
•
o

o

IBM 5100 Manual
APL Reference

o
o
-w--
an

r
I
I Preface

This publication is a reference manual that provides
specific information about the use of the IBM 5100
Portable Computer, the APL larhguage, and installation
planning and procedures. It also provides information
about forms insertion and ribbon replacement for the
5103 printer. This publication is intended for users of
the 5100 and the APL language.

Prerequisite Publication

IBM 5100 APL Introduction, SA21-9212

Related Publications

• IBM 5100 APL Reference Card, GX21-9214

• APL Language, GC26-3847

• IBM 5100 Communications Reference Manual,
SA21-9215

First Edition (August 1975)

Changes are continually made to the specifications herein; any such changes will
be reported in subsequent revisions or technical newsletters.

Requests for copies of IBM pubucations should be made to your IBM represen
tative or the IBM branch office sen,ing your locality.

A form for reader's comments is at the back of this publication. If the form
has been removed, address your comments to IBM Corporation, Publications,
Dept. 245, Rochester, Minnesota 55901.

© Copyright International Business Machines Corporation, 1975

C)

o

o

o

o

o

o

Contents

CHAPTER 1. OPERATION 1 CHAPTER 4. PRIMITIVE (BUILT-IN) FUNCTIONS. 43
IBM 5100 Overview. 1 Primitive Scalar Functions . 43
Display Screen 1 The + Function: Conjugate, Plus. 44

C~)
Switches . 4 The - Function: Negation, Minus 45

Power On or Restart Procedures 4 The x Function: Signum, Times 46
Display Screen Control. 5 The f Function: Reciprocal, Divide. 48

Keyboard 6 The I Function: Ceiling, Maximum . 50
Attention 6 The LFunction: Floor, Minimum 51
Hold 6 The I Function: Magnitude, Residue 52
Execute 7 The *Function: Exponential, Power 54
Command 7 The IAl Function: Natural Log, Logarithm 55

C) Positioning the Cursor and Information on the The 0 Function: Pi Times, Circular 56
Display Screen . 7 The I Function: Factorial, Binomial . 59

Copy Display 9 The? Function: Roll 61
Indicator Lights. 9 The /I Function: And 62

Process Check 9 The V Function: Or 63
In Process 10 The ~ Function: Not 64

The AFunction: Nand. 65
CHAPTER 2. SYSTEM COMMANDS 11 The VFunction: Nor 66
System Overview 11 The> Function: Greater Than 67

System Command Descriptions 11 The = Function: Equal To 68

The)CLEAR Command 14 The < Function: LessThan 69

The)CONTINUE Command 14 The;:::: Function: Greater Than or Equal To . 70

The)COPY Command. 15 The :0; Function: LessThan or Equal To 71

The)DROP Command . 16 The ;t Function: Not Equal To 72

The)ERASE Command 16 Primitive Mixed Functions. 73

C_~
The) FNS Command 17 The p Function: Shape, Reshape (Structure) 75

The)L1B Command 17 The, Function: Ravel, Catenate, Laminate. 77

The) LOAD Command . 19 The I Function: Compress 81

The)MARK Command. 19 The \ Function: Expand. 82

The)MODE Command. 21 The ~ Function: Grade Up 83

The)OUTSEL Command 21 The If Function: Grade Down 84

The)PATCH Command 22 The t Function: Take. 86
The)PCOPY Command 25 The +Function: Drop. 87
The)REWIND Command 26 The 1 Function: Index Generator, Index of 88
The)SAVE Command 26 The <I> Function: Reverse, Rotate 89
The)51 Command 27 The ~ Function: Transpose, Generalized Transpose 93
The)SIV Command 27 The? Function: Deal 95
The)SYMBOLS Command 28 The.l Function: Decode (BaseValue) 96
The)VARS Command 28 The T Function: Encode (Representation) 99
The)WSID Command 29 The E Function: Membership. 104

The IE Function: Matrix Inverse, Matrix Divide 105

CHAPTER 3. DATA 30 The ~ Function: Execute 107

() Variables. 30 The" Function: Format 108

Data Representation 30 APL Operators 111

Numbers. 30 Reduction Operator (/I 111

Scaled Representation (Scientific Notation) • 31 Inner Product Operator (•) 113

Character Constants 31 Outer Product Operator (0 .I 116

Logical Data . 32 Scan Operator (\) 118

Scalar. 32 Special Symbols. 120

C_) Arrays 32 Assignment Arrow -e- 120

Generating Arrays 33 Branch Arrow-+ 120

Finding the Shape of An Array 34 Quad 0 120

Empty Arrays 36 Quad Quote [!] 121

Catenation 37 Comment A 121

Indexing. 39 Parentheses () 122

C/)
iii

CHAPTER 7. SUSPENDED FUNCTION EXECUTION 155
Suspension 155
State Ind icator . 155

CHAPTER 5. SYSTEM VARIABLES AND SYSTEM
FUNCTIONS •

System Variables
Comparison Tolerance: 0 CT .
Index Origin: 0 10 .
Printing Precision: 0 PP
Print Width: 0 PW .
Random Link: 0 RL .
Line Counter: 0 LC
Workspace Available: 0 WA
Latent Expression: 0 LX
Atomic Vector: 0 AV .

System Functions
The 0 CR Function: Canonical ,Representation
The 0 FX Function: Fix .
The 0 EX Function: Expunge
The 0 NL Function: Name List
The 0 NC Function: Name Classification

CHAPTER 6. USER-DEFINED FUNCTIONS
Mechanics of Function Definition

Function Header.
Branching and Labels .
Local and Global Names

Interactive Functions
Requesting Keyboard Input during Function

Execution .
Arranging the Output from a User-Defined Function

Bare Output .
Locked Functions .
Function Editing

Displaying a User-Defined Function
Revising a User-Defined Function
Reopening Function Definition'
An Example of Function Editing

Trace and Stop Controls
Trace Control
Stop Control

CHAPTER 8. TAPE AND PRINTER INPUT AND
OUTPUT

Establishing a Variable to be Shared .
Opening a Data File or Specifying Printer Output
Transferring Data

Transferring Data to Tape (OUT or ADD
Operation) .

Transferring Data from Tape (IN Operation)
Transferring Data to the Printer! (PRT Operation)

Closing a Data File or Terminating the Printer Output.
Retracting the Variable Name Being Shared .
Return Codes
An Example Using Tape and Printer Input/Output.

iv

123
123
124
125
125
126
126
126
126
126
126
128
128
129
132
132
133

134
134
135
137
139
144

145
146
146
147
148
148
148
150
151
152
152
154

158
158
159
163

163
163
164
164
164
165
166

CHAPTER 9. MORE THINGS TO KNOW ABOUT
THE 5100 170

Data Security 170
5100 Storage Capacity 171

Storage Considerations . 172
Tape Data Cartridge Handling and Care 173

CHAPTER 10. THE 5103 PRINTER 174
How to Insert Forms 175
How to Adjust the Copy Control Dial for Forms
Thickness 177

How to Replace a Ribbon . 177

CHAPTER 11. ERROR MESSAGES 180

APPENDIX A. INSTALLATION PROCEDURES AND
INSTALLATION PLANNING INFORMATION 188

Installation Planning 188
IBM 5100 Portable Computer 50 Ib (24 kg) 188

Installation Procedures. 191
5100 Installation Procedure 191
Auxiliary Tape Unit Installation Procedure 196
Printer Installation Procedure . 198

APPENDIX B. APL CHARACTER SET AND OVERSTRUCK
CHARACTERS 200

APPENDIX C. ATOMIC VECTOR 201

APPENDIX D. 5100 APL COMPATIBILITY WITH
IBM APLSV 205

GLOSSARY • 209

INDEX 214

(J

'\J

o

()

c)

C)

()

()

Chapter 1. Operation

IBM 5100 PORTABLE COMPUTER OVERVIEW

The 5100 (Figure 1) is a portable computer. The 5100 has a display screen, key
board, a tape unit, switches, indicator lights, and an adapter for black and white
TV monitors. The display screen and indicator lights communicate information
to the user. The keyboard and switches allow the user to control the operations
the system will perform. Figure 2 shows the 5100 console.

Features available for the 5100 are an auxiliary tape unit, a printer, and a com
munications adapter.

DISPLAY SCREEN

The display screen (Figure 3) can display 16 lines of information at a time, with
up to 64 characters in each line. Input (information supplied by the user) as well
as output (processed information) is displayed. The bottom two lines (lines 1 and
0) of the display contain information entered from the keyboard. The cursor
(flashing horizontal line) indicates where the next input from the keyboard will
be displayed. If the cursor is moved to a position that already contains a charac
ter, the flashing line is replaced by the flashing character. As the 5100 processes

input, all lines of the display are moved up so that information can be entered on
the two bottom lines again. The top lines of the display are lost as the lines are
moved off of the display screen.

pisplaY
screen

switches

Indicator Lights

,ape

f-_-----.J...;~rt--f-;---unit

\
\
\

\

:~)

\)

