower rank, it is extended, if possible, in a manner

appropriate to the function in question. If the array is of higher rank, the operation is

carried out using vector subarrays of the ar-gumentf s),

In this case, however, the choice of the elements which constitute each subarray is non

trivial. For a rank N array, there are N possible coordinate axes along which the vector

can be chosen.

In order to resolve this question, a Function Index is used. This takes the form of an index

expression, enclosed in square brackets, following the function in question:

R- f[K]B

or R.-Af[K]B

The index expression must evaluate to a one-element vector ordinal, designating the co

ordinate axis along which the vector subarray is to be chosen. From this it is apparent

that for an index K, and an array of rank N, the domain of K is:

In most cases, if an index is not specified for the function, it defaults to the last coordinate

axis, namely:

KO+(N-1)+11

The functions which may be so indexed are:

19980400 A

f
\
ff

<P
dyadic,

Compress

Expand

Reduction

Reverse, Rotate

Catenate

5-7

(note disappearance of vertical bar)

For these functions, an alternate form exists in which the index defaults to the first co

ordinate axis, rather than the Iast:

KO+\l

The symbol for these functions is formed by overstriking the normal function symbol with

a minus sign (-).
/ ~ f

\ ~ \

f/ ~ ff

~ ~ 9

Currently, these alternate forms may not be explicitly indexed.

RELATIVE FUZZ: USE IN RELATIONALS

In the comparison of any two numeric data elements the following three relational cases

are always mutually excluaive:

A>B

A=B

A<B

A and B scalars

To consider A to be equal to B only when the internal representations of the argument are

identical would be undesirable for the following reasons:

• Numbers in CYBER series computers can only be represented with 14 significant
digits of accuracy (15 digits for integers with a magnitude less than 2*48). -

• The deviation between the represented value and the exact value is proportional to
the magnitude of the represented value.

• If successive operations are applied to such data elements, the inherent error in
such represented values will propagate to the result such that the relative deviation
from the theoretical result could be several times the initial relative deviation.

• Alternatively, the data initially supplied may be significant to much less than 14
digits even though internally represented as such.

For these reasons, it is usually desirable for numeric relational operations to be treated

as fol.low s:

• Consider A equal to B if A lies anywhere in the inclusive range B =IB x factor.

• If A is smaller than the lower limit of this range, consider A to be less than B.
Otherwise, consider A to be greater than B.

5-8 19980400 A

This is exactly how numeric relational operations are performed in APL. The factor used

is called FUZZ. The range B x FUZZ is termed the relative FUZZ. Note that the range of

the relative FUZZ is proportional to the magnitude of B. 'I'hus, the relative FUZZ for a B

of zero is zero.

The following primitive functions also perform comparisons between data elements in the

same manner as the re1ationals:

with numeric argument s
AtE

However-, ! and Vdo Rot use FUZZ.

The normal setting for FUZZ in APL*CYBER is == 2* -43 (e I, l37E-13).

19980400 A 5-9

~

: USE OF FUZZ IN RELATIONALS

A>B

(A-B+IBxFUZZ»O

- il\

T
RELATIVE FUZZ

BxFUZZ

B+IBxFUZZ

A=B

(A-B+IBxFUZZ)SO)A(A-B-IBxFUZZ)~O

I

A IS IN THE INCLUSIVE RANGE B±IBxPUZZ

"1\

RELATIVE PUZZ

A<B

(A-B-IBxFUZZ)<O

I
I

~

5-10

ll.QU: A~B++(A>B)vA=B

ASB++(A<B)vA=B

19980400 A

ABSOLUTE FUZZ

The following primitive functions use FUZZ itself (ABSOLUTE FUZZ) in determining their

results.

FLOOR

Conceptually, FLOOR is a monadic function which returns the largest integer less than or

equal to its argument.

In fact, FLOOR adds the value of FUZZ to the argument and then takes the conceptual

FLOOR of that.

The conceptual FLOOR is the behaviour of FLOOR with FUZZ set to zero. Let 1. represent

the conceptual FLOOR. Then:

(LB)++LB+FU7.Z

CEILING

In a similar manner, ceiling operates as follows:

(rB)++[B-FUZZ

INTEGER DOMAIN

Many APL primitive functions require integer arguments (Boolean and ordinal domains are

subsets of the integer domain).

The test for acceptability as integer is:

CCrB)-LB)=O

If the above relationship is true, B is accepted as the integer lB. If the accepted integer is

a member of the required domain no domain error report is issued.

Regardless of the setting of FUZZ all result values defined to be in integer domain will be

represented exactly if their magnitude is less than 2*48.

GEN ERAL NOTES

Note that for functions employing ABSOLUTE FUZZ, the fuzzing is of uniform width for all

argument values and is based solely on the setting of FUZZ.

Also note that for such functions no acceptable setting of FUZZ has any effect on arguments

greater than or equal to 2*48.

19980400 A 5-11

USE OF ABSOLUTE FUZZ

FOR THIS DESCRIPTION FUZZ=O.125

FLOOR CEILING

INTEGER

INTEGER DOMAIN~«rB)-LB)=O

R+(t10)[B]

R+LB R+rB

R+1

DOMAIN ERROR

1

DOMAIN ERROR

3

2

FUZZ

FUZZ

0.875 --------+------

2 .125 --------+--....~

1 .875 --------of---__-..(

1.125 --------+---"""'l

R+2

2

1

---+--_1------- 3. 125

R+3

FUZZ
-~3

FUZZ
~---+---+------ 2.875

R+1

R+2

R+1

R+O
0.125 ---------4

o o

R+O
---0.125 ---------1

R+-1

1

t
B

1

t
B

5-12 19980400 A

SEED

The functions ROLL and DEAL (q. v.) generate pseudo-random integers. Each element so

produced is generated from an environmental parameter known as SEED. The algorithm

used is such that a given combination of SEED and range (supplied by the ar-gurnentt sl) pro

duces a unique! predictable result element. However; the process of producing the element

alters the value of SEED~ so that the distribution of many elements produced sequentially

is pseudo-random and flat.

Likewise, successive uses of these functions produce results which, while in fact com

pletely deter-mined, appear random and independent. Thus, "random" test sets may be

reproduced by setting SEED to the same value prior to each test. To set this parameter,

see ")SEED".

19980400 A 5-13

SELECTION PRIMITIVE FUNCTIONS

A SELECTION FUNCTION is one in which the result consists solely of eleUlents supplied

from the ar-gume ntt s), and fill elements.

For certain selection oper-ations, specifically TAKE and EXPAND, fill elements are re

quired to create an array of the required shape from the argument given. For numeric

arrays the fill element is zer-o, and for character arrays the fill element is the space

(blank) character.

6

All selection functions are capable of operating on arrays of any data type, and produce a

result of the same data type,

For dyadic selection functions other than CATENATE (q.vv), one argument (usually the

right) is used to supply the array from which elements are to be s ele c te d, and the other to

control the particular selection being performed. Unless otherwise s pec if i ed, the domain

of these control arguments is integer.

In gener-al, restrictions on data type mentioned above or in the definition of the individual

selection functions do not apply if the argument in question is empty.

19980400 B 6-1

INDEXING

syntax: R+B[<INDEX LIST>]

The index list is of the form:

Each index in the index list is separated from the next by a semi

colon. Thus. there are N -1 semicolons in an index list of N indices.

conformability: (ppB)=N

(ppB)~1

(number of indices)

(this restriction may not be circumvented by
scalar extension)

result shape:

definition:

6-2

The result is formed by selecting the subarray indicated by co

ordinates given in the index list. The positions selected along the

jth coordinate axis are given in the index I.. The portion of the
J.

shape imposed on the result by that coordinate selection is the

shape of I..
J

If an index position selected does not exist in the array B. an

INDEX ERROR results.

Indices may be elided. In this case. the index defaults to:

I
cT+l(pB)[cTJ

That is. all index positions along the jth coordinate are selected

once. in position order.

Since the indices are ordinals. the result is ORIGIN dependent

(see ORIGIN).

19980400 A

examples:

X+4 3 7 5 8
X[3]

7
X[5 2]

8 3
X[2 3pl 3 2 4 2 5]

4 7 3
5 3 8

X[6]
INDEX ERROR

v
X[6]
X[lO]

(blank)
X+2 3p4 3 7 5 8 1
X

(result is empty)

4 3 7
5 8 1

X[l]
RANK ERROR

v
X[1]
XC1,l]

4
Xr " . " ,,>1

L4
5 8

X[2 li3 2 3 1]
1 8 1 5
7 3 7 4

X[i2] (first index elided)
3 8

X[i .2]
3
8

)ORIGIN 0
WAS 1

X[lil]
8

X[OiO]
4

19980400 A 6-3

INDEXED SPECIFICATION

syntax:

domain:

R+X[<INDEX LIST>J+B

The underlined portion of the syntax represents the indexed speci

fication proper, while the remainder of the syntax is required for

consistency with the definition of other primitive functions.

B must be of the same data type as X.

conformability: (ppX)=P.

(ppX)~1

where N is the number of items in the index list.

6-4

result shape:

definition:

(pR)+-+pB

Rules pertaining to the index list are the same as for Indexing.

X must be an existing defined variable.

Indexed specification selectively replaces the elements of the array

X indicated by the indices, with the elements of B corresponding to

the positions in the implied index array. The operation has bad form

and is not defined if multiple elements of B are specified to the same

position in X.

When the specification is complete, the result (available as an argu

ment to the next function) is the array B, not the array X or the

indexed array X.

As with Indexing, the operation is ORIGIN dependent.

19980400 A

examples:

X.... l 2 3
X[2]5
X

153
X[1 2] 5 ~

X
543

X[1 2] 1

X
1 1 3

tX[1 2]+1
Y

1
X"" 2 3p 1 2 3 456
X

1 2 3
4 5 6

X[;2]+9 8
X

1 9 3
4 8 6

X[2]9 8
R.IHK ERROR

v
Xr2J+9 8
X[;4]+9 8

INDEX ERROR
v

X[;~]""9 8
)ORIGIN 0

WAS 1
X

1 9 3
4 8 6

X[;2]+4 5
X

1 9 I.:-

4 8 5

(scalar extension of B occurs)

(result is B. not X)

19980400 B 6-5

MONADIC RHO: SHAPE

6-6

syntax:

result shape:

definition:

note 1:

note 2:

R+pB

The result is a vector with N elements. where N is the number of

dimensions in the array B.

The jth element of R is the length of the jth coordinate of B (see

ARRAYS).

Although Shape is not a selection function. it is included here

because it is integral to the discussion of selection functions.

The rank of an array is found by applying the Shape function twice.

RANKB+ppB

For examples. see the section on ARRAYS.

19980400 A

MONADIC COMMA: RAVEL

syntax:

result shape:

definition:

R+,B

The result is a vector of N elements. where N is the number of

elements in B.

The result consists of the elements of B. selected from it in row

major order. For further discussion. see ARRAYS.

examples: X
5

,X
5

Y
1 4 7

;Y
1 4 7

Z
1 3 2
7 8 4

".LJ
1 3 2 7 8 4

W
1 3
7 8

2 5
9 4

, f!
1 3 7 8 2 5 9 4

19980400 A 6-7

DYADIC RHO: RESHAPE

syntax:

domain:

R~ApB

A ~ 0 and integer

conformability:

result shape:

(pA)~127

o=x / A if 0 =x / p B

(pR)~-+A

(APL~:(CYBER limitation) (ppA)=l

definition:

identity:

If B is a vector, and the number of elements in the array indicated

by dimensions A is exactly the number of elements of B, then the

result is an array of shape A such that:

(,R)~-+B

If the result requires N elements, and there are more than N

elements in B, only the first N are used.

If there are insufficient elements in B to fill the array indicated by

A, the elements are chosen cyclically from B until the array R is

filled. This process is known as Cyclic Replication.

If B is not a vector, then:

R~-+Ap , B

(,B)+-+(x/pB)pB

X~2 3 8 1 4 7 7pX
6pX 2 3 8 1 4 7 2

2 3 8 1 4 7 2 4pX
2 3pX 2 3 8 1

2 3 8 4 7 2 3
1 4 7 OpX

" 3 lpX (blank),(.

2 (lO)pX
3 2
8 2p\O

DOMAIN ERROR
1 v
4 2p \ 0
7

1pX
2

(r e sul t i s e mp ty)

(result is a scalar)

(A must be empty if
B is empty)

6-8 19980400 B

DYADIC COMMA: CATENATE

syntax: R+.Ll, [X]B

R+A,B (reverse indexed)

domain:

Three cases exist:

conformability:

result shape:

definition:

19980400 B

A and B must be of the same data type. K follows the rules for

Function Indices (see INDEXED FUNCTIONS).

• (ppA)=ppB

• (ppA)=1+ppB

In this case, B is treated as B 1 obtained from:

RB1+(K~\ppA)\pB (See Expand)

RB1[K]+1

B1+RB1pB

• (l+ppA)=ppB

This case is the mirror image of the above case. A is treated as

A 1 obtained from:

RA1+(K~\ppB)\pA

RA1[K]+1

Al+RA1pA1

In the discussion below, the first case only is considered.

Behavior of the other two extend from the first via the above rules.

«K~tppA)/pA)+~(K~tppB)/pB

(ppA)~1

(ppB)~1

If A and B are vectors of length M and N respectively, then the

result R contains M +N elements, the first M of which are the

elements of A, and last N are the elements of B.

If A and B are arrays of rank 2, vector subarrays are selected

along the Kth coordinate axis, and catenated as above to form vec

tors along the Kth coordinate of the result.

6-9

examples:

2 3

1 2
4 5

Since K is an index, the result, if K is not elided, is ORIGIN

dependent.

If i' is used, the default coordinate is the first, rather than the last.

2 3,4 5
4 5

X+2 3p 1 2 3 456
.1+2 3p7 8 9 10 11 12
X

3
6

.1
7 8 9

10 11 12
X,.1

1 2 3 7 8 9
it 5 6 10 11 12

X,[1].1[1;] (first coordinate used)
1 2 3
4 5 6
7 8 9

X,[1].1
1 2 3
4 5 6
7 8 9

10 11 12
Xi.1

1 2 3
4 5 6
7 8 9

10 11 12

X,[O].1
INDEX ERROR

v
X,[O].1
)ORIGIN 0

WAS 1
X,[O].1

1 2 3
4 5 6
7 8 9

10 11 12
Xi.1

1 2 3
4 5 6
7 8 9

10 11 12
X,[1].1

1 2 3 7 8 9
4 5 6 10 11 12

X,.1
1 2 3 7 8 9
4 5 6 10 11 12

6-10 19980400 B

)ORIGIN 1
flAB 0

X,12 13
1 2 3 12
ij 5 6 13

X,[1]12 13
LENGTH ERROR

v
X,[1]12 13
X,[1]12 13 1ij

1 2 3
4 S 6

12 13 14
X,S

1 2 3 S
4 S 6 S

Z+2 2 2p1 2 3 4 S 6 7 B
ppZ

3
Z,1 2

RANK ERROR
v
Z,l 2

19980400 A

(scalar 5 extended)

(difference in ranks> 1)

6-11

TAKE

syntax:

conformability:

R+AtB

(pA)++ppB

This may not be circumvented by scalar extension unless (p p B) =1

result shape:

definition:

(pR)+IA

Two cases exist:

(see ABSOLUTE VALUE)

• (IA[I])~(pB)[I]

• (IA(I]»(pB)(I]

"ORDINARY" TAKE

("ordinary" take)

("too much" take)

6-12

If B is a vector. and A~O the result is the first A elements of B.

If A<O. the result is the last IA elements of B.

If B is an array of rank ~2. and A[I]~O. the result is formed by

selecting the first A(I] positions along coordinate axis I. If

A[I]<O. the last IA[I] positions are selected.

"TOO MUCH" TAKE

IfA(I]~O, the elements of B occupy the first A(I] positions along

coordinate I of the result. If A[I]<O. the last IA[I]positi.ons

are used.

When the selection is complete, fill elements are placed in any

unoccupied positons of the result.

Take is not ORIGIN dependent.

(See examples on next page.)

19980400 A

examples:

3+1 2 3 4 5
1 2 3

-3+1 2 3 4 5
3 4 5

X+3 4p\12
X

1 2 3 4
5 6 7 8
9 10 11 12

2 3+X
1 2 3
5 6 7

-2 -3+X
6 7 8

10 11 12
2 -3+X

2 3 4
6 7 8

5+1 2 3
1 2 3 o 0

'D' • - 4 + 'ABC'
D ABC

4 -5+X
0 1 2 3 4
0 5 6 7 8
0 9 10 11 12
0 0 0 0 0

2 3+5
5 0 0
0 0 0

19980400 A

(scalar extension)

6-13

DROP

syntax:

conformability:

result shape:

definition:

6-14

R+A+B

(oA)=ooB

Tht s may not be circumvented by scalar extension, unless (p pB) =1

(pR)++(pB)-IA

Two cases exist:

• (IA[I])~(pB)[I]

• (IA[I]»(pB)[I]

In this case, A is treated as if it were AI obtained from:

A1+(xA)x(pB)lIA (see signum, minimum)

If B is a vector, and A~O, the result is all but the first A elements

of B. If A<O, the result is all but the last IA elements.

If B is an array of rank ~2, and A[I]~O, the result is formed by

selecting all but the first A[I] positions along coordinate axis I of B.

If A[I]<O, all but the last IA[I] positions are selected.

Drop is~ORIGIN dependent.

(See examples on next page.)

19980400 A

examples:

2 ... 1 2 3 4 5
345

2 ... 1 2 3 4 5
123

X+3 4p\12
X

123 4
5 6 7 8
9 10 11 12

-1 O"'X
1 2 3 4
5 6 7 8

5 ... 1 2 3
(blank)

5 ... X
LENGTH ERROR

v
5... X
Y+5 1 ... X
Y

(blank)
pY

o 3

19980400 A

(result is empty)

(Y is empty)

6-15

COMPRESS

syntax:

domain:

conformability:

result shape:

definition:

6-16

R+A/[XJB

R+A-I-B

A must be Boolean.

(ppA)=1

(ppB)~1

(pA)++(pB)[XJ

(pR)[IJ= (pB)[IJ POR I-X

+/A POR I=X

If B is a vector. the result is formed by selecting B[IJ if A[I]=1.
or ignoring it ifA[I] =O.

If B is an array of rank ~ 2'. the result is formed by using vector

subarrays of B along the Kth coordinate axis.

Since K is an index. the result. if K is specified. is ORIGIN depend

ent. If ~ is used. the default coordinate axis is the first rather

than the last.

(See examples on next page.)