1 . ('\ . ('\ ('.-
'''...---- /

r:
'",~.,

"II
Ifc
;; BRIGHTNESS L3264 R32 IN PROCESS Ht:. VE;R$E UISPl AY BASIC HlSTAHT DISPLAY REGISTE:RS

~

0 0 © D D D D... c~
CD
en PROCESS CH ECK APl NORMAL...
8 POWER ON

n

D
0
~

S
CD

--_.-
POWER OFF

~~~
...

l:CO
eD eD

za.o
r ........
•• C11 en
enen»
zeD!\)
.. "0 ...
,~ ... '
"'eDCO

sa.~
.".eDft'...... :0

co
-..I
C11

Numeric Keys

II
CJGJ8 0
[]GJGJ G
0000
( 0 )0 []

Shift KeyAlphameric KeysShift Key

QQITJ[D(J(D[DCDCDOJCJITJall

I GJ m[D m0 fIl lJJ CD CD CD 0 0
mCDCDGJlIJCDCJGJCDCDCDITJ
[OOJGJGJCIl(I)(I)OCJOJCD

( )

BASIC (LOAO)~~~~~( AUTO )(RENUM)~(REWIND)eICR"UI~ COPY CHARACTER EDIT

APL (I LOAO)~(ICONT)~~{IVARS)~( IWSID )GOUTSEL)~REWINO)a::JDISPLAY (DELETEU INSERT)

w



(~j .

()

...

3+2 -Input from the keyboard
5 .. Output

- Cursor (flashing horizontal line)

-------64 character positions

Lme Numbers

~
15
14
13
12
11
10

9
8
7

6
5
4
3
2
1
o

Normally, to distinguish input from output, input from the keyboard is indented
and output is displayed starting at the left edge of the display screen.

Figure 3. The 5100 Display Screen

SWITCHES

The switches on the 5100 console (Figure 2) are used for turning power on, reo
starting the system, and controlling how information is displayed.

Power On or Restart Procedures

The following switches are used when turning power on to the system or reo
starting the system operation,

BASIC/APL

Only dual·language machines have this switch. The switch setting determines which
language will be in operation when power is turned on or after RESTART is
pressed. If the switch setting is changed after power is turned on or after RESTART
is pressed, the language in operation will not be changed.

Power ON/OFF
..•.• )

When this switch is in the ON position, power is supplied to the system. The
system performs internal checks and becomes ready in 15-20 seconds. When the
switch is put in the OFF position, no power is supplied to the system.

4



c

Note: The message CLEAR WS is displayed when the system becomes ready. If
this message is not displayed after 20 seconds, restart the system operation (the
RESTART switch is discussed next).

RESTART

This switch restarts the system operation. When it is pressed, the system performs
internal checks and becomes ready in 15-20 seconds. The message CLEAR WS is
displayed when the system is ready. If the system does not display the message
after 20 seconds, press RESTART again. If the system does not become ready
after several attempts, call your service representative.

The primary uses of this switch are to restart the system operation after a system
malfunction has occurred and to change the language in operation on dual
language machines.

Note: Any information you had stored in the active workspace (see Chapter 2)
will be lost when RESTART is pressed.

Display Screen Control

The following switches are used to control how the information on the display
screen is displayed.

L3264 R32

This three-position switch (positions 64, L32, and R32) operates as follows:

• 64 - Characters are displayed in adjacent positions, and up to 64 characters
can be shown on each line.

• L32 - Characters are displayed in alternate positions (blanks between); only
the left 32 characters of the 64-character lines are shown.

• R32 - Characters are displayed in alternate positions (blanks between); only
the right 32 characters of the 64-character lines are shown.

REVERSE DISPLAY

This switch determines whether the display screen will display light characters
on a dark background or dark characters on a light background. The brightness
control may have to be adjusted when the switch setting is changed.

DISPLAY REGISTERS

This switch is for the service representative's use when servicing your 5100.

Note: When you use your 5100, this switch must be in the NORMAL position.

5



KEYBOARD

The 5100 keyboard (Figure 2) has alphameric and numeric keys. The alphameric
keys are grouped together and are similar to those on a typewriter keyboard.
When the keys are pressed, the characters entered appear in the input Iine (one
of the bottom two lines) on the display screen. If either shift key is pressed and
held, the upper symbol on the key pressed is entered. The top row of alphameric
keys can be used to enter numbers; however, numbers can be conveniently en
tered ,using the numeric keys on the right side of the keyboard. The arithmetic
symbols (+ - + x) located on the top row of the alphameric keyboard can also
be entered using keys to the right of the numeric keys.

The keyboard contains some keys that perform operations in addition to those
performed by a typewriter. These keys are discussed in the following text. Uses
of the APL language symbols on the keyboard are discussed in the APL language
chapter (Chapter 4) of this manual.

Attention.

Pressihg ATTN (attention) when entering information from the keyboard erases
everything from the cursor to the end of line O.

Presslnq ATTN during execution of any expression or user-defined function stops
system operation at the end of the statement currently being processed. To re
start the execution of a user-defined function, enter -+0 LC.

Output that was being generated before the system operation stopped may not be
dlsplaved because there is a delay between the execution of the statement that
causes the output and the actual display of the output.

When ATTN is pressed twice during the execution of a statement (either inside
or outside a user-defined function), the execution of that statement stops im
mediately. Also, the message INTERRUPT, the statement, and a caret (A) that
indicates where the statement was interrupted are displayed.

(.J

Hold •

6

When pressed once, HOLD causes all processing to stop; when pressed again, it
allows processing to resume. The primary purpose of HOLD is to permit reading
the dlsplav information during an output operation, when the display is changing
rapidlV. When the hold is in effect (HOLD pressed once), only the COpy DISPLAY
key is active.

Notes..
1. Holding down the CMD key and pressing HOLD is restricted to use by the

service personnel.
2. When the hold is in effect (HOLD pressed once), the use of the arithmetic

keys (+ - + x) on the right side of the keyboard are restricted to use by
service personnel.

\~)

iJ



When this key is pressed, the input line of information on the display screen is
processed by the system. This key must be pressed for any input to be processed.

Execute

I

When this key is pressed and held, pressing an alphameric key in the top row
causes the APL command keyword or character above that key to be entered
in the input line. The command keywords are: )LOAD, )SAVE, )CONT, )LIB,.
)FNS, )VARS, )COPY, )WSID, )OUTSEL, and )REWIND.

C~)

Command

I
Note: Holding down the CMD key and pressing HOLD is restricted to use by the
service personnel.

Positioning the Cursor and Information on the Display Screen

The following keys are used to position the cursor and information on the display
screen:

Forward Space •
c

c

When this key is pressed once, the cursor moves one position to the right. When
this key is held down, the cursor continues to move to the right. When the cursor
reaches the last position on one input line (line 1 or 0). it wraps around to the
first position on the other input line.

7



Insert

••
When the CMD key is held down and the forward space key is pressed once, the
characters at and to the right of the cursor position (flashing character) are moved
to the right one position, and a blank character is inserted at the cursor position.
The cursor does not move. For example:

I Flashing character

Before the insert operatlon: 123V
After the insert operation: 123_567

When these keys are both held down, the characters continue to move to the
right and blank characters continue to be inserted.

Note: If there is a character in position 64 of line 0, the insert operation will
not work.

Backspace

When this key is pressed once, the cursor moves one position to the left. When
it is Mid down, the cursor continues to move to the left, When the cursor reaches
position 1 on one input line (line 1 or 0), it wraps around to the last position on
the other input line.

Delete

••

8

When the CMD key is held down and the backspace key is pressed once, the
character at the cursor position (flashing character) is deleted and all characters
to the 'right are moved over one position to the left to close up the space. The
cursor Is not moved. For example:

Before the delete operation: 12344~
r---::::..Flashing character

After the delete operation: 123456

When 1hese keys are both held down, the characters at the cursor position con
tinue to be deleted and all the characters to the right are moved to the left.

()



Scroll Up •

This key (located above the numeric keys) can be used only in execution mode.
When this key is pressed once, each displayed line is moved up to the next line.
As the lines are moved up, the top line is lost as it is moved off the display screen.
When this key is held down, the lines continue to move up.

Scroll Down •
This key (located above the numeric keys) can be used only in execution mode.
When the key is pressed once, each displayed line is moved to the next lower line.
As the lines are moved down, the bottom line is lost as it is moved off the display
screen. When this key is held down, the lines continue to move down.

Copy Display CD
If there is a 5103 Printer, when the CMD key is held down and this key is pressed
once, all the information presently on the display screen is printed. COpy
DISPLAY is operational even when the system is in the hold state (the HOLD
key has been pressed once).

Note: The L32 64 R32 switch has no effect on what will be printed.

INDICATOR LIGHTS

The 5100 console (Figure 2) has the following indicator lights:

Process Check

When on, this light indicates that a system malfunction has occurred. In this case,
press the RESTART switch to restart the system operation. If the system opera
tion cannot be successfully restarted after several attempts, call your service repre

sentative.

C~)

9

--r---------------,--------------..--------.------------



10

In Process

When the system is processing input, generally the display screen is blank and the
IN PR<i)CESS light is on. After the input is processed, the light goes off, the out
put and flashing cursor are displayed, and the system waits for input.

Notes:
1. For some expressions or user-defined functions (see Chapter 5), output is

generated before the expression or function has completed execution. In such
cases, even though the system is still processing data, the IN PROCESS light
goes off and the output is displayed. The flashing cursor is again displayed
when the system has finished processing the input (the expression or function
has completed execution).

2. If the display screen is blank and the IN PROCESS light is off, check the
brightness control before calling your service representative.

(~)

:J



c)

Chapter 2. System Commands

SYSTEM OVERVIEW

The 5100 contains an active workspace, which is the part of internal storage where
the user's data and user-defined functions (programs) are stored. When the power
is turned off or the RESTART switch is pressed on the 5100, all the data in the
active workspace is lost. However, the contents of the active workspace can be
saved on tape (stored workspace) and then read back into the active workspace
for use at a later time (see System Command Descriptions in this chapter). The
contents of the active workspace then exist in both the active workspace and on
tape.

The tape is your library; that is, it is a place where you can store data for later
use. Before a tape can be used, it must be formatted. A formatted tape contains
one or more files where data can be stored. Each file has a file header, which con
tains information about the file. See the) LI B system command in this chapter
for a description of the file header.

The system commands, which are used to control and provide information about
the system, are discussed next.

SYSTEM COMMAND DESCRIPTIONS

The following list shows how system commands are used to control and provide
information about the various parts of the system. Each system command is
described in detail later in this chapter.

Commands that Control the Active Workspace

C~/)

Command

)CLEAR

)COPY

)ERASE

)LOAD

)PCOPY

)SYMBOLS

)WSID

Meaning

Clear the active workspace.

Copy stored objects (see note 1) into the active workspace.

Erase global objects (see note 1) from the active workspace.

Replace the active workspace with a stored workspace.

Copy stored objects (see note 1) into the active workspace and pro
tect objects in the active workspace from being destroyed.

Change the number of symbols allowed in the active workspace.

Change the active workspace 10.

11



Commands that Control the Library (Tape)

Command

)CONTINUE

)DROP

)MARK

)SAVE

Meaning

Write the contents of the active workspace on tape. The active
workspace can contain suspended functions.

Drop a file from the tape.

Format the tape.

Write the contents of the active workspace on tape. The active
workspace cannot contain suspended functions.

Commands that Provide Information About the System !\J
Command

)FNS

)L1B

)Sl

)SIV

)SYMBOLS

)VARS

)WSID

Meaning

Display the names of the user-defined functions.

Display workspace file headers.

Display the state indicator.

Display the state indicator and local names.

Display the number of symbols allowed in the active workspace.

Display the names of the global variables.

Display the active workspace ID.

Other Commands that Control the System

Command

)MODE

)OUTSIEL

)PATCHI

)REWIND

Meaning

Place the 5100 in communications mode.

Select printer output.

Apply IMFs (internal machine fix) to the system or recover
data after a tape error.

Rewind the tape.

Notes:
1. ObjeFts refers to both user-defined functions and variables.
2. The system commands )CONTINUE. )COPY. )PCOPY. )DROP, )LOAD, )MARK,

)REWIND, and )SAVE will blank the top 8 or 9 lines on the display screen when
they are used.

12

------_._------------,-----,-------

:J

\J'



..
c)

All system commands (and only system commands) have as their first character
a right parenthesis. Each system command must begin on a new line. Para
meters (required or optional information) for the system commands must be
separated by blanks. System commands cannot be used within APL instructions
and cannot be used as part of a function definition (function definition is dis
cussed in Chapter 6).

System commands can be entered two ways:

1. The system command can be entered one character at a time from the
keyboard.

2. The system commands )LOAD, )SAVE, )CONT, )L1B, )FNS, )VARS, )COPY,
)WSID, )OUTSEL and )REWIND can be entered in one operation by holding
the CMD key while pressing the top-row key just below the label of the
command you want.

The parameters, if required, must be entered and the EXECUTE key pressed before
any operation will take place. Following is an explanation of terms and symbols
used as parameters for system commands:

• Device/file number specifies the tape unit and file to be used. The built-in tape
unit is tape unit 1 and the auxiliary tape unit is tape unit 2. If the value speci
fied is less than four digits, tape unit 1 is assumed and the value specified re
presents only the file number. If the value specified is four digits, the right
most three digits specify the file number and the leftmost digit specifies the
tape unit. For example:

Device/File Number

02

2002

Meaning

Tape 1, file 1

Tape 1, file 2

Tape 2, file 2

()

c

C~)

• Workspace 10 is any combination of up to 11 alphabetic or numeric characters
(with no blanks); however, the first character must be alphabetic. If more than
11 characters are entered, only the first 11 are used..

• Password is any combination of up to eight alphabetic or numeric characters
(with no blanks). If more than eight characters are entered, only the first

eight are used.

• Object is a user-defined function or variable name.

• Parameters enclosed in brackets can be optional in certain cases.

13

------------------,---------------------------------



There are no parameters.

)CLltAR

Syntax

\')-
'.

\J
1
CLEAR WS
1E-13
64
5
16807
ALL

lndex origin
Wor~space identification
Comparison tolerance
Printing width
Printing precision
Handom number seed
Data' printed

The )C<DNTINUE command writes the contents of the active workspace onto
tape without changing the contents of the active workspace. This command is
primarily used when the entire stored workspace is to be loaded back into the
active workspace. Workspaces are stored and loaded back into the active work
space faster using the )CONTINUE command than \,Ising the )SAVE command.
When title command is successfully completed, CONTINUED device/file number
worksp~ce 10 is displayed.

Notes:
1. A clear workspace cannot be written on tape.
2. A workspace with suspended functions can only be written on tape using the

)CONTINUE command (it cannot be written to tape using the )SAVE com
rnand),

3. )COPY and )PCOPY commands cannot specify stored workspaces that were
writt'en on tape using the )CONTINUE command.

4. A stored workspace written to tape using the )CONTINUE command cannot be
loaded into a 5100 active workspace that is smaller than the original active
workspace,

5. If a stored workspace that was written to tape using the )CONTINUE command
is loaded into another 5100 with a larger active workspace, the workspace
avallable (see the DWA system variable in Chapter 5) is the same as when the
workspace was written to tape.

6. If AtTN is pressed during a )CONTINUE operation, the system operation is
interrupted and the file is set to unused.

When the command is successfully completed, CLEAR WS is displayed.

The )CLEAR command clears the active workspace and closes all open files. A
cleared 'Workspace has no valid name, contains no user-defined variables or functions,
and no data. The workspace attributes are set to:

The )CLEAR Command

The )CON111NUE Command

14



c.)

c)

..
c

Syntax

)CONTINUE [device/file number] [workspace 10] [:password]

where:

device/file number (optional) is the number of the tape unit and file on the
tape where the contents of the active workspace are to be written. If no de
vice/file number is specified, the device/file number from which the active
workspace was loaded or specified by a previous )WSlo command is used.

workspace 10 (optional) is the name of the workspace to be stored. This
name must match the workspace 10 of both the active workspace and the
file to be used on the tape, unless the file is marked unused. If the file is
marked unused, the active workspace 10 and tape file workspace 10 are changed
to this workspace 10. If no name is specified in the command, the name of
the active workspace is used.

:password (optional) is any combination of up to eight alphabetic or numeric
characters (without blanks), preceded by a colon. This sequence of characters
must be matched when the stored workspace is to be read back into the active
workspace. If no workspace 10 or password is entered, the password associa
ted with the active workspace (if any) is assigned to the workspace being
stored. If just the workspace 10 and no password is entered, any password associated
with the active workspace is not used.

The )COPY Command

The )COPY command copies all or specified global objects from a stored work
space to the active workspace. Only objects in stored workspaces that were
written on tape with the )SAVE command can be copied. When the command
is successfully completed, COPIED device/file number workspace 10 is displayed.

Notes:
1. If the active workspace contains suspended functions, objects cannot be copied

into it.
2. If the ATTN key is pressed during a )COPY operation, the system operation is

interrupted and the amount of information copied into the active workspace
is unpredictable.

Syntax

)COPY device/file number workspace 10 :password [object name(sl]

where:

device/file number is the number of the tape unit and workspace file the ob
jects are copied from.

workspace lOis the name of the stored workspace on tape.

15



16

:pa~sword is the security password assigned by a previous )WSID or )SAVE
command. If no password was assigned previously, a password cannot be
specified by this command.

objtct name(s) (optional) is the name of the global objectls] to be copied from
the designated stored workspace. If this parameter is omitted, all global ob
jects in the designated stored workspace are copied.

I

The )DRO~ Command

The )QROP command marks a specified file unused. After the file has been
marked unused, the data in the file can no longer be read from the tape. When
the command is successfully completed, DROPPED device/file number file 10 is
displayed.

Syntax

)OBOP device/file number [file IDJ

where:

device/file number is the number of the tape unit and the file on the tape.

file,1D (optional) is the name of the stored workspace file to be marked unused.
If the file number specified is a data file, any file ID specified is ignored.

The )ER,6iSE Command

The )~RASE command erases the named global objects from the active work
space.: There is no message displayed at the successful completion of the com
mand.

Notes:
1. Whlln a pendent function (see Chapter 7) is erased, the response SI DAMAGE

is Issued,
2. If ~he object being erased is a shared variable (see Chapter 8). the shared vari

able will be retracted.
3. Even after the object is erased, the name remains in the symbol table (the

part of the active workspace that contains all the symbols used).

Syntax

)E!RASE object name(s)

where:

obj:ect name(s) are global names separated by blanks.

\)

()"
-.



c)

(/1

The )FNS Command

The )FNS command displays the names of all global user-defined functions in the
active workspace. The functions are listed alphabetically. If the character para
meter is specified, the names are displayed beginning with the specified character
or character sequence.

Note: You can interrupt the )FNS command by pressing the ATTN key.

Syntax

)FNS [characterls)]

where:

characterls) (optional) is any sequence of alphabetic and numeric characters
that starts with an alphabetic character and contains no blanks. This sequence
of characters determines the starting point for an alphabetic listing.

The )LIB Command

The )L1B command displays the file headers of the files on tape (library). The
file header contains the following information:

• File number. The files on tape are numbered sequentially, starting with 1.

• File 10. The file /0 can be from 1 to 17 characters. If the file contains a
stored workspace, the file 10 is the same as the stored workspace 10.

• File type. The file type is a 2-digit code; the following chart gives the mean
ing of each code:

C~)

..

File Type

00

01

02

03

04

05

06

07

Description

Unused file

Interchange data file (see Chapter 8)

General interchange data file (see Chapter 8)

BASIC source file

BASIC workspace file

BASIC keys file

APL continued file (see )CONTINUE command in this
chapter)

APL saved file (see )SAVE command in this chapter)

17



File Type

0$

17

19

Description

APL internal data format file (see Chapter 8)

Patch and tape recovery file

Diagnostic file

IMF file

Storage dump file

()

• Size of the file. The files are formatted in increments of 1024-byte blocks of
stora'ge.

• Number of unused contiguous 1024-byte blocks of storage in the file.

• NU~ber of defective records (512·byte blocks) in the file; an asterisk (*) is
displ~yed if there are more than nine defective records.

Note: This value can indicate when you should relocate a file to avoid loss of
data due to defective areas on the tape.

Followi:ng is an example of a file header:

\J

006 FILE6 0"( 01.0,()O:L 0

File type-l 1
Size of thefile~
Available storage ....

Number of defective records -J

18

L..-__ File 10

'--_-----File number

The )LIB command operation can be interrupted by pressing the ATTN key.

Syntax

)LIe [device/file nymber]

where:

devi$elfile number (optional) is the number of the tape unit and the starting
file number. All file headers from that file to the end of the tape are displayed.
If n(j) entry is made, the display begins with the first file following the file you
are eurrentlv positioned at on tape unit 1. For tape unit 2, the entry 2000 will
display the file headers beginning with the first file following the file you are
currently positioned at on tape unit 2.

:)

iJ



..
C)

Page of SA21-9213'()
Issued 15 September 1975
By TNL: SN21-0247

The )LOAD Command

The )LOAD command loads the contents of a stored workspace from the tape
into the active workspace, completely replacing the contents that were in the
active workspace. When the command is successfully completed, LOADED
device/file number workspace ID is displayed.

Note: If the ATTN key is pressed during a load operation, the system operation
is interrupted and the active workspace is cleared.

Syntax

)LOAD device/file number workspace ID :password

where:

device/file number is the number of the tape unit and the number of the file
on the tape.

workspace ID is the name of the stored workspace.

:password is the security password assigned to the stored workspace by a pre
vious )WSID, )CONTINUE, or )SAVE command. If no password was pre
viously assigned, a password cannot be specified. If a password was assigned
to the stored workspace but is not specified, or if it is incorrectly specified
for this command, the error message WS LOCKED is displayed.

The )MARK Command

The )MARK command formats the tape so that the active workspace or data
can be saved on it. Each )MARK command formats a certain number of files
to a specified size. Additional files of different sizes can be formatted by using
additional )MARK commands.

When the operation is successfully completed, MARKED
number of the last file marked size of the last file marked is displayed.

Notes:
1. The ATTN key is not operative during the )MARK command operation.
2. If the message ALREADY MARKED is displayed after a )MARK command

was issued, the specified file already exists on the tape. To re-mark the
specified file, enter GO. If the file is not to be re-marked, press EXECUTE
to continue.

CAUTION
If an existing file on tape is re-marked, the original information in the re-marked
file and the existing files following the re-marked file cannot be used again.

19

-----------------------------------_._----------------------



20

Syntax

)MAR!K size number of files to mark starting file number [device]

where:

size is an integer specifying the size of each file in 1024·byte (1K) blocks of
storage.

The following formulas can be used to determine what size a file should be
marked. The formula for a workspace file (the contents of the active workspace
written to tape with a )SAVE or )CONTINUE command) is
MAXSIZiE= 3+f (CLEAR-ACTIVE)+1024, where:

• MAX$IZE is the maximum amount of tape storage (number of 1024·byte
blocks) that would be required to write the contents of the active workspace
to tape.

• CLEAR is the value of DWA (see Chapter 5) in a clear workspace.

• ACTIVE is the value of DWA just before the contents of the active workspace
are written to tape.

The formula for a data file (data written to tape using an APL shared variable
-see Chapter 8) when all of the data is contained in the active workspace is
MAXSltE= f (WITHOUT-WITHH-1024, where:

• MAXSIZE is the maximum amount of tape storage (number of 1024-byte
blocks) required to write the data to tape.

• WITH is the value of DWA (see Chapter 5) with the data in the active work
spaces

• WITHIOUT is the value of DWA before any data to be written to tape was
stored in the active workspace.

There is no formula for determining what size to mark a data file when the data
is written to tape as it is entered from the keyboard. The amount of tape storage
required depends upon how much data is entered from the keyboard and what
type of data is used. For information on how many bytes of storage are required
by the various types of data, see Storage Considerations in Chapter 9.

nym~er of files to mark is an integer specifying the number of files of the
specified size to format.

starting file number is an integer specifying the file number where formatting
is to start.

deviqe (optional) specifies the tape unit that contains the tape to be formatted.
An entry of 1 specifies tape unit 1 and 2 specifies tape unit 2. If no entry is
made, tape unit 1 is assumed.

()



----- ------------------------

To format a tape for four 12K files, two 16K files, and three 10K files, the
following commands are required:

The )MODE Command

)MARK

)MARK

)MARK

12 4

16 2

10 3

5 ------~!!Io Starting file number

7

The )MODE command is used to load the 5100 communications program from a
tape mounted in tape drive 1 and to place the system in communications mode
(see IBM 5100 Communications Reference Manual, SA21-9215). When the system
is in communications mode, APL is no longer available.

Syntax

)MODE COM

The )OUTSEL Command

The )OUTSEL command specifies which data on the display will go to the printer.

Syntax

)OUTSEL [option]

where:

option is one of the following:

• When ALL is specified, all subsequent information that is displayed will be
printed.

• When OUT is specified, only the output is sent to the printer; input is dis
played, but it does not go to the printer.

• When OFF is specified, none of the information displayed is printed, unless
it is assigned to an APL shared variable used by the printer (see Chapter 7).

If no parameter is specified, ALL is assumed. After a )LOAD or )CLEAR com
mand or when the machine is first turned on, the ALL option is active.

21



Page of SA21-9213"()
Issued 15 September 1975
By TNL: SN21-0247

The )PATCH Command

The following is a list of the uses of this command. This command is used in con
junction with specially devised programs on a tape cartridge supplied with the 5100.
The uses are described in detail, following the list:

• Copy IMFs (internal machine fix). the Copy IMF program, and the Load IMF
program onto another tape cartridge.

• Load I1\11 Fs for the system program into the active workspace, then make the APL
language available again.

• Display the EC version of each interpreter module.

• Recover data on tape when tape read errors (ERROR 007 ddd-see Chapter 11)
occur during use of one of the following files:

1. Interchange (file type 01)

2. General interchange (file type 02)

3. BASIC source (file type 03)

4. APL internal data format (file type 08)

• Copy the contents of one tape cartridge to another tape cartridge.

The supplied tape cartridge contains the following files:

• File 1. The programs that copy or load IMFs and the program that displays
interpreter module EC versions.

• File 2. The IMFs for the 5100.

• File 3. The Tape Recovery program.

• File 4. The Tape Copy program.

• File 5. , APL aids. This is a saved workspace file (WSID=APLAIDS) that con
tains the following four functions:

I,J

1. f:,f:, TRACE-Traces all the statements in a specified user-defined function.

2. f:,'f:,TRACEALL-Traces the first executable statement of each user
defined function currently in the active workspace.

3.

4.

f:,f:, TRACEOFF-Turns off all tracing.

f:"f:,SHAR ED-Displays the shared variable names currently in the active
workspace.

The f:, llTRACE function requires as its right argument the name of the user
defined function to be traced enclosed in single quotes. The other functions
do not require any arguments.

22

,]



Page of SA21-9213-0
Issued 15 September 1975
By TNL: SN21.Q247

This workspace file also contains the following five variables that describe the func
tions in the workspace:

1. DESCRIBE

2. DESCRIBELlLlTRACE

5. DESCRIBELlLlSHARED

DESCRIBELILITRACEOFF

3. DESCRIBELlLlTRACEALL

4.

Thesefunctions and variables can be copied into the active workspace using the
)COPY command. For example, to copy the LI LI TRACE function into the active
workspace:

)COpy 5 APLAIDS 66TRACE

Note: The )PATCH command is not required for using the functions in file 5.

When the )PATCH command is usedwith the tape cartridge inserted in tape drive 1,
the following options are displayed:

ENTER OPTION NO.
1. COpy IMF TAPE
2. LOAD IMF'S
3. DISP EC VER.
4. KEY-ENTER IMF
5. END OF JOB
6. TAPE RECOVERY
7. TAPE COpy PGM
_-------------Flashing Cursor

22.1



22.2

.~-_.----r-----

:)

()

(j'

(.,)



••

To select an option, enter an option number (1 through 7). If an option number
other than those displayed is entered, the options will be displayed again. Once
the option number has been entered, additional prompting messages might be dis
played for the selected option.

Option 1. Copy IMF Tape

The Copy IMF Tape option allows the following files to be copied from the tape:

• File 1, which contains the Copy IMF program, Load IMF program, and Display
EC Version program.

• File 2, which contains the IMFs for the 5100. The IMFs can be copied from the
file as follows:

1. Copy all IMFs that apply to APL.

2. Copy alllMFs for APL that apply to the 5100 being used.

3. Copy specific IMFs by problem number.

4. Copy specified IMFs by problem numbers that apply to the 5100 being
USE1d. (If a problem number is specified that does not apply to the 5100
being used, it is not copied.)

Note: The tape onto which files 1 and 2 are to be copied must be marked before
the copy operation is done. Use the )L1S command to determine what size the
files should be marked.

The Copy IMF Tape program will issue prompting messages and wait for the user
to respond to each message.

Copying IMFs allows tape cartridges containing only the IMFs that apply to your
5100 to be created.

Option 2. Load IMFs

The Load IMFs option allows IMFs to be loaded into the system program and then
makes the APL language available again. IMFs can be loaded as follows:

• Load all IMFs that apply to the 5100 being used.

• Load specified IMFs by problem numbers that apply to the 5100 being used.
(If a problem number is specified that does not apply to the 5100 being used, it
is not loaded.)

The Load IMFs program will issue prompting messages and wait for the user to respond
to each message.

Note: The IMFs occupy storage (space) in the active workspace and can also reduce
the performance of your 5100 significantly; therefore, IMFs should not be applied
to your 5100 if the problem does not affect your operation or if the problem can be
circumvented by an APL statement or command. The IMFs will remain in the active
workspace until the power is turned off or RESTART is pressed.

f
J

23

--_._----------,-------,-----



24

Option 3. Jl)isp EC Ver,

The Disp EC Ver, option is primarily for your service representative's use. This
option will display a 4·digit code for each interpreter module. The first two digits
are the module identification and the next two digits are the EC version.

The EC Version program will issue prompting messages and wait for the user to
respond to each message.

Option4. Key·Enter IMF

This option allows the service representative to enter IMFs from the keyboard. The
IMF isrthen written to file 2 on the tape containing the IMFs. The IMF can then be
loaded or copied from the tape.

Option 5. ~nd of Job

This option causes the APL language to be available again.

Option 6. Tape Recovery

The Tape Recovery option allows the user to recover data from a file or files on
which tape read errors (ERROR 007 ddd) are occurring. The Tape Recovery Pro
gram dan be used on the following files:

• Interchange (file type 01)

• General interchange (file type 02)

• BASIC source (file type 03)

• APL internal data format (file type 08)

The Tape Recovery program will issue prompting messages and wait for the user to
respond to each message.

The T.pe Recovery program will recover as much data as possible in the file; some of
the data in the record where the tape read errors occur is not recoverable; some of
the data that precedes and follows that record may also not be recoverable.



(---)

'-/

(:

()

..

Option 7. Tape Copy Program

The Tape Copy option allows you to copy the contents (up to the end of marked
tape) of one cartridge to another cartridge. Tape copy can utilize the auxiliary tape
drive, if available. Tape copy also marks the tape being copied to.

Tape copy issues prompts and waits for you to respond to each prompt.

Syntax

)PATCH

There are no parameters.

The )PCOPY Command

The )PCOPY command copies all or specified global objects from a stored work
space into the active workspace. It is the same as the )COPY command, except
that if the object name already exists in the active workspace, it is not copied from
a stored workspace. Therefore, the object in the active workspace is protected
from being overlaid and destroyed. Only objects in stored workspaces that were
written on tape with the )SAVE command can be copied.

When the command is successfully completed, COPI ED device/file number
workspace ID is displayed.

Notes:
1. If the active workspace contains suspended functions, objects cannot be copied

into it.
2. If the ATTN key is pressed during a )PCOPY operation, the system operation is

interrupted and the amount of information copied into the active workspace is
unpredictable.

3. If the specified object name already exists in the active workspace, the message
NOT COPIED:object name is also displayed.

25



26

Syntax

)PCOPY device/file number workspace 10 :password [object name(s)]

where:

device/file number is the number of the tape unit and the stored workspace file.

workspace ID is the name of the stored workspace on the tape.

:password is the security password assigned by the previous )WSID or )SAVE
command. If no password was assigned, a password cannot be specified by
this command.

obifjct name(s) (optional) is the name of the global object(s) to be copied from
the designated stored workspace. If omitted, all global objects in the designated
stored workspace are copied, except those already in the active workspace (if
any).

The )REWlND Command

The )/REWINO command rewinds the specified tape. There is no message displayed
at theisuccessful completion of this command.

Syntax

)REWINO [device number]

where:

devlce number (optional) is the tape (on drive 1 or 2) to be rewound. If the para
metier is omitted, tape 1 is rewound.

The )SAVE Command

The )SAVE command writes the contents of the active workspace onto tape with
out changing the contents of the active workspace. This command is used when
objects will be copied from the stored workspace back into the active workspace.
When this command is successfully completed, SAVED device/file number
workspace ID is displayed.

Notes:
1. A clear workspace or a workspace with suspended function cannot be written on

tape using the )SAVE command; however, a workspace with suspended functions
can be written to tape using the )CONTINUE command.

2. The )COPY and )PCOPY commands can specify stored workspaces that were
written on tape only if the )SAVE command was used.

3. Depending on the amount of data in the stored workspace, a stored workspace
that was written to tape using the )SAVE command can be loaded into another
51@Owith a smaller active workspace.

4. If ATIN is pressed during a )SAVE operation, the system operation is interrupted
and the file is set to unused.

rJ

..

..

..



C~)

( .\

'--

Syntax

)SAVE [device/file number] [workspace 10] [:password]

where:

device/file number (optional) is the number of the tape unit and file on the
tape where the contents of the active workspace are to be written. If no
device/file number is specified, the device/file number from which the active
workspace was loaded or which was specified by a previous )WSIO command
is used.

workspace 10 (optional) is the name of the workspace to be stored. This
name must match the workspace 10 of both the active workspace and the file
to be used on the tape unless the file is marked unused. If the file is marked
unused, the active workspace and tape file workspace 10 will be changed to
this workspace 10. If no name is specified in the command, the name of the
active workspace is used.

:password (optional) is any combination of up to eight alphabetic or numeric
characters (without blanks), preceded by a colon. This sequence of characters
must be matched when the stored workspace is to be read back into the active
workspace. If no workspace 10 or password is entered, the password associated
with the active workspace (if any) is assigned to the workspace being stored.
If just the workspace 10 and no password is entered, any password associated
with the active workspace is not used.

The )81 Command

The )SI command displays the names of the suspended and pendent user-defined
functions (see State Indicator in Chapter 7). The suspended functions are indicated
by an *, with the most recently suspended function Iisted first, followed by the
next most recently suspended function, and so on.

Syntax

)SI

There are no parameters.

The )81V Command

The )SIV command displays the names of the suspended and pendent user
defined functions (see State Indicator in Chapter 7) and the names local to
each function. The suspended functions are indicated by an *, with the most
recently suspended function listed first, followed by the next most recently
suspended function, and so on.

27



Page of SA21-9213.Q
Issued 15 September 1975
By TNL: SN21-0247

Syntax

)SIV

There are no parameters.

The ,)SYMBOlS Command

The )SYMBOLS command is used to change or display the number of symbols
(variable names, function names, and labels) allowed in the active workspace. The
number of symbols allowed can only be changed immediately after a )CLEAR com
mand has been issued. In a clear workspace, the number of symbols allowed is
initially set to 125 by the 5100. When the command is used to display the number
of symbols allowed, IS the number of symbols allowed is displayed. When the com
mand is used to change the number of symbols allowed, WAS the former number of
symbols allowed is displayed.

Note: When a stored workspace is loaded into the active workspace, the number
of symbols allowed in the active workspace will be the same as when the stored
workspace was written to tape.

Syntax

)SYMBOLS [n]

where:

.n.(optional) is an integer equal to or greater than 26 that specifies the number of
symbols allowed in the active workspace; however, the number of symbols specified

cannot exceed the active workspace size (see Storage Considerations in Chapter 9.)

Note: The number of symbols allowed is assigned in blocks of 21; therefore the
actual number allowed can be larger than the number specified.

The )VARS Command

The )VARS command displays the names of all global variables in the active work·
space. The variables are displayed alphabetically. If the character parameter is
included, the names are displayed beginning with the specified character sequence.

Syntax

)VARS [character(s)]

where:

character(sl (optional) is any sequence of alphabetic and numeric characters that
starts with an alphabetic character and contains no blanks. This entry can be
used to define the starting point for an alphabetic listing.

28

cJ

IJ-

--------------------------------



The )WSID Command

The )WSID (workspace 10) command is used to change or display the tape device/
file number and workspace 10 for the file where the active workspace contents will
be written if either a )SAVE or a )CONTINUE command is used. The )WSIO com
mand is also used to change or assign the security password. When the )WSID com
mand is issued without any parameters, device/file number workspace 10 is dis
played. When the )WSID command is issued with parameters,WAS device/file number
workspace lOis displayed.

Note: The )WSID command only affects the active workspace; it cannot be used
to change any information on tape.

Syntax

)WSID [device/file number] [workspace 10] [:password]

where:

device/file number (optional) is an integer that specifies the device/file number
where the active workspace will be stored when either the )SAVE or )CONTINUE
command is issued.

Note: If this parameter is omitted, the device/file number is cleared; a )SAVE or
)CONTINUE command will not work unless a device/file number is specified in
that )SAVE or )CONTINUE command.

workspace 10 (optional) will be the new name for the active workspace. This
parameter must be entered if any other parameter is used.

:password (optional) is any combination of up to eight alphabetic or numeric
characters (without blanks). preceded by a colon. These characters will become
the security password for the tape file when the active workspace is written on
tape.

29



Chapter 3. Data

VARIABLES

You can store data in the 5100 by assigning it to a variable name. These stored
items are called variables. Whenever the variable name is used, APL supplies the
data associated with that name. A variable name can be up to 77 characters in
length with no blanks; the first character must be alphabetic and the remaining
characters can be any combination of alphabetic and numeric characters. Variable
names longer than 77 characters can be used, but only the first 77 characters are
significant to APL. The ~ (assignment arrow) is used to assign data to a variable:

LENGTH~"6

W:H1THt-8
AREAt-LENGTHxWIDTH

To display the value of a variable, enter just the variable name:

LENGTH
6

WIDTH
8

AI~EA

1+8

DATA REPRESENTATION

Numbers

The decimal digits 0 through 9 and the decimal point are used in the usual way. The
character - , called the negative sign, is used to denote negative numbers. It appears
as the leftmost character in the representation of any number whose value is less
than zero:

O-L~

The negative sign, -, is distinct from - (the symbol used to denote subtraction) and
can be used only as part of the numeric constant.

30

(~)

----_._-------------,--------------



c.) Number Scaled Form

t Multiplier
66700 6.67E4

• Scale
.00284 2.84E-3

c)

()

Scaled Representation (Scientific Notation)

You can represent numbers by stating a value in some convenient range, then mul
tiplying it by the appropriate power of ten. This type of notation is called scaled
representation in APL. The form of a scaled number is a number (multiplier) followed
by E and then an integer (the scale) representing the appropriate power of 10. For
example:

The E (E can be read times ten to the) in the middle indicates that this is scaled form;
the digits to the right of the E indicate the number of places that the decimal point
must be shifted. There can be no spaces between the E and the numbers on either