19980400 A

examples:

1 0 1/1 2 3
1 3

1 0 1/ 'ABC'
AC

1 1 1/1 2 3
1 2 3

0 0 0/1 2 3
(blank)

1/1 2 3
1 2 3

0/1 2 3
(blank)

X+3 4p \ 12
X

1 2 3 4
5 6 7 8
9 10 11 12

1 o 1 O/X
1 3
5 7
9 11

1 0 1/[1]X
01 1"\ .., I,
J. " v "1'

9 10 11 12
1 0 1rX

1 2 3 4
9 10 11 12

)ORIGIN 0
WAS 1

1 0 1rX
1 2 3 4
9 10 11 12

1 0 1/[1]X
LENGTH ERROR

v
1 0 1/[1]X

19980400 B

(result is empty)

(scalar extension of B)

(scalar extension of A)

«pX)[1] is now 4. not 3)

6-17

EXPAND

syntax:

domain:

conformability:

result shape:

definition:

6-18

R+A\[K]B

R+A~B

A must be Boolean.

(ppA)=1

(ppB)~1

(pB)[K]=+/A

(pR)[I]= ~(PB)[I] for I~K

LpA for I=K

The result R is such that:

(A/[K]R)++B

The positions of R defined by (-A) / [K]R contain Fill elements.

Since K is an index, the result if an index is specified is ORIGIN

dependent. If f is used, the index defaults to fhe first coordinate

axis.

(See examples on next page.)

19980400 A

examples:

1 0 1\1 2
1 o 2

1 0 1 1\ 'ABC'
A Be

1 1\1 2
1 2

1 0 0\1 2
LENGTH ERROR

v
1 0 0\1 2
1 0 1\2

202

X+2 3p \6
X

1 2 3.. 5 6
1 0 1 l\X

1 0 2 3
If. 0 5 6

1 0 l\[l]X
1 2 3
0 0 0
4 5 5

1 0 j,\X
1 2 3
0 0 0.. 5 6

)ORIGIN 0
flAB 1

1 0 l\X
1 2 3
o 0 0
4 5 6

1 0 l\[l]X
LENGTH ERROR

v
1 0 l\[l]X

19980400 B

(B should have only 1 element)

(scalar extension of B)

((p X) [1] is no w 3 I no t 2)

6-19

6-20
19980400 A

MONADIC ROTATE: REVERSAL

syntax:

result shape:

definition:

R+filB

(ppB)~1

(pR)++pB

u B is a vector. the result is formed by selecting the elements of

B in reverse order.

If B is an array of rank ">-2. the result is formed by reversing

vectors selected along the Kth coordinate axis of B.

Since K is an index. the result if the index is specified is ORIGIN

dependent. If e is used. the vectors are selected along the first

coordinate axis of B.

identity: (~[K]~[K]B)+-+-B

examples:

~1 2 3
3 2 1

X+2 3p \6
~X

3 2 1
6 5 4

~[1]X

4 5 6
1 2 3

ex
4 5 6
1 2 3

)ORIGIN 0
WAS 1

ex
4 5 6
1 2 3

~[1]X

3 2 1
6 5 4

19980400 A 6-21

DYADIC ROTATE

syntax:

conformability:

result shape:

definition:

identity:

6-22

R+A~[KJB

R+AeB

(ppB)~1

(pA)++(K-,ppB)/pB

(pR)++pB

If B is a vector, and A;tO, the result is formed by cyclically rota

ting the elements of B, A positions to the left:

N+(pB) IA

R+(N+B) .NtB

If A<0, the elements are cyclically rotated to the right:

N+- (pB) IIA

R+(NtB) .N+B

If B is an array of rank ;t2, the vectors to be rotated are selected

along the Kth coordinate axis of B.

Each element of A specifies the rotation to be applied to the cor

responding selected vector subarray of B.

Since K is an index, the result if the index is specified is ORIGIN

dependent. If e is used, the index defaults to the first coordinate

axis.

«-A)~[KJA~[KJB)++B

19980400 A

examples:

2~1 2 3 4 5
3 4 512

-2epi 2 3 4 5
4 512 3

5~1 2 3 4 5
1 2 345

1 2
6 7

11 12

2 3
6 7

10 11

DAN

1 2
5 6
9 10

5 6
9 10
1 2

5 6
9 10
1 2

X+3 4p\12
X
3 4
7 8

11 12
o 1 2epX
3 4
8 5
9 10
1~X

4 1
8 5

12 9
1cP[1jX
7 8

11 12
3 4
19X
7 8

11 12
3 4

(scalar extension of A)

flAS 1
)ORIGIN 0

19X
5 678
9 10 11 12
1 2 3 4

)ORIGIN 1
flAS 0

1<p[1]X
5 6 7 8
9 10 11 12
1 2 3 4

X+2 3 4p\24
X

1 2 3 4
567 8
9 10 11 12

13 14 15 16
17 18 19 20
21 22 23 24

19980400 B

P+2 3p-2 1 o 1 2 3
P

2 1 0
1 2 3

pQX
3 4 1 2
8 5 6 7
9 10 11 12

14 15 16 13
19 20 17 18
24 21 22 23

6-23

MONADIC TRANSPOSE, DYADIC TRANSPOSE

dyadic syntax:

monadic syntax:

domain:

conformability:

R+A~B

(in this case, the left argument defaults to

A+(-2~pB)t¢(-2LppB)tpR

(pA)=ppB

(this may not be overridden by scalar extension.)

Case 1: A has no repeated elements.

result shape:

The transpose operation simply reorders the coordinate axis of

the argument as indicated by the left argument.

A useful rule-of-thumb for doing transpose operations is as follows:

Write down the elements of oB; below it write the elements of A;

on a third line, place the elements of p B in the position indicated

by A. This line is then oR •

.
Example: For the operation

3 1 2~4 5 6P1120

we write:

pB:

A:

pR:

456

3\11 /2rr::

6-24

The shape of the result is 5 6 4.

The effect of reordering the coordinates may be seen as follows:
B+2 3P16
B

123
456

R+~B

The elided left argument defaults to 2 1, so the shape of the result

is 3 2.

19980400 B

The first coordinate has become the last, and the last has become

the first. Thus, in the display the "rows" appear to have become

"columns" # and vice -v'er-sa,

R
1 4
2 5
3 6

Case 2: A has repeated elements,

domain: (see DYADIC IOTA)

result shape:

19980400 A

(pR)[IJ=L/(A=I)/pB POR ALL I€\ppR

(ppR)=O 1[1]+r /A (see REDUCTION)

In the previous case, the transpose reordered the argument coor

dinate axes. Now, they are not only reordered but some of them

are combined into a smaller set of new coordinate axes (as indicated

by the rule-of-thumb given for Case 1).

The Ith coordinate axis of the result is formed from the coordinate

axis(A=I)/\pAof the argument array B. The resulting axis is the

major diagonal of the axis from which it was formed. Only the

elements along this axis are chosen for the result. The number of

element positions along this axis is necessarily equal to the length

of the shortest of the axes from which it was formed, i, e. ,

l/(pB)[(A=I)/\pAJ

Since the left argument consists of coordinate axis indices, the re

sult, if A is specified, is ORIGIN dependent.

For example, consider the operation

Using the rule -of-thumb:

4~61
choose (: : 1

smallest 6
"""":5:----:4-

The shape of the result is 5 4.

6-25

identities:

The effect of combining coordinates may be seen as follows.

Consider:

The result is selected from the diagonal:

R
159

B
123
456
7 8 9

This is the classical trace of B.

For case 1 -

If B is of rank < 1:

(A~B)++B where A in this case must be \ 1

examples: _1 2 3
123

X+2 2p'ABCD'
X

AB
CD _X
AC
BD

X+2 3 4p \24
X

1 2 3 4
5 6 7 8
9 10 11 12

13 14 15 16
17 18 19 20
21 22 23 24

_X
1 5 9
2 6 10
3 7 11
4 8 12

13 17 21
14 18 22
15 19 23
16 20 24

6-26

(A defaults to 1)

(A defaults to 1 3 2)

19980400 A

19980400 A

3 2 i_X
1 13
5 17
9 21

2 14
6 18

10 22

3 15
7 19

11 23

4 16
8 20

12 24

1 2 2_X
1 6 11

13 18 23
2 3 3_X

DOMAIN ERROR
v
2 3 3~X

)ORIGIN 0
vss 1

1 2 2_X
DOMAIN ERROR

v
1 2 2_X
o 1 i_X

1 6 11
13 18 23_X
159
2 6 10
3 7 11
4 8 12

13 17 21
14 18 22
15 19 23
16 20 24

(A \ A is 1 2 3)

fA lA is 0 1 1)

(A defaults to 0 2 1)

6-27

SCALAR PRIMITIVE FUNCTIONS

GENERAL

The class of functions whose primary definition is in terms of operation on one or two

scalars is called the SCALAR FUNCTIONS.

SCALAR MONADIC functions are defined in terms of a single scalar, while SCALAR

DY ADIC functions are defined in terms of a pair of scalars.

For all scalar functions, the following rules hold:

monadic syntax:

7

dyadic syntax:

domain:

range:

R+AfB

A and B lnust be num e ri.c (unless otherwise specified).

R is numeric (unless otherwise specified).

If R is outside the range of real numbers representable on the

machine, a DOMAIN ERROR results. For APL*CYBER, this

range is -1.265E322to 1.265E322 (approximately)

conformability:

result shape:

MONADIC DEFINITION

(pA)....... (pB)
(pR)++pB

(pR)+-+- pB IF (ppB)~ppA

pA IF (ppB)<ppA

for scalar dyadics

for scalar monadies,

for scalar dyadics

The result is formed by applying the function to each element of B, and placing the result

ing element in the corresponding position in R.

DYADIC DEFINITION

The result is formed by applying the function to each element of B and the element in the

corresponding position in A, and placing the resulting element in the corresponding

position in R.

19980400 A 7-1

SCALAR MONADIC FUNCTIONS

MONADIC PLUS: IDENTITY

syntax:

definition:

examples:

R++B

The result is the value of the argument.

+23

23

+- 1 • 5 2 • 7 1 • 7 E- 3

-1.5 2.7 0.0017

MONADIC MINUS: NEGATION

syntax:

definition:

examples:

R+-B

The result is the negated value of the argument.

-23

23

--1.5 2.7 1.7E-3 a

1.5 -2.7 -0.0017 a

MONA~CMUrnnY:~GNUM

syntax:

definition:

examples:

1

R+xB

The result is -1, 0 or 1 depending on whether the argument is

negative, zero or positive.

x23

7-2

X-l.5 2.7 lE-3 a

1 1 1 0

19980400 B

MONADIC DIVIDE: RECIPROCAL

syntax:

domain:

definitio n:

examples:

B~O

The result is the reciprocal of the argument.

+5

0.2

+-10 .5E3

+0

DOMAIN ERROR

v

+0

MONADIC POWER: EXPONENTIAL

syntax:

defini tion:

examples:

The result is the exponential of (e to the power of) the argument.

e is approximated by 2.718281828459045.

2.718281828

*1.5 0

4.48168907 1

*1E8

DOMAIN ERROR

v

19980400 B

*100000000 (result outside machine range)

7-3

MONADIC LOGARITHM: NATURAL LOG

syntax:

domain:

examples:

B>O

The natural logarithm function is the inverse of the exponential

function.

1

o

DOMAIN ERROR

v

MONADIC MINIMUM: FLOOR

syntax:

definition:

examples:

R+LB

The result is the greatest integer less than or equal to the argument.

The result of this function is dependent on the setting of FU ZZ.

L1. 5

1

2 3 5 5 555

7-4

o 1 (second element within FU ZZ of 1)

19980400 B

MONADIC MAXIMUM: CEILING

syntax:

definition:

examples:

R+rB

The result is the smallest integer greater than or equal to the

argument. The result of this function is dependent on the setting

of FUZZe

2

r-5 3 -5 -4.1 -4.9 5.1 5.9

5 3 5 -4 4 6 6

MONADIC MODULUS: ABSOLUTE VALUE

syntax:

defintion:

examples:

R+/B

The result is the absolute value of the argument.

1.5

3 0 15

MONADIC CIRCLE: PI TIMES

syntax:

definition:

examples:

R+oB

The result is '1i'times the value of the argument. 1)- is represented

as approximately 3. 14159265358979.

01

3.141592654

075.3+180

19980400 B

1.314232927 (number of radians in 75. 3 degrees)

7-5

FACTORIAL

syntax:

domain:

definition:

MONADIC QUERY: ROLL

syntax:

domain:

definition:

R+!B

If B < 0, B must not be integer.

The result is obtained from applying the Gamma function to the

elements of B as follows:

R+GAMMA B+1

Note that if B is a non-negative integer, the result is that of the

classical factorial function.

! 3

6

!o 1 2 3 4

1 1 2 6 24

1.772453851 15.4314116 3628800

R+?B

B must be a positive integer.

The result is an integer pseudo-randomly selected from integers

\.B. The roll function result is dependent on the settings of SEED

and ORIGIN.

examples: ?5

2

?5 5 5 5 5 5 5

3 1 4 2 1 5 4

?1

1

)ORIGIN 0

WAS 1

?1

0

(the setting of ORIGIN)

7-6 19980400 B

MONADIC TILDE: NOT

syntax:

domain:

definition:

B must be Boolean..

R. is Boolean...

The result is a 1 if the argument is zero, otherwise the result is

zero.

examples: 0

1

....1 1 0 1 0

o 0 1 0 1

....0.5

DOMAIN ERROR

v

....0.5 (argument not Boolean)

19980400 A 7-7

SCALAR DYADIC FUNCTIONS

DYADIC PLUS: ADDITION

syntax:

definition:

examples:

R+A+B

The result is A plus B.

2+3

5

o 7

2+6 7 4.5

4 5 2.5

DYADIC MINUS: SUBTRACTION

(scalar extension of A)

7-8

syntax:

definition:

examples:

R+A-B

The result is A minus B.

2-3

1

1 15 12-10

952 (scalar extension of B)

19980400 B

DYADIC MULTIPLY

syntax:

definition:

examples:

DYADIC DIVIDE

syntax:

domain:

definition:

examples:

19980400 B

R+AxB

The result is A times B.

6

1 10 100x1 2 3

1 20 300

1E200x1E200

DOMAIN ERROR

v

1E200x1E200

R+A+B

B~O

The result is A divided by B.

2+3

0.666666667

2 3 4f4 3 2

0.5 1 2

Of 0

DOMAIN ERROR

v

0+0

(result outside machine range)

(B must be non-zero)

7-9

DYADIC MODULUS: RESIDUE

syntax:

range:

definition:

R+AIB

R~O

IF A;eO ,R< IA

If Q is the largest integer such that:

B~QxA

then: R+B-QxA

This result may be expressed:

R+B-(IA)xlBtIA FOR A;eO

R+B FOR A=O

Note that in the case A = 0, B < 0, no non-negative solution for R

exists, and a DOMAIN ERROR results.

examples: 10115.3

5. 3

1112.34 10 1. 5

0.34 0 .5

21-1 0 1 2 3 4

1 0 1 0 1 0

015

5

01-5

DO/.fAIll ERROR

v

01-5

(fractional part of B)

(result 1 of B is odd)

(negative result not allowed)

7-10 19980400 B

DYADIC POWER

syntax:

definition:

examples:

R+A*B

The result is A raised to the power B.. Note that if A is negative

and B is not an integer, the result is not real, and a DOMAIN

ERROR results.

In APL*CYBER, if A is negative, B must be a positive integer.

2*3

8

DOMAIN ERROR

v

10* 1 0 1 2

19980400 B

0.1 1.414213562 2 3

0.001 1 8 27*+3

0.1 1 2 3

DOMAIN ERROR

v

1

(square root of A)

(cube root of A)

(if A is negative, B must be integer)

7-11

DYADIC LOGARITHM

syntax:

domain:

definition:

identity:

examples:

R+AeB

A>0.A-e1

B>O

The result is the logarithm of B in base A.

B+A*AeB

2e3

1.584962501

1080.1 1 10 lE2

1 0 1 2

DYADIC MAXIMUM

10-*1

0.4342944819

080

DOMAIN ERROR

v

oeo

181

DOMAIN ERROR

v

(common log of e)

(A and B must be positive)

(A must not be 1)

syntax:

definition:

examples:

7-12

The result is the largest of A or B.

3

175

or-3.5 0 1 5.2

o 0 1 5.2

19980400 B

DYADIC MINIMUM

syntax:

definition:

examples:

19980400 A

R-+-ALB

The resuit is the smaller of A and B..

213

2

1 3 5L-2 7 4

234

OL-10 1 2

1 0 0 0

7-13

DYADIC CIRCLE

syntax:

domain:

definition:

identity:

examples:

R+AoB

A must be integer. As7 .A~-7

The result is the trigonometric function of B indicated by A. The

"nor-mal." trigonometric functions are assigned to positive values

of A. while their "inverse" is designated by the corresponding

negative value of A.

The domain of the "inverse" functions is usually the range of the

"normal" function. The possible values of A and their correspond

ing functions are listed below. along with their range and domain.

A Function Domain Range A Function Domain Range

0 (l-B*2)*O.5 -1 thru 1 o thru 1*

1 sin B -1 thru 1 -1 arc sin B -1 thru 1 -:¥ thru ¥

2 cos B "1 thru 1 -2 arc cos B -1 thru 1 o thru IT
-1'f .".

3 tan B -3 arc tan B 2" thru"2

4 (l+B*2)*O.5 1 thruoo -4 (I+B*2)*O. 5 f-; ::~: 1 o thru 00

5 sinh B -5 arc sinh B

6 cosh B Ithru. -6 arc cosh B 1 thru. o thru ..

7 tanh B -1 thru 1 -7 arc tanh B -1 thru 1

«-A)OAoB)~B for B>o

203

7-14

-0.9899924966

1 2 300 0.25 0.5 0.75

0.7071067812 0 1

502.3

1.570278543

3000.5

DOMAIN ERROR

v

3000.5

(cosine of 3 radians)

(sin ~ • cos ~. tan3~)

(inverse hyperbolic sine of B)

(tan ¥ is infinite)

19980400 B

COMBINATION

defini tion:

examples:

19980400 B

R+A!B

The resuit is obtained by applying the factorial function to the

arguments as follows:

'R.. (, ~ \ ... (, LI \ v , ~ _ LI
..... . , • .., I • , • ""~ , IJ ..

For A~O and B~A , the result may be expressed in terms of the

Beta function:

R++(B-A)x(A+1) BETA B-A

If A and B are integers, the result is the number of combinations

which can be made from B things taken A at a time. In this case,

if A >B , the result can be seen to be zero.

2!3

3

2 4 6!6 4 2

15 1 0

32.61766703 0

7-15

EQUAL, NOT EQUAL

syntax:

domain:

range:

R+A=B

R+A~B

No restriction.

R is Boolean.