side of it.

Character Constants

Zero or more characters enclosed in single quotes, including overstruck characters
(see Appendix B) and blank characters (spaces), is a character constant. The quotes
indicate that the characters keyed do not represent numbers, variable names, or
functions, but represent only themselves. When character constants are displayed,
the enclosing quotes are not shown:

, Af.ICDEFG '
ABCDE:FG

, :I.2::5('~BC .
123('~BC

M~'THE ANSWER IS:'
M

THE ANSWER IS:

When a quote is required within the character constant, a pair of quotes must be
entered to produce the single quote in the character constant. For example:

'DON' 'T GIVE THE ANSWER AWAY'
DON'T GIVE THE ANSWER AWAY

31

---.------------r------,------



Logical Data

Logical (Boolean) data consists of only ones and zeros. The relational functions
(> ~C1 < =::;;t) generate logical data as their result; the result is 1 if the condition was
true alild 0 if the condition was false. The output can then be used as arguments
to the logical functions (AAVV~) to check for certain conditions being true or false.

SCALAR

A single item, whether a single number or single character constant, is called a scalar.
It has no coordinates; that is, it can be thought of as a geometric point. The follow
ing are examples of scalars:

'A'
A

Scalars can be used directly in calculations or can be assigned to a variable name.
The variable name for the scalar can then be used in the calculations:

2x3
I.>

Af·2
B'''3

(~)A+B
5

ARRAYS

Array is the general term for a collection of data, and includes scalars (single data
items), vectors (strings of data), matrices (tables of data), and arrays of higher
dimensions (multiple tables). All primitive (built-in) functions are designed to handle
arrays.. Some functions are designed specifically to handle arrays rather than scalars.
Indexing, for example, can select certain elements from an array for processing.

32

One of the simplest kinds of arrays, the vector, has only one dimension; it can be
thought of as a collection of elements arranged along a horizontal line. The num
bers that indicate the positions of elements in an array are called indices. An element
can be selected from a vector by a single index, since a vector has only one dimen
sion. The following example shows assigning a numeric and a character vector to two
variabl.e names, Nand C; the names are then entered to display the values they re
present:

N.5 6.2 -3 888 95.12
N

5 1.>.2 -3 888 95.12
C,... ABC[lEFG'
C

ABC[lEFG

i\)



()

Generating Arrays

The most common way to generate an array is to specify the following: the shape
the array is to have-that is, the length of each coordinate; the values of the ele
ments of the new array. The APL function that forms an array is the reshape
function. The symbol for the reshape function is p. The format of the function
used to generate an array is Xp Y, where X is the shape of the array and Y represents
the values for the elements of the array. For the left argument (X), you enter a
number for each coordinate to be generated; this number indicates the length of
the coordinate. Each number in the left argument must be separated by at least one
blank. The values of the elements of the new array are whatever you enter as the
right argument (Y). The instruction 7 p A means that the array to be generated has
one dimension (is a vector) seven elements in length, and that seven values are to
be supplied from whatever values are found stored under the name A. It does not
matter how many elements A has, as long as it has at least one element. If A has
fewer than seven elements, its elements are repeated as often as needed to provide
seven entries in the new vector. If A has more than seven elements, the first seven
are used. The following examples show generation of some vectors:

7r;):I. 2 ~5

:I.~?::512~5:1.

2,:>:1.2:5
:l.2~3 :I.~?3

~.:i f>:I. , ~5

1.3 :1..3 1.3 :1..3 1.3

An array with two coordinates (rows and columns) is called a matrix.

Columns
~

1 2 3 4 t

: :0 :, :2~ Hows
To generate a matrix, you specify X (left argument) as two numbers, which are the
lengths of the two coordinates. The first number in X is the length of the first co
ordinate, or number of rows, and the second number is the length of the second
coordinate, or number of columns. The following example shows how a matrix is
generated:

M~2 3p1 2 3 4 5 6
M

:L 2 3
1+ ~i 6

M~2 I+p' ABCDEFGH'
M

(-1 ncD
EFGH

MH-2 ~3r;)M

Ml
ABC
DEF 33

--_._---------,--------:------



Note that the values in the right argument are arranged in row order in the arrays. If
the right argument has more than one row, the elements are taken from the right
argument in row order.

The rank of an array is the number of coordinates it has, or the number of indices
required to locate any element within that array. Vectors have a rank of 1, mat
rices have a rank of 2, and N-rank arrays have a rank from 3 to 63 (where N is equal
to the rank). N-rank arrays, like matrices, are generated by providing as the left
argument a number indicating the length for each coordinate (planes, rows, and
columns). The following examples show how to generate 3-rank arrays. Note that
the elements taken from the right argument are arranged in row order:

2-plane, 3-row, 4-column array

()

A~'ABCDEFGHIJKLMNOPQRSTUVWXYZ'

2 :~ 4pA...ABeD
EFGH
IJIKL

MNOP
(~RST

UVWX

AIl
CD
EF

\\- 4-plane, 3-row, 2-column array

GH
LJ
I<L

~;N

OP
QR

BT
UV
WX

Finding the Shape of An Array

Once you have generated an array, you can find its shape (number of elements in
each coordinate) by specifying p (shape function) with only a right argument which
is the name of the array. If A is a vector with six elements and you enter pA, the re
sult is one number because A is a one-dimensional array. The number is 6, the
length (number of elements) of A's one dimension. The result of the shape function
is always a vector:

A~111 222 333 444 555 666
~)A

\)

34

-----------------r---------

\) II'"',.

I

I

I._---



c)

The shape of a matrix or N-rank array is found the sameway:

M~2 3pl 2 3 ~ 5 6
M

123
1+ 5 6

~)M

2 3
R~2 3 ~p1 2 3 ~ 56 7 8
R

:1. 2 :5 l,.
s 6 7 8
12:~ll'

!.:.'i 6) '7 8
1 2 :5 I.,.
s 6) '7 B

(.lR
2 3 ~

In some cases, it might be necessary to know just the rank, the number of coordi
nates (or indices) of an array. The rank can be found by entering pp (shape of the
shape) and a right argument, which is the name of the array:

.:

..

Af-U.:I. ::? ::.~~~ ;'53:5 '+'+'+
Bf·2 3p:J. r) ;3 '+ s 6"-

Cf-2 3 I+~) 1 I) 3 1+ I:'
A .. ,.1

~)PI

6
ppA

1
(.lB

:~ 3
(.)(.)B

2
pC

2 3 loJ.
(.lpC

:~

35



The following table shows what the shapes and ranks are for the various types of
arrays:

Data
Type Shape pX Rank p pX

\)
Scalar No dimension (indicated by a blank line). a

Vector Number of elements.

Although most arrays have one or more elements, arrays with no elements also
exist. An array with no elements is called an empty array. Empty arrays are useful
when creating lists (see Catenation in this chapter) or when branching in a user
defined function (see Chapter 6).

Number of rows and the number of columns. 2Matrix

N-rank
arrays

Empty Arrays

Each number is the length of a coordinate. N

Following are some ways to generate empty arrays:

• Assign 10 to a variable name to generate an empty vector:

r:/EVECT()I~

EVECTOI~i" ~ 0
EVECTOI~ An empty array is indicated

------------ by a blank display.

0,
..... The shape of the empty vector

is zero (zero elements).

• Use a zero length coordinate when generating a multidimensional array:

This matrix has three rows
EMATRIXH··3 0 (.1 \ 0-and no (0) columns.
[MAlIUX:!.

A blank output display

3 0

• A function might generate an empty vector as its result; for example, finding the
shape of a scalar:

A blank output display.

36

.: I

I



(-\J
~/

CATENATION

You can join together two arrays to make a single array by using the catenation
function. The symbol for this function is the comma. When catenating vectors,
or scalars and vectors, the variables are joined in the order in which they are speci·
fied, as the following examples show:

A~-:1.
,') ·x '+.t. ,.)

B... I~. 5 1,)
A,B

:L 2 :3 4 4 .::" 1,),.1

B,A
1+ ~5 6 l 2 ~5 '+

(.b2

:1. ~.~ :3 4· 2
:~ I A

3 :1. ~:! :3 L~

When catenating two matrices or N·rank arrays, the function can take the form
A,[I]B, where I defines the coordinate that will be expanded when A and B are joined.
If the coordinate is not specified, the last coordinate is used. When A and Bare
matrices and [I] is [1], the first coordinate (number of rows) is expanded; when [I]
is [2], the last coordinate (number of columns) is expanded. The following examples
show how to catenate matrices:

Graphic Representation

A B
A... 2 ~5~):I.0 20 30 40 ~:;O 60 10 20 30 11 22 33
B... 2 3~)j. :1. ::!2 :~~5 I~.I+ ss 61.)- 40 50 60 44 55 66

A,B
:1.0 20 30 1:1. ., ") 33 A BL~.

1+0 ~5 0 lIO 4 1+ 55 66 10 20 30 11 22 33
A,L2:lB 40 50 60 44 55 66

10 20 30 11. 22 33
4·0 ::';0 60 4-L~ 55 6l)

..
A,l:lJB A 10 20 30

:1.0 20 30 40 50 60
1+0 :50 lIO • ..
:I. :1. 2~! :3:~ B 11 22 33
1+4- 1::°1::' l)l.) 44 55 66

(-
...I,.J

37



Matrices of unequal sizes can be catenated, providing that the lengths of the co
ordinates not specified are the same (see the first example following). If the co
ordinates not specified are not the same, an error results (see the second example
following):

A~-2 ~5(.):1. 0 :~O ~50 '+0 s 0 60 ... 10 20 30 11 22 33 44
f.H"2 '4·pU. 22 :"5:3 4.1+ I::',:,,, 66 Tl 8f:l 40 50 60 55 66 77 88,.J ..J

A,CnB A B :)10 20 30 U. :~~:~ :33 1.f.4· 10 20 30 11 22 33 44I
-,'+0 s 0 60 ss 1.>1.) 7'7 B8 40 50 60 55 66 77 88

A 10 20 30A,[lJB 40 50 60LENGTH ERrWR
(~)A,[l] B B 11 22 33 44

A 55 66 77 88

A scalar can also be catenated to an array. In the following example, a scalar is
catenated to a matrix. Notice that the scalar is repeated to complete the coordinate:

A~2 3pl0 20 30 I.f.O 50 60
A

10 20 30
'+0 sn 60

AJ[2J99
10 20 30 99
1.f.0 50 60 99

A,t:1J99
10 20 30
'+0 ~~i 0 6 0
99 99 99

A vector can also be catenated to another array, provided the length of the vector
matches the length of the coordinate not specified. See the following examples:

A,99 8El
1. 0 20 30 9<'1
1.1·0 ~50 60 8El

• • 10 20 30 99
40 50 60 88

A,1:1J9988
LENGTH ERROR

A , £:1 J 9('/ 88
1\

38

'---'---------.,.---------

10 20
40 50
99 88



The catenate function is useful when creating lists of information. Sometimes it is
necessary to use an empty array to start a list. For example, suppose you want to
create a matrix named PHONE where each row will represent a 7-digit telephone
number. First you want to establish the matrix, then add the telephone numbers
at a later time. The following instruction will establish an empty array named
PHONE with no (0) rows and seven columns:

(.l PHONE

PH(]NE~"(} 7(.1\0
PHONE

_------------ Blank display indicates an
empty array.

() 7

Now, the telephone numbers can be added as follows:

c/

PHONE~PHONE,[1]·5336686·

PHONE
~iT56686

PHONE~PHONE,[1]·4564771·

PHONE
~.'i336686

1.I·~:i61.1·"17:1.

(.IPHONE
2 \_7 The list of telephone numbers

now contains two rows.

INDEXING

You may not want to refer to the whole array but just to certain elements. Referring
to only certain elements is called indexing. Index numbers must be integers; they
are enclosed in brackets and written after the name of the variable to which they
apply. Assume that A is assigned a vector as follows: A+-1.1 1.2 1.3 1.4 1.5 1.6 1.7.
The result of entering A is the whole vector, and the result of entering A[2] is 1.2
(assuming the index origin is 1; see Chapter 5 for more information on the index
origin).

Here are some more examples of indexing:

A~l:1. 12 13 14 15 :1.6 17
AC:3J

l/ .>'!
/

A[~:i :'5 "1 1. J
:I.::;; 13 17 1:1.

B~ .. :3 1 '+ 6 A Blank Character

13 :1.1 ~~B~6 1
B~'ABCDEFGHIJKLMNOPQRSTUVWXYZ .
BI:4 1 14 27 1 14 4 27 3 12 :I. 9 18J

DAN AND CLAIR
C~22 9 18 "7 9 14 9 1
BeCJ

VIRGINIA

39



If you use an index that refers to an element that does not exist in the array. the
instruction cannot be executed and INDEX ERROR results:

A
11 12 13 1~ 15 16 17

ACe]
INIIEX ERROR

Ar,8J

You cannot index or do anything else with an array until after the array has been
specified. For example. suppose that no value has been assigned to the name Z;
then an attempt to store values in certain elements within Z would result in an
error. since those elements do not exist:

Z C:S J.J. H-:L 8 ~6

VALUE ERROI~

Z[3 '+:It- rs 4·l>
1\

Indices (whatever is inside the brackets) can be expressions. provided that when
those expressions are finally evaluated. the results are values that represent valid
indices for the array:

B
ABCDEFGHI..JI<LMNgPQRSTUVWXYZ

X+-l 2 3 Lf· 5
BI:Xx2:1 i

BIIFH.J
X

1 2 3 ~ 5
III:l."·XX3J

I1GJMP

The array from which elements are selected does not have to be a variable. For
example. a vector can be indexed as follows:

2 3 5 7 9 11 13 15 17 19C7 2 ~ 2J
:1.3 3 7 3

'ABCDEFGHIJKLMNOPGRSTUVWXYZ '[12 15 15 11 27 16 1]
L.OOK PA

40

I)

/)

)

._--------------,-------_.



Indexing a matrix or N-rank array requires an index number for each coordinate.
The index numbers for each coordinate are separated by semicolons. Suppose M Is
a 3 by 4 matrix of consecutive integers:

M~3 I+p1 2 3 1+ 5 6 7 8 9 10 11 12

(, If you ask to see the values of M, they are displayed in the usual matrix form:

"1
MC2; 3)

If yqu want to refer to the element In row 2, column 3, you would enter:

'+
8

12

M
1. 2 3
~5 6 7
9 :1.0 11

()

If you want to refer to the third and fourth elements in that row, you would enter:

••
M1:2;3 l~J

'7 8

Similarly, to refer to the elements in column 4, rows 1,2, and 1, you would enter:

Ml:l 2 1;'+J
'+ 8 l~

You can use the same procedure to select a matrix within a matrix. If you want the
matrix of those elements in rows 2 and 3 and columns 1, 2, and 1 of M, you would
enter:

Mr.2 3;1 2 1)
565
9 10 9

c If you do not specify the index number for one or more of the coordinates of the
array that you are indexing, APL assumes that you want the entire coordinate(s).
For instance, to get all of row 2, you would enter:

MC? i :J
5 6 '7 8

41



Or to get all of columns 4 and 1, you would enter:

M[; ll· 1. J
If :I.
B 5

:1.2 9

Note: You still have to enter the semicolon to make clear which coordinate is which.
The number of semicolons required is the rank of the array minus one. If the correct
number of semicolons is not specified, RANK ERROR results:

Mi-;3 ll·p\12
pM

3 l~

MC6J+·9
RANK ERROR

M(6Ji-9
1\

You can change elements within an array by assigning new values for the indexed
elements. (The rest of the array remains unchanged.)

\)

(J

Ai·';3
A

1- z 3
'+ ~7; 6
" B 9

3p:l. 2 3 If 5 6 7 8 9 iJ

f'i[2i~.~ 3]~':I.O 20
A

:I. 2 :3
I.j. i o :;~O

789

42

---...-.--------r-----:-----.

(J



( I

<.

Chapter 4. Primitive (Built-In) Functions

APL functions are of two types: user-defined and those that are built into the APL
language. User-defined functions are discussed in Chapter 6. Built-in functions,
called primitive functions, are denoted by a symbol and operate on the data you
supply to them.

The value or values you supply are called arguments. Primitive functions that use
two arguments, such as A + B, are said to be dyadic; functions that use one argument
are said to be monadic, such as + B, which yields the reciprocal of B. Arguments can
be single data items (scalars), strings of data (vectors), tables of data (matrices), or
multiple tables of data (N·rank arrays). Arguments can also be expressions or user
defined functions that result in a scalar, vector, matrix, or N-rank array.

There are two types of primitive functions: scalar functions and mixed functions.
There are also operators that operate on the primitive functions. Examples of the
functions and operators are provided throughout this chapter for easy reference and
are set up as they would appear on the display.

PRIMITIVE SCALAR FUNCTIONS

Scalar functions operate on scalar arguments and arrays. They are extended to
arrays element by element. The shape and rank (see Chapter 3) of the result de
pend on the shape and rank of the arguments. For dyadic scalar functions, the re
lation between the types of arguments and the shape of the result is shown in the
following table. Each scalar function is described following the table:

Argument A Argument B Result

Scalar Scalar Scalar

Array Array with the same Array with the same
shape as A shape as the

arguments

Scalar or one- Array of any Array with the
element array shape same shape as

argument B

Array of Scalar or one- Array with the same
any shape element array shape as argument A

One-element One-element array One-element array

array with the rank with the shape of
different from the the array with the
rank of A greater rank

43

--_.---------------,.------..,....-------



44

The + Function: Conjugate, Plus CJ
Monadic (One-Argument) Form: Conjugate +8

The conjugate function does not change the argument. The argument can be a
numeric scalar, vector, or other array, and the shape of the result is the same as that
of the argument:

c'
"J

A~" "'~5

+A

If 8 is an array, the function is extended to each of the elements of B. The shape of
the result is the shape of 8:

B~2 3p-3 -2 -1 0 1 2
B

'''2 '-1
1. z

+B
"'2 '-1

:1. ~.~

Dyadic (Two-Argument) Form: Plus A+8

The plus function results in the sum of the two arguments. The arguments can be
numeric scalars, vectors, or other arrays. Arguments must be the same shape, unless
one of the arguments is a scalar or single-element array. If the arguments have the
same shape, the result has the same shape as the arguments:

6

5.1 1 -1 -3+5.1 2 0 4
10.2 3 '-1 1.

\)

(\J



..

If one argument is a scalar or single-element array, the shape of the result is the same
as that of the other input argument. The single element is applied to every element
of the multielement array:

B~2 3pl 23 ~ 5 6
B

1. z 3
LI· ~j 6

3+B
'+ ~5 6
-, 8 9

8+3
I~, ~3 6
""189

The - Function: Negation, Minus []

Monadic (One-Argument) Form: Negation -B

The negation function changes the sign of the argument. The argument can be a
numeric scalar, vector, or other array. The shape of the result is the same as that of
the argument:

"':1. "'3
.... A

:1. 3

If the argument is an array, the function is extended to each element of the array:

B~2 3p-3 -2 -1 0 1 2
B

-3 '''2 -1
o 1. 2

... I1
3 2 :1.
() -1 ·'2

45



DYadic (Two-Argument) Form: Minus A-B

The minus function subtracts argument B from argument A. The arguments can be
numeric scalars, vectors, or other arrays. The arguments must be the same shape un
less one of the arguments is a scalar or any single-element array. If the arguments
are the same shape, the result has the same shape as the arguments:

;3··.. 2
:J.

1+ ..··~5
··l

1+ ....... ~::;

<'/
:1. '''1

-:I. "':1. :I.

\)

If one argument is a scalar or a single-element array, the shape of the result is the
same as that of the other input argument. The single element is applied to every
element of the multielement array:

:L
1+

... :l

... ",...
:I.

B~"2 ~:~?) :L
H

z ~5
t:o 6...J

3"-B
:I. ()

0-2 "';3
B-·3

.':1. ()

:~ ~~

J

46

The x Function: Signum, Times CD
Monadic (One,.Argument) Form: Signum- xB

The signum function indicates the s1gn of the argument: if the argument is negative,
-1 is the result; if the argument is zero, then a is the result; if the argument is posi
tive, 1 is the result. The argument can be a numeric scalar, vector, or other array.
The shape of the result is the same as that of the argument:

·'1 0 :I.

\J



If the argument is an array, the function is extended to each of the elements:

()
1

B~2 3p-2 -1 0 1 2 3
B

-:L 0
~? :~

xB
-1 0

:I, 1

Dyadic (Two-Argument) Form: Times AxB

4·.2
2X2,1

If one argument is a scalar or a single-element array, the shape of the result is the
same as that of the other input argument. The single element is applied to every
element of the multielement array:

6,1 "'I.J.

3x '''6

2 '+
12.2 ·'16

The times function result is the product of argument A times argument B. The
arguments can be numeric scalars, vectors, or other arrays. The arguments must be
the same shape, unless one of the arguments is a scalar or any single-element array.
Arguments of the same shape have the same shape result:

(\1

B~2 3pl 2 3 1+ 5 6
B

:I. 2 :3
'+ :'5 6

3xB
369

12 :1.5 18

47



The + Function: Reciprocal, Divide CD
Monadic (One-Argument) Form: Reciprocal +B

The reciprocal function result is the reciprocal of the argument. The argument can be
a numeric scalar, vector, or other array. The shape of the result is the same as that of
the argument:

0, 2~)

o.s

If the argument is an array, the function is extended to each of the elements:

B~-2 2~)2 .5
F,{

2 o,~;

2 0 . ~)

+B
o,~5

() , 5

Dyadic (Two-Argument) Form: Divide A+B

The divide function result is the quotient when argument A is divided by argument B.
The arguments can be numeric scalars, vectors, or other arrays. The arguments must
be the same shape unless one of the arguments is a scalar or a single-element array.
Arguments of the same shape have the same shape result:

6'~'3
"",.

-~3 ..:.. '0' ~~

:1..5
10 9 '+'~'5 :3 '+

48

.:

--_._---------,-----:------



If one argument is a scalar or a single-element array, the shape of the result is the
same as that of the other input argument. The single element is applied to every
element of the multielement array:

C)

B~·2

B
:I. :I. 0

20 tOO
~5+B

:3
0.:L5

0.3
0.03

Note: There are two additional rules that apply to the divide function:

1. When zero is divided by zero. the result is 1:

0+0
:I.

2. Any value other than zero cannot be divided by zero:

3+0
DOMAIN ERROR

:"5 .~. 0

~----------------.,-----------,

49



Monadic (One-Argument) Form: Ceiling r B

The rFunetiion: Ceiling, Maximum OJ
\J

The ceiling function result is the next integer larger than the argument (the argument
is rounded up), unless the argument already is an integer. In this case, the result is
the same as the argument. The argument can be a numeric scalar, vector, or other
array. The shape of the result is the same as that of the argument:

1+ '-3
1"1+

I",

If the argument is an array, the function is extended to each of the elements:

Note: the result of the ceiling function depends on the OCTsystem variable (see
Chapter 5 for information on the OCT system variable).

:I. ::.~

:~ 2

rH-2 2(.)1
B

1
1.5

1.3 1.~; 2

'1....

50

~----_.-_._--

Dyadic (Two-Argument) Form: Maximum ArB

The maximum function result is the larger of the arguments. The arguments can be
numeric scalars, vectors, or other arrays. The arguments must be the same shape un
less one of the arguments is a scalar or any single-element array. Arguments of the
same shape have the same shape result:

4·r 6
6

:31"2
3

-6r-:l.0
·'6

5,1 .- :I- -31"~5. t. 0 .'LJ.

5.1 0 -':3
~)



c)

()

If one argument is a scalar or a single-element array, the shape of the result is the
same as that of the other argument. The single element is applied to every element
of the multielement array:

B~2 3pl 2 3 4 5 6
B

1 2 :3
'+ ~:; (,)

:31" B
3 :5 3
1+ 5 6

The L Function: Floor, Minimum

Monadic (One-Argument) Form: Floor LB

The floor function result is the next integer smaller than the argument (the argument
is rounded down) unless the argument is already an integer. In this case, the result
is the same as the argument. The argument can be a numeric scalar, vector, or other
array. The shape of the result is the same as that of the argument:

3 ... ;:~

If the argument is an array, the function is extended to each of the elements:

..

F.H·~~ 2(.d
B

1-
1..6

L.B

:I. • ~.)

2

Note: The result of the floor function depends on the OCT system variable (see
Chapter 5 for information on the OCT system variable).

----.--------------,--------------

51



Dyadic (Two-Argument) Form: Minimum ALB

The minimum function result is the smaller of the arguments. The arguments can be
numeric scalars, vectors, or other arrays. The arguments must be the same shape un
less one of the arguments is a scalar or any single-element array. Arguments of the
same shape have the same shape result:

L~ I.. 6
1+

.,. (~) l. ''':L ()
"':I. 0

5. :I, "':I. ·"31.~,'i, 12 0 '''1.1·

-:I. "'LI·

If one argument is a scalar or a single-element array, the shape of the result is the
same as that of the other argument. The single element is applied to every element
of the multielement array:

B~"2 3(.):1. ') :.~ '+
...,

t.>A .. \":J

F.l
:I, ") "1.

A•• ,.)

'+ 1::' 6,J

3 I.. F.l
:I. ::!. "X,,)

3 3 3

The I Function: Magnitude, Residue CD
Monadic (One-Argument) Form: Magnitude IB

The magnitude function result is the absolute value of the argument. The argument
can be a numeric scalar, vector, or other array. The shape of the result is the same
as that of the argument:

17,9
7,9

1'''3
3

If the argument is an array, the function is extended to each of the elements:

52

B~"~.~

B
"'5. :I.
o

lEi
~,:i , :I.
o

"':I.
3 , 11+

:I.
3.11+

\J



c)

C~)

c/

..
C~ I

Dyadic (Two-Argument) Form: Residue A IB

The residue function result (when both argument A and argument B are positive) is
the remainder when argument B is divided by argument A. The following rules
apply when using the residue function:

1. If argument A is equal to zero, then the result is equal to argument B:

016
6

2. If argument A is not equal to zero, then the result is a value between
argument A and zero (the result can be equal to zero, but not equal to
argument A). The result is obtained as follows:

a. When argument B is positive, the absolute value of argument A is subtracted
from argument B until a value between argument A and zero is reached:

b. Willen argument B is negative, the absolute value of argument A is added to
argument B until a value between argument A and zero is reached:

1

The arguments can be numeric scalar, vectors, or other arrays. The arguments must
be the same shape, unless one of the arguments is a scalar or any single-element
array. Arguments of the same shape have the same shape result:

:1.

o

Ol"?
7

710
()

·'2112.3
'''1 • '7

1.7
:1.12. ~5B5

53

~---_._-------------,-----------'



If one argument is a scalar or a single-element array, the shape of the result is the
same as that of the other argument. The singleelement is applied to every element
of the multielement array:

I!t-2 :3(.):1. ") :5 14- I::' 6"'..• "J

B
1. ") :5A',.

1+ I::' (,),J

:~ I B
1. ~.~ 0
:1. 2 ()

The * Function: Exponential, Power CD
Monadic (One-Argument) Form: Exponential *8

The exponential function result is the Naperian base e (2.718281828459045) raised
to the power indicated by the argument. The argument can be a numeric scalar,
vector, or other array. The shape of the result is the same as that of the argument:

*:1.
2.7:1.0:3

·It:3
20.006

If the argument is an array, the function is extended to each element of the array:

Bt.. ~~ 2pO :I. ~~ :~

B

(/J

() :1.
2 3

*B
1.
7.3B9:L

~? . 71.8:5
:~O .086

54

Dyadic (Two-Argument) Form: Power A* 8

The power function result is argument A raised to the power indicated by
argument B. The arguments can be numeric scalars, vectors, or other arrays. The
arguments must be the same shape unless one of the arguments is a scalar,or any
single-element array. Arguments of the same shape have the same shape result:

2~'3

0.25

1

3

O. 1.2~~ ....-------2*3= 1/2 3 = 1/8=.125



:I.. O(~B6
2.995'7

()

c~)

If one argument is a scalar or a single-element array, the shape of the result is the
same as that of the other argument. The single element is applied to every element
of the multielement array:

F.U<~ 2 (.) :I. 2 ~5 4·
B

:I. 2
~5 '+

:I.
9

The e Function: Natural Log, Logarithm CD CO
The e symbol is formed by overstriking the 0 symbol and the * symbol.

Monadic (One-Argument) Form: Natural Log eB

The natural/og function result is the log of the argument B to the Naperian base e
(2.718281828459045). The argument can be a non-negative numeric scalar, vector,
or other array. The shape of the result is the same as that of the argument:

(f)2.71B3
:J.

If the argument is an array, the function is extended to each element of the array:

[I+-2 ~~(.)1 :~ :I. 0 20
B

:I. 3
Ul 20

<eE!
()

2.3026

Dyadic (Two-Argl.!mentl Form: Logarithm AeB

The logarith,m function result is the log of argument B to the base of argument A.
The arguments can be numeric scalars, vectors, or other arrays. The arguments must
be the same! shape, unless one of the arguments is a scalar or any single-element array.
Arguments of the same shape have the same shape result:

2118
3

3. j,(f):t.2.8
2.2534-

322

55

..----.-----------r-----------



If one!argument is a scalar or a single-element array, the shape of the result is the
same as that of the other argument. The single element is applied to every element
of the multielement array:

Ih·2 2pl 2 :3 4·
B

1 2
3 '+

o
0.4'7712

().~5():J.O~5

0,60206

The 0 FUlllction: Pi Times, Circular .GJ
Monadic (One-Argument) Form: Pi Times 0 B

The pi times function result is the value of pi (3.141592653589793) times B. The
argument can be a numeric scalar, vector, or other array. The shape of the result is
the same as that of the argument:

01
3. :1.'+16

t')~5

9,424·8

If the argument is an array, the function is extended to each element of the array:

B~"2 2~)1 2 :3 ll·
B

:I. 2
3 '+

(;)B

s. :1. 1+16
9,1+248

6 , :?8~52
12, ~566

66

Dyadic (Two-Argument) Form: Circular Ao B

The circular function result is the value of the specified trigonometric function
(argument A) for the specified radians (argument B). The arguments can be
numeric scalars, vectors, or other arrays. Arguments must be the same shape, un
less one is a scalar or single-element array. Arguments of the same shape have the
same shape result. The following is a list of the values for the A argument and the
related functions performed. A negative argument A is the mathematical inverse
of a positive argument A; any values for argument A other than the following
will result in DOMAIN ERROR:



c)

(I

Value of A Operation Performed

008 (1-8*2)*.5

108 Sine 8

208 Cosine 8

308 Tangent 8

408 (1+8*2)*,5

508 Hyperbolic sine of 8 (sinh 8)

608 Hyperbolic cosine of 8 (cosh 8)

708 Hyperbolic tangent of 8 (tanh 8)

-108 Arcsin 8

-208 Arccos 8

-308 Arctan 8

-408 (-1+8*2)*.5

508 Arcsinh 8

-608 Arccosh 8

708 Arctanh 8

If 8 is 45
0

, here is how to solve for the sine, cosine, and tangent of 8 (450 is equiva
lent to pi radians divided by 4):

C~)

f.H··O-:·I+
B The left argument specifies

() . 7B~5ll· /r------- the trigonometric function.
:toB

Sine of 8().707:I.:I.-o - - - - -

2Clf.{

() . 707:L 1 ..0------ Cosine of 8
~5(JB

-----------Tangent of 8:I. I

(I
57

-~-._--------_r---------



If 8 is the sine of an angle, then 008 yields the cosine of the same angle, and con
versely, if 8 is the cosine, 008 yields the sine. Suppose you wanted the sine of
30°, which is equivalent to pi divided by 6:

IH·1 (J (<:H'6)
B

o .~:; .....-----------Sine of 30°

Afo2 :';~(.):t. 2 :-5 4·
Bf·O..:·I~.

A

If one argument is a scalar or a single-elementarray, the shape of the result is the
same as that of the other argument. The singleelement is applied to every element
of the multielement array:

(loB
o.1366 () ~·5 ....·--------Cosine of 30°

B~-20 <(:1+6)
B

o.B660~~ ...·---------Cosine of 30°
() elf.!

Sine of 30°o. ~j .....-----------

B
O.7B5l+

ACIB
O.7071:L
1

0.70711
:1..2716

:)

58



()

The! Function: Factorial, Binomial [J 0
The! symbol is formed by overstrikingthe quotation mark( t land the period (.).

Monadic (One-Argument) Form: Factorial !B

The factorial function result is the product of all the positive integers from one to
the number value of the argument. The argument can be a positive numeric scalar,
vector, or other array. The shape of the result is the same as that of the argument:

114-
~?I.J.

C~\!
:1. x=~x3xl.J.

21.~

! 1 ") :3 4· c:·
Ii:•• ,.1

:I. "j 6 21.,. 120~.

The factorial function also works with decimal numbers and zero. When used in this
way, factorial can be defined by use of the mathematical gamma function:

! 3. j.1.J.
7, :I."13~5

!O
:1.

If the argument is an array, the function is extended to each of the elements:

B~"2 2pO 1 2 3
B

!B
1.

59



Dyadic (Twg..Argument) Form: Binomial AlB

If one argument is a scalar or a single-element array, the shape of the result is the
same as that of the other argument. The single element is applied to every element
of the multielement array:

The binomial function result is the number of different combinations of argument B
that can be taken A at a time. The result of AlB is also the (A+1)th coefficient of
the binomial expansion of the Bth power. The arguments can be numeric scalars,
vectors, or other arrays. The argument must be the same shape, unless one of the
arguments is a scalar or any single-element array. Arguments of the same shape
have the same shape result:

\J

\)

(J

The combinations of>------ argument B taken
argument A(2) at a time

~"""'I----Argument B

2!1.J.
6

2!6
1:':;

3!O
0

o! ~3

1
2!3

3

0 :L :~ ~.~ ! ;'5
1 :~ ;3 1 \J0 :to

,.) 3 '+! I.J.s;

:to I.J. 6 '+ :to
B~-2 :~ pO 1 2 3
B

10

B!5
:I.

10
2! -'I.J. s I.J..~:;

10 7. an.:; Co)

10

'+

i)

60



The? Function: Roll GJ
Monadic (One-Argument) Form: Roll ?8

The roll function result is a randomly selected integer from 0 through 8-1 or 1
through 8 (depending on the index origin). Each integer in the range has an equal
chance of being selected. The argument can be a positive integral scalar, vector, or
other array. The shape of the result is the same as that of the argument:

?300
202

?300

C/) :3
';)5 7 9

,') :I, 4-a.

'?6 6
~5 1.1·

';)6 6
<!) <!)

If the argument is an array, the function is extended to each element of the array:

8~2 3pl1 22 33 44 55 66
8

:1.:1. ~~~.~ 33
1+ '+ ~::; ~5 6 t:1

';)8
:.:~ 1'7 If.>

::'~I+ :1.3 '+

Dyadic (Two-Argument) Form

See the Deal function later in this chapter under Primitive Mixed Functions.

c/)

()

---.---------r--------

61



The A Function: And CD
Monadic (One-Argument) Form

There is no monadic form.

Dyadic (Two-Argument) Form: And AA B

The and function result is 1 when A and B are both 1; otherwise, the result is O. The
value of the arguments must be either 0 or 1. The arguments can be scalars, vectors,
or other arrays. The arguments must be the same shape unless one of the arguments
is a scalar or any single-element array. Arguments of the same shape have the same
shape result:

() 1\ :1.

0
1.Aj,

:1.
j,AO

0
0 0 :I. :I. 1\ () 1. () :I.

() 0 () :I.

Operator

And Table

- Argument A

o

..

62

'--- Argument B

If one argument is a scalar or a single-element array, the shape of the result is the
same as that of the other argument. The single element is applied to every element
of the multielement array:

Bf'2 2(.)0 l 1. 0
B

0 :1.
1. 0

lAB
() :I.
1. 0

.:

(J



(\

C~)

The v Function: Or CIJ
Monadic (One-Argument) Form

There is no monadic form.

Dyadic (Two-Argument) Form: Or AvB

The or function result is a 1 when either or both arguments are 1; otherwise, the
result is O. The values of the arguments must be 1 or O. The arguments can be
scalars, vectors, or other arrays. The arguments must be the same shape, unless
one of the arguments is a scalar or any single-element array. Arguments of the
same shape have the same shape result:

Or Table

:1. v 0
:1.

OvO
o

o 0 :I. lvO :I. () :I.
() :I. 1. :I.

Operator-,
v ...---- Argument A

c
(\
~/

..

If one argument is a scalar or a single-element array, the shape of the result is the
same as that of the other argument. The single element is applied to every element
of the multielement array:

XH·2 2pO 1. 0 :I.
B

o :I.
() 1.

:1. :I.
:1. :I.

63

._--_._---------,----------



The ~ Function: Not GJ
Monadic (One-Argument) Form: Not ~ B

The not function result is 1 when B is 0 and 0 when B is 1. The values of the argu
ment must be 1 or O. The argument can be a scalar, vector, or other array. The shape
of the result is the same as that of the argument:

1

o

If the argument is an array, the function is extended to each element of the array:

Iu.. 2 3~)O 1
F.l

0 1 0
1 0 1

NB
:I. II 1
o 1 ()

Dyadic (Two-Argument) Form

There is no dyadic form.

(:)

,)

()

64

I

(J I

I

I

-------_\



The 7\Function: Nand mGJ
The 7\ symbol is formed by overstriking the and (A) and the not (~) symbols.

Monadic (One-Afgument) Form

There is no monadic form.

Dyadic (Two-Argument) Form: Nand A7\B

The nand function result is 0 when both A and Bare 1; otherwise, the result is 1.
The values 'Of the arguments must 1 or O. The arguments can be scalars, vectors, or
other arrays. The arguments must be the same shape, uriless one of the arguments
is a scalar or any single-element array. Arguments of the same shape have the same
shape result:

Argument B

....-.--- Argument A

o

Nand Table

()~ :1.

o
() () 1. 1. ~ () :t. () :I.

:I. 1. :I. ()
C~

If one argument is a scalar or a single-element array, the shape of the result is the
same as that of the other argument. The single element is applied to every element
of the multielement array:

B~"2 2pO :L
B

() :I.

C_! n :I.
l?::B

:1. 0
:L ()

65

-----._-----------,---------_.



--_._-------------------------

The V Function: Nor CIJ m
The Vsymbol is formed by overstriking the or (vI and the not (-I symbols.

Monadic (One-Argument) Form

There is no monadic form.

Dyadic (Two-Argument) Form: Nor AvB

I

I

I,....J!
-, ~ I,

The nor function result is 1 when A and B are both 0; otherwise, the result is O. The
values of the arguments must be 1 or O. The arguments can be scalars, vectors, or
other arrays. The arguments must be the same shape, unless one of the arguments
is a scalar or any single-element array. Arguments of the same shape have the same
shape result:

l~O

o
O~O

1
o 0 :1. :L~() :L 0 :I.

:I. 0 0 0

Nor Table

4---- Argument A

If one argument is a scalar or a single-element array, the shape of the result is the
same as that of the other argument. The single element is applied to every element
of the multielement array:

f.H-2 2pO :L
B

o 1
o 1

O~B

:1. 0
:1. 0

66

,)



..

The> Function: Greater Than ITJ
Monadic (One-Argument) Form

There is no monadic form.

Dyadic (Two-Argument) Form: Greater Than A>B

The greater than function result is 1 when argument A is greater than argument B;
otherwise the result is O. The arguments can be numeric scalars, vectors, or other
arrays. The arguments must be the same shape, unless one of the arguments is a
scalar or any single-element array. Arguments of the same shape have the same
shape result:

()

'''2> 0
()

"'3> "'2
o

0> ..".(. . ,.(.

:L. :1.2:3>:1.. :1.23
o

5. :L
o O:L

... :1. ... ~5 >~:; • :I. o ""+

If one argument is a scalar or a single-element array, the shape of the result is the
same as that of the other argument. The single element is applied to every element
of the multielement array:

B~"::.~ 3(.):1, ~:? :-5 1.(. ~:5 <!l
B

:I.
~, "Y",':. '\:)

'+ l::' (.),.J

:~> B

C
:L :I. 0
0 0 ()

Note: The result of the> function depends on the OCT system variable (see
Chapter 5 for information on the OCT system variable).

C~/I

67



68

The =Function: Equal To CO
Monadic (One-Argument) Form

There is no monadic form.

Dyadic (Two-Argument) Form: Equal To A=B

The equal to function result is 1 when the value of argument A equals the value
of argument B; otherwise, the result is O. The arguments (numeric or character)
can be scalars, vectors, or other arrays. The arguments must be the same shape,
unless one of the arguments is a scalar or any single-element array. Arguments
of the same shape have the same shape result:

o::~~:;

o
1.654321~1.654321

:L
:I.::::' A'

o
'A':=:' B'

o

:I.

:I. 3 :5 7::::2 3 1+ !:,'i

o :L 0 0

If one argument is a scalar or a single-element array, the shape of the result is the
same as that of the other argument. The single element is applied to every element
of the multielement array.

'A'='ABACADAEAFAG'
:I. 0 :I. 0 :I. 0 1 0 :I. 0 1 0

Note: If the arguments are numeric, the result of the = function depends on the
OCT system variable (see Chapter 5 for information on the OCT system variable).

(J

(:J

..



The < Function: Less Than (1]
Monadic (One-Argument) Form

There is no monadic form.

Dyadic (Two-Argument) Form: Less Than A< B

The less than function result is 1 when argument A is less than argument B; other
wise the result is O. The arguments can be numeric scalars, vectors, or other arrays.
The arguments must be the same shape, unless one of the arguments is a scalar or
any single-element array. Arguments of the same shape have the same shape result:

:1.,6~;<:~

:I.
'-~!.< 0

:I.
"':3< "'2

0< "'4- • 1+
o

:1..12:5<:1,.:1.23
o

5.1
010

If one argument is a scalar or a single-element array, the shape of the result is the
same as that of the other argument. The single element is applied to every element
of the multielement array:

Bt.. 2 3~):1. z :'5 '+ s 6
B

1 " 3~..
L~ "" 6..I

~5<B

0 0 0
:1. :I. :1.

C; B<3
:I. :I. 0
o 0 n

Note: The result of the < function depends on the OCT system variable (see
Chapter 5 for information on the OCT system variable),

c)
69



The ~ Function: Greater Than or Equal To (~]

Monadic (One-Argument) Form i~)

There is no monadic form.

Dyadic (Two-Argument) Form: Greater Than or Equal To A~ B

The greater than or equal to function result is 1 when argument A is greater than
or equal to argument B; otherwise, the result is O. The arguments can be numeric
scalars, vectors, or other arrays. The arguments must be the same shape, unless one
of the arguments is a scalar or any single-element array. Arguments of the same
shape have the same shape result:

1. I e)~) ;::~~~

0
"'2 ;:: ()

0
::.~ ;:::~

:I.
~5 , :I. :I.

:I. 0 0

70

If one argument is a scalar or a single-element array, the shape of the result is the
same as that of the other argument. The single element is applied to every element
of the multielement array:

B~2 3pl 2 3 4 5 6
B

:I. 2 3
I.~ ~j 6

~~;;:B

:I. :I. :t
() 0 0

Note: The result of the ~ function depends on the OCT system variable (see Chapter
5 for information on the OCT system variable).

\:J



The:o; Function: Less Than or Equal To (~ )

Monadic (One-Argument) Form

There is no monadic form.

Dyadic (Two-Argument) Form: Less Than or Equal To A:o; B

:1.

o
5.1

o 0

:I.

". 2 ::; ()

0::; "'2

The less than or equal to function result is 1 when argument A is less than or equal
to argument B; otherwise, the result is O. The arguments can be numeric scalars,
vectors, or other arrays. The arguments must be the same shape, unless one of the
arguments is a scalar or any single-element array. Arguments of the same shape
have the same shape result:

If one argument is a scalar or a single-element array, the shape of the result is the
same as that of the other argument. The single element is applied to every element
of the multielement array:

B~"2 3p1. ~.:~ 3 LI· s I.>
B

1 '1 34 ..

'+ 0:;' 6,.J

~%B

0 0 :I.
1- :I. :I.

Note: The result of the :0; function depends on the OCT system variable (see Chapter
5 for information on the OCT system variable).

c_
71



The F Function: Not Equal To

Monadic (One-Argument) Form

There is no monadic form.

Dyadic (Two-Argument) Form: Not Equal To AJ'B

The not equal to function result is 1 when argument A is not equal to argument B;
otherwise, the result is O. The arguments (numeric or character) can be scalars,
vectors, or other arrays. The arguments must be the same shape unless one of the
arguments is a scalar or any single-element array. Arguments of the same shape
have the same shape result:

() ye~:i

:J.

()

'A';i'A'
()

'A'¢'B'

:)

1

o
5,1

1 1
o -1+

72

If one argument is a scalar or a single element array, the shape of the result is the
same as that of the other argument. The single element is applied to every element
of the multielement array:

'A'¢'ABACADAEAFAG'
o 1 0 101 0 1 0 1 0 1

Note: If the arguments are numeric, the result of the Ffunction depends on the
OCT system variable (see Chapter 5 for information on the OCT system variable).

I

() I

I

--------~-_\.----~-----.,.__--r------



PRIMITIVE MIXED FUNCTIONS

The mixed functions differ from scalar functions because the shape of their results
depends on the particular mixed function rather than exclusively on the shape of
the arguments. The following list gives a brief description of each of the mixed
functions. Following the list, each function is discussed in detail:

Monadic

(, Mixed

-'/
Functions Name Result

pB Shape The length of each coordinate of the
argument.

.. ,B Ravel A vector containing the elements of B
in the order they exist in the rows of B.

~B Grade up The index values that would select the
elements of B in ascending order.

WB Grade down The index values that would select the
elements of B in descending order.

1B Index B consecutive integers starting from
generator the index origin.

¢>B or Reverse The elements of the arqument are
¢>[I]B reversed.
or aB

IsIB Transpose The coordinates of the argument are
reversed.

IiIB Matrix The inverse of a square matrix or the
inverse pseudoinverse of a rectangular matrix.

.t.B Execute Argument B executed as an expression.

,,"B Format Argument B converted to a character
array.

c; Dyadic
Mixed
Functions Name Result

ApB Reshape An array of a shape specified by A,
(structure) using elements from B.

e/ A,B Catenate The two arguments joined along an
or existing coordinate ([I] is a positive
A,[I] B integer).

A,[I]B Laminate The two arguments joined along a new

r-. coordinate ([I] is a fraction).

~j

73



Dyadic
Mixed
Functions Name Result i)
A/B or Compress The elements from B that correspond
A/[I] B or to the l's in A.
AlB

A\B or Expand B is expanded to the format specified <JA \[1] B or by A; 1 in A inserts an element from
A,B B; a 0 in A inserts a 0 or blank element.

AtB Take The number of elements specified by A
are taken from B.

AtB Drop The number of elements specified by A !./~)
are dropped from B.

AtB Index of The first occurrence in A of the elements
in B.

A<j>B or Rotate The elements of B are rotated as specified
A<j>[I] B by A. If A is positive, the elements of B
orAsB are rotated to the left. If A is negative,

the elements of B are rotated to the right.

A~ Generalized The coordinates of B interchanged as
transpose specified by A.

i]
A7B Deal The number of elements specified by A

are randomly selected from B. without
selecting the same number twice.

AloB Decode The value of argument B expressed in
(base value) the number system specified by

argument A.

ATB Encode The representation of argument B in
(representation) the number system specified by

argument A.

A€B Membership A 1 for each element of A that can be
\~_Jfound in B and a 0 for each element

not found.