(equal)

(not equal)

definition:

examples:

Equal the result is one if A is equal to B. otherwise the result

is zero. If A and B are numeric. the result is FU ZZ dependent.

Not equal R+""A =B

7-16

2=3

0

'A+l'='A+4'

1 1 0

2 ='A '

0

3.5 0 1=1 0 1

0 1 1

l=l+lE- 15

1

OotlE-15

1

0 1 0 lot 0 1 1 0

0 0 1 1

1

'A+l 'ot 'A++'

001

20t 'A '

1

3.5 0 lotl 0 1

100

(A is within relative FU ZZ of B)

(relative FU ZZ of zero is zero)

(exclusive OR of A and B)

19980400 A

OTHER RELATIONALS

syntax:

range:

B+A<B

R+A>B

R is Boolean.

(less than)

(less than or equal)

(greater than or equal)

(greater than)

definition:

examples:

Less than - the result is 1 if A is less than B. otherwise it is O.

Greater than - the result is 1 if A is greater than B. otherwise it

is O.

Greater than or equal - R+-A <B

Less than or equal - R+-A>B

The results of these functions are FU ZZ dependent.

2<3 2

1 0

2>3 2

o 0

2<'A'

DOMAIN ~RROR

19980400 A

2<'A'

2~3 2

o 1

2~3 2

1 1

(A and B must be numeric)

7-17

BOOLEAN FUNCTIONS

syntax:

domain:

R+AAB

R+AYB

R+AlrB

R+A"'B

A and B must be Boolean.

(and)

(or)

(Nand)

(Nor)

range:

definition:

examples:

7-18

R is Boolean.

And - the result is 1 if both ~ and B are 1, otherwise it is O.

Or - the result is 1 if either A or B is 1, otherwise it is O.

Nand -B+-A"B

Nor - B+-AvB

1AO 1

o 1

1YO 1

1 1

1110 1

1 0

1"'0 1

o 0

19980400 A

COMPOSITE FUNCTIONS

Composite functions are formed from more than one APL symbol. They involve one or

more primitive functions and one or more modifiers called OPERATORS.

8

The three composite functions currently defined in APL are REDUCTION, INNER PRODUCT,

and OUTER PRODUCT.

In Reduction, the form of the composite function is "r I", where" I" is used as an operator

to modify the function "f". In Inner Product, the form of the composite function is "f. g",

where ". " is used as an operator to form a compound of the funct ion "I" and "g". In

Outer Product, the form of the composite function is "0 .r'', where the pair "0.." is used to

modify the function "f"".

In all three forms, the functions which may be used are the scalar dyadic primitive

functions. The domain and range of the composite oper-ator-s is that implied by the

functions used.

19980400 A 8-1

REDUCTION

syntax:

conformability:

result shape:

definition:

R+f/[K]B

R+ f -fB

where f is a scalar dyadic primitive function.

The index [K] follows the rules for Indexed Functions.

(ppB)~1

(pR)++(-{lPpB)£K)/pB

If B is a vector, the result R is a scalar formed from the distri

buted operation of the function f on the elements of B as follows:

R+ B [1] f B [2] f ••• f B[pB]

8-2

Note that if an identity element value I exists for the function, such

that:

(B f I)++B

or (I f B)++B

for anyone-element B, then the result expression can be written:

R+B[1]f •• •B[pB]f If I • • •

or R+1 f I f B [1] f ••• B [p B]

Thus if B has only one element, and that element is in the range of

f, it is apparent that:

R+B[1]fIfI ••• (OR IfIfB[1])

so R++B[1]

This is in fact true even if such an I does not exist.

Likewise, if B is empty, then:

R+I f I f I •••

so R+I

if I exists and is in the range of f;.

19980400 A

19980400 B

For non-commutative functions, an identity element, if it exists,

may be only a left or right identity. The scalar functions and their

respective identity elements are given in the table below:

Comments

right identity

right identity

smallest representable number

largest representable number

left identity

right identity

no identity

no identity

left identity

Boolean only

Boolean only

Boolean right identity

Boolean left identity

Boolean right identity

Boolean left identity

no identity

no identity

8-3

8-4

For B of rank greater than 1. the operation is performed on vector

subarrays of B as indicated by the index K. Since K is an index.

the result. if an index is specified. is ORIGIN dependent. If f I- is

used. the index defaults to that of the first coordinate axis.

examples: +/1 3 4
8

-Ii 4 3
0

X+2 3pl 34625
X

1 3 4
6 2 5

+IX
8 13

+/[l]X
7 5 9

) ORIGIN 0
flAS 1

+/[l]X
8 13

+I-X
759

rl-x
6 3 5

+/3 Opl
0 o 0

pZ
2 3

x/pX
6

liZ
S~NTAZ ERROR

v
llX

II 'A'
DOMAIN ERROR

v
II 'A '

19980400 A

+/[2]B

+/ B

19980 40 0 A

+/ [1] B

I
I

, 1
'-..II',

I "
I '
I /
1 /"
1 / /

/-1
--- I

I
J

B+2 3 4Pl24

8 - 5

INNER PRODUCT

syntax: R+A f • g B

where f and g are scalar dyadic pr-irnit ive functions.

conformability: (ppA)~1

(ppB)~1

«ppA)+ppB)S129

(-1tpA)=1tpB

(APL*CYBER restriction)

extended
conformability:

result shape:

definition:

identity:

8-6

A scalar or one element array may be used for either argument.

in which case the last restriction above is not required.

If A and B are vectors, the result is obtained from:

R+f/A g B

If either A or B is of rank ~2, the operation is carried out using

vector subarrays of the argument in question. Subarrays from A

are selected along the last coordinate axis, and subarrays of Bare

selected along the first coordinate axis.

Furthermore, for each vector subarray in A, the operation is car

ried out for all subarrays in B, in a fashion similar to Outer Prod

uct (q. v,).

Let Al, Bland RR be defined by:

A1+«x/-1+pA).-1tpA)pA

B1+«1tpB).x/1+pB)pB

RR+(-1-1-pA) .1+pB

Note that A1 and B1 are matrices. Then for all A and B:

(A f • g B) ++RRp A1 f • g B1

19980400 B

examples: 1 2 3+.xl0 1 0.1

12.3

X-+-2 3p\6

Y+3 2pl0 4 1 5 0.1 6

X

123

4 5 6

10.0 4

1.0 5

0.1 6

X+.xY

12.3 32

If.5.6 77

PX+3 7 1

XQ+4 2 7

pxr •+XQ

9

19980400 B

X+o 0.25

N+10

(X*M)-.f!M+2x-l+1N

0.7071067812

(1 1 1p1)+.X2 3P16

579

(extended conformability)

(result shape 1 1 3)

8-7

OUTER PRODUCT

syntax: R+A o. f B

where f is a scalar dyadic primitive function.

conformability:

result shape:

«ppA)+ppB)S127

(pR)+(pA) .pB

(APL*CYBER restriction)

definition:

examples:

8-8

If A is a scalar, the result is:

R+A f B

For A of rank ~1, the result is formed by performing the above op

eration for each element (i. e., scalar subarray) in A, and placing

the resulting array in the subarray position of R corresponding to the

position of the element in A.

2-.+1 2 3

345

1 20.+1 2 3

234

3 4 5

2 100 •• -1 0 1 2 3

0.5 1 2 4 8

0.1 1 10 100 1000

X+2 3 p100)C\6

X

100 200 300

400 500 600

.1+2 3p\6

Y

1 2 3

4 5 6

19980400 B

19980400 A

z+xo.+y
pZ

2 3 2 3
Z

101 102 103
104 105 106

201 202 203
204 205 206

301 302 303
304 305 306

401 402 403
404 405 4-06

501 502 503
504- 505 506

601 602 603
604- 605 606

8-9

MISCELLANEOUS PRIMITIVE FUNCTIONS 9

'.10t"AOIC IOTA:
syntax:

domain:

conformability:

result shape:

definition:

examples:

It~TERVAL

R+1.B

B must be integer.

B~O

(ppB)=O

The result is a vector of the first B ordinals.

1. 5
1 2 345

1.1

19980400 B

1
1.0

ptO
o

)ORIGIN 0
WAS 1

\ 5
o 1 234

1.1
o

\0

P\O
o

\1 2
LENGTH ERROR

v
\1 2

(the setting of ORIGIN)

(the result is empty)

(B must be a scalar)

9-1

DYADIC IOTA: INDEX OF

9-2

syntax:

domain:

range:

conformability:

result shape:

definition:

R+A\B

No restriction.

Ordinal.

(ppA)+....1

(Note: this requirement cannot be overridden by scalar extension.)

(pR)+-+pB

The result has- the shape of B. For each element of B, the corres

ponding result is the lowest index of A which selects a match for

that element in-A, if one exists. If no matching A element exists,

the result element is assigned the value (pA) +\ 1 (I. e., one greater

than the highest valid index for A).

• Since the elements of the result are indices, the result is ORIGIN

dependent (see ORIGIN).

• If no element of A matches any element of B, for A not empty:

R+.... (pB)p(pA)+tl

• lfAisempty, R+(pB)p\l

• For A and B both numeric, element comparisons are subject to

the setting of FUZZ (see FUZZ).

• If A/,B€A then B+....A[R]

(See examples on next page.)

19980400 A

examples:)ORIGIll

1

2 1 5 715

3

tABCDt 1 tBt

2

2 1 5 716

5

'ABeD' 1 'F'

5

4 7 912 7 4 3

4 2 1 4

'WXYZ'11 2 3

71.3

RAliK ERROR

v

2

713

(,7)13

(left argument must be a vector)

19980400 A

111

162

636

465

o

(10)13 5 1

1 3 5 7 913 3p19

p2 1 9110

(recall (pR)++p B)

9-3

DYADIC EPSILON: MEMBERSHIP

syntax: R+AEB

domain: no restriction

range: Boolean.

conformability: None.

result shape: (pR)++pA

definition: The result has the shape of A. For each element of A. the corre

sponding result element is a one if that element of A exists in B;

otherwise it is a zero.

R++v / A o. =.B

note: For A and B both numeric. element comparisons are subject to the

setting of FU ZZ (see FU ZZ).

9-4

examples:

2£0\7 1 2 3£0 'AXVR2'

1 000

8£0\7 p(\O)E1 2 7

0 0

A+2 9 7 3 4 'XAYQ3B7 '£0 'ABC3'

B+6 1 2 4 010 o 1 1 0

AEB 'ABC3'E'XAYQ3B7'

100 o 1 110 1

BEA (2 3p\6)E2 6 9

o 0 1 1 0 1 0

2 3€\O 0 0 1

o 0

19980400 A

DYADIC QUERY: DEAL

syntax:

domain:

range:

conformability:

re suit shape:

R+A?B

A and B both integer: A~O

Ordinal.

(O=ppA)AO=ppB

(pR)+-+-,A

B~A

definition:

note:

The result R is a vector of A elements of \ B selected pseudo

randomly without replacement. thus preventing duplicates.

• Since the elements of the result are selected from \B. the

result is ORIGIN dependent (see ORIGIN).

• This function uses and modifies the SEED parameter (see SEED).

• If A=O. or both A=O and B=O. an empty vector results.

• Repeated c al l s w ith the sallIe ar-gurn e nt s produce different

results (see examples).

examples: 4?7

1 3 7 2

4?7

6 7 5 4

4?7

7 4 6 3

19980400 B 9-5

GRADE UP

syntax:

domain:

range:

conformability:

result shape:

definition:

note:

examples:

9-6

B must be numeric.

Ordinal.

(pB)+~l

(pR)~pB

The result R is a vector of the indices of B suitably arranged such

that B[R] is the ascending sorted arrangement of the elements of B

in which the relative order of equal elements of B is undisturbed.

• All element comparisons are exact; this function does not use

FUZZ.

• Since the elements of the result are indices, the result is

ORIGIN dependent (see ORIGIN).

3 4 1 5 2 6

D+R+~B+2 7.5 2 918.3 7.5

13254

B[R]

2 2 7.5 7.5 918.3

19980400 A

GRADE DOWN

syntax:

domain:

range:

conformability:

re sult shape:

definition:

note:

B must be numeric: O=1+0pB

Ordinal.

(pB)++1

(pR)++pB

The result R is a vector of the indices of B suitably arranged such

that B(R) is the descending sorted arrangement of the elements of

B in which the relative order of equal elements of B is undisturbed.

• All element comparisons are exact; this function does not use

FUZZ.

• Since the elements of the result are indices, the result is

ORIGIN dependent (see ORIGIN).

examples: '4 7.3 -3.7 1 5.27 8.1E7

6 2 5 1 4 3

O+R+'B+2 7.5 2 918.3 7.5

4 2 5 1 3

B[R]

918.3 7.5 7.5 2 2

19980400 A 9-7

BASE VALUE

syntax:

domain:

conformability:

resuIt shape:

definition:

9-8

R+AJ.B

A and B must both be numeric

{ppA)++1

(ppB)++1

{PA)++pB

{p pR)++0

The result is a scalar whose value is that represented by B in a

number system with radices specified by A.

The result is formed by taking the classical inner product

u-v«, xB

where W is a weighting vector of the positional values of each digit of

the represented number B, based on the radix scheme A.

ff[I]=x/I+A

(Recall (-1tW)++(X/lO)++1 • the multiplication identity

element.)

Note that 1tA is not used in forming W. but an element is required

for conformability.

(See examples on next page.)

19980400 A

examples: 10 10 101.1 2 3

123

2 2 2.1.1 0 1

5

21.1 0 1

5 (scalar extension of A)

2 2 21.1

7 (scalar extension of B)

2 21.1 0 1

LENGTH ERROR

v (argument lengths diff-
erent)

2 21.1 0 1

0 3 121.3 2 3.25

135.25
(i.nohe s in 3 yard s , 2 Teet
3 1/4 inches)

19980400 A 9-9

REPRESENTATION

syntax:

domain:

range:

conformability:

result shape:

definition:

9-10

R+ATB

A and B must both be numeric.

R~O

R< IA IF A~O

(p pA) :: 1

(ppB)::O

(pR)++pA

The result is a vector, the elements of which form the representa

tion of B in a number system with radices specified by A.

If: (p A):: 1

then: (ATB)++A IB

Case 1 - A contains no zero elements.

then: (ATB)++((A 1 T (B-Rl) +S) .Rl+S IB

Case 2 - A contains zero elements.

If: N+(pA)-(4>A)10 (IN ORIGIN 1)

then: (ATB)++(NpO) .(N+A)TB

Note that this results in all elements of A to the left of the rightmost

zero being ignored. This is because the 0 I operation causes the

remainder of B to be exhausted; that is, (R.LB) =B. If this necessi

tates an element of R being negative in violation of the range restric

tion, a DOMAIN ERROR results.

(See examples on next page.)

19980400 A

(decimal representation of
1 2 3)

(binary representation of 3)

(two' s complement representation
of -3)

(result may not be negative)

9 5 (quotient and remainder of
113';-12)

o lT12.34

12 O. 34 (integral or fractional part of
12. 34)

19980400 A

DOMAIN ERROR

v

0 lT 12.34

0 3 12T135.25

3 2 3.25

0 0.3 2T3

3 0.1 1

(result may not be negative)

(yrds,.; feet, inches in 135. 25
inches)

(results with fractional
radices)

9-11

EVALUATE

syntax:

domain:

conformability:

definition:

note:

application:

9-12

R+AB

Character.

(ppB)++1

(p s :« 256 (APL*CYBER restriction)

The character vector B is assumed to represent an evaluable APL

expression.

EVALUATE interpretively evaluates this APL expression and, upon

successful completion, returns the value of that expression (if any)

as its result.

Error detection and reporting are similar to that which would result

if the expression represented by B were input for immediate exe

cution.

Using EVALUATE, APL programs can be constructed which modify

APL source expressions prior to their evaluation.

(See examples on next page.)

19980400 A

examples: !. 'A+5'

A
n

5

2x!.'A+5'

.. 1'\

.LV

A

5

SPA+'A+5 '

B+2xt.SPA

B

10

NAI1E+' B'

l+t.NAME, '+3 '

4

B

3

t.'2fO'

DOMAIN ERROR

v

t. 2+0

t.'-+5'

SYNTAX ERROR

v

-+5

!.')DIGITS 5 '

FAREN BALANCE

v

.l)DIGITS 5

19980400 B

(error detection as in
immediate execution)

(not evaluable)

(not evaluable)

9-13

9-14

examples: numeric test

NUM+'O=O\Op'

B+15

!.NUU, 'B'

1

C+'ABC'

!.NUU, 'C'

o

!.NUN, ' 1.0 '

1

!.N UM , t j j j j ,

o

nested execution

X+'(OpA+1+A),(OpB+(B-R)tN),'

.Y+ , (R+ (N+ -1 t A) IB) , '

A8REP8B+'t.¥,«(-1+p,A)xpX,Y)pX,Y),"1.0"

A+10G 100

B+357.91

t.A8REP8B

3 57.91

In the above example, the character vector A8REP8B contains an

evaluate function designator as its first character. Evaluating

A8REP~B involves first evaluating 1 -I- A~REP!J.B and then evaluating

the result of that. 1.1+A8REP8B results in a character vector which

is a tailored APL expression dependent on the shape of A.

For the values in the example we have:

!.l+AtJREP~B

(R+(N+-ltA) IB) ,(OpA+1+A), (OpB+(B-R)tN) ,R~(N+-1tA)I B), 1.0

This expression is then evaluated, yielding the final result.

19980400 B

FORMAT

syntax:

domain:

conformability:

result shape:

definition:

note:

application:

19980400 B

R-FfB

B must be numeric

(ppR)++1+ppB

pR++(pB).M

where M is the number of characters required to represent a row

of B such that the decimal points are aligned in each column.

R is the character representation of B, with the shape as defined

above.

Since the result is not actually displayed, it is not sensitive to the

setting of WIDTH, which is a terminal display parameter.

The purpose of FORMAT is to convert numeric cata to character

data which can then be suitable edited, co rnb i ned with other char-

acter data and, finally, displayed in any desired form. FORMAT

gives the user much more flexibility in formatting output than com

posite data object displays allow.

(See examples on next page.)

9-15

examples: X+.,10+15

X

11
12
13
14
15

pX

5 2

3 1 tX

1
1
1

<I> X

11
21
31
41
51

X+1 2 3 4 5

NAME ... ' XI

INDEX+3

~NAME.lrl,("INDEX).I]+7'

X

1 2 7 4 5

9-16 19980400 B

I-BEAM

syntax:

domain:

conformability:

result shape:

definition:

R+7.B

B must be integer (see table below).

(ppB)=O

(p pR) =0 for B 18 through 26.

(ppR)=1 for B 27. 28 and 29.

The I-beam function provides a mechanism for the user to inquire

about certain items of system information not part of the APL

language. The particular piece of information desired is indicated

by the value of B.

The values of B accepted by APL*CYBER and the information re

turned are indicated in the following table.

19980400 B

B

18

19

20

21

24

25

26

27

28

29

Information

Current amount of workspace in use (words).

Total time APL has been awaiting input from this user (since
sign-on).

Time of day (sec. since midnight).

Total CPU used since sign-on (sec.).

Total time this user has been signed on APL (sec. since last
sign-on).

Today's date (YYMMDD10).
Value of current function line number.

Vector of line numbers of stacked functions.

Type of terminal signed on this port.

User ID signed on this terminal.

9-17

APL EXPRESSIONS

INPUT REPRESENTATION FORMAT

APL expressions input from the terminal are formed according to the following rules:

USE OF SPACES

10

• Spaces must not be used in forming identifiers. or in INNER or OUTER PRODUCT.

• Elements of numeric literal vectors must be separated by at least one space.

• At least one space must be placed' between adjacent identifiers and between identi

fiers and numeric literal expressions.

• Spaces are explicitly interpreted as such where they occur in character literal

expressions.

• Anv other occurrence of soaces is ootional. and is ignored.

USE OF PARENTHESES

•

•

Parentheses are required to delimit the extent of an expression for the left argu

ment of a function where that expression is other than a literal expression, a data

identifier, a niladic function call, a QUAD or a QUAD-PRIME.

Parenthesizing of any other expression (including one already parenthesized) is

superfluous but allowed, unless the expression is the left argument of a specifi

cation.

CONVERSION OF INPUT REPRESENTATION

Input expressions are converted to a standardized internal format upon input. Superfluous

space characters are ignored in this conversion. Arrays are created for literal expressions.

If any element value of a numeric literal expression exceeds the range of the machine (see

Appendix C), a DOMAIN ERROR occurs at this point in the line when the line is executed.

A 11 identifiers and function designators are also converted to an internal format. It is thj,s

internal format that is used by the interpreter in evaluating expressions.

19980400 B 10-1

EVALUATION OF EXPRESSIONS

ORDER OF EVALUATION

Any expression takes the overall form of a literal, a data identifier, or a function call. In

the first two cases, evaluation is a one-step process. If the expression is a function call,

evaluation proceeds as follows:

The right argument (if there is one) is evaluated first.

The function itself is then examined to determine if it is dyadic. For primitive functions

which utilize the same designator character for both a monadic and a dyadic function, the

function is interpreted as dyadic if the item to its immediate left is the rightmost item of

an expression, namely: a literal expression, a data identifier, a niladic function call, a

right parenthesis, a right bracket, a QUAD or a QUAD-PRIME. If no such item exists,

the function is interpreted monadically..

If the function is determined to be dyadic, the left argument of the function is evaluated.

If it consists of more than one syntactic element the desired left argument must be enclosed

in parentheses. The interpreter utilizes the occurrences of the parentheses to determine

the extent of the expression for the left argument.

With the argument(s) evaluated, the function call is then made and any returned result is

the evaluated result for the expression.

The arguments, if present, are expressions in their own right and are evaluated in the

identical manner as stated above.

ERROR DETECTION SEQUENCE

•

•
•
•

•

•

Error

(QUOTE ~
< PAREN BALANCEl BRACKET

SYNTAX ERROR

VALUE ERROR

DOMAIN ERROR

RANK ERROR

LENGTH ERROR

Typical Causes

non-matching)~~~:~~heses(lbrackets)

improper number of arguments supplied.

variable not established (could be misspelled).

supplied argument not in the domain of definition,

or result not in the range of definition of the

function.

argument rank conformability requirement not

met.

other conformability requirement not met.

• INDEX ERROR

10 -2

index out of range; applies to indexing and index

notated primitive function calls.

19980400 A

Examples:

The following set of statements indicates the order in which execution is performed and

errors are detected.

Y+l 5 4 2 7 9

Y(O.5+0 lxX++Y]

BRACKET BALANCE

v

Y(O.5+0 lxX++Y]

Y[O.5+0 lxX++Y]

SYNTAX ERROR

v

yrO.5+0 lxX++Y]

Y[O.5+0 lxX+l+Y]

VALUE ERROR

v

Y[O.5+0 lxX+ttY]

X+2 3p 1 2 343 2

Y[O.5+0 lxX+ltY]

LENGTH ERROR

v

Y[O.5+0 lxX+ltY]

Y[O.S+(3 2p 0 l)xX+ltY]

LENGTH ERROR

v

Y[O.S+(3 2p 0 l)xX+l+Y]

Y[O.S+(2 3p 0 l)xX+ltY]

INDEX ERROR

v

Y[O.S+(2 3p 0 l)xX+ltYj
(Continued on next page.)

19980400 B 10 -3

(Continued from previous page.)

Y[lO.S+(2 3pO 1)xX+1+Y]

INDEX ERROR

v

Y[lO.S+(2 3pO 1)xX+1+Y]

)ORIGIN 0

WAS 1

Y[lO.5+(2 3pO 1)xX+1+Y]

121

912

The following example indicates how a specific action within an expression is handled:

A+2

(A+5)+A

7

A+2

A+A+5

10

10-4 19980400 A

DISPLA YING EXPRESSIONS

When an expression is displayed, such as in an error report or in ar-equested display of a

user-defined function line, an inverse conversion transforms the internal format to a dis

play format. The display formatting follows the rules of canonical form.

CANONICAL FORM

• All displayed expressions must be in a form that is acceptable as input.

• Literal numeric expressions have the same form as employed in numeric data

formatting. (See DISPLAYING DATA >.
• Comments are displayed as they were entered.

• Except as required in the above points, spaces are not inserted in displayed expres

sions.

19980400 A 10-5

APL SYSTEM/USER INTERACTION

IMMEDIATE EXECUTION

11

When no other activity is taking place, the system awaits input for immediate execution.

This is indicated by a 'prompt' from the system in the form of an indentation 6 spaces from

the left margin. In this state, the user may enter:

• an expression to be evaluated.

• a system command.

• a function edit request.

When all processing resulting from the line input has been completed, the system again

aw ai t s input for irnrnediate execution.

ABORTING EXECUTION OR OUTPUT

Whenever an expression evaluation, function execution, or output is taking place, process

ing may be interrupted. (This is accomplished on a terminal by pressing the 'BREAK' or

'ATTN' key.)

Any ongoing output is aborted. Expression evaluation is terminated at the end of the cur>

rently executing line. If a function is executing, it is suspended immediately before execu

tion of the next line.

If the currently executing line was entered in response to a QU AD input request (see below),

the request is not satisfied, and the QU AD prompt is reissued.

Example:

X+O+3 4p\12

1 2 3 4

5 6 4 (output aborted at this point)

pX

19980400 A

3 4 (note specification to X was done, since
evaluation continues until the end of the
line is reached)

11-1

QUAD INPUT

syntax: R+O

If the symbol 0 (QU AD) appears anywhere except in the construct 0+, it signifies that an

expression is to be evaluated at that point, the source for which is to be supplied from input.

At the point where a QU AD in the above stated context is reached in the execution of an APL

source line, further execution is pendant on an evaluated result for QU AD.

A 'prompt' to the user terminal is sent in the form:

0:

at the left of a line. This is followed on the next line by indentation 6 spaces from the left

margin. At this point the system awaits input to be submitted.

Input must be in the form of an APL expression. Upon entering the line the APL expres

sion is evaluated as for immediate execution.

Simply entering an empty line causes the 0: to reappear.

If no errors are detected on evaluating the submitted APL expression, the result obtained

is returned as the result for the QU AD function and evaluation of the original source line

continues.

If evaluation of the expression input after the prompt is not possible due to some error in

the submitted line, the appropriate error report is issued, followed by another prompt,

with the system again awaiting input.

The user may now resubmit the expression, correcting the error, or alternatively use the

line editing feature to correct the existing line (see LINE EDITOR).

The symbol 0 used in this manner can be likened to an implicit result-returning niladic

user-defined one-line function in which the user supplies the line each time the function is

called. As such it has two properties in common with regular user-defined functions.

• Recursive calls can be made with QU AD by submitting as part of the input

expression another QU AD.

• Exit from all further evaluation of expressions at all levels is possible by

inputting after the prompt line a niladic br-anch:

This provides an exit mechanism from an infinite loop requesting and evalu

ating input.

11-2 19980400 B

Instead of entering an APL expression, it is acceptable to enter a system command. All

valid system commands will be carried out. If the system command replaces the existing

active workspace with some other workspace, such as by)LOAD or)CLEAR, request for

input is terminated.

Examples:

2+0

liumi113x s

17

(immediate execution input)

(response to QUAD)

(result)

Another way in which QU AD appears like a user-defined function can be seen by issuing

)SI or)SIV in response to a request for input.

19980400 B

1.2+0+0.S xO-1

t:~:
I

(immediate execution input)

(QU AD prompt issued)

(QU AD pendant)

(prompt reissued)

(response to QUAD)

(prompt reissued)

(prompt from second QUAD)

(two QU AD's pendant)

(prompt reissued)

11-3

11 -4

(response to last QU AD)

(display from 0+

(result)

(immediate execution input)

(prompt issued)

(exit from last execution)

(nothing pendant or suspended)

(system again awaits input for i m m e dia te
execu tion)

19980400 A

QUAD-PRIME INPUT

syntax:

If the character ~ (QU AD-PRIME) appears anywhere except in the construct (!J+. it sig

nifies that character data is to be obtained from input.

At the point where a QUAD-PRIME in the context stated above is reached in the execution

of an APL source line. further execution is pendant on a result obtained for QUAD-PRIME.

No prompt occurs with QU AD- PRIME other than a bell signal or keyboard unlock. The

system simply awaits input at the left margin.

Input consists of a line of zero or more characters. Unlike normal input of explicit

character literals, a quote character to mark the beginning and end of the literal is not

used. Further. the quote character is represented by itself and not by two consecutive

quote characters.

The explicit character literal, as input (subject to conversion of illegal characters to the

canonical bad character), is returned as the result for QUAD-PRIl\lE, and evaluation of

the original source line continues until completed.

Input of a single character results in a character scalar. Input of no characters or more

than one character results in a character vector.

Since all character inputs are taken literally and are not interpreted. this function cannot

be used recursively. Likewise. system commands will not be interpreted as such.

A single exception to the above is a special character provided solely for the purpose of

providing an escape mechanism identical to that provided by~for the QUAD function.

This special character is the composite formed by overstriking the letters '0'. 'U", 'T'.

(For terminals without overstrike capability. the mnemonic sequence is '$G. ')

(See examples on next page.)

19980400 A 11-5

Examples:

11-6

m:_~1!1

ABC

so-n

'x' .!!I. 'Y'

)SI

DON'T

II

(immediate execution Input)

(response to request for literal input)

(result)

(immediate execution input)

(QUAD prompt issued)

(response to QUAD)

(response to QUAD-PRIME)

(display from 0+)

(result)

(immediate execution input)

(response)

(three characters recieved)

(immediate execution input)

(response to QUAD-PRIME)

(result)

(immediate execution input)

(exit from last execution)

(system again awaits input for immediate
execution)

19980400 A

VISUAL FIDELITY

The underlining concept in entering a line of input is visual fidelity;. i, e., that the appear

ance of the line upon submission is what is conveyed. rather than the sequence used to

form the line. The implications of this concept are as follows;

• The position of the terminal carriage. type ball or cursor is immaterial upon
hitting the return key.

• The order in which characters are keyed is immaterial.

• On terminals with a destructive overstrike (CRTs) any character may be replaced
by any other. including blank. prior to hitting return; only the final appearance
will be conveyed.

ABORTING AN INPUT LINE PRIOR TO SUBMISSION

• Position to the right of the right-most input character.

• Press the JBREAK' or 'ATTN' key.

The system returns to the same input mode as existed prior to entering the line.

The next entered line will be processed as a new line for the input mode in effect unless

its left-rnost non-blank character is a 1/1 (see LINE EDITOR, b el.ow},

CORRECTING AN INPUT LINE PRIOR TO SUBMISSION

Method (A) (requires a terminal with a backspace key and a 'BREAK' or 'ATTN' key).

L Position via any combination using the backspace key and/or space bar to the left

most character to be erased.

2. Press the 'BREAK' or 'ATTN' key,

- A marker is displayed beneath the point reached.

- Indentation on the following line occurs to the point beneath the marker.

- The system awaits input to append to that portion of the original line to
the left of the marker.

3. Key in appended text (if any).

4. Submit the corrected line for execution.

Method (B)

Method (C)

(requires a terminal with a 'BREAK' or 'ATTN' key).

See LINE EDITOR (below. case 1).

(A combination of methods A and B above.)

1. Employ method A steps 1 thru 3.

2. Employ method B to make other changes.

19980400 A 11-7

LINE EDITOR

The line editor can be used to edit lines in the following three cases.

(1) An input line prior to its submission, may be edited by positioning to the right of

the right-most input character and keying 'BREAK' or 'ATTN'.

(2) A line submitted for immediate execution may be edited immediately after issue

of an ensuing error report for that line.

(3) A function line which has just been displayed by the function editor, may be edited

without leaving the editor. (See FUNCTION EDITOR.)

In each of these cases, if the next input line contains a ,/, as the left-most non-space
character, it will be interpreted as a line edit command for editing the line in question.

LINE EDIT COMMAND

syntax:

action:

/ {<delim.> <char. seq.> <delim.> <char. seq.> <delim.>]

The line edit command consists of the ,/, character followed by

two delimited character sequences of text. Any non-blank char

acter may be used as a delimiter, but must be consistently used

to delimit both character sequences, and must not appear in either

character sequence. Each character sequence may independently

be of any length including empty.

The line editor updates the line in question by replacing the left

most occurrence of the first character sequence by the second one.

An empty first sequence implies the whole line.

The specific edit process for various forms of the line edit command is as follows:

(", ' is used here as the delimiter character.)

COMMAND

1.<SEQ1>.<SEQ2>.

1.<SEC?1> ..

! .• <SEQ2>.

! ...

11-8

EDIT PROCESS

replace the left-most occurrence of sequence 1 with sequence 2.

delete the left-most occurrence of sequence 1.

replace the line with sequence 2.

display the entire line and await additional input at the end.

19980400 B

error reports:

Upon completion of the editing process. the edited line is displayed

and the system awaits input to append to the end of the edited line.

Keying 'BREAK' (or 'ATTN') at this point allows the line editor to

be reentered for making further changes. After submission of the

appended text or a blank line. immediate execution of the edited

line is initiated in cases 1 and 2. In case 3 the edited line is in

serted into the function definition and an appropriate prompt is

issued. (See FUNCTION EDITOR.)

MISSING DELIMITER

This may be caused by omitting one or more delimiters.

NOT IN LINE

Specifying a sequence. for which no match can be found in the line.

Additional attempts at entering a line edit command to edit the

original line are allowed following this error report.

B1+«-1-1-pB),A)pB+C,D

eX8.mples:
B1+((-l-1-pB) ,ApBA.... (!BREAK' keyed before subrni tti ng)

I .A .A) • (replace "A" with "A) ")

("+-C. D" appended to edited line
and then submitted)

B2+x/[3JA,B

INDEX ERROR

v

B2+x/[3JA,B

1,[3J.,

B2+xIA,B

VSQUISH[2DJ

[2 J I ..

MISSING DELIMITER.

I.X.X,Y.

[3]

19980400 B

(this line can now be edited)

(delete [3])

(edited line is displayed. then submitted)
(the line executes successfully)

(display text of line, changing ''X'' to "X, y")

(submit without appending)

(close definition - line 2 is replaced as edited)

11-9

USER-DEFINED FUNCTIONS 12

FUNCTION DEFINITION

To provide an open-endedness to APL. a user may supplement the primitive functions with

those he defines himself.

The syntax of a user-defined function definition consists of a function header followed by a

function body. The function header declares the name of the function and its syntactic form.

The function body consists of zero or more lines of APL. each of which may be preceded

by a label (see LABELS).

FUNCTION HEADER

In addition to the monadic and dyadic syntax of primitive functions. user-defined functions

may be defined having no arguments (niladic syntax).

User-defined funcbions may be result-returning. as are primitive functions. or non result

returning.

f ; <explicit local list> }{ <result>+-}

The above criteria and the function name are established by the function header. The form

of a function header is as follows:

)

<1. arg.> <function name> <r. arg.>!

<function name> <r. arg.>

< function name>

where: <result> is the local result name

< 1. arg.>is the local left argument name

<r. arg.>is the local right argument name

< explicit local list> is a list of identifiers separated by semicolons.

Identifiers in the function header other than the function name (L e •• arguments. result.

and explicit local list) declare variables local to the function environment. (See ENVIRON =

MENT OF AN ACTIVE FUNCTION.)

FUNCTION BODY LINE

The form of a function body line is as follows:

{<label>:J<executable portion>fA<comment>}

19980400 A 12-1

FUNCTION CALL

A dyadic function name FLIP having numeric arguments could be invoked by:

2 3 7 FLIP 8 1

If the function header for FLIP is

R~A FLIP B ; X ; Y

then at the time FLIP is invoked, 1\ has the value 2 3 7 and B has the value 8 1 •

The process of assigning values to A and B at the time of function call is similar to spec

ification.

FUNCTION EXECUTION

Upon function call values are supplied to the function arguments (if any), and the body of

the function is executed.

Each line is interpretively executed in the normal right-to-Ieft manner starting with the

first line.

Lines are executed in sequence in order of occurrence unless otherwise directed by a

branch (see BRANCH). When the last line of the function is executed, if no branch is taken,

the function exits.

Upon completion of function execution, the value returned is the value of the local result

at that time. If no specification has been made to the local result, no result is returned.

12-2 19980400 A

BRANCH

Syntax: ~B

Domain: non-negative integer

Conformability: Y,P B)~ 1

A branch must be the left-most operation on the line in which it appears. The domain of

the argument B is integer. No result is returned from the operation. Those cases exist:

1. If B is empty. the branch is ignored.

If B is not empty. all but the first element are ignored. Let I ~1 tB •

2. If IE 0 1 [1] + \N • where N is the number of lines in the body of the function. the

next line to be executed will be line I •

3. Otherwise. execution of the function is terminated and the function exits.

4. B must be within FU ZZ of a positive integer. Otherwise. a DOMAIN ERROR will

result.

Note that numbering of function lines is not dependent on the index origin. Thus

exists) is always the first line of the function. and ---? 0 always causes an exit.

Niladic Branch

(if it

A second form of the branch directive exists which consists solely of the branch directive

on a line by itself:

Execution of a niladic branch causes an exit. not only from the current function being ex

ecuted but from the entire set of functions in the calling sequence initiated by the outer

most function call. including the immediate line in which the outermost call was made.