AffiB Matrix Solution to one or more sets of linear
divide equations with coefficient matrix

(matrices) B and right-hand sides A or /:Jthe least squares solution to one or
more sets of linear equations.

A"B Format Argument B converted to a character
array in the format specified by
argument A.

(~

74



( I
j

Note: The mixed functions reverse, rotate, compress, and expand, and the operators
(see Operators later in this chapter) reduction and scan can be applied to a specific
coordinate of an array. This is done by using an index entry [I] which indicates the
coordinate to which the mixed function or operator is applied. The value of the
index entry can be from 1 to the number of coordinates in the array; the leftmost
coordinate (first coordinate) has an index value of 1, the next coordinate has an
index value of 2, and so on. A matrix, for example, has an index value of 1 for the
row coordinate and an index value of 2 for the column coordinate. If an index entry
is not specified, the last coordinate (columns) is assumed. If a - (minus) symbol is
overstruck with the function symbol or operator symbol, the first coordinate is
assumed (unless an index value was also used). When a function or operator is ap
plied to a specific coordinate, the operation takes place between corresponding ele
ments in the specified coordinate. For example; assume you have a 3-rank array:

• When the first coordinate (planes) is specified, the operation takes place between
corresponding elements in each plane.

• When the second coordinate (rows) is specified, the operation takes place between
the corresponding elements in each row per plane.

• When the third coordinate (columns) is specified, the operation takes place be
tween the corresponding elements in each column per plane.

The p Function: Shape, Reshape (Structure)

Monadic (One-Argument) Form: Shape pB

The shape function result is the shape of the argument; it has one element for each
coordinate of the argument, which indicates the length of that coordinate. The
argument can be any variable or constant:

(."J • AIleD' ....------ A Vector with Four Elements

C~/

loJ.
(.) :L ::.~

,').'.
p:l. 2

3
A~"2

A
1 2 3
L~

c:· 6,.J

PI~

~~ :~

c)

C)

The shape function applied to a scalar yields an empty vector, since a scalar has no
coordinates. An empty vector is indicated by a blank result line:

p2
• Blank Result Lines.pITt/.

75

-----.----------._------------------_._----------_._---



76

The instruction p p 8 yields the rank (shape of the shape, or, number of coordinates)
of 8:

B~2 2 3p'CARBARFARARE'
B

CI~I~

B{11:~

FAI~

AI~E

Dyadic (Two-Argument) Form: Reshape (Structure) A pB

The reshape function forms an array of the shape specified by argument A using
elernentts) from argument B. The elements of argument B are placed into the
array in row order. If there are not enough elements in argument 8 to fill the
array, the elements are repeated. If there are more elements in argument B than
are required to fill the array, only the required number of elements are used.
Argument A must be a positive integer or vector of positive integers. The number
of elements in argument A is equal to the number of coordinates, or the rank, of
the result. Argument 8 can be any variable or constant. If all of the elements of
argument A are nonzero, then 8 cannot be an empty array:

1 2. ;'3
1+ 5 6

4· ~,~(.)' ABCDEFGH'
AB
CD
EF
GH

~::;(.)' MOUSETI~AP'

MOUSE
;3 '+(.):1.23

:1.2;3 :1.23 123 1~~3

:1,23 12;'3 :L 2;'5 12~5

:I. 2:~ :l2.3 12~5 12;'5
A~4 2p1 2 3 4 5 6 7 8
A

1 2
;3 4
"" 6,J
"'J B(

::.~ 3(.)(4

:I. ::.~ 3
1+ s 6

6(.) •
.. .

.......... ..

()

I.)



The, Function: Ravel, Catenate, Laminate

Monadic (One-Argument) Form: Ravel ,8

CD

c)

../

C)

The ravel function results in a vector containing the elements of argument B. If
argument B is an array, the elements in the vector are taken from argument 8
in row order. Argument B can be a scalar, vector, or other array. The resulting
vector contains the same number of elements as argument B:

A~2 2 2pl 2 3 ~ 5 6 7 B
A

1 2
::5 1+

~j 6
'7 8

, A
:I.231.1·~5678

B~"2 3p' AlleDEF .
f.l

ABC
DEF

,)?l

ABCDEF

Dyadic (Two-Argument) Form: Catenate or Laminate A, [I] 8

The function iscatenate when the [I] entry (index entry) is an integer and laminate
when the [I] entry is a fraction.

77



78

Catenate (The Index [I] Entry Is an Integer): The catenate function joins two items along
an existing coordinate. (See the laminate function following for a description of how
to join two items along a new coordinate). The index [I], if given, specifies which
coordinate is expanded. The index entry must be a positive scalar or one-element
array. If no index [I] is specified, the last coordinate is used. Matrices of unequal
sizes can be joined, providing the lengths of the coordinate not specified are the
same (see Catenation in Chapter 3):

A~"1. 1+
B~"·7 9 s
A,B

:J.1+'79~)

Afo2 :3 ?11. ,.)
3 14· .::' f.)""... ,.)

B~"2 :3(.>'7 B 9 10 1.1. 1 ')
\)A..

A
1 ~~ 3
loJ. 5 6

B
'7 s 9

:1. () 1:1. 12
Ad~

1 ~~~ :3 '7 a 9
LI· I::' 6 10 :1. :1. 1 ':),.1 A..

A, I:::I.::IE!
:I. ~:~ :3
4· c:· 6•.1

'7 !:l ('I

\)10 U. :1.2
A,C2JF.!

1 ")
~5 '7 B ('I«:

L~ a::' 6 i o 1:1. 12.J

A,1::2]:1.0 20
:I. :~ :'5 1.0

'oJ. s 6 20
:1.0 20 30,1::1. JA

:1.0 20 30
1 z :3
1+ 5 6



Laminate (The Index [I] Entry is a Fraction): The laminate function joins two items by
creating a new coordinate, specified by the index entry [I] which must be a posi
tive fraction. If the index entry is between 0 and 1, the new coordinate becomes
the first coordinate; if the index entry is between 1 and 2, the new coordinate is
placed between existing coordinates 1 and 2 (the new coordinate that is added al
ways has a value (or length) of 2). The following chart shows the positions of a
new coordinate in the shape vector (see the following examples) when two 3 by
3 matrices are laminated:

Index Value

Positions of New
Coordinate in the Shape
Vector

Lamination requires either that arguments A and B are the same shape or that one
of the arguments is a scalar:

A~3 3pl 2 3 4 5 6
B~3 3p11 22 33 44
(~:l

12::5
1.1· !.:,:; c:)
7 B <;>

77

3

3

3

3

1"'1'" '",);.... (:)(;)

3

3

.1 - .9

2.1 - 2.9

1.1 - 1.9

B
:1.1 2:~~ ::5~5

'+1+ ~.'.i ::.:j () 6
'l"l BE~ 1:';1 1:.1

C~"(.~., 1::, B]B
C

:I. " :3"'...
1·1· ~:5

,
(:)

"l B <;>

1.:1. ~.~ ~? :'5 :'5
'-I. 1+ ~:j ~:.) f.l f.l
'",;'7 BB <y<y

1~IC

2 ~5 3 -4.---------_---'Shape Vector

c)
79



C~"l~ I I:: :1.. ~::;::I I!
C

:I. z ::3
:1.:1. ::.~ ::.~ :'5 ::~

,'"~.'J1.1·

1.1.1.1. ::;;:';; 66

7 B 9
77 BB <,il<,il

(.)C

;'5 2 3 ..·-----------Shape Vector

C~"I~! 1::2. :I.::II!
c

1 :1.1.
::.~ :~~ z
"1. ..1....
"') "J\~

1+ '+1+
s ~5~S

r (,)6<:>

-----------Shape Vector

"(' "1"~, I

B BB
9 99

(.)[~

;3 3 ") •s:

The following examples show the result when the two matrices in the preceding example
are catenated instead of laminated:

A, I:: :1. JB
:I. ::.~ 3
'+ t::· 6,.!

7 8 9
U. ~~2 :33
1.f.1.j. ss 66
77 88 99 rJA, [2JI!

1 :~? 3 1:L :~~ ~~ 33
Lt- .... 6 I.I·I~. ss 66~!

7 B 9 77 BB 99

<J

80

-_._._---------------;-----;-----------------------_._---



The / Function: Compress CD
Monadic (One-Argument) Form

See Reduction later in this chapter under APL Operators.

C) Dyadic (Two-Argument) Form: Compress AI[I] B or AlB or A,.:B

The compress function selects elements from argument B corresponding in sequence
to 1's in argument A. Argument A must be a logical scalar or vector having the
values 0 or 1. Argument B can be any scalar, vector, or other array. Both arguments
must have the same number of elements unless:

1. 0 1 0 :1. ~.~ 1+
1- 3 5.. :I. :I. :1./:1. ~!. 3
:I. ::.~ :3 /Blank Display Line (empty array)

0 () Oil :::~ 3

[li··:3 1+(:1:1. ::.~ 3 4 ::S 6 "1 B <;> 10 i i 1 ~:.~

B

• One of the arguments ls.a scalar or single-element array .

The first coordinate (rows) is specified;
the first and third rows, as specified by
argument A, are selected.

The second coordinate (columns) is specified;
the second and third columns, as specified by
argument A, are selected.

Blank Display Line (empty array)

4·
B

liB
4·

:1. z
:1. OIB

l/t:::1. ::tF.!
1+ ,"- _

1,2
:t. 0/t::2::tJ:1

,'--------

:I. ::.~ 3
~; 6 "1
<;> to :1.:1.

:I. 0
1, "1 31\••

9 :1. () :1.1
0 1,,.,

3A",:

6 "'}
(

:1.0 :1.1
:I. n

:I. "') 3s;

<;> 10 :1.:1.
0 :I.

2 :5
t.l "1

:1.0 1:1.
:J./B

:I. ~~ 3
~:5 6 "1
9 10 :J. :1.

OIB

When argument B is an array, the [I] index entry is used to specify the coordinate
that is acted on. If the index entry is omitted, the last coordinate (columns) is
assumed. If the AI-B form is used, the first coordinate is assumed. The rank of the
result is the same as the rank of argument B:

• Argument B is an array; then the number of elements in argument A must be
the same as the length of the argument B coordinate being acted on.

c)

()

81



The \ Function: Expand CD
Monadic (One-Argument) Form

\\J
See Scan later in this chapter under APL Operators.

Dyadic (Two-Argument) Form: Expand A \[1] 8 or A \8 or A,8

The rank of the result is the same as the rank of the B argument:

When argument B is an array, the [I] index entry is used to specify the coordinate
that is acted on. If the index entry is omitted, the last coordinate (columns) is
assumed. If the A,B is used, then the first coordinate is assumed.

The result of the expand function is argument B expanded as indicated by
argument A. Each 1 in argument A selects an element from argument B and each
oin argument A inserts a 0 (or blank for character data) in the result. Argument A
must be a logical scalar or vector having the values 0 or 1. Argument B can be any
scalar, vector, or other array. If argument B is a scalar or vector, argument A must
have the same number of l's as the number of elements in argument B. If
argument B is an array, argument A must have the same number of l's as the length
of the argument B coordinate being acted on.

:L'B

1\C1JB
\. The first coordinate (rows) is
'--------- expanded; a row is inserted be

tween the first and second row.
o 1\1:2:JB

"\. The second coordinate [columns) is
'-------- expanded; a column is inserted

between the second and third columns.

:I. 1 0\1 ~~ 3

\:)
3~)1 '") 3 1+ 5 6",.

1. ()

1 0 2 :~ 0
IH-2
B

1. 2 3

'+ 5 6
1 0

:L ") ~3s;

0 0 0
4· 5 6

1- 1
1 ~~ 0 3
I.. 5 0 6

1 ()
:I. ':) 3...
0 0 0
1+ 5 6

I
I

-~ I

(~

82

--_._._-------------,---,-------- --------------------



()

c./

C···)
->

The 4, Function: GradeUp mCD
The 4symbol is formed by overstriking the I::i symbol and the I symbol.

Monadic (One-Argument) Form: Grade Up 48

The gradeup function result is the index values that would select the elements of
argument B in ascending order. That is, the first element of the result is the index
of the smallest element in argument B, the next element is the index of the next
smallest element in argument B. and so on. Argument B must be a numeric vector.
When two or more elements in the vector have the same numeric value, their posi
tion in the vector determines their order in the result (the index value of the first
occurrence appears first in the output). The number of elements in the result is the
same as the number of elements in the argument:

~~5 :I. I::" r) I~...I .:..

2 '+ 1 I::" :3,J

~A~-6 z I::' :1. I.~ ~5,J

'+ 2 6 5 :3 1
413 6 ~~ :I. s ")«;

1+ 6 :I. 3 5 ")
s;

The following example shows how the grade up function can be used to sort a vec
tor into ascending order:

A~:l.4 12 16 :1.8 15 1:1.
A [¢.AJ

1:1. 12 14 15 16 18

The grade up function is not the inverse of the grade down function because of the
way equal elements are handled; see The' Function: GradeDown for an example
using the grade up and grade down functions with equal elements.

Note: The result of the 4 function depends on the 010 system variable (see Chap
ter 5 for information on the 010 system variable).

Dyadic (Two-Argument) Form

There is no dyadic form.

83

---_._-------------------_._-_._-------



The l' Function: GradeDown CD W
The l' symbol is formed by overstriking the 'i7symbol and the I symbol.

Monadic (One-Argument) Form: Grade Down l'

The grade down function result is the index values that would select the elements
of argument B in descending order. That is, the first element of the result is the
index of the largest element in argument B, the next element is the index of the
next largest element in argument B. and so on. Argument B must be a numeric
vector. When two or more elements in the vector have the same numeric value,
their position in the vector determines their order in the result (the index value
of the first occurrence appears first in the output). The number of elements in
the result is the same as the number of elements in the argument:

~~5 :I. ~5 ~.~ '+
3 s 1 1+ ,'),,-

!pAf'6 "j 5 :1. 1+ :3....
:1, :3 5 6 2 4·

~:3 6 3 :1. ~5 ~!

2 5 :1. :5 6 LI·

The following example shows how the grade down function can be used to sort a
vector in descending order:

A.:l.4 :1.2 :1.6 :1.8 15 :1.:1.
A[~A]

18 16 15 14 12 11

The following example shows how equal elements are handled when using the grade
up and grade down functions:

A.5 2 8 7 3 4 10 1 2 3

\)

CJ

84

7 3 L~

8

L~ :1. () :I. 2 :3 - Positions 2 and 9 and 5 and 10 are equal.

6 1 437

..• )

()

-------------,--1"------------------



( )
/

../

C)

Because the indices for the equal elements are i~ the same order (first occurrence
first) for both the grade down and grade up function, the grade down function is
not the inverseof the grade up function:

A[ljAJ
10 8 7 5 ~ 3 3 2 2 1

AC4lAJ
1 2 2 3 3 4 5 7 8 10

Note: The result of the l' function depends on the 010 system variable (see Chap
ter 5 for information on the 010 system variable).

Dyadic (Two-Argument) Form

There is no dyadic form.

85



The t Function: Take OJ
Monadic (One-Argument) Form

There is no monadic form.

Dyadic (Two-Argument) Form: Take AtB

The take function result is the number of elements specified by argument A, taken
from argument B. Argument B can be a scalar, vector, or other array. Argument A
must be a scalar or vector of integers. If argument B is a vector, argument A must
be a scalar. If argument B is a multidimensional array, argument A must be a vector
with an element for each coordinate of argument B. When argument A is positive,
the first elements of argument B are taken; when argument A is negative, the last
elements are taken. If argument A specifies more elements than the number of
elements in argument B, the result is padded with O's (or blanks for character data):

71':1. " 3 '+ ~3...
:I. r) 3 1+ 5 0 0....

·'71' :I. 2 3 1+ C",)

0 0 1 z 3 4· 5
B~<3 I.J.p:l. " 3 ,+,(..

B
:1. ::! :3 I.J.
5 6 .., 8
9 10 1:1. 1:~

2 ~HEI

:1. " 3.:..

5 6 '7

5 6 7 8 9 10 11 :1.2 .:'-

B~2 2 3p:l. 2 3 I.J. 5 6 7 8 9 10 11 12
B

:I. 2 3
,+ 5 ~)

.., 8 9 (J
10 U. :1.2

:I. :I. :1. tEl
1

,.) :I. :l.tB.:..

1 /)
'7

:I. 2 3tB
:I. 2 3
,+ 5 6

-1 2 3 tEl
,~)7 8 9

10 1:1. :1.2

86



1 ') :5 'oj.'"() s 6 "7 8
9 10 1:1. :I. "-~- ...

1 2.J.B
7 B

:1.:1. 1?'.
'"1 ·"2.j,H

1 2
~::; 6

C)

C\)
/

C:)

The {- Function: Drop IT)

Monadic (One-Argument) Form

There is no monadic form.

Dyadic (Two-Argument) Form: Drop A{-B

The drop function result is the remaining elements of argument B after the number
of elements specified by argument Ais dropped. Argument B can be a vector or
other array. Argument A must be a scalar if argument B is a vector.

When argument B is an array, argument A must have one element for each coordi
nate of argument B. When argument A is positive, the first elements of argument B
are dropped from the result; when argument A is negative, the last elements are
dropped:

3.j,:I. 2 3

B~3 4pl 2 3 4 5 6 7 8 9 10 11 12
B

87

-------------__c----------..------------



The t Function: Index Generator, Index of OJ
Monadic (One-Argument) Form: Index Generator t B

The index generator function result is a vector containing the first B integers, start
ing with the index origin (see 010 system variable in Chapter 5). The argument can
be a nonnegative integer that is either a scalar or a single-element array.

\5
:I. 2 3 4- 5

A.· \ 6
A

12:34-56
~5'" \ 5 -Each of the generated integers is added to 5.

6 '7 8 9 10

Dyadic (Two-Argument) Form: Index of At B

The index of function result is the index of the first occurrence in argument A of
the element(s) in argument B. Argument A must be a vector. Argument B can be
a scalar, vector, or array. The result is the same shape as argument B. If the element
in argument B cannot be found in argument A, the value of the index for that ele
ment is one greater than the largest index of A (010 + pAl:

2 5 3 5 a.s
2 ......I-----------------Second Element

'ABCDEFG'\'C'
3

A~:l.l 22 33 4-4- 55
A\22

2

6

:I. 9
:L 5

9 :1.
<'J 9

A...9 ~~ 8 B ~~ I.> 4- B
B.··2 3p:l. 9 B :I. I:' 2,J

B
8
")
AI.

A\B
3
~!.

\)
'-

88

Note: The result of the t function depends on the 010 system variable (see Chapter
5 for information on the 010 system variable).



()

()

C)

()

The ¢ Function: Reverse. Rotate CD CD
The ¢ symbol is formed by overstriking the 0 symbol and the I symbol. A special
form of the function symbol isa, formed by overstriking the 0 symbol and the _
symbol.

Monadic (One-Argument) Form: Reverse ¢[I] B or ¢B or aB

The reverse function reverses the elements of argument B. Argument B can be any
expression.

89



When argument B is a multidimensional array, the index entry [I] can be used to
specify the coordinate that is acted on. If the index entry is omitted, the last co
ordinate (columns) is acted on. If the eB form is used, then the first coordinate
is acted on: ()

EVIL

f:;AVE:
MUCH

(/)1 2 3 4
l~ 3 2 1

(j)'I...IVE'

2 4-p 'SAVEMUCHMDRETIME'

'-------The first coordinate (plane) is specified;
the planes are reversed.

~-----The third coordinate (columns) is
specified; the columns in each plane are
reversed.

'-------The second coordinate (rows) is specified;
the rows in each plane are reversed.

'-------The last coordinate is acted on.

'-------The first coordinate is acted on.

3(.)\6(j)':)...
~5

..:) i.\ ..
f.) 1::' 1.1,,J

A~-2

A

MDI~E

TIME
<H:t:lA

MORE: "-TIME

SAVE
MUCH

<J)[2::1A
MUCH '\SAVE

TIME:
MORE

<~[:nA

EVA!:) \HCUM

EI~OM

Et1IT
<M

[VAS "HCUM

EROM
EMIT

sA
MORE: "-TIME

SAVE
MUCH

90



Dyadic (Two-Argument) Form: Rotate A<j> [J) B or A<j>B or AsB

'7(H z 3 '+ s
31~·:512

When argument B is a multidimensional array, the index entry [I] can be used to
specify the coordinate that is acted on. If the index entry is omitted, the last co
ordinate (column) is acted on. If the AsB form is used, then the first coordinate
is acted on.

~ 5 6 '7 8 9 10 11 12

;-

The first coordinate (rows) is specified;
1+ therefore, the rotation is between rows.
€!

:1. 2 . 5 2[7 12
~22$(lJ8 r9 6 11 [.

~ J lOJ~J
2(J)[ 2:1B

I.~ \
~5 '-----The second coordinate (columns) is specified;

therefore, the rotation is between columns.:I. ()
2(J)B

4 '''-----The last coordinate is acted on.5
:I. 0
1 2aB

\ ....---The first coordinate is acted on.
12

L~

8
012

B... 3 I+~) :1.
B

:1. 2 ~5

6 "'(1 10 1:1.
:1. ()

2 '7
9 6 :1.:1.
:I. 10 3

o 1
~? ;3
'7 8

:1.2 9
o :I.

2 3
"7 8

12 9
:I. ()

2 7
9 6 U.
:I. 10 3

Af···l
A

5

:I.
6

:1.:1.

1
6

11.

-:t. () "'1 ·'2
A(»C:1. ::tB

9 2:1.:1. B
:I. 6 3 12
5 :1. 0 7 LI·

The rotate function rotates the elements of argument B the number of positions
specified by argument A. If argument A is positive, then the elements of
argument B are rotated to the left (rows), or upward (columns). If A is negative,
the elements are rotated to the right (rows), or downward (columns). Argument B
can be any expression. The shape of the result is the same as that of argument B.

If argument B is a vector, then argument A must be a scalar or single-element array.
If argument B is a matrix, then argument A must be a scalar or vector. When
argument A is a vector, the number of elements in argument A must be the same as
the number of elements in the coordinate being rotated. For example, if B is a 3
by 4 matrix (each row has four elements) and the row coordinate is specified, A
must have four elements:

C~)

C)

o

C)

91



If argument B is an N-rank array, argument A must be a scalar or an array with a
rank that is one less than the rank of argument B. The shape of argument A must
be the same as argument B less the coordinate being acted on:

B~u:5 3 :3p \ 27
B

:I. '") :3e:

'+ "'. 6,., (J7 B 9

iO :1. 1. 12
:1. :5 j. '+ 15
:1.6 j.7 18

19 20 2:1.
22 23 ~~'+

25 26 2
U

?
pB

A~3 3pl 0 0 0 2 0 0 0 0
A

1 0 () The shape of argument A must be the same
() 2 () as argument B less the coordinate being
o 0 0 acted on.

pA
3 3

\)

The middle
element in each
plane is rotated two
positions between
planes.

Argument A

n rows of

n rows of

n rows of

oa

r--~--"'-"''''''ArgUment A

/
1 a a Rotation betwee

the first plane

a 2 a Rotation betwee
the second plane

a a a Rotation betwee
the third plane

:1.8

2:1.
:;~lj.

27
A(~ I:: ~~:l B

~L
9 The second coordinate (rows) is specified;

:J. 2 therefore, the rotation is between the rows.

1::5

A(~[:I.]B

3 '--The first coordinate (planes) is specified;
6 therefore, the rotation is between planes.
9

1!1l 20 21
~~2 2=5 24
r)I'" 26 27.:..'-l

The first element a a
:1.9 u. :1.2

in each plane is
1:3 s 15
:1.6 :1.7 :\.8 rotated one position a 2

between planes.

1.0
4·
·7

:1. 20
r)r) :1.4~~.

"'1::- 26"'......,

'+ ".:.
7 ~S

:I. 8

:LO :1.7
:1.3 :1. 1.
16 14

92



C)

The ~ Function: Transpose, Generalized Transpose GJ OJ
The ~ symbol is formed by overstriking the 0 symbol and the \ symbol.

Monadic (One-Argument) Form: Transpose ~B

The transpose function reverses the coordinates of argument B. Argument B can be
any expression. If argument B is a scalar or vector, the argument is unchanged by
the function:

ill 'ABel)'
ABeD

B~2 3p1 2 3 1+ 5 6
B

:1. 2 3 • 2-row 3-column matrix.
I.~ ~~j 6

iIlB
:I. 1+ .....>---------- 3-row 2-column matrix.

3 6
B~"2 :3 4'P\~~4

B
2 3 l(.

6 '7 8
:1.0 1:1. 12

14· rs 16
1B 1<l 20
22 :~:'5 21.1·

lIlB

()

C)

2 11.1·
6 HI

:1.0 ::!::.~

:5 j I::'. ,J

'7 19
U. ::.~:~

14· :1.6
B 20

12 2'+

93



94

Dyadic (Two-Argument) Form: Generalized Transpose A~B

The generalized transpose function interchanges the coordinates of argument B as
specified by argument A. Argument 8 can be any expression. Argument A must
be a vector or a scalar, and must have an element for each coordinate of argument 8;
also, argument A must contain all the integers between 1 and the largest integer
specified. For example, to transpose the rows and columns of a matrix, argument A
would be 2 1:

B~2 3pl 2 3 4 5 6
B

1 2 :5
I.~ ::,:j 6

1 '~.

2 5
3 6

To transpose the rows and columns of a 3-rank (three-coordinate) array, argument A
would be 1 3 2:

r.-{ ...2 "X I.,,~) \ 2 1+,.)

B
1 :~ :3 '+
s 6 '7' B

,)9 10 :I. :1. 12
An array with two planes, three rows, and four columns.

:L3 :1.'+ :I. s :1.6
:1.7 :LB :L9 20
2:1. ::!.:~ :;'~:3 2'+

:1. ~3 2~B

:I. I::" 9,.J

::~ i.) 10
3 "1 U,

'+ a 12 The second and third coordinates have been interchanged;
forming an array with two planes, four rows, and three

:1.3 17 ~,~ :1. columns.
:1.4· 10 :?2
15 19 23

'\J16 20 ~!I+

(J



C~)
:1. '?"1

1+
:~/!)7

7 :5
"('n

1::-
~~ :1.

••OJ :3 6 L~"~I i

7?'7
C" :5 2 :t. '7 6 4·..!

7';)'7
:~ 7 6 1+ s 1 3

C_)

o

()

(
\1

j

The? Function: Deal CD
Monadic (One-Argument) Form

See the Roll function earlier in this chapter under Primitive Scalar Functions.