The exit mechanism utilised when niladic branch is invoked bypasses all result-returning

procedures for all currently invoked functions in the calling chain.

The purpose of the niladic branch is twofold:

1. To provide a termination path which stops all function execution.

2. To reinstate the workspace environment to as near as can be obtained to what

it was prior to calling the initial function in the calling sequence.

19980400 B 12-3

LABELS

In forming expressions which evaluate to the number of some desired function line. it may

prove difficult to predict what that number will be. Furthermore. the number will be

subject to change if. subsequently. additional lines are inserted in the function or some

lines are deleted.

The above difficulty is eliminated by the ability to reference function line numbers symbol

ically. This is accomplished by the use of labels.

An identifier followed by a colon may be placed to the left of the executable portion of any

line to be referenced. Only one label may be placed on a line.

This identifier is the name of the label for the line. This label is local to the function

(see ENVIRONMENT OF AN ACTIVE FUNCTION). When the function is called. it is given

the value of the number of that line. in much the same way as the arguments are assigned

values. The value of a label is always an integer scalar.

Labels have a property which distinguishes them from all other variables. During their

existence they cannot be respecified (I, e •• their value cannot be changed). Labels are

thus the only named constants in APL. In all other respects, they are normal variables.

NOTE

As will be seen in the following section, label values are

available to functions called by the function containing them.

As labels are indistinguishable from any other variable,

branching to such a label in a function called by that function

will not cause a branch back to the labelled line in the calling

function, but rather a branch to the line in the called function

having the same line number. If no such line exists, an exit

from the called function will occur.

12-4 19980400 A

ENVIRONMENT OF AN ACTIVE FUNCTION

When a function is called. values are assigned to its arguments and labels. All of its other

local variables (the result and explicit locals) become undefined 0. e •• have no value).

This constitutes an initial local environment at function call.

A function possesses a local environment from the time it is invoked until exit from the

function occurs. During this time the function is said to be active.

The fact that the local environment disappears upon function exit is a useful mechanism

for minimizing workspace requirements and for keeping the workspace from being clutter

ed with data objects which are no longer required.

Since explicit locals and the result have no value until first specified. while the function is

active, prior reference to such variables inside the function results in a VALUE ERROR.

Also, since the local environment disappears on exit from the function, values specified

to locals on one function call are not available to the function on subsequent calls.

In add it ion to the loea I environment, the total function environm ent i n i t i a l lv coris i s t s of'fhe

entire workspace environment prior to function invocation, except for those objects whose

names are identical to identifiers appearing in the formal parameters or local list of the

function header, or label identifiers.

These latter objects are said to be masked while the function is active. Note that all mask

ing occurs at the time of function invocation, and not when subsequent specification for

some local is first made.

Objects in the function environment which are not part of the local environment are termed

the global environment.

The global environment includes, in addition to those workspace objects not masked on

function invocation, the workspace environmental parameters Origin, Digits, Fuzz and

Seed.

Functions can thus make reference to objects and respecify variables which are part of

their global environment. New global variables can also be created by specifying to a name

not appearing in the local list. This ability provides the function with a communication

facility separate from that provided by the argument and result parameters, and is the

only method available to niladic non result-returning functions.

19980400 B 12-5

NESTED FUNCTION CALLS

At any point during execution, it is possible for a function to invoke any other function

defined in its environment.

When a function calls a function, the calling function still remains active (since an exit

from it has not yet occurred); however, it is no longer executing, but rather waiting for

the called function to complete its execution. During this time the calling function is said

to be pendant. When the called function has completed its execution, it exits back to the

calling function, returning a result if any.

Execution of the calling function then recommences at the point where it left off, and the

calling function is now no longer pendant.

Calls to non result-returning functions from a function must be placed alone on a separate

line within the body of the called function, otherwise a VALU E ERROR will result when

the line attempts to reference the non-existent result of the function•.

Result-returning functions, on the other hand, can appear as arguments in more complex

expressions to be evaluated, including additional function calls.

The environment of a function while pendant is kept intact, while the called function creates

its own local environment. The total environment of the calling function becomes the

potential global environment of the called function from which certain objects may be ex

cluded due to masking. Objects which were masked by the calling function remain masked

to the called function.

The origin of objects in the called function's global environment is indistinguishable to it.

It may indiscriminately reference, change and create global objects which are either local

or global in the calling function.

The state of the workspace environment upon the completion of all function execution (known

as the absolute global environment) will be affected, however, if the inner function re

specifies one of these objects or creates new ones. If, on the other hand, only objects

which were part of the local environment of one of the functions in the calling sequence

wcr c effected, no change to the absolute global environment wo'uld occur.

Note that a called function's local environment is invisible to the calling function, whereas

both its own local environment and global environment can be affected while pendant.

The process of having a function call a function can be continued by having that function call

another function, etc. This gives rise to a calling chain of function calls. The calls are

said to be nested from the outermost call to the innermost one. All called functions except

12-6 19980400 B

the innermost are pendant. Local environments exist in the workspace for all the function

The number of calls in the call sequence is termed the depth of nest of the innermost

function call. Nesting can occur to any level for which sufficient available space in the

workspace exists to create a local environment for the function called at that level. An

attempt to nest deeper than this results in the error message WS FULL and the function

attempting to make a call is suspended on the line in which the call occurs.

A NOTE ON RECURSIVE CALLS

Recall that a function may issue a function call to any function in its global environment.

As long as the called function is not masked on calling the function, it will exist in the

function's global environment and can just as validly be called as any other function in its

environment.

Any call sequence in which a function calls itself or any function in the current calling

SP(]llence that is pendant; is said to be a recursive call. Recursive calls give rise to the

Ritllation where one call of a function is cur-r-ent'ly e xer-uting while one or more other o al l s

of the same function are pendant in the same calling sequence.

The fact that multiple pendant calls and a currently executing c alI, all to the same function

can co-extst, in no way causes problems. This is due to the fact that each call of the

function creates a separate local environment to be used by that function call as long as

that call is active. In this way each function call keeps track of its own environment and

is oblivious to all other local environments.

Each recursive call nests deeper in the calling sequence. Since successive recursive calls

usually emanate from the same line in the calling function, that line when executed on

successive calls causes further recursion to occur. If care is not taken, the nesting depth

will become excessive, filling up the workspace with Iooal environments of pendant calls to

the point where a WS FULL message occurs.

A function employing a recursive call must therefore provide an alternative path to be

taken when some limiting condition occurs which bypasses the line invoking a further

recursive call. The limiting condition must be met by some innermost recursive call

within an allowable nesting depth. This call must then be allowed to complete without in

voking further recursive calls and exit to its caller. In like m anner-, each called function

in turn uses any returned result in completing its execution and exits in turn to its caller,

progressively reducing the nesting level until the outermost call is completed, whereupon

all function execution terminates.

19980400 A 12-7

PURPOSE

FUNCTION EDITOR 13

The APL'~CYBER system contains a utility called the function editor which accepts suitable

input in the form of a function definition, and upon completion stores in the active work

space a defined function suitable for subsequent execution.

The utility can also be used to display all or part of a function definition or to modify an

existing defined function as desired.

INVOKING THE EDITOR

Whenever the system is awaiting input for immediate execution, the function editor can be

entered by placing the APL character V ('del') as the left-most non-space character of an

input line. This must be followed on the same input line with the name of an existing defin

ed function in the workspace, which the user wishes to modify or display, or the function

header of a new function which the user wishes to define.

If the syntax of the function header is invalid, or contains the name of a currently existing

global object, the error report DEFN ERROR results, and the function editor exits.

Notation: In the examples in this section. shaded text indicates APL system response;

unshaded text is entered by the user.

VR+A NEW B

NEW is a new function
being created. The
editor prompts for an
entry for line 1.

)FNS

VOLD

OLD has 3 body lines.
the editor prompts for
an entry for line 4.

FUN+5

VR+FUN B

FUN is a currently
existing global object,
and thus cannot be
used as a function name.

NOTE: The function editor can be entered while a defined function is suspended. The local

environments may cause masking of the function being modified or created. Masking does

not effect the ability of the function editor to access or create defined functions. Masking

will. however. prevent calling these functions until the local environments of the active

functions are removed. (See)SI, NILADIC BRANCH)

19980400 A 13-1

SUPPLYING FUNCTION DEFINITION BODY LINES

Upon sucess!ully entering the function editor with an input line in the form as stated above,

subsequent lines of input are implicitly considered to be consecutive lines of the body of

the function definition, unless their form indicates otherwise. The editor 'prompts' the

user for each such line by displaying a line number in brackets at the left of the line to be

entered. For a function being newly created, the first prompt is [1]. For a previously

defined function, the first prompt is [<L+1>], whe r e L is the number of body lines in the

previous definition of the function.

11]11 R+(- 1+ p C H 1+ pA

rfll
III C+(pA),pB

&I
The prompt number always indicates the r elative pos ition a n input bo dy line will have in the

completed function, unless that input is suitably annotated to override this placement.

Overriding is accomplished by entering a line number in brackets, optionally followed by

the body line entry all on the same input line. If only the line number in brackets is enter

ed, the editor responds with a prompt as e ntered.

II'] [7] A+«3~p pA) , p A) pA

1'I~i [6]

When overriding the prompt line number, a non-integer decimal numeral with a fraction

part of up to 4 decimal digits can be supplied. (Using more than this results in the error

report EDIT ERROR.) By this means, a line position in the function body between two

previously entered lines can be indicated.

111r[2.3] +O,pD+'DOMAIN ERROR '

1. 1t' II [2.1]
,..·,,,.,.,<,,,,,.X<:it.'
1.~M'lt +L1 x\(O+,A)=O +, B:-;..........~

~i'Jlll

After entering a body line of the function definition, the editor again returns a prompt.

The line number of this prompt is ob tained by incrementing the number of the previously

entered line by .1 *D where D is the number of fraction digits last used in overriding a

prompted line number. (D is set to zero initially.)

13-2 19980400 A

REPLACEMEN T OF AN EXISTIN G LI N E

In the same manner that new lines are placed in a function definition, a previously existing

line can be replaced with a new entry. The prompted line number is overridden by th e

line number of the existing line, and the new body entry is supplied which then replaces the

old entry .

l¥.1~r;;gm [3] Ll:A+«3 <p pA) ,pA).pA

;:~::i1II

NOTE: The function hea der c an be changed i n this manner by designating the line to be

change d a s zero. If the entered header results in a DEFN ERROR, a prompt for line zero

is issued and the previous function header is maintained.

III [0] R+A OLD HiC

;li.\~;iili

DELETING AN EXISTING LINE

Deletion of a n exi s t i ng line is done using the same procedure as for replacement of a line.

The editor does not incorporate a body entry l i ne that is completely blank into the function

definition. Thu s, repl acing a n entry with a blank entry effectively deletes the line . A

blank entry c annot b e c onve yed o n the s ame inpu t line that specifies an override line

numb e r . The override d ir e c tive must be submitted on one input line, a nd the blank line

entry sub mit ted o n the li ne on w hic h the revised prompt appear s . For keyboard te r mi nal s ,

a blank line entry is produced by merely dep ressing the RETURN key.

Example:

;~I~; [2]

rt!~!ul

1 l1)!~ !:

NOTE: A blank entry will cause a r evised prompt of N+. 1 * D to be issued where N is the

prev ious prompt, even if there wa s no line N .

1998040 0 B 13- 3

RESTRICTION ON EDITING ACTIVE FUNCTIONS

• The only active function that can be edited is the one indicated at the top of the state

indicator display (see STATE INDICATOR) .. and then only if it does not additionally

appear elsewhere in the display. This corresponds to the case where the function

is the currently suspended one, and where no calls prior to the suspended one are

incomplete.

• Any attempt to change the local environment of a function in the above circumstances..

such as by modifiyng the function header-, or dele ting, changing or adding labels to

the function definition.. results in a DEFN ERROR.

NOTE: In the event of a DEFN ERROR described above, the local environment must be

changed back to its former state or the name of the function must be changed.

However.. if as the result of editing.. the line number of a labeled line is changed..

the value of the label will be updated to the correct value upon exit from the function

editor.

CREATING SEPARATE VERSIONS OF A FUNCTION

If while editing a non-active function.. the name of the function is changed by editing the

function header.. then upon exit from the editor.. all such changes will be reflected in a

user defined function having the new name supplied. The old version of the function will

still exist under the old name. Both function definitions will be available for subsequent

editing.

13-4 19980400 B

DISPLAY DIRECTIVES

A display directive may be entered after any prompt in lieu of a body entry or override

directive. or as the last part of the function editor invoking line.

(A) Displaying the complete function definition.

- Enter the directive [0] after any prompt. or as the last part of the

invoking line.

- The complete function definition is displayed followed by a prompt for

line 1+LL where L is the last existing line.

Exa m pl e :

(B) Displaying a function definition from line N to the end.

- Enter the directive [ON] afte r any prompt. or as the last part of the

i nvoking line.

- The specified lines a r e displayed followed by a prompt for line 1+LL .

Ex a m pl e:

NOTE. If N> L. no lines are displayed.

1998040 0 B 13-5

(C) Displaying a single line.

- Enter the directive [NO] after any prompt. or as the l ast part of the

invoking line .

- T he s pe cified line i s displayed if it ex ists.

- This is then followe d b y a prompt for the line number indicated.

Example:

EDITING AN EXISTING LINE

An existing line may be edited by fir st displaying it and then. following the subsequent

prompt for that line, employing the line edit procedure (see LINE EDITOR) to edit the

displayed line. This technique is more expedient than replacing the entire line if the

change is minor and the line is quite long.

The line to be edited is exactly as displayed, including the line number in brackets. An

appropriate search string must be chosen with this fact in mind.

If the line number is changed by editing, a new line having that number is created, and any

other editing changes made in the current line editing process apply only to it. The origin

ally displayed line is , in this case, left unchanged. The new line will be inserted in the

appropriate position in the function definition.

Upon completion of the line edit procedure and incorporation of the line as edited into the

function definition, a prompt for line N+. 1*D follows, where N is the line number of the

edited line.

REPOSITION ING AN EXIST ING LINE

An existing line can be repositioned in the function definition by editing the line number of

the line after displaying it, as discussed above. This results in the line appearing at both

the old and new positions. The delete procedure can then be used to remove the line from

its old position.

13-6 19980400 A

TERMINATING THE FUNCTION EDITOR

When the user is satisfied with the function definition he has supplied to the editor. or with

any changes or displays he may have requested. he may indicate termination from the

editor by placing a V ('del') as the last non-blank character on any -input line. Upon success

ful completion of any request of the input line. exit from the editor occurs and the system

aw aits i npu t for immediate execution.

Ex a m pl e :

~~~
~ig:iit&_ [ 2nJ"

111M~\fi!l*IIIII:qlitIlltt\l£tli~@1£m'l.
(system awaiting input for immediate execution)

VDATE

I fJ. v
(system awaiting input for immediate execution)

If. however. the request cannot be accomplished. the appropriate error is issued and exit

fr om the editor does not occur. Instead an appropriate prompt is issued.

As part of the function exit procedure. the lines of the function definition body are assigned

contiguous i nte ger values starting with one. independent of the ORIGIN setting.

DOCUMENTING USER-DEFINED FUNCTIONS

Sinc e an AP L user can dis pl ay any part or all of a function at any time. it would be useful

fo r fu nction lines to be capable of containing non-executable character data whic h cou ld

s e r v e as documentation for the function. supplied while it is being created or sub s e quently

edited.

Useful information c oul d include purpose of the fu nc tio n. acceptab le shapes. domains -and

conformability of the arguments (i f a ny). na tu r e of the result (if any). as well as explana

tory comments to clarify any body li ne in the function definition.

To achieve this capability. s pecial s ymb ol " (verbalized 'lamp' ) is a vailable . The lamp

s ymbol acts as a delimiter . Just a s the c ol on delimits a label fr om the executable portion

of a line to its right. the lamp symb ol delimits any executable portion of a line from

docu m entation to its r ight.

Exa m pl e :

[ 3 J LI NE3 :B+(pA )pB A GIVE B SHAPE OF A

[ 7 J A THIS f.'HOLE LI llE I S A COf.,"l"El:T

NOTE: C om m e nt s must not appear in a function header line.

19980400 A 13-7



USING SYSTEM COMMANDS WHILE EDITING

While the editor is invoked. an input line in the form of a system command will be inter

preted as such. The most useful system command to issue while e diti ng is the }SAVE

command. }SAVE will save a current edition of the active workspa ce. including the latest

form of the function definition currently being created or modified. Should the APL session

be aborted due to transmission line difficulties or system failure. recovery from the

SAVE'd workspace will minimize the number of lines to be reentered. The saved version

of the function definition is stored as if an exit from the editor had taken place. That is.

definition lines are renumbered. and if th e SAVE 'd workspace is l oaded. the editor must

again be invoked before it can be used .

FUNCTION EDITOR ONE-LINERS

For an existing function. the line invoking the editor can s pecify a one-line addition or

replacement or a display directive. followed by a closing v. Thus a single input line can

invoke the editor. direct one task to be done. and cause exit from the editor. with the

system then awaiting input for immediate execution.

Example:

VSQUISH[OJV

. ;~

(system awaits input for immediate execution)

(system awaits input for immediate execution)

SUMMAR Y

A complete summary of the possible input combinations for invoking and using the function

editor are listed on opposite page.

13 -8 19980400 A



To invoke the editor (new function):

To invoke the editor (existing function):

. t line entry>t
V <function name> <d· 1 di ti ......_ ISP ay tr-ee Ive.--,

To enter a line:

{r:< line number>J} <body u ne> -fV~

note: function header is line o.

To display entire definition:

[OJ -EV:t

To display all lines from N to last:

[01'1 J -f Vj.

To display line N:

[ l/lJ J ~ v+

To delete line N:

[ I,'J

< blank line>

To change current line number:

[<line number>]

To edit a line:

[iJU]

19980400 B

<line edit procedure> (see line editor)

13-9



iNiRODUCiiON

SYSTEM COMMANDS 14

In addition to the APL language, the APL system provides for an additional method of com

munication in the form of system commands. System commands complement the facilities

provided in the APL language and allow the user to monitor, vary and protect his process

ing environment.

SYNTAX

) <command namej-. [< par-ameter- list>1

The above is the most general syntax of a system command. The valid syntactic form for

a specific command will be stated under the description of that command. Items in the

parameter list are delimited from each other and from the command name by one or more

spaces. Any error in the syntax of the command results in the error report INCORRECT

COMl\1AND.

DOMAIN

Certain system commands can have numeric parameters. The domain of these parameters

is stated for each such command. Any value not in the required domain results in the error

report INCORRECT COMMAND.

INPUT REQUIREMENTS

System commands will be interpreted as such in any of the following input situations:

• the system is awaiting input for immediate execution.

• the system is awaiting quad input (quad prompt at left).

• the system is awaiting a function line edit request.

In each of these cases, an input line in which the left-most non-space character is a right

parenthesis will be interpreted as a system command.

19980400 B 14-1



Only one system command may be entered on anyone input line.

Nothing else in addition to a system command may be entered in an input line.

Where system command names are longer than four Ietters, the first four or more letters

of the name may be used in lieu of the complete name.

CATEGORIES OF SYSTEM COMMANDS

• Listing the global workspace objects.

• F'or-ming, modifying and listing groups.

• Erasing global objects.

• Debugging aids.

• Determining and aitering workspace environment parameters.

• Workspace library facilities.

• Termination of APL session.

• Examining and altering display device parameters.

ACT IV E WORKSPACE

Each currently active user is provided with an environment in which to process his data.

This environment is called the active workspace.

The active workspace is a directly accessible storage allocation sufficient in size to contain

the workspace objects currently def'i ne d, the function environments of currently active

functions, the state i ndic ator-, stop l ists, and the four environmental parameters: ORIGIN,

DIGITS, FU ZZ and SEED.

For APL':<CYBER, the maximum size of a workspace is installation dependent, but is in

the order of 10,000 words less than the maximum field length allowed for a user. Any

attempt to exceed this capacity results in the error report WS FULL.

The active workspace has provision for an identification (ID) in the same format as in

library workspac es , (See \VORKSPACE IDENTIFICATION. )

14-2 19980400 B



CLEAR COMMAND

syntax:

action:

example:

)CLEAR

• provides an active wor-kspace with the fo l lowing:

1- UTI"\,..VC!T\':l r» t:> Tn t:>'t'Y'\T"\t .. r"'f .....,~ .a.:Ioot>..Jt"'""''''''' '-' ~.LJ " ......... y ..J

2. no objects

3. empty state indicator

4. ORIGIN 1

5. FU ZZ 2* -43 (approx, IE-13)

6. DIGITS 10

7. SEED 192527075924404

8. input mode: awaiting input for immediate execution

• successful completion of the command is indicated by the report

CLEARED WS.

) CLEAR
CLEARED WS

GLOBAL OBJECT INVENTORY

A system command listing global object names exists for each of the three kinds of work

space objects.

VARS COMMAND

syntax: )VARS [<letter>]

action: lists the names of global variables currently defined in the active work

space in alphabetic order;

no letter list all names.

19980400 B

with letter - list all names starting with this or any higher letter

in the aphabetic sequence.

14-3



note: Alphabetic sequence is as follows:

A-Z

0-9

l:1
a - z

(cannot use digit as letter)

also note:

examples:

Names of global variables currently masked will be listed.

a~ac-A-A2-a7-aB~5

)VARS

A A2 a aB a7 ac

)VARS a

FNS COMMAND

a aB a7 ac

syntax: )FNS [< letter >]

action: lists the names of user-defined functions currently existing in the active

workspace in alphabetic order (see )VARS).

The use of a letter causes the same action as when used with) VARS.

GRPS COMMAND

syntax: )GRPS [<letter >J

action:

GROUPS

lists the names of group definitions in the active workspace in alphabetic

order (see )V ARS).

The use of a letter causes the same action as when used with )V ARS.

A group is a named set of potentially existing global workspace objects. It is useful to be

able to reference a package set of defined functions and their global variables as a group

when using )COPY , )PCOPY and )ERASE (q. v.}. A group is defined by a group

definition whi.ch, when supplied. is itself a workspace object.

A group definition is a named set of identifiers. The name of the set is the name of the

group. The identifiers are names of potentially existing global workspace objects. If and

when a global workspace object exists having a name identical to an identifier in the group

definition. it is a member of the defined group. A group definition is supplied using the

)GROUP command.

14-4 19980400 B



GROUP COMMAND

syntax: )GROUP <group name> <identifier list>

action:

error report:

creates a group definition.

The group name is the same as the name of an existing function or global variable.

REFERENCING GROUPS

When a reference is made to a gro~p via the )COPY , )PCOPY or )ERASE commands,

reference is made initially to the group definition in the indicated workspace, and addition

ally to all existing global objects in that workspace referenced by identifiers in the identi

fier list. Such objects are said to referents of the corresponding identifiers.

Groups may themselves be referents of a group. In this case, reference is implied to all of

that group's referents in the same manner as applied to the first group. Indirect referencing

of referents to as many levels as there are groups within groups is thus accomplished.

example: X+Y+Z+T+'DATA'

)GROUP G1 X Y G2

)GROUP G2 Z T

)SAVE WS

WS SAVED - 73/05/01. 08.13.01.

) CLEAR

CLEARED vs

)COPY WS G1

WS SAVED - 73/05/01. 08.13.01.

)VARS

T X Y Z

'rrnnro
Ilr.nC'iJ

G1 G2

An object can be a referent to more than one group. An object can be multiply-referenced

directly and indirectly by the same group definition. Even circular definitions are possible.

The mechanics of )COPY, )PCOPY and )ERASE are such that the end result is identical

to a single reference of such an object.

19980400 B 14-5



example: )GROUP GPl A A GP2

)GROUP GP2 B GPl A

A+5 )COPY WS GPl

B+7 flS SAVED - 73/05/03. 08.06.59.

)SAVE flS )VARS

flS SAVED - 73/05/03. 08.06.59. A B

) CLEAR )GRPS

CLEARED vs GPl GP2

ALTERING A GROUP DEFINITION

(a) Adding members to the group.

)GROUP <group name> <addendum identifier(s»

If the group name is the same as an existing group, it is an immediate reference to

the old definition of the group. As such it implies the old identifier list. Identifiers

in the current )GROUP command imply additions to the list.

example: ) GROUP X A B C

)GROUP X Z

)GRP X

A B C Z

(b) Dispersing a group.

)GROUP <group name>

If a group command consists solely of a group name, it implies an empty identifier

list, and thus a group with no defined members. This causes any previous group

definition by that name to be destroyed, and no new one to be formed.

)GROUP X

)GRPS

(blank)

(c) Any general change in a group definition.

Disperse the existing group, then create a new group definition.

14-6 19980400 B



DISPLAYING A GROUP DEFINITION

A group definition can be displayed via the )GRP command.

GRP Command

syntax:

action:

error report:

)GRP ,group name> [<letter>]

the identifier list of the group definttton is displayed in alphabetic

order (see )VARS). The use of a letter causes the same listing

action as when used with )VARS.

OBJECT NOT FOUND

<identifier list>

indicates a group definition could not be found in the active work

space with a name identical to the identifier listed.

)GROUP X ABC

)GRP X

ABC

)GRP X B

B C

GENERAL NOTES ON REFERENCING GROUPS

1. )COPY and )PCOPY references to groups refer to the group definition and group

members existing in the workspace being copied.

2. If )PCOPY is used to copy a group and a global object in the active workspace has

the same name as the referenced group in the workspace being copied. no copying

using that group name can occur.

3. )ERAS'E reference to a group refers to thegroup definition and existing group

members in the active workspace.

4. Creation. modification. display and dispersing of groups can occur only in the

active workspace and only reference the group definition. not its members.

19980400 A 14-7



ERASING GLOBAL OBJECTS

ERASE COMMAND

syntax:

action:

error report:

)ERASE <object name list>

Global objects having names corresponding to those in the object

name list are erased from the active workspace.

If a name in the object name list is a group name for which there is

a group definition in the active workspace. then in addition to eras

ing the group definition. all referents in the group definition are

erased. If one of the referents is another group definition. erasure

of that group definition and all of its referents is also performed.

Indirect referents to all ievels of group structuring are thus erased.

If a referenced object cannot be found no message is reported. since

this is the desired result upon completing the command.

NOT ERASED:

<identifier list>

Active user-defined functions cannot be erased.

example: )VAR8 )ERA8E Vi 112 G3

Vi V2 V3 )VARS

)11N8 V2

F1 112 F3 )FN8

) GROUP G1 Vi F1 F1

)GROUP G2 V2 112 )GRPS

) GROUP G3 V3 F3 01 02

)GRP8 )ERA8E X

G1 G2 G3 )VARS

V2

14-8 19980400 A



DEBUGGING AIDS

SI COMMAND

syntax:

action:

note:

19980400 A

)SI

The )81 command produces a display of the. State Indicator, a list

of all the function calls that are currently active. displayeu in

reverse order to the sequence of the calls; i , e •• the most deeply

nested call in the current sequence is at the top of the list.

The line on which the function is pendant or suspended is placed in

brackets after the function name. Function calls that are suspended

are flagged with an asterisk (*).

Although not generally advisable. it is possible to initiate an

additional calling sequence after a current sequence is suspended.

If this is done. the state indicator will reflect the complete status

of all such stacked suspended calling sequences. the most current

listed first.

Each issuing of a niladic branch will remove the local environments

of the most current calling sequence. and remove the correspond

ing entries in the state indicator up to the next suspended function.

Thus in order to completely clear the state indicator. it is neces

sary to issue as many niladic branches as there are asterisks

(suspensions) in the state indicator.

(See examples on next page. )

14-9



examples:

[ 1]

[2]

'VR+A FUN1 C; Z

R+A+FUN2 C

VR+FUN2 C

[1] +. A THIS LINE WILL SUSPEND ON SYNTAX ERROR

[2] V

2 FUN1 3

SYNTAX ERROR

v

FUN2[1] +.A THIS LINE WILL SUSPEND ON SYNTAX ERROR

lSI

FUN2[ 1] *

FUN1[1]

4 FUN1 5

SYNTAX ERROR

v

Indicates FUN2 is suspended on line 1.

Indicates FUNl is pendant on line 1.

FUN2[1] +.A THIS LINE WILL SUSPEND ON SYNTAX ERROR

)SI

14-10

FUN2[1] *

FUN1[1]

FUN2[1] *

FUN1[1]

)SI

FUN2[1] *

FUN1[1]

)SI
(blank)

}
}

J

Second suspended calling sequence.

First suspended calling sequence.

First suspended calling sequence (environment
of second sequence is removed from the work-
space).

State indicator is empty.

19980400 B



SIV COMMAND

syntax: isrv

action: The action of srv is similar to Sl, but in addition to providing the

function call names and line number-s, the local variables (including

label.s, ar-gument s, and result) for each function call are listed.

example: using tbe same functions as the example in )Sr:

2 FUN1 3

SYNTAX ERROR

v

FUN2[1] +.

)SIV

FUN2[1] *

not the same var i ahleNote:

zR~B

FUN1[1]

C R ~<----- ~----_~

A

)VARS

Note: no global variables

A

2

B

3

R

VALUE ERROR

No value has been assigned to the
result variable for FUN2

v

R

19980400 B 14-11



STOP COMMAND

The STOP command provides a useful debugging tool for allowing examination of the function

environment at strategic points in the function.

syntax:

action:

consequence:

notes:

)STOP <function name> [<function line numbers (stop list)" >J

• The line numbers in the stop list are added to previously set line stops

(if any).

• The function is modified so that it will be suspended prior to starting

execution of the lines specified.

If during subsequent execution of the named function a stop-designat

ed line is encountered for execution, suspension of the function

occurs on that line prior to its execution.

The function name followed by the line number in brackets is output,

followed by a request for input for immediate execution.

• The line numbers need not be in order in the stop list.

• If line 1 appears in the stop list, suspension occurs initially

before any lines of the function are executed. In this case, all

local variables are undefined except for the arguments. However,

any masking of the global environment will have taken place.

• If the function is subsequently edited and additional lines are

inserted or others deleted so as to change the line numbers of

the lines designated in the stop list, the lines originally designat

ed, even though their line numbers may now be different, are

the ones on which suspension will occur.

• If a stop-designated line is edited, the stop designation is removed.

• If a stop-designated line is deleted, the designation is removed

from the stop list.

• If a function with a stop list is copied to another workspace, the

copied version will have a stop list.

• Complete removal of stop control for a function is provided by

issuing a STOP command for the function with an empty stop list:

)STOP < function name>

error reports:

14-12

OBJEC T NOT FOUND

19980400 B



19980400 B

VR+A FUN3 B

[1] R+A+2xB

[2] R+RrB*2

[3 ] V

)STOP PUN3 2

5 PUN3 3

FUN3[2]

)SI

PUN3[2] *
A

5

B

3

R

11

+2

11

lSI

)STOP FUN3

5 FUN3 3

11

14-13



ENVIRONMENTAL PARAMETERS

ORIGIN COMMAND

syntax:

action:

note:

)ORIGIN

(a) 0 or 1 supplied.

• ORIGIN is set to the value supplied.

• The previous value of ORIGIN is reported.

(b) no parameter supplied.

• The current value of ORIGIN is reported.

) CLEAR sets ORIGIN to 1.

example:
1

WAS 1

o

)ORIGIN

)ORIGIN 0

)ORIGIN

DIGITS COMMAND

syntax: )DIGITS [<integer>] 1 "Integer~15

action:

consequence:

(a) Valid parameter supplied.

• DIGITS is set to the value specified and the previous value

is reported.

(b) no parameter supplied.

• The current value of DIGITS is reported.

DIGITS is used in numeric element formatting in formatting output

displays and by the format primitive function (see Displaying Data. )

DIGITS is the maximum number of significant digits that can

appear in a numeric element representation display.

note: )CLEAR sets DIGITS to 10.

example: )DIGITS
10

)DIGITS 12
WAS 10

)DIGITS
12

14-14 19980400 B



SEED COMMAND

syntax: )SEED [< integer>] 0< integer «2*48) - 1

action: (a)

examples:

note:

• SEED is set to the integer specified if > 2~:<47 _ otherwise

the integer supplied is multiplied by a power of 2 sufficient

to create a SEED such that (2~:~47)~ SEED «2"'::48) - 1

• The previous value of SEED is reported.

(b) no parameter supplied.

• The current value of SEED is reported.

)SEED
1.925270759E14

)SEED 129653
WAS 1.925270759E14

) SEED
2.784278974E14

)CLJEAR sets SEED to 192527075924404.

Valid Settings for SEED

The randomness of generated numbers is very dependent on the setting of SEED. Good

randomness is achieved by numbers whose binary representation contains a fairly even

distribution of ones and zeros.