Dyadic (Two-Argument) Form: Deal A?B

The deal function randomly selects numbers from 0 through B-1 or 1 through B
(depending on the index origin), without selecting the same number twice. Both
arguments must be single positive integers. Argument A must be less than or equal
to argument B; argument A determines how many numbers are selected.



The.L Function: Decode (Base Value) CD
Monadic (One-Argument) Form

There is no monadic form.

Dyadic (Two-Argument) Form: Decode A.LB

The decode function result is the value of argument B expressed in the number
system specified by argument A. For example, to convert 1776 to its value in the
decimal number system (base 10):

10 10 10 1011 7 7 6

The following illustration shows how it was done:

Argument A (number system) specifies the following:

10 10 10 10

~Ten units in each of these positions
equals one unit of the next position
to the left.

Argument B is a vector with these values:

()
"

eJ

7 7 6

The result is the sameasdoing the following:

6=
7 x10 =

7 x10x10 =
1 x10x10x10 =

6 The units position always represents itself.
70

700~-----The value in the next position is multiplied
1000 by the rightmost value in argument A.
1776

The value in the next position is multiplied
by the two rightmost values in argument A,
and so on.

96

The arguments must be numeric. If one argument is a scalar or single-element array,
the other argument can be a scalar, vector, or other array. The result will have the
rank of the larger argument minus one.



If either argument A or B is not a scalar, they both must have the same length, or
an error results.

Note: The value of the leftmost position of argument A can be zero, because even
though there must be a value in that position, it is not used when calculating the
result. For example:

C) o 10 10 1011 7 7 6
:1.776

If either argument is a scalar, the value of that argument is repeated to match the
length of the other:

10 J. :3 2 5

:1.0 10 10 .I. 7
777

If argument A is a vector and argument B is a matrix, argument A must have an
element for each row of B:

B~2 3p:l. 5 2 7 9 ~

()
10 :1.0 .I. B

1. 7 ei9 21.1,

If argument A is a matrix and argument B is a vector, each row of argument A is a
separate conversion factor; argument B must be the same length as a row of
argument A. The result will be a vector with one element for each row of
argument A:

3
2 x5 = 10

1 x10x5 = 50
63

A~2 3p:l.O :1.0 10 0 10 5
A

10 :1.0 :1.0
n 1 0 s

A.I,:I. 2 3
12:'5 (S~5 ....1-------------------

A.l.2 ::~ 1·1,

23'+ :I.:J. 9

o

C)

C)
97



If both arguments are matrices, each row of A (conversion factor) is applied to each
column of B. The result is a matrix containing the converted values for each column
of B:

A.2 3p10 10 10 20 10 5
B~3 2p1 2 2 4 3 3
A

10 10 10
20:1.0 5

B
1 2
~~ 4
3 3

AlB
123 2...3

63 12~~

The following examples convert hours, minutes, and second to all seconds:

24 60 60J.1 30 15
5... 15

The following illustration shows how it was done:

Argument A (number system)

24 60

!
60 units (seconds) equals one unit of
the next position to the left.

-- 60 units (minutes) equals one unit of the
next position to the left.

\J

1..------------24 units (hours) equals one unit of the
next position.

Argument B

1 (hour) 30 (minutes) 15 (seconds)

The result was obtained as follows:

98

15
30x 60

1x60x60

= 15 seconds
= 1800 seconds

3600 seconds
5415 seconds

(J



()

C)

C)

C)

C)

The T Function: Encode (Representation) m
Monadic Form

There is no monadic form.

Dyadic Form: Encode AT B

This function is the reverse of the decode function. The encode function result is
the representation of argument B in the number system specified by argument A.

Note: Be sure argument A is long enough to completely represent argument B or
an incorrect answer results.

For example, the representation of 1776 in the decimal number system (base 10):

:1.0 in :1.0 :I.0,.:lT76
:1. ""1 ""1 6

The following illustration shows how it was done:

Argument A (number system) specifies the following:

10 10 10 10
~ Ten units in each of these positions

equals one unit of the next position to the
left.

Argument B has this value:

1776

99



100

The result is the same as doing the following:

10xl0xl0 = 1000

10xl0 = 100

10

Note: The value of the leftmost position of argument A can be zero. For example:

0:1.01.0 :1.01'17"16
:I. "1 "1 6

If both arguments are vectors, the result is a matrix. Each column in the result con
tains the representation for each element of argument B expressed in the number
system specified by argument A:

:I. () :1.0 r L':"O 2 lt·,.J r
5 z
9 I.~

:I. () ~:5 T 36 2l~

7 4·
1 4·

3
5r;7

15
2

\)



C)

If argument A is a matrix and argument B is a scalar, then the result is a matrix.
Each column of the result contains the values of argument B expressed in the
number system specified by the corresponding column of argument A:

A.3 2pl0 20 10 10 10 5
A

20
:1.0

5
B~

ArB

~A r B .....t-------- The result can be transposed so that
1 2 ~~ each row represents the values of
2 4- 3 argument B expressed in the number

systems specified by argument A.

If argument A is a scalar or vector and argument B is a matrix, the result is a matrix
or N-rank array, with one plane for each element of argument A:

At·10 10 10
B.2 2p123 4-56 789 000
A

10 10 10
B

1.J·56
789 ()

ArB
I.J.
o

5
o

6
o

101



If both arguments are matrices, the result is an N-rank array, with one plane for
each element of argument A. Each column of argument A represents a number
system:

A~"2 ~~(.Ij. 0 20
A

iO 20
10 20

EH";~ 2(.> 99 88 77 66 .:B
88

77 66
ArIl

a }7 6

,J'+ }:3 Result of the number system in
column 1 of argument A

B Result of the number system in

6 column 2 of argument A

B
17 6

The following example converts seconds to seconds, minutes, and hours:

2'+ 60 60 T ~.'i'+:I.~:;

:I. 30 :1.5

J

102

'~----------'----I



()

()

()

The following illustration shows how it was done:

Argument A (number system)

24 60 60

1-----60 units (seconds) equals one unit of the
next position to the left.

1--------60 units (minutes) equals one unit of the
next position to the left.

1----------24 units (hours) equals one unit of the
next position to the left.

Argument B

5415 (seconds)

The result was obtained as follows:

/1
60 x 60 = 3600 15415

3600

18~

60 11815
1800

II:

103



The E Function: Membership

Monadic (One-Argument) Form

There is no monadic form.

Dyadic (Two-Argument) Form: Membership AEB

The membership function result is a 1 for each element of argument A that can be
found among the elements of argument B and a 0 for every element that cannot be
found. The shape of the result is the same as the shape of argument A.
Arguments A and B can be any scalar, vector, or array:

o
, A ' f: ' [{ANNA'

:I.
• ABC' .,; , BANANA'

:t. :I. 0
Af·2 2(.):1. :-5 s "7
B~.. I+ '+ P12 4·:7i 78
A

:L :-5
~5 "7

B
:1.2 1.1· ~.:i "7B :1.2
1·1·~:j 7B :1.2 1.~~7'i

7B :1.2 '+~::i 78
:1.2 '+~5 7B :1.2

Af:B
0 0
() 0

B~"'~' '+(.):1. 2 '+ ,::' '7 B,.1

A
:J. 3
~:5 '7

B
:I. 2 4· 5
7 a :1. ")....
1+ s 7 a
:I. ~.~ ,+ 5

A+::B
:1. ()

:t. :I.

iJ

;.~)

\J
104

---..--------------r--



The Ifl.Function: Matrix Inverse, Matrix Divide (]J CIJ
The fE symbol is formed by overstriking the 0 and ths e symbols.

Monadic (One-Argument) Form: Matrix Inverse l±I

If argument B is a nonsingular matrix. fEB is the inverse of B. If the matrix does
not have an inverse, then DOMAIN ERROR results:

105

:L.2

o.T7~5
·'0 . 1.2~'.i

., :1,

0.6

I~A
.')
,;..

~lti

'"0 . B7~:'.i

o.. 62:5
Af'2 2(.):1,
A

:L 2
:'5 (:.\

m..i
DDMAIN EI~R()R

m,~

Af-3 2p3 5 1. 2 2 ~

f.'

The matrix divide function solves one or more sets of linear equations with co
efficient matrices. Argument B must be a numeric matrix. The number of columns
in B must not exceed the number of rows. Argument A must be a numeric vector or
a matrix. The length of the first coordinate of argument A must equal the length

of the first coordinate of argument B.

Af-2 2(.1:/. :~ :':; 'r
A

:3 s
:I. ::?
2 loJ.

If argument B is a rectangular matrix. fEB is the pseudoinverse of the matrix (least
squares solution):

The matrix inverse function inverts a nonsingular matrix or computes the pseudo
inverse of a rectangular matrix. The result is a matrix. Argument B must be a
numeric matrix, and the number of columns must not exceed the number of rows.
The number of columns in the argument is the number of rows in the result. and
vice versa.

Dyadic (Two-Argument) Form: Matrix Divide AfEB

o

C)

C)

C)



106

The rank of the result is the same as the rank of argument B. The length of the
first coordinate of the result is the same as the number of columns in argument B.
If argument A is a matrix, then the second coordinate of the result is the same
length as the second coordinate of argument A.

If argument B is a square matrix and argument A is a vector, then the result is
the solution to the set of linear equations with coefficient matrix B and right-hand
sides A:

A+-8 3
B+-2 2p:L 2 3 -t
AEIB

2 3
IH· ~.! 2 ~);3 s :L ;.~

B

26 9E1B
7 1

If argument B is a square matrix and argument A is a matrix, then the columns of the
result are the solution to the sets of linear equations with coefficient matrix Band
right-hand sides equal to the columns of A:

Ai··2 2p26 :1.6 9 6
B+-2 2p:~ 5 :I. 2
A

26 16
9 6

B
3 s
:l 2

AF.lB
7
:I.

If argument B is rectangular, then the result is the least squares solution to one or
more sets of linear equations:

Ai<3 3~)t :to :to L~
... ") 4- 7 -t~

IH-3 2p3 :5 :I. 2 ~~ I.j.

A
U. 14- -"~

4- ., ..i

11 11.J. -"4
B

3 :5
:I. 2
? 4-•..

Aln~

.'4- -7 :L
4-.6 7 -:to

)

i\J

()

I)

!)

)



C)

()

C)

()

C)

The .t Function: Execute CD [J
The .t symbol is formed by overstriking the .L and the 0 symbols.

Monadic (One-Argument) Form: Execute .tB

The execute function evaluates and executes argument B as an APL expression.
Argument B can be any character scalar or vector.

At-' :1.+2'
A

1+2
J. A ----The character vector in the variable A is executed.

Ct-'CCA*2)+CB*2»*,5'
A.<5
BH~

.t.e

10

Dyadic (Two-Argument) Form

There is no dyadic form.

107



The" Function: Format CIJ CJ
The" symbol is formed by overstriking the T and the 0 symbols ..

Monadic (One-Argument) Forms: Format ,,8

The monadic format function result is a character array that is identical in appear
ance to the one displayed when the value of argument B is requested:

B~"~:~ Lh:q :1.2
B

:I. ::~ -1. I~.-.l
,::- 6 ":J B.,.J I

? :1. () :1.:1. 12
)(~.. 'f' B
x

:I. "j :3 '+e:
I::' (.) 7 HOI This matrix is a character matrix.-.l

0:'} :1. () :1.:1. 12

Dyadic (Two-Argument) Form: Format A" B

The dyadic format function result, like the monadic format function result, is a
character array. However, argument A is used to control the format (the spacing and
precision) of the result. Argument A is a pair of numbers: the first number deter
mines the total width of the format for each element and the second number deter
mines the precision used.

:)

iJ

108

,) ,

I
i

I
I,------------------



If the precision number is positive, the result is in the decimal form, with the number
of decimal places specified by the precision number. If the precision number is
negative, the result is in scaled form, with the number of digits to the left of the E
specified by the precision number:

2p12.34 -34.567 0 12 -0.26 -123,45

-:3'+. ~.)67

12
"':1. 2~~ . 4~:.';

2TB
o

c)

B~":~

B
12.31+
o

'-0.26
X~9

X
12 . ~~I.~ ·-:.31~. , 57

.00 :L2.00
.- ,.,/. ..··1 ",-1' I'"I . ':"<:'1 ...... ,;) . +,.J I
~~

~'

Ct-9 -~~'fB

C
1, 2EO:l. ... ~~. ~5EOl
O.OE"·O:1. 1.2E01

-'r, 6E· ..· () j I ..··1 '1E" ()'1 II A"., '. . ..• ,..... :".. ,,'n

~~

Width of nine positions

(left margin)

Width of nine positions

(left margin)

C)

C)

If the width entry in argument A is zero, the 5100 uses a field width such that at
least one space will be left between adjacent numbers. If only a single number is used,
a width entry of zero is assumed.

12. 3'+ -3L~. 57
.00 12.00

Width of eight positions

(left margin)

109



Each column of an array can be formatted differently by using a control pair in
argument A for each column of the array.

F~"6 2 6 lTB
F

l2 . 3 1.1. "'31+. t.>
.00 :1.2.0

". ,.) (. .••• , ")"2 II • ':"<0lJ .. .:.. ,;) • 41

~~ Width of six positions

(left margin)

110

Notes:
1. If the DPW system variable is set to an invalid value, DPW IMPLICIT ERROR will

result when the format function is used.
2. Even if the specified format causes all of the significant digits to be truncated,

the sign of the original number is retained. For example:

'+ z- ... 0004·

L-----------The sign is retained.

(\~)

()



()

o

()

APL OPERATORS

An APL operator applies one or more dyadic primitive scalar functions to arrays.
The operators are reduction, inner product, outer product, and scan.

Reduction Operator (/) CD
The symbol for the reduction operator is I. The forms of reduction are: (D/[I] B or
<D/B or<Dt B, where(f)can be any primitive dyadic scalar function that is applied
between each of the elements of a single vector.

The rank of the result is one less than the rank of argument B, unless argument B
is a scalar or a single-element vector; then the result is the value of the single element
of argument B. When argument B is a vector, the reduction of that vector is the same
as putting the primitive dyadic function between each of the elements:

IH<I. 2 :3 1+
+/B

10
1+2+~5+1+

10

If argument B is an empty vector (see Chapter 3). then the result is the identity
element, if one exists, for the specified function. The identity elements are listed
in the following table:

Identity Element Table

C)

()

()

Dyadic
Function

Times
Plus
Divide
Minus
Power
Logarithm
Maximum
Minimum
Residue
Circular
Binominal
Or
And
Nor
Nand
Equal to
Not equal to
Greater than
Not less than
Less than
Not greater than

x

+

*
~

r
L
I
o
!
v
A

V
A

>
2

<
~

Identity
Element

1
o
1
o
1

7.237 E75
7.237 E75

o

1
o
1

\

00
1

} Apply for
, logical

1 j arguments

~ \ only

111



---,---------------'------'----------------------------

When argument B is a multidimensional array, the coordinate of argument B that is
acted on is eliminated:

,'J

I

i) I
• I

,

i"J- I
'. I

()

3

Q.
9

2
§.
7

1
4
5

B~"2 3p:1.
B

:,3
of.>

+/f{
"'-....--------The last coordinate (columns) is assumed;

+I I:: 2::1 B therefore, the reduction is between columns:

+/B~ 1+2+3=6

... / 1::1. ::l F.I The second coordinate (in this case, columns)

~
iS specified.

B~"2 3 1+(.) I. 2
'
+

B The first coordinate (rows) is specified;
~~ :3 4 therefore, the reduction is between rows:

5 6 "7 B
<'I :1.0 :1.:1. :1.2

:l.1.J. :l. ~5 :1. 6
1.7 :I.B :1.9 20

+/1:1.][{
:1.6 :1.13 2o------The first coordinate

22 24, 26 2B (planes) is specified;
30 ~~2 34 3(") therefore, the reduction

tH' \ 0 is between planes.

B

:I. ")
~:..

I.~
I::·
'..'

I.> :1. s

6 :I. :5

~... "7 9

5 7 9

When argument B is a multidimensional array, the [I] index entry is used to specify
the coordinate acted on. If the index entry is omitted, the last coordinate (columns)
is acted on. If the<D t B,form is used, the first coordinate is acted on. Indexing along a
nonexistent coordinate will result in INDEX ERROR.

+/B
o

riD
"'''I . ~:,~37E7:~i \J

If argument B is an array that has a coordinate whose dimension is zero, then reduc
tion along that coordinate yields an array whose elements are equal to the identity
element for the function. The identity element for each function is given in the
preceding table.

112

.._--,._------------------



Inner Product Operator ( .) CJ

C)

The symbol for the inner product operator is • (period). The inner product opera
tor is used to combine any two primitive scalar dyadic functions and cause them to
operate on an array. An example of its use would be in matrix algebra, in finding
the matrix product of two matrices. The form for inner product is: ACD .@,
where(Dand@are any primitive scalar dyadic functions. Function@is performed
first and then(f)reduction is applied between the results of function@.

The result is an array; the shape of the array is all but the last coordinate of
argument A catenated to all but the first coordinate of argument B (-1 -} pA).(1 -} pBI.
If argument A and argument B are matrices, the elements in each row of argument A
are acted on by the elements in each column of argument B:

,...---------(1x51 + (2x7) =19
6

~ A+. xF,l

A+-2 2pl 2 3 \.f.
FJ+-2 2p5 6 7 8
A

The above example is the same as doing the following for each element in the result:

1+3 50

( :t.X!5)+(2x7)

1+3
(3x6H·(\.f.x8)

50

113



The shapes of argumentsA and B must conform to one of the following conditions:

1. Either A or B is a scalar.

\)
Ai-2 2p1 2 3 '+
Bi-5
A

..--------(1x5) + (2x5) = 15I
/A+,xB
35

2. The last coordinate of argument A is the same length asthe first coordinate
of argument B. (If both are matrices, the column coordinate of argument A
is the same length as the row coordinate of argument B.)

A~3 2p1 2 3 '+ 5 6
B.2 3p7 8 9 10 11 12
A

1 2.t.
5 6

B
7 9

10 :1.2
A+ • x~ ,E!::.~ _

/
", (3x8) + (4x11) = 6827 30 3~~

61 • 75
95 ],06 ],:1.°7

114



(\)

c)

If argument A and argument Bare N·rank arrays, the elements in each row of
argument A are acted on by the elements in each plane of argument B:

115



Outer Product Operator (0 .) Q u
The symbols for the outer product operator are 0 •• The outer product operator
causes a specified primitive scalar dyadic function to be applied between argument A
and argument B so that every element of argument A is evaluated against every ele
ment of argument B. The form of the function is: A 0 .(DB, whereC!)is a dyadic
primitive scalar function. Arguments A and B can be any expressions. Unless
argument A is a scalar, the shape of the result is the shape of argument A catenated
to the shape of argument B. If argument A is a scalar, the shape of the result is the
same as the shape of argument B:

A~"2

EH.. 1 ~~ 3 '+ Ii]A
2

B
1 2 3 '+

A".xB
z '+ 6 8

A~"l 'J 30(..

Bt-3 '+ 1::'
...1

A

B
1+ 5

A.,. xB

.. ~)'+ ",.
.J

8 HI
12 15

The above example is the same as doing the following for each element in the result:

:t.x3
3

:I. x4·
'+

:l.x5
I::'
'-J

2x~5

6
2x,+

8
2x5

:1.0
~3x3

9
~3 X '+

1')
A ..

3x5
:t ••.
. .J

.:

116

--------------.-r----------------------r---



••

More examples:

Af-2
Bf-2 3pl 2 3 4 5 6
Au,+B

31+5
678

Af-2 2p1. 2 3 4
Bf-3 ~~p \ 9
A

-2+1=3

••

C__ '

(-)

()

c)

'.'1-4 s6 "7 8
("/ 1. () 1. 1.

5 6
'7 8 9

10 1.1.

~flfr·6 "7
8 9 10

11.12 1.3

3+1=4

4+1=5

117



Scan Operator (\) CD
The symbol for the scan operator is \. The forms of scan are:<D \[I] B,<D\B or
<D~B, where (f) can be any scalar dyadic primitive function and argument B is a
numeric vector or other array. The scan operator, like the reduction operator,
operates on the elements of a single vector, and is the same as putting the primitive
dyadic function between each of the elements. But the scan operator accumulates
the results as the operation is repeated along the vector. The shape of the result is
the same as that of the input argument:

/)

:I.

+\1 2 3 '.J. 5
:I. 3 6 :1.0 :l.5 ..•......-----This result is the same

+1 as doing the following for
each element in the result.

+:1. ... 2
3

+:1.+2+3
6

+:I....2+3... '.J.

+:I.+2+3""+"'!;;;
15

)
13~<5 4-,0 \ 1:~

B
1 234
s 6 '7 8
9 10 1:1. 1~~

+\!::I. J13 ....-----The first coordinate (rows) is specified; therefore,
2 3 If. the scan is between rows.
8 :1.0 :1.2

18 2:1. 24·
+ ...-----The second coordinate (columns) is specified;

therefore, the scan is between columns.

When argument B is a multidimensional array, the [I] index entry is used to specify
the coordinate the scan is to proceed along. If the index entry is omitted, the last
coordinate (columns) is acted on. If the(D ~B form is'used, the first coordinate
is acted on.

:1.:1. :I..
9 19 30

+\13
:I. 3 6 10
~5 1:1. ra 26
9 19 30 4-?...

+\13
1 2 3 4- /J6 8 :1.0 :1.2

15 18 21 24·

!.J
118

.----------------.-,--------.------------r-



Ai··2 3 'of.p \ 24·
A

1 ~.~ ~5 'of.
,::- 6 7 0,.1

9 :1.0 U. :I. ~~

1.3 j.4- 15 :1.6
:1.7 :1.8 :1.9 ~~O

C_ 2:1. ':)? 23 21~.A•• A ••

+\E:\.JA .. The first coordinate (planes) is specified;
1. ,') :3 Iof. therefore, the scan operation is between planes.,,'..
.::' 6 7 8,.1

~~ :1.0 :1.:1. 1.2

C_! :\.4- 16 1.8 20
zz 24- ~~6 :?8
~5 0 3~.~ :34· ~~6

+\E2::1A .. The second coordinate (rows) is specified;
1. z ~5 4· therefore, the scan operation is between rows
6 B :1.0 :1.2 for each plane.

:\. ~i :1.8 2:\. 2l~

:1.:3 :1. 1+ :1. ~5 1.6
~50 ~~::? :31~. 36
5:1. ~:)4- ~5'7 60

+\1:3JA .. The third coordinate (columns) is specified;
:I. :3 6 i o therefore, the scan operation is between columns

C~)
1::' U. :\.8 ~~6 for each plane.,.1

9 :1.9 30 4-~~

:I. ~5 27 1+2 58
:l7 ~35 ~)4- 74-
21. 4-~5 66 90

c

(,I

119



120

SPECIAL SYMBOLS

Assignment Arrow + []

The assignment arrow causes APL to evaluate everything to the right of the arrow
and associate that value with the name to the left of the arrow. For example,
A+2+3 means that 2+3, or 5, is assigned to the name A. When A is used in a later
APL statement, it has a value of 5.

Branch Arrow -+ Q
The branch arrow is used for the following:

• To change the order in which the statements are executed in a user-defined
function. See Branching in Chapter 6 for more information on branching.

• To resume execution of a suspended function (see Suspension in Chapter 7).

• To clear the state indicator (see State Indicator in Chapter 7).

QuadD m
The quad is used to ask for input and to display output. To display output, the quad
must appear immediately to the left of the assignment arrow. The value of the APL
expression to the right of the arrow is assigned to the quad and will be displayed.
For example:

~)+[]~..1++3
"(

1.2

The 7 displayed is the value assigned to the quad. The 12 is the final evaluation of
the APL expression.

When used to ask for input, the quad can appear anywhere except to the immediate
left of the assignment arrow. Execution of the expression stops at the quad and re
sumes when an expression is entered to replace the quad. When a quad is encountered,
the quad and colon symbols m: )are displayed to indicate that input is requested.
For example:

[]:

4·
:L () 0

See Chapter 6 for more information on quad input or output within a user-defined
function.

J

)

: -, -)

.• )

)



c

()

Ouad Quote!!l CIJ Q
The quad quote symbol is formed by overstriking the quote symbol I and the quad
symbol O. The quad quote operates the same way as the quad when requesting
input, except that the data entered is treated as character data. For example:

x-u
CAN'T'

X
CAN'T'

X~r.:1

'CAN' 'T'
X

'CAN' 'T'

Note: If a system command is entered for a quad quote input request, the system
command is treated as a character string and will not be executed.

See Chapter 6 for more information on quad quote input or output within a user
defined function.

Comment A GJ Q
The comment symbol is formed by overstriking the n symbol and the 0 symbol.
The comment symbol must be the first nonblank character in a line and indicates
that the line should not be executed. For example:

v'PLUS[[]]'V
'V ONE PLUS TWO

[1::1 ATHE PURPOSE OF THIS FUNCTION IS
[2J ATO ADD TWO NUMBERS TOGETHER!
[;'3:1 ONE+TWO

'V
:L2 PLUS 34,

121



Parentheses ()

Parentheses are used to specify the order of execution. The order of execution is