Zer-o, powers of 2 and small numbers should not be used.

When to set SEED

While debugging an APL program that uses the primitive functions Roll or Deal it is highly

desirable that the same sequence of random numbers be generated on each te st, so that

succes sive sets of results may be readily compared. This can be accomplished by reset

ting the SEED to the same value prior to each test.

An alternative procedure would be to )SAVE the workspace prior to each test; then

)LOAD the saved workspace after execution and evaluation of each test, but prior to

modifying any functions or test data.

19980400 B 14-15



•

LIBRARY FACILITIES

Each APL user is provided with facilities for preserving his user environment (the active

workspace) at any point in a session as a permanent library workspace. This allows him

to subsequently reinstate that workspace as the active one, thus reestablishing the environ

ment exactly as it was when saved.

A user may maintain as many saved workspaces as he wishes in his user private library.

Each stored workspace has a workspace identification (ID) by which it can be referenced.

Facilities exist for listing the ID's of workspaces in any user's library, for updating or

deleting individual workspaces in a user's own library, and for incorporating specified

objects or groups from stored workspaces in any library into the currently active one.

In addition, the user is provided with a security of access to, and erasure or modification

of, his saved workspaces by a password and user key facility.

WORKSPACE IDENTIFICATION

<workspace ID> := [<library ref >J <workspace name> [: < password >J

Every workspace has an identification (ID) consisting of:

• a library reference (owner's user ID).

• a workspace name.

• an optional password.

The library reference consists of one of the following:

• * (references the APL standard public library)

• ~}: <alpha library owner's user ID>

[*] <numeric library owner's user ID>

The workspace name is formed according to the same rules as apply to an identifier, but in

addition is restricted to the character set and number of characters allowed by the host

operating system. Currently, this restriction is 7 or fewer characters selected from the

set A - Z, 0 - 9. The password is formed according to the same rules as the workspace

name.

Note that spaces are not allowed between the asterisk and the library If), or between the

colon and the password.

14-16 19980400 B



Defaults

If the workspace ID is omitted in a command which references a workspace, the workspace

ID defaults to that of the currently active wor-kspace,

If the library reference is omitted, it defaults to the user's own library.

If the password is omitted, it defaults to no pas sword.

Reports

Several commands report workspace ID's. In such cases, the following rules are used: .

• The library ID is not reported.

• The password (if any) is never reported.

• If there is no workspace ID, it is reported as CLEAR.

NOTE:

1.

2.

3.

4.

A workspace initially saved without a password cannot have a password added by a

subsequent )SAVE command.

A workspace initially saved with a password cannot have the password r erno ve d 01'

changed by a subsequent )SAVE command.

However, the workspace password condition can be changed by loading the workspace,

dropping it, and then saving it again with a new or different password or without a

password.

The creator of a workspace need not use passwords for referencing his own work

space.

19980400 B 14-17



SAVE COMMAND

syntax:

action:

error reports:

consequences:

14-18

)SAVE [<workspace ID>}

• A workspace identical to the currently active workspace is

created in the specified library.

• The created workspace is designated with the workspace ID

supplied or, if not supplied, with the workspace ID of the active

workspace.

• Any previous workspace in the user's library bearing the ID of

the newly created one is dropped.

• The name of the active workspace is changed to that given in the

SAVE command, if supplied.

• Upon successful completion of the command, the following is

reported;

<workspace ID> SAVED <date><time>

• IMPROPER LIBRARY REFERENCE

an attempt was made to save a workspace in another user's

library.

• NOT SAVED - THIS WS IS <active workspace ID>

An attempt was made to SAVE a workspace under an ID of a

currently existing library workspace while the active work

space ID was different. (This protects one from inadvertently

overwriting a desired library workspace. . •• If such action

is intended, precede the SAVE command with a )WSID

command (q, v; ) supplying the ID desired. )

• NOT SAVED - THIS WS IS CLEAR

)SAVE with no parameters was issued with an active work

space having no workspace ID.

• If a SAVED workspace ID includes a password, subsequent

referencing of the workspace must include the password.

19980400 B



examples:

X+3

)SAVE XIS 3

XIS 3 SAVED - 73/05/09. 15.37.04.

)SAVE

XIS3 SAVED - 73/05/09. 15.37.16.

)SAVE XIS 3 : Y

XIS3 SAVED - 73/05/09. 15.38.21.

) CLEAR

CLEARED vs

Y+1+X+3

(save as workspace named
"XIS3", and set \VSID to same)

(resave under same name)

(resave with password)

)SAVE XIS3

NOT SAVED - THIS WS IS CLEAR (XIS3 already exists)

)WSID XIS3 (declare this WS to be "XIS3")

WAS CLEAR

)SAVE (and save it)

XIS 3 SAVED - 73/05/09. 15.43.12.

19980400 B 14-19



LOAD COMMAND

syntax:

action:

error reports:

14-20

)LOAD f<workspace ID>J

• A search is made for the library indicated.

• If the library is found. a search is made for a workspace with

workspace name as indicated.

• If the workspace is found and includes a password in its ID. a

check is made for a match with the password supplied.

• If found. the indicated workspace is loaded as the active work

space, replacing the previous environment of the active work

space.

• The active workspace ID becomes the ID of the loaded workspace.

• Upon successful completion of the command. the following is

reported:

<Workspace ID> SAVED <date (YY MM DD»<time (HH MM SS»

• <workspace ID> NOT FOUND

no library could be found from the reference given.

password does not match.

no workspace by that name in referenced library.

• APL SYSTEM ERROR 1.

workspace is damaged.

19980400 B



examples:

X+3

)SAVE XIS3

XIS 3 SAVED - 73/05/09. 15.44.59.

)CLEAR

CLEAR JlS

)VARS

)LOAD XIS 3

XIS 3 SAVED - 73/05/09. 15.44.59.

)VARS

X

X

3

X+2

)LOAD

XIS 3 SAVED - 73/05/09. 15.44.59.

X

3

)SAVE XIS 3 :ABC

XIS 3 SAVED - 73/05/09. 15.57.04.

)OFF

user A logs in

(time stamp)

(time stamp)

(change X)

(reload)

(X restored)

user A logs off

user B logs in

(password incorrect)

(password not given)

)LOAD XIS3

XIS3 NOT FOUND

)LOAD XIS3:PQR

XIS3 NOT FOUND

)LOAD XIS3 :ABC

XIS 3 SAVED - 73/05/09. 15.57.04.

19980400 B 14-21



COpy COMMAND

syntax:

action:

note:

error reports:

note:

14-22

icor-v f<workspace ID> f<object list>}]

• A search is made for the workspace indicated as for )LOAD.

• If found, the specified objects are searched for in the workspace

global environment and, if found, copied into the active work

space, replacing any existing global object in the active work

space having the same name.

• If a specified object is found to be a group definition in the refer

enced workspace, then in addition to copying the group definition,

all referents in the group definition are copied. If one of the

referents is another group definition, it and all its referents

are copied. Indirect referents to all levels of group structuring

are thus copied.

• If no object list is provided, all global objects in the referenced

workspace are copied.

• Successful completion of the command results in the report:

<Workspace ID> SAVED <date> <time>

Only global objects are copied. The function local environments,

state indicator, stop lists and environmental parameters cannot be

copied, and those in the active workspace are undisturbed.

<workspace ID> NOT FOUND

as for )LOAD

OBJECTS NOT FOUND

<identifier list>

the objects reported in <identifier list> could not be found in

the referenced wor-kspace.

APL SYSTEM ERROR 1

the referenced workspace is damaged.

Objects in the object list that have the same name as functions that

are pendant or suspended in the active workspace will not be copied.

19980400 B



examples:

X+3

.1+4

)SAVE XIS 3

XIS3 SAVED - 73i05i09. 16.06.54.

X+2

.1+3

Z+5

) COpy XIS 3

XIS 3 SAVED - 73/05/09. 16.06.54.

X.Y.Z

3 4 5

X+2

.1+3

)COpy XIS3 Y

XIS 3 SAVED - 73/05/09. 16.06.54.

D+P+X.Y.Z

2 4 5

) GROUP GRP1 X Z A

)SAVE

XIS 3 SAVED - 73/05/09. 16.07.27.

) CLEAR

CLEARED WS

)COpy XIS3 GRPl P

XIS3 SAVED - 73/05/09. 16.07.27.

)VARS

P X Z

)GRPS

GRPl

)GRP GRPl

A X Z

19980400 B

(copy entire WS)

(time saved)

(X, Y, & Z restored)

(copy Y only)

(create P)

(Y only restored)

(create a group)

(save it)

(copy GRP1 & P)

(A is not defined in "XIS3 ")

(But A is still part of the group
definition)

14-23



PCOpy COMMAND

syntax:

action:

error reports:

)PCOpy [<workspace ID> f<object list>]]

Action is identical to )COPY exept that objects whose names are

identical to the names of objects in the active global workspace are

not copied, thus protecting the objects already there.

<workspace In> NOT FOUND - as for )LOAD

OBJECT NOT FOUND - as for )COPY

<identifier list>

note that objects which would have been prevented from being

copied if found, are nonethless reported if not found.

examples:

X+-3

Y+-4

)SAVE XIS3

XIS3 SAVED - 73/05/09. 16.10.39.

X+-2

)ERASE Y

)PCOPY XIS3

XIS3 SAVED - 73/05/09. 16.10.39.

X.Y

2 4 (Y only restored)

14-24 19980400 B



DROP COMMAND

syntax:

action;

error reports:

examples:

)DROP {<workspace ID>}

• A search is made in the specified iibrary for a workspace with

the specified name.

• If a workspace is found and includes a password in its ID, a

check is made for a supplied matching password.

• If found, the workspace is removed from the library.

• The date and time when dropped are displayed to indicate

successful execution of this command.

• <workspace ill> NOT FOUND

password does not match.

no workspace by that name in the user's private library.

• IMPROPER LIBRARY REFERENCE

an attempt was made to reference a library other than the

user's own.

X+3

)SAVE XIS 3

XIS 3 SAVED - 73/05/09. 16.01.14.

)LOAD XIS 3

XIS 3 SAVED - 73/05/09. 16.01.14.

)DROP XIS 3

73/05/09. 16.01.14.

)LOAD XIS3

XIS 3 NOT FOUND

)SAVE XIS3 :ABC

XIS3 SAVED - 73/05/09. 16.01.58.

)DROP XIS3 :ABC

73/05/09. 16.01.58.

(create it)

(timestamp)

(load it)

(time saved)

(drop it)

(time dropped)

("XIS3 no longer exists)

19980400 B 14-25



WSID COMMAND

syntax:

action:

14-26

)WSID {<workspace name>J
(a) No parameters provided. The active workspace ID is reported.

example:

)WSID

TEST

note: an empty ID is reported as CLEAR; this does not

necessesarily mean a CLEAR workspace:

) CLEAR

CLEARED WS

A+5

)WSID

CLEAR

(b) If a workspace ID is provided. it becomes the ID of the active

workspace. The previous active workspace ID is reported.

example:

)WSID MODEL

WAS CLEAR

)WSID

MODEL

19980400 B



examples:

X+3

HISID

CLEAR

)SAVE XIS 3

XIS3 SAVED - 73/05/09. 16.12.42.

H!SID

XIS 3

) CLEAR

CLEARED WS

) COpy XIS3

XIS3 SAVED - 73/05/09. 16.12.42.

)SAVE

NOT SAVED - THIS WS IS CLEAR

)WSID XIS3

WAS CLEAR

)SAVE

XIS3 SAVED - 73/05/09. 16.13.27

(restore objects in "XIS3")

(declare WS same as "XIS3")

(now it can be saved)

19980400 B 14-27



LIB COMMAN[)

syntax:

action:

examples:

)LIB

)LIB {<library ref>}

• The workspace names of the user's own library are listed if no

parameter is supplied.

• Password protected workspaces are listed in the above case,

but the passwords are not listed.

X+3

)SAVE XIS3

XIS 3 SAVED - 73/05/09. 16.15.~1.

)LIB

XIS3

)SAVE NEflX:ABC

NEflX SAVED - 73/05/09. 16.17.03.

)LIB

REfiX XIS 3

LIBRARY ACCESS

Suppose the above user, JOE, logs out, and FRED logs in, and does the following:

)LIB

)LIB *JOE

NEflX XIS3

14-28 19980400 B



)LOAD *JOE XIS3

XIS3 SAVED - 73/05/09. 16.17.03.

X

3

)LOAD *JOE NEWX

NEWX NOT FOUND

)LOAD *JOE NEWX:ABC

NEWX SAVED - 73/05/09. 16.17.03.

)LIB

)WSID

NEWX

)SAVE *JOE NEWX:ABC

IMPROPER LIBRARY REFERENCE

)DROP *JOE NEWX:ABC

IMPROPER LIBRARY REFERENCE

)WSID MYX

WAS NEWX

)WSID

MYX

)SAVE

MYX SAVED - 73/05/09. 21.32.16.

)LOAD NEWX

NEWX NOT FOUND

)LOAD MYX

MYX SAVED - 73/05/09. 21.32.16.

)LOAD *FRED MYX

MYX SAVED - 73/05/09. 21.32.16.

19980400 B 14-29



USER LIBRARY WORKSPACE SECURITY

A user may quite safely divulge his sys tern user ID to some other user so that the latter

may load or copy any or all objects from unprotected workspaces. The alternate user may

interrogate workspaces available to him by )LIB {<library ref>J. )SAVE or )DROP is not

permitted using an alternate library reference. A user can save workspaces only in his

own user library and can only )DROP his own workspaces.

Knowing a person's system user ID is in itself not sufficient to allow that person to log-on

under that ID. To do so, he requires that person's system log-on password. This pass

word should never be revealed to anyone under any circumstances! Possession of this

password permits the holder complete freedom of access to workspace libraries under the

corresponding user ID.

THE CONTINU WORKSPACE

A user may ter-minate his session with the system command )CONTINU. This effects a

)SAVE to a user library workspace with the name CONTINU and then terminates the

session. A )SAVE to CONTINU is also permitted.

At the start of every session, an automatic LOAD of the CONTINU workspace takes place

if one exists.

start of session: APL
APL*CYBER. V1.0 TASC

73/05/19 14:19:03

CONTINU SAVED - 73/05/18
)WSID

CONTINU

16:29:56

Note that the date and time CONTINU was last saved are shown in the same manner as

in response to a )LOAD command.

The CONTINU workspace can be referenced in any system command that validly refer

ences a workspace: i , e , , )SAVE, )LOAD, )DROP, )COPY, )PCOPY. )LIB will

list CONTINU if it exists.

14-30 19980400 B



TERMINATING AN APL SESSION

An APL session can be terminated in any of the following ways:

1. With the system command )OFF

2. With the systelYl cornrnand )CONTn~U

3. With the system command )SYSTEM

4. By intentionally disconnecting the terminal connection.

5. By unintentional dropping of the terminal connection due to a variety of trans

mission difficulties.

6. By a computer malfunction or operating system problem occurrence.

In case 2. the active workspace will be saved in the user's CONTINU workspace.

)SYSTEM returns control to the operating system command mode. All other cases cause

a log-out of the user from the system.

Cases 1. 2 and 3 are termed nor m al session terrnination and respond with a display of

session statistics and terminating status information.

Cases 4. 5 and 6 do not generate a response and do not save the workspace.

)OFF
CPU TIME
flORKSPACE

3.560 SEC.
1493 WORDS.

NOTE: In the event of a dropping of the terminal connection. recovery may be attempted by

redialing the computer. typing one's user name and password and in response to the display

of RECOVER/SYSTEM: type RECOVER. If recovery is possible. enter a carriage return.

The APL session will be in the state in which it was left. save data lost during the trans

mission.

19980400 B 14-31



DISPLA Y DEVICE PARAMETERS

The two display device parameters maintain their settings, unless specifically altered,

for the entire APL session. They are WIDTH and LINES. Default settings are assigned

at the start of a session based on the declared terminal type (including batch). These

parameters do not reside in the active workspace, and thus cannot be saved in library

workspaces.

WIDTH COMMAND

)WIDTH [<integer>] 30 <integer "254

action:

examples:

consequence:

(a) valid parameters supplied.

• WIDTH is set to the value supplied.

• The previous value of WIDTH is reported.

(b) no parameter supplied.

• The current value of WIDTH is reported.

)JiID1.'H 50
WAS 72

) WIDTH
50

Until again changed later in the session, all displayed output will

be formatted in lines not exceeding WIDTH characters in width.

Data which otherwise would appear on the same line will be con

tinued on the following line or lines. The line continuation format

for the declared display device will be used.

default value:

LI N ES COMM.AN D

See appendix for default values for specific terminals.

)LINES {<integer>] o ~integer ~-1+2*48

action:

14-32

(a) valid parameter supplied.

• LINES is set -to the value supplied.

• The previous value of LINES is reported.

(b) no parameter supplied.

• The current value of LINES is reported.

19980400 A



consequence:

examples:

note:

default value:

19980400 B

If the setting of LINES is non-zero, output is displayed on the

output: aevice in "pages" LINES lines long. 1\1: tne end of each

"page"; the display will halt and request go-ahead according to the

device type. This consists of a request for input with a '?' at the

left margin. Any input will then cause the display to continue.

The last such "page" does not request go-ahead, as the display is

complete. Neither does "fill" to the end of the page occur.

If the setting of LINES is zero, no paging occurs.

)LINES 0
WAS 14

)LINES
o

This provides users on terminals with volatile displays a chance

to peruse an entire screen of information for any desired period.

To continue displaying output, the user inputs a blank line.

Add it io nal halls will occur on subsequent screensful of output until

the entire display has been sent.

The remainder of the display is aborted by pressing the 'BREAK'

or 'ATTN' key.

The default setting of lines will be equal to the line capacity of the

display less 2 (to allow for the prompt line and input line).

The most usual non-default setting of LINES is zero which causes

continuous scrolling of output without halts for the entire display.

Zero is the default setting for all hard copy terminals.

14-33



TERMINAL ACCESS TO APL·CYBER SYSTEM ON KRONOS A

1. Turn on terminal; set for on-line use. Set to half duplex except as noted in 8(b). If

your terminal is "hard-wired" to the computer system. go to step 6.

2. Turn on data set. Set to half duplex if acoustic coupler.

3. Dial the computer telephone number.

4. Wait for a steady high pitched tone.

5. Set for data; with acoustic couplers place the reciever in the proper position in the

coupler cradle.

6. This step is required only if the Terminal Protocol Routine is included in the KRONOS

operating systern on the C YBER computer you are at tempt.ing to use. Ot.he.rw i s e the

d i s pl av stated below will appear automatically. Depending on the type of te r m ina l ,

key one of the following:

IBM 2741 correspondence with APL ball:

IBM 2741 correspondence with standard ball:

Memorex 1240 with APL belt:

All other terminals:

The system will return the following output display:

73/01/15. 19.51. 57. (current date and time)

KRONOS TIME SHARING SYSTEM - VER. 2. 1.

USER NUMBER:

7. Key in your KRONOS user number.

A attention

1
carriage return1
attention

M

T

JOEBLOW return

The system responds with:

PASSWORD

On nun-destructive display terminals. the second line consists of 9 multiply overstruck

characters. On CRT displays (such as the CONTROL DATA 713) the net result will

appear as XXXXXXXXX. Backspacing to the first line position then occurs.

19980400 B A-I



8. Key in your KRONOS user password It is extremely important that this password

not be revealed to any other person. On non-destructive display terminals, this pass

word will be keyed directly on top of the mask provided, so as to make the password

illegible.

On CRT display terminals this cannot be done, as each displayed character replaces

the previously displayed one. Instead, use one of the following procedures:

(a) Place one hand over the screen, key in the password followed by return with the

other hand, then key the clear key which blanks the screen.

(b) Set the switch at the back of the terminal to full duplex permanently if using an

acoustic coupler. Set the switch on the coupler to half duplex except when keying

the pas sword, for which use the full duplex setting. This will cause the characters

to be sent to the KRONOS system without being displayed on the terminal. Don't

forget to reset the coupler to half duplex after this is done.

(c) Reduce screen intensity and key in the password, now key the return and then

clear and remember to reset the screen intensity when done.

If an error is detected in the entered KRONOS user number or password, the system

responds with the error message IMPROPER LOG IN, TRY AGAIN.

This is followed by a repeat of the prompt USER NUMBER: whereupon steps 7 and 8

must be repeated.

An automatic disconnect from the system will occur after three unsuccessful attempts

to do this properly.

9. If steps 7 and 8 are completed satisfactorily the user is said to be 'logged in'. This

is confirmed by the response TERMINAL: port number, TTY.

The system then prompts the user to indicate which system he wants:

RECOVER / SYSTEM:

If the APL system is desired, the response to be entered depends on the type of

terminal.

A-2

CONTROL DATA 713:

TELETYPE 33:

TELETYPE 38 with APL:

TEKTRONIX 4013:

IBM 2741

MEMOREX 1240

FULL ASCII

APL,713

APL, TTY

APL, T38

APL, TEK

APL,2741

APL, MEM

f
AP L

APL, ASC

19980400 B



The system replies to a proper request for the APL system with:

APL*CYBER.

73/01/15.

"tT1 nv ~. v

19. 55. 04.

T <term.inal type>

(logged-in date and time).

If a workspace with the name CONTINU existed in the user-is private library at the

termination of the previous session. that workspace is loaded as the active workspace

to commence the current session. This fact is conveyed with the message:

CONTINU SAVED - 73/01/15. 19.25.23.

(last saved date and time)

At this point the user is now in direct communication with the APL*CYBER system.

19980400 B A-3



COMMUNICATING APL CHARACTERS

METHODS

The APL characters are summarized in Table B-1. Communicating these characters

between a terminal (or batch input and output device) and the APL*CYBER system is

achieved in one or more of the following ways:

1. Terminal keys corresponding to APL characters communicate those characters

when struck.

2. Specific terminals may have a certain key defined as a substitute for a certain

APL character and convey that character when depressed. Such particulars are

listed under the appropriate section of supported terminals.

B

;j. On non-destructive display terminals (I, e •• hard copy or storage tube) which are

equipped with a backspace key, certain API. characters may be communicated by

overstriking (explained below).

4. A scheme of three character mnemonics exists for conveying any desired APL

character and can be used on any terminal or batch I/O device.

Output displays will. for each required character. utilize one of the above methods.

according to device capabilities. in the preferred order as listed.

OVERSTRIKES

On terminals with a non-destructive overstrike. such as hard copy or storage tube terminals,

repositioning to the line position of a previously keyed character and keying a second non

blank key (called overstriking) creates a compositely formed display graphic. If this

graphic is a reasonable facsimile of the symbol for an APL character. that character is

conveyed; otherwise the character is illegal. and is converted to the canonical 'bad'

character. Note that underscored alphabetics and underscored L:::. (delta) are equivalent

symbols for lower case alphabetics and b respectively and may be formed by overstriking.

On terminals with a standard APL keyboard. all but a very few special characters can be

conveyed by direct keying or overstriking.

19980400 A B-1



Note that as a consequence of the Visual Fidelity criterion. the keying sequence used in

forming overstrikes is immaterial. Also. repeated overstriking the same key in the same

line positon still conveys the same character. Overstriking with the. space bar does not

change the character conveyed.

MNEMONICS

On terminals not equipped with a standard APL keyboard. and as an alternative for any

type of terminal. desired APL characters can be conveyed by means of mnemonics.

Mnemonics exist for the entire APL character set except for the following 46 characters

which are standard on any terminal:

A ••• Z 0 ••• 9 ) + = * / and space

Further. there are no mnemonics for backspace. return. or any other non-graphic

characters.

All mnemonics are formed by a three-character combination consisting of a dollar sign

($) followed by two upper case alphabetic characters. The $ character acts as a flag

character and conveys that it along with the following two characters are to be treated as

a group which compositely represents a single APL character. The $ character is

standard on all terminals except some of those with APL keyboards. An overstrike com

bination exists to convey the $ character in this case. If the $ character itself is desired

as a literal character. the mnemonic for dollar sign can be used.

Also. a dollar sign is considered literal if it is not followed by an upper case alphabetic

(e. g•• '$1. 50').

The two upper case alphabetic characters following the $ character have been chosen by

the following scheme to aid in remembering them:

• Lower case Roman alphabetic characters are conveyed by the double appearance of

the corresponding upper case character.

• If the APL character is used only as a character and not as a primitive function

designator the two characters are an abbreviation for the name of the symbol.

• If the APL character is used as a primitive function designator. but is a character

which has a generally known name. the two characters are an abbreviation for the

name of the symbol.

B-2 19980400 A



• If the APL character is used as a primitive function designator and is a character

abbreviation for the name of the primitive function. If the function is known by

more than one name. an abbreviation of the most frequently used name is chosen,

e For those APL primitives for which an alternate APL character exis ta, implicitly

indicating 'first' for the indicated ordinal processing of the right argument. the two

characters used are obtained from the two characters used in the mnemonic for the

APL character which represents the standard form of the function call. replacing

the second character by the next higher in the alphabet.

The complete set of APL character mnemonics is listed in Table B-l.

COMPATIBILITY

It should be noted that. no matter how APL characters are communicated from whatever

type of terminal. the APL system converts each APL character representation to a

standard internal representation for processing. SAVE'd workspaces are also stored in

this format.

This means that workspaces created while on one type of terminal may subsequently be

loaded while on a different terminal type. Compatibility of workspace contents is thus

ensured for users of all terminal types.

19980400 A B-3



TABLE B-1. APL CHARACTER SET

Graphic Mnemonic Meaning Graphic Mnemonic Meaning

? $QU QUery A (upper case
thru alphabetics)

til $OM OMega Z

E $EP EPsilon a(d) $AA (lower case
thru thru alphabetics)

p $RO RhO z(~) $ZZ

$TL TiLde 0 (numerics)
thru

+ $TA TAke 9

+ $DR DRop (space)

$10 IOta

0 $CI Circle "( .. ) $DQ Double Quote

~ $RT RoTate - C""." ) $NG NeG

e $RU (reverse indexed < $LT Less Than
rotate)

- $TP TransPose s $LT Less than or
Equal

* -- asterisk = $EQ EQual

• $LG LoG ~ $GE Greater than or
Equal

+ $GO GOto > $GT Greater Than

+ $IS IS ;II! $NE Not Equal

v $OR OR

a $AL ALpha ¥ $NR NoR

r $MX MaX A $AN ANd

L $MN MiN 'If $ND NanD

$UL UnderLine minus

V $DL DeL + plus

Ii $LD Locked Del + $DV DiVide, $00 DownGrade ItJ $XD matriX Divide

A $DT DelTa x $ML MuLtiply

S(~) $DU Delta Underscored

• (lower case delta)
$UG UpGrade

B-4 19980400 A



TABLE B-l. APL CHARACTER SET (Cont id)

Graphic Mnemonic Meaning Graphic Mnemonic Meaning

0 $NL NuLl I $NM NuMber sign

$QT QuoTe $($) $00 DOllar sign

$EX EXclamation mark I!f $PC PerC ent sign,0

0 $QD QuaD s $AM Ampersand

[!j $QP Quad-Prime a $AT AT sign

paren (left parenthesis) { $LB Left Brace

close (right parenthesis) } $RB Right Brace

[ $OB Open Bracket (sub) e $CT CenT sign

] $CB C lose Bracket (bus) 0 $DM DiaMond

-i $RK Right tacK

c $ID ImbeD ... $LK Left tacK

::> $IN - INclusion
,

$GV GraVe accent

n $IX InterseXion (? n !. $EV EValuate

A $LP LamP .. $FM ForMat

u $UN UNion ~ $CN (reverse indexed
comma)

l. $BV Base Value

T $RP RePresentation

:I $IB I-Beam Special Characters:

I ( I ) $MD MoDulus (Il) $G. (quad -prime

$SC SemiColon
escape)

$CL CoLon $BC (canonical

bad character)
\ $BS BackSlash

\ $BT (reverse indexed
backslash)

comma

dot

/ slash

of $SM (reverse indexed
slash)

19980400 B B-5



NUMERIC REPRESENTATION ON CYBER COMPUTERS C

1. An exact representation for zero exists.

2. The sum of any selection of any 47 consecutive terms of the power series of 2

2- 10 23• 2-10 22• 2-1021•••• 2-1. 20• 21•••• 21068. 21069

can be represented exactly.

3. The negation of any such number can also be represented exactly.

4. Any number whose magnitude is larger than the sum of the last 47 terms of the above

series

(i 21070 _ 210 22)
1. e ••

cannot be represented. and is not In the domain of definition of any numeric APL function.

5. Any number whose magnitude is less than 2- 10 23 will be approximated by the represen

tation for zero by all numeric APL functions.

6. All other real numbers will be represented by the exact representation of the approxi

mation to the desired value obtained by summing the 47 most significant terms of the

value expressed as a power series of 2.

As a consequence of the above. the following are true:

• The numbers with the largest magnitude which can be represented in CYBER com

puters and for which APL numeric functions are defined are:

+1. 2650140831706E322

• The numbers with the smallest non-zero magnitude which can be represented in

CYBER computers exactly are:

19980400 A

. +2- 10 23
1. e ••

C-1



BASE VALUE 9-8

Beta function 7 -15

Body of function definition 12-1

BOOLEAN FUNCTIONS 7-18

Boolean numbers 5-4

BRANCH

Canonical form for expressions 10-5

Canonical bad character B-1

CATENATE 6-9

CEILING 7~5

Character set B-4

CIRCLE

dyadic 7-14

monadic: PI TIMES 7-5

CLEAR command 14-3

COLON (use with labels) 12-4

Aborting execution and output 11-7

ABSOLUTE VALUE 7-5

Active function 12-5

Active workspace 14-2

ADDITION 7- 8

AND 7-18

APL - the language 1-1

APL*CYBER system 1-2

Arccos 7-14

Arccosh 7-14

Arcsinh 7-14

Arctan 7-14

Arctanh 7 -14

Arguments 1-1

Arrays 2-1

monadic

niladic

12-3

12-3

INDEX

COMBINATION 7-15

Comments (documentation) 13-7

Composite data displays 4-6

Composite functions 8-1

COMPRESS 6-16

Conformability

singular 5-4

dual 5-4

overriding rules 5-5

CONTINU

command 14-30

workspace 14-~O

Coordinates 2-2

COPY command 14-22

Correcting an input line 11-7

Cosh 7-14

Cosine 7-14

Data 2-1

Data types 2-1

DEAL: dyadic QUERY 9-5

Decimal form 4-2

Defined (by user) functions 12-1

DEFN ERROR 13-1

Diagonal 6-25

DIGITS 4-2

DIGITS command 14-14

Dimension 2-1

Displaying

composite data 4- 6

data 4-1

expressions 10-5

function definitions 13-5

group definition 14-7

numeric data 4-4

19980400 A Index 1



FACTORIAL 7-6

Fill element 6-1

FLOOR 7-4

FNS command 14-4

DIVIDE 7-9

Documenting user-defined functions 13-7

Domain [def" n) 5- 2

DOMAIN ERROR 10-2

DROP 6-14

Editing

function definitions 13-1

input line 11-8

Element of an array 2-1

Empty (defln) 2-4

Entering input 11-7

Environment of an active function

global 12-5

local 12-5

EPSILON (dyadic): MEMBERSHIP 9-4

EQUAL 7-16

ERASE command 14-8

Error detection sequence 10-3

EXPAND 6-18

EXPONENTIAL 7-3

Exponential form 4-3

EXPONENTIATION (dyadic POWER) 7-11

Expressions

conversion to internal form 10-1

displaying 10 - 5

error detection sequence 10-2

input format 10-1

literal 3-1

order of evaluation of 10-2

use of parentheses in 10-1

use of spaces in 10-1

EVALUATE 9-12

FORMAT 9-15

Formatting

numeric elements 4- 2

numeric data 4-4

Function

body 12-1

call 12-2

definition 12-1

editor 13-1

execution 12-2

header 12-1

nested calls 12-6

primitive 5-1

user-defined 12-1

FUZZ

relative, with relationals 5-8

absolute 5-11

9-17

3-3

7-17

I -BEAM (system information)

Identifiers, rules for forming

IDENTITY 7- 2

Identity element 8- 3

Immediate execution 11-1

INDEX ERROR 10-2

INDEX OF: dyadic IOTA 9- 2

Index list 6 - 2

Gamma function 7- 6

Global environment 12-5

Global object 12-5

Global variable 12-5

GRADE DOWN 9-7

GRADE UP 9-6

GREATER THAN 7-17

GREATER THAN OR EQUAL

GROUP command 14-5

Group name 14-5

Groups 14-4

GRP command 14-7

GRPS command 14-4

14-25

5-2

DROP command

Dyadic (der'n)

Index 2 19980400 A



data 2-1

data formatting 4-4

element formatting 4-2

representation on CYBEH computers C-1

Indexed functions 5-7

INDEXED SPECIFICATION 6-4

INDEXING 6-2

INNER PRODUCT 8-6

Input, entering 11-7

Integer domain 5-11

INTERVAL: monadic IOTA 9-1

IOTA (dyadic): INDEX OF 9-2

IOTA (monadic): INTERVAL 9-1

Labels 12-4

LAMP 13-7

Length 2-1

LENGTH ERROR 10-2

LESS THAN 7-17

LESS THAN OR EQU AL 7 -1 7

LIB command 14-28

Library

access 14- 29

NEGATION 7-2

NEGATIVE SYMBOL 3-2

Nested function calls 12-6

Niladic BRANCH 12-3

Niladic functions 12-1

NOR 7-18

NOT (monadic TILDE) 7-7

NOT EQUAL 7-16

NOT ERASED 14-8

NOT GROUPED - NAME IN USE

NOT SAVED - THIS WS IS WSID

NOTATION

APL syntax 5-1

special 1-3

Numeric

14-5

14-18

B-2, 4, 5 QUAD

in expressions 4-1

input 11-2

QUAD-PRIME

escape 11-5

input 11-5

facilities 14-16

security 14-30

Line edit command 11 - 8

Line editor 11-8

LINES command 14-32

LOAD command 14- 20

LOGARITHM

dyadic 7-12

natural (monadic) 7-4

Masking 12-5

Matrix 2-2

MAXIMUM 7-12

MEMBERSHIP: dyadic EPSILON 9-4

MINIMUM 7 -13

Monadic (def'n) 5-2

Mnemonics for APL characters

MULTIPLY 7-9

NAND 7-18

Natural LOGARITHM 7-4

OR 7-18

Ordinals 5 - 3

ORIGIN command 14-14

Origin 5-6

Origin dependence 5 - 6

OUTER PRODUCT 8-8

Output - see Displaying

Overstrikes B-1

Parentheses in expressions 10-1

PCOPY command 14-24

Pendant function 12-6

PI TIMES (monadic CIRCLE) 7-5

POWER (dyadic): EX PONENTIATION 7 -11

19980400 A Index 3



QUERY

(dyadic): DEAL 9-5

(monadic): ROLL 7-6

Range (def'n) 5-2

Rank

def'n 2-1

determination 2-5

RANK ERROR 10-2

RAVEL 2-3; 6-7

RECIPROCAL 7-3

Recursive function calls 12-7

REDUCTION 8-2

Referrent 14-5

REPRESENTATION 9-10

RELATIONAL functions 7-16, 17

RESHAPE: dyadic RHO 2-4; 6-8

RESIDUE 7-10

Result variable 12-1

REVERSAL 6- 20

ROLL: monadic QUERY 7-6

ROTATE 6-22

SAVE command 14-18

Scalar

def'n 2-1

extension 5 - 5

functions 7 -1

Security of user library 14-30

SEED command 14-15

Seed 5-13

Selection function (def!n) 6-1

SEMICOLON

in composite displays 4- 6

inindexlists 6-2

in explicit local lists 12-1

Sequence of execution 10-2

SHAPE: monadic RHO 2-1; 6-6

Significant digits 4-2

SIGNUM 7-2

Index 4

Sine 7-14

Sinh 7-14

Sl 14-9

SlV 14-11

Spaces in expressions 10-1

Special notation 1-3

SPECIFIC ATION

def'n 3-3

INDEXED 6-4

multiple 14-5

State Indicator 14-9

STOP command 14-12

Stop list 14-12

Structure of arrays 2-1

SUBTRACTION 7-8

Suspended function 12-7

Syntax

primitive function 5-2

system command 14-1

SYNTAX ERROR 10-2

SYSTEM command 14-31

System Commands

general 14-1

)CLEAR 14-3

)CONTINU 14-30

icorv 14-22

)DIGITS 14-14

)DROP 14-25

)ERASE 14-8

)FNS 14-4

)GROUP 14-5

)GRP 14-7

)GRPS 14-4

)LIB 14-28

)LINES 14-32

)LOAD 14-20

)ORIGIN 14-14

)OFF 14-31

)PCOpy 14-24

)SAVE 14-18

19980400 A



)SEED 14-15

lSI 14-9

)SIV 14-11

)STOP 14-12

)SYSTEM 14-31

)VARS 14-3

)WIDTH 14-32

)WSID 14-26

System (APL*CYBER) 1-2

System information: I-BEAM 9-17

TAKE 6-12

Tangent 7-14

Tanh 7-14

Terminal access to APL*CYBER system on Kronos A-1

Terminating an APL session 14-31

TILDE (monadic): NOT 7-7

TRANSPOSE

dyadic 6-24

monadic 6-24

Value 2-1

VALUE ERROR 10-2

Variable

assigning new value to 3-4

defining 3- 3

referencing 3-3

VARS command 14-3

Vector 2-1

Visual fidelity 11-7

WIDTH command 14-32

Workspace

active 14-2

identification 14-16

WS FULL 12-7

WSID command 14-26

WS NOT FOUND 14-20

19980400 A Index 5



COMMENT SHEET

CONTROL DATA® APL*CYBERMANUAL TITLE _~~..J....III..oIo.II.l_"""'''''-&II''''''''''''''---'''''''''''';~''''''''''''Wo.II. _

Reference Manual

8REVISiON __,.;;;;.. _PuBliCATiON NO. -=1=:.;9ll'..W9~8u.Q,-4.QlI'.XQ _

FROM:
NAME: _

BUSINESSADDRESS: _

COMMENTS:
This form is not intended to be used as an order blank. Your evaluation of this manual will be welcomed
by Control Data Corporation. Any errors, suggested additions or deletions, or general comments may
be made below. Please include page number r-efer-ences and fill in publication revision level as shown by
the last entry on the Record of Revision page at the front of the manual. Customer engineers are urged
to use the TAR.

:1
<,

::1

I
I
I

NO POSTAGE STAMP NECESSARY IF MAILED IN U. S. A.
FOLD ON DOTTED LINES AND STAPLE



STAPLE STAPLE

FOLD FOLD

--------------------------------------------~

FIRST CLASS
PERMIT NO. 8241

MINNEAPOLIS, MINN.

BUSINESS REPLY MAIL
NO POSTAGE STAMP NECESSARY IF MAILED IN U.S.A.

POSTAGE Will BE PAID BY

CONTROL DATA CORPORATION

Technical Publications Department

4201 North Lexington Avenue

Arden Hills. Minnesota 55112

w
Z
::;
C>
Zo....
~

t
::>
u

FOLD FOLD



CONTROL DATA

CORPORATE HEAOQUARTERS.1100 34th AVE. SO•• MINNEAPOLIS. MINN. 55440
SALES OfFICES ANO SERVICE CENTERS IN MAJOR CITIES THROUGHOUT THE WORLD

LITHO IN U.S.A.


	001
	002
	003
	004
	005
	006
	007
	008
	01-01
	01-02
	01-03
	02-01
	02-02
	02-03
	02-04
	02-05
	03-01
	03-02
	03-03
	03-04
	04-01
	04-02
	04-03
	04-04
	04-05
	04-06
	05-01
	05-02
	05-03
	05-04
	05-05
	05-06
	05-07
	05-08
	05-09
	05-10
	05-11
	05-12
	05-13
	06-01
	06-02
	06-03
	06-04
	06-05
	06-06
	06-07
	06-08
	06-09
	06-10
	06-11
	06-12
	06-13
	06-14
	06-15
	06-16
	06-17
	06-18
	06-19
	06-20
	06-21
	06-22
	06-23
	06-24
	06-25
	06-26
	06-27
	07-01
	07-02
	07-03
	07-04
	07-05
	07-06
	07-07
	07-08
	07-09
	07-10
	07-11
	07-12
	07-13
	07-14
	07-15
	07-16
	07-17
	07-18
	08-01
	08-02
	08-03
	08-04
	08-05
	08-06
	08-07
	08-08
	08-09
	09-01
	09-02
	09-03
	09-04
	09-05
	09-06
	09-07
	09-08
	09-09
	09-10
	09-11
	09-12
	09-13
	09-14
	09-15
	09-16
	09-17
	10-01
	10-02
	10-03
	10-04
	10-05
	11-01
	11-02
	11-03
	11-04
	11-05
	11-06
	11-07
	11-08
	11-09
	12-01
	12-02
	12-03
	12-04
	12-05
	12-06
	12-07
	13-01
	13-02
	13-03
	13-04
	13-05
	13-06
	13-07
	13-08
	13-09
	14-01
	14-02
	14-03
	14-04
	14-05
	14-06
	14-07
	14-08
	14-09
	14-10
	14-11
	14-12
	14-13
	14-14
	14-15
	14-16
	14-17
	14-18
	14-19
	14-20
	14-21
	14-22
	14-23
	14-24
	14-25
	14-26
	14-27
	14-28
	14-29
	14-30
	14-31
	14-32
	14-33
	A-01
	A-02
	A-03
	B-01
	B-02
	B-03
	B-04
	B-05
	C-01
	Index-01
	Index-02
	Index-03
	Index-04
	Index-05
	replyA
	replyB
	xBack