from right to left with the expressions in parentheses resolved (right to left) as they
are encountered. For example:

Note: When a value is assigned to a variable within parentheses and is used as the
argument for a function, the value assigned to the variable is used by the function,
regardless of any previous value assigned to the variable. For example:

Af"+
(Afo~5 ) +A

,-...,
(,-)

:\)

122

------.-------------------.,--------'-----------'r--



Chapter 5. System Variables and System Functions

SYSTEM VARIABLES

System variables provide controls for the system and information about the sys
tem to the user. These variables can be used by a function as arguments the same
as any variable.

The following is a list of the system variables and their meanings. A complete des
cription of each follows the list:

Notes:
1. To find the value assigned to a system variable, enter the variable name. The

value assigned to the OCT, 010, OPP, OPW, ORL, and OLX system variables
can be changed by using the assignment arrow ('-1. For example, entering
010.-0 assigns the value 0 to the 010 system variable.

2. The use of any system variable causes an entry to be made in the symbol table
for that symbol. Therefore, if the symbol table is full, a SYMBOL TABLE FULL
error is generated.

(I

Variable Name

OCT

010
OPP

OPW

ORL

OLC

OWA

OLX

OAV

Meaning

Comparison tolerance

Index origin

Printing precision

Printing width

Random link

Line counter

Workspace available

Latent expression

Atomic vector

123

-------------_._------------------------
I



Comparison Tolerance: OCT

The value of this variable determines the maximum tolerance (how different the two
numbers must be to be considered unequal) when using any relational function and
at least one argument is a noninteger. For example. two numbers are considered un
equal if the relative difference between the two numbers exceeds the comparison
tolerance value. The following illustration shows how the comparison tolerance
works with the relational functions:

Value of argument A
o

±OCTxA
~

f------t- A~~< B---: l
• A~B+-----1 )
-A>B

Real number line

The relationship of
any value (argument B)
to argument A

(J

Note: The OCT function considers any number in decimal form a noninteger. For
example. 1000 is an integer and 1000. is a noninteger.

The value of the comparison tolerance variable also affects the floor and ceiling
functions. If an integer is in the range of the right argument plus or minus the
comparison tolerance. the integer is the result. For example:

3

3

3

[ICT4" • (L3
1.2.9(3

1..2.96

r3.04·

2.98 + .03 = 3.01 (The integer 3 is in the range of
2.98! .03.)

2.96 + .03 = 2.99

3.03 - .03 =3 (The integer 3 is in the range of
3.03! .03.)

3.04 - .03 = 3.01

124

In a clear workspace. the comparison tolerance value is set to 1E-13 (see
Chapter 3 for an explanation of scaled representation).

()

(J



Index Origin: 010

(~
The value of this variable determines the index origin. The value can be either 0
or 1, which means that the first component of a vector or array is indexed with
a 0 or 1, depending on what the value is set to. In a clear workspace, the value
is set to 1.

The functions affected by index origin are indexing (LI), index generator (1),

index of h), roll (?), deal (?), grade up (¢), and grade down (t),

Note: All other examples in this manual are shown with the index origin set to 1.

Printing Precision: 0 PP

The value of this variable determines the number of significant digits displayed for
decimal numbers and for integers with more than 10 digits. The value of this var
iable does not affect the internal precision of the system. The value can be from
1 to 16. In a clear workspace, the value is set to 5. This means that the number
of significant digits displayed for decimal numbers or for integers with more than
10 digits is limited to 5 and scaled representation (see Chapter 3) is used (if re
quired). For example:

The index values represented by the
result start from 0 rather than 1.

[]IO~"O

:I. ")
~5 1+ \ :I. ~:~ :3 '+~..

0 :I. :~~ 3
,t.6 ~5 1.1, s

:I. r) "II ()4',. \J

\ 1+
() :1, ;.~~ :3

[] .l:O~.. :l.

..

..
:1.234-6

1234-~7i6. 7
1. . 231+6E~5

r-------Integer Examples
r) ,::- ~ -, '

1.,:..34-',16,1390
LB4-56789 ()

:I. ::~~54·56 "?B9 0 :1.
1. • 23'-1-1.>1:.:1. o

125

--------------'1"'-----------------------



126

Print Width: DPW

The value of this variable determines the length of the output line for both the
display and printer. The value can be from 30 to 390. In a clear workspace,
the value is 64. If this variable is set to a value greater than the length of one
line across the display or printer, the output will overflow onto the next line.

Random Link: oRL

The value of this variable is used in generating random numbers. The value can
be from 1 to 23 1_2. In a clear workspace, the value is 7*5 (16807). This value
is changed by the system each time a random number is generated.

Line Counter: 0 LC

This variable is a vector. The first element is the function statement number
currently being executed. The next element is the number of the statement
(in another function) that invoked the function being executed. The remaining
elements follow the same pattern. The user cannot set this variable but can dis
play it. Attempts to modify 0 LC are ignored by the system. For more informa
tion on oLC, see Chapter 7.

Workspace Available: oWA

The value in this variable indicates the amount of unused space (the number of
unused bytes) in the active workspace. The user cannot set the value for this
variable but can display it. Attempts to modify oWA are ignored by the system.

Latent Expression: 0 LX

A character vector assigned to the latent expression variable is automatically
executed as an expression by the execute C~) function when a stored workspace
containing the latent expression is loaded into the active workspace.

Uses of the latent expression variable include the form oLX+-'G', where a func
tion named G is executed when the stored workspace is made active. The form
oLX+-"'MESSAGE WHEN WORKSPACE IS MADE ACTIVE'" displays the mes
sage MESSAGE WHEN WORKSPACE IS MADE ACTIVE when the stored work
space is loaded into the active workspace.

Atomic Vector: oAV

The atomic vector is a 256-element vector that includes all possible APL charac
ters. The following example shows it can be used to determine the indices of any
known characters in the vector (assuming 010 is 1):

OAV\ • ABC'
87 88 89

(~)

')

:)

-.-_._---------------------..,.---------------------------~---
I



Appendix D contains a list of the characters in the atomic vector. The most com.
mon use of the atomic vector is for generating line feed and cursor return charac
ters to arrange output. The following example shows how the atomic vector can
be used to generate these characters.

The function called NAMES will display your first and last name. Each name will
start at the left margin and each character in the name will be one line lower than
the previous character:

'VIRGINIA' NAMES 'WINTER'

VNAMESI:IJJV
V A NAMES B;OUTPUT;I;J;DIO

[]IOi":!.
,.H·( ~), X-n+h'(J, A

ASTATEMENT 5 CATENATES THE ARGUMENTS TOGETHER
AAND ALSO PUTS A BLANK CHARACTER BETWEEN EACH CHARACTER
OUTPUT~«2xJ)p 1 O)\(,A),(,B)

ASTATEMENT 8 PLACES A LINE FEED CHARACTER ([]AV[160)
AIN EACH BLANK ELEMENT OF OUTPUT
OUTPUT[2x\J-l)~[]AV[t60]

ASTATEMENT 11 PLACES A CURSOR RETURN CHARACTER (DAVI:J57J)
AAFTER THE FIRST NAME
OUTPUT[2XIJ~[]AV[157J

ANOW WHEN THE CHARACTER VECTOR QYIPYI IS DISPLAYED,
AAPL RESPONDS WITH THE APPROPRIATE ACTION WHEN A LINE
AFEED CHARACTER <DAV[160J) OR CURSOR RETURN CHARACTER
A(DAVl:t57]) IS ENCOUNTERED IN THE CHARACTER STRING

OUTPUT

V
I

R
G

I
N

I
A

W
I

N
T

E
R

[J]
en
1:3:1
1:4-]
t::~5J

[6:1
1:7J
1:8::1
1::9]
J::lO]
1::1.1.]
[:1.2:1
1::1.3]
1:14-J
1::1. 5)
[:I.6J

'f/

()

127

~-_._---------------



SYSTEM FUNCTIONS

System functions are used like the primitive (built-in) functions; they are monadic
(one argument) or dyadic (two arguments) and have explicit results.

Following is a list of the system functions and their meanings. A complete des
cription of each follows the list:

System Function

OCR name

OFX name

OEX name

ONL class

character ONL class

ONC name

Meaning

Canonical representation

Fix

Expunge

Name list

Name list beginning with the specified character

Name classification

J

The oCR Function: Canonical Representation

The OCR function formats a user-defined function into a character matrix. This
function is monadic (takes one argument); the argument for the OCR function
must be a scalar or vector of characters representing the name of an unlocked
user-defined function. For example, you have the following user-defined function:

[J.J
[;~ J
[;3J
[1+ J
[5J

V I~.·J:NTG A
I~~'A~)O

I ~.. :I.
STAIH: sc J::H·A

h·I+1.
-'(I:fA)/STARTV

128

The function INTG is used to create a vector whose length and contents are spe
cified by the input argument:

INTG LJ.
1+ LJ. 1+ I~.

INTG 7
7 ., ., ., ., ., 7

Ji



()

..
c)

To format the function INTG into a character matrix and assign the matrix to a
variable named VAR, the following instruction would be entered:

VARf-[ICR 'INTG'

VAR is displayed as follows:

VAR
Rf·INTG A...·------First row is line 0 of the function.
I~f-Ap 0
I~<1.

START: RI:::CH"A
If·I"':I.
..~ (I :;;A) /START

pVAR......----Indicates VAR is a 6-row, 12-column matrix.
(.) :1.2

Notice that the line numbers are removed along with the opening and closing 'V.
Also, labels within the function are aligned at the left margin.

Now matrix VAR can be changed by simply indexing the elements:

VAR[I+i :1.2H·· I ......_-_The element in row 4, column 12
VA R is changed to I.

Rf-INTG A
I~~-Ap 0
I f-:l.
BTAln: IH::[]~"I

I~"I+:L

...(I :;;A) /GTAIH

To format a matrix created by the OCR function into a user-defined function, use
the DFX function. The DFX function is discussed next.

The OFX Function: Fix

The DFX function forms (fixes) a user-defined function from a character matrix
(that was most likely formed using the OCR function). This function is monadic
(takes one argument); the argument for the OFX function is the name of a matrix
to be formed into a user-defined function. If an error is encountered (invalid char
acter, missing single quote, etc) as the matrix is being formed into a user-defined
function, the operation is interrupted, the number of the row in error minus one
is displayed, and no change takes place in the active workspace (the user-defined
function is not formed).

129



To show how the OFX function works, we will use the matrix created in the pre
vious example (see the OCR function). To form matrix VAR into a user-defined
function, the following instruction would be entered:

[/FX VAI~ APL responds with the name of
INTG ....-..--------the user-defined function.

The OFX function produces an explicit result (the array of characters that repre
sents the name of the user-defined function), and the original definition of the
user-defined function (if there was one) is replaced.

Now the function INTG can be displayed and executed:

rJ

INTG 5
:I. 2 3 '+ 5

INTG B
:l.2~31+5678

[:L J
C2J
1::;3]

[Lt· ]
1:5]

VINTGCI:DV
V R~-INTG A

R~'ApO

h·1
START: 1~r.:t::H-I

If·I"':!.
-. (I ~;A) /STAIH

Following is an example that shows how the OCR and OFX functions can be
used to modify the definition of a function within another function. This
example will use the following user-defined function:

I::l.]
[2]
1:3]
C,+]
1:5]

VINTG[[]]V
V R~'INTG A

R~ApO

I~:I.

START: RI: I :H·A
H·I+:L
... (I ~;A) /START

130

INTel '+
'+ '+ '+ '+



Format the function into a matrix:

Mi"[]CI~ 'INTG '-Canonical Representation
M

Ri- INTG A
l~foA,p ()
I i"1.
BTMH: 1~[IJi"A

Ii··I+l
··H I::;A) ISTAtH

Now, define a function called CHANGE, which, when performed, will execute a
modified version of INTG.

INTG 1+ .. Execute INTG.

'+ '+ '+ 1+
CHANGE .. Execute CHANGE.

:I. 2 3 '+
INTG '+ .. Execute INTG again.

'+ 4· '+ 4·

c

1::1. J
1:2::1
1:3::1

INTG is made a local function so that the
~ _ ., _. ..". I global version will not be change (the local

V U IANbE. I I NIb, Y version will not exist after the execution of
~11"1 .., ") -J "1"
I .. -1'1 ..••••. i·· .. CHANGE is complete).
Yt'[]FX M

INTG 1.f.'iJ-=------~ Assign the explicit result of the DFX function
'iJ to Y so that it will not be displayed.

Execute the modified version of INTG.

131

--_._.__._---------------



The 0 EX Function: Expunge

The OEX function erases global objects or active local objects specified by the
argument from the active workspace (unless the object is a pendent or suspended
function). This function is monadic (takes one argument); the argument must be
a scalar, vector, or matrix of characters.

Thus, if object AS is to be erased, the following instruction would be entered:

Note: Even after the object is erased, the name remains in the symbol table (the
part of the active workspace that contains all of the symbols used).

The 0 EX function returns an explicit result of 1 if the object is erased and a 0
if it is not erased or if the argument does not represent a valid name. When the
oEX function is applied to a matrix of names (each row represents a name), the
result is a logical vector (zeros and/or ones) with an element for each name. The
OEX function is like the )ERASE command, except that it applies to the active
referent (see Chapter 6, Local and Global Names) of a name.

Note: If the object being expunged is a shared variable (see Chapter 8), it will
be retracted.

The oNL Function: Name List

The ON L function yields a character matrix; each row of the matrix represents
the name of a local (active referent) or global object in the active workspace.
The ordering of the rows has no special significance. The ONL function can be
either monadic (takes one argument) or dyadic (takes two arguments); in both the
monadic and dyadic forms, the right argument is an integer, scalar, or vector that
determines the classtes) of names that will be included in the result. The values
for the input argument and associated classes of names are:

iJ

)

)

iJ

Argument Name Class

132

1 Names of labels
2 Names of variables
3 Names of user-defined functions

It does not make any difference in what order the class of names appears in the
argument. For example, ONL 2 3 or ONL 3 2 results in a matrix of all the vari
able and user-defined function names.

In the dyadic form, the left argument is a scalar or vector of alphabetic charac
ters that restricts the names produced to those with the same initial character
as that of the argument. For example, 'AD' ONL 2 results in a matrix of all
the variable names starting with the character A or D.

fJ

)



c

Uses of the ONL function include:

• Erasing objects of a certain class (and also beginning with a certain character).
For example:

[lEX 'B' []NL 2

erases all the variables whose names start with B.

• Avoiding the choice of a name that already exists.

The 0 NC Function: Name Classification

The ONe function is monadic (takes one argument); the argument isa scalar or
array of characters. The result of the function is a vector of numbers represent
ing the class of the name given in each row of the argument. The classes of names
are as follows:

C~\

Result

o
1

2

3

4

Meaning

Name is available for use

Name of a label

Name of a variable

Name of a function

Name is nonstandard (not available for use)

133



Chapter 6. User-Defined Functions

APL provides an extensive set of primitive functions; nevertheless, you may want
a function to solve a special problem. APL provides a way to create a new func
tion, called function definition. During function definition, you use existing APL
functions to create new functions called user-defined functions.

Normally, the 5100 is in execution mode; that is, after a line has been entered
and the EXECUTE key pressed, the 5100 executes that line. To define a func
tion, the mode must be changed to function definition mode; after the function
is defined, the mode must be changed back to execution mode before the func
tion can be executed. The mode is changed by entering the 'iJ (del) symbol. The
first 'iJ changes the mode to function definition mode; the second 'iJ indicates the
end of function definition and changes the mode back to execution mode.

MECHANICS OF FUNCTION DEFINITION

The following steps are required to define a new function:

1. Enter a 'iJ followed by the function header (see Function Header in this
chapter). After the function header is entered, APL responds with a
[1] and waits for the first statement of the function to be entered:

V'HOME SCO RE VI SI TO I~ (function header)

2. Enter the statements that define the operations to be performed by the
function. As each line is entered, APL automatically responds with the
next line number:

1:l.:1
E:~:I

en
(1+:1

V' HOME SCORE
'THE FINAL
+/I·-!OME
'TO'
+/vrSITOR

VIBITOI~

SCORE IS:

134

Note: During function definition mode, the print width (see 0 PW system vari
able in Chapter 5) is automatically set to 390. The print width returns to its
original value when the function is closed. This prevents problems that occur
when editing statements that exceed the print width. Editing statements are
discussed later in this chapter. If a user-defined function contains a statement
that is greater than 115 characters in length, that statement cannot be edited and
the function cannot be written on tape. (See OCR and OFX in Chapter 5 for
information on changing a user-defined function to a matrix.)

/)

--_._--------------------..,-------~------------------~._----



3. Enter another 1/ when the function definition is complete. The closing 1/
may be entered alone or at the end of a statement. For example:

[1.1·::1 +IV I sr TO RV'
or

[::'j] '1/

Note: If the closing 1/ is entered at the end of a comment statement, which
begins with a A symbol, the 1/ will be treated as part of the comment and
the function will not be closed.

Function Header

The function header names the function and specifies whether a function has no
arguments (niladic), one argument (monadic), or two arguments (dyadic).

Note: Function names should not begin with 56 or T 6, because 56 and T 6 are
used for stop and trace control (Stop Control and Trace Control are discussed
later in this chapter).

The result of the function is
temporarily stored in the re
sult variable so that it can
be used by another function.

I: :I.::t

1. .('

The function header also determines whether or not a function has an explicit
result. If a function has an explicit result, the result of the function is tempor
arily stored in a result variable (names in the function header) for use in calcula
tions outside the function. The result variable must be included in the result
statement (the statement that determines the final result of the function) as well
as the function header. For example:

v' I~E~:;UI ..,T~
I..Ec III ..... X Y ~'1 Result Variable
~::.,:)",,'I~'" /

3 PLUS 1+~

1. 0+3 PLUS '+-----

User-defined functions that do not have an explicit result cannot be used as part
of another expression. For example:

v X PLUS:/. Y
1::1. :I X... YV'

:I. 0+~5 PLUS:I. L~
"(

VALUE ERR()I~

10+3 PI...USl L~

A

()
135



136

The following table shows the possible forms of the function header:

Number of Format of Header
Arguments Type No Explicit Result Explicit Result

0 Niladac 'V NAME 'VR~NAME

1 Monadic 'V NAME B 'VR~NAME B
2 Dyadic 'VA NAME B 'VR~A NAME B

There must be a blank between the function name and the arguments. Also, the
same symbol cannot appear more than once in the function header; thus,
Z~FUNCTION Z is invalid.

For user-defined functions, the order in which the arguments are entered is
important. For example, assume that Z~X DIVIDE Y represents a function in
which Z is the result of X ... Y. Now if 20 DIVIDE 10 is entered, the result is 2.
However, if 10 DIVIDE 20 is entered, the result is 0.5.

()

)

)

)



••

()

Branching and Labels

Statements in a function definition are normally executed in the order indicated
by the statement numbers, and execution terminates at the end of the last state
ment in the sequence. This normal order can be modified by branching.

Branching is specified by a right arrow (-+) followed by a label (name) that speci
fies the statement that is to be branched to. For example, the expression
-+START means branch to a statement labeled START. When assigning a label
to a statement, the label must be followed by a colon (:) and must precede the
statement. The colon separates the label from the statement:

START : N~"N+:L

I: ~.):t "~STA I~T

In the previous example, the label START is assigned to the second statement in
the function. In other words, START has a value of 2; however, if the function
is edited and the statement is no longer the second statement in the function,
START will automatically be given the value (or statement number) of the new
statement. (See Function Editing later in this chapter.)

137



Labels are local to a function-which means they can only be used within that
function. Following are some additional rules that apply to the use of labels:

• They must not appear in the function header.

• You cannot assign values to them.

• They can be up to 77 characters in length.

• They cannot be used on comments.

• When duplicate labels or labels that duplicate a local name are used, the first
use of the label or name is the accepted use.

If the branch is to zero (~) or any statement number not in the function, the
function is exited when the branch statement is executed. If the value to the right
of the ~ is a vector (for example, ~L1,L2,L3), the branch is determined by the
vector's first element. If the vector is an empty vector (there are no elements), the
branch is not executed, and the normal sequence of statement execution continues.
For example, the conditional branch ~(I ;::N)/START is evaluated as follows:

1. First, the condition (I ~ N) is evaluated; the result is 1 if the condition is
true and 0 if the condition is false.

iJ

(,J

Following are three examples of defining and using a function to determine the
sum of the first N integers. Each function uses a different method of branching.
Remember, the expression to the right of the ~ is evaluated and the result deter
mines to what statement the branch is taken:

2. The result of step 1 is then used as the left argument for the compress
(A/B) function:
a. If the result of step 1 was 1, START is selected from the right argument

and a branch to the statement labeled START is taken.
b. If the result of step 1 was 0, nothing is selected from the right argument

(an empty vector is the result) and the sequence of execution falls through
to the next statement.

(,J

138

I: :1. :I
[2:1
[;3::1
I: L~:I
[~5J

1:6:1

V St·SUM:L N
SI," ()
11,.. :1.

CHECI<: "~LABEl...xI::;N .....>---Branch to LABEL if I~N; otherwise,
I.•ABEL : Sf·S+ I exit the function.

11,0·1+:1.
"~CHECKV

SUM:I. 5

'J

iJ

--.-----------------r-----------------.



'V Sf'~:)UM2 N
1::1.::1 SHl
1:2::1 If':!.
I:: :'5:1 CHECK : -~ ( I;:. N) /0 - Branch to 0 (terminate the function)
I,·,· "] (~(', 'I'
.. 'r. ,:>f·,:)'f'.. or fall through.
I::~::;] 1 .... 1+:1.
1::6::1 "~CHECI<'V'

:1,::':;

I:: :1.::1
I: ::.~::I

1::3::1
I:: '+::1
1:::::;]

'V ~H'SUM3 N
S~.. ()
I .... O

CHECI< : S .... ~:;+ I
If'I+:I.
..~ ( I::;N ) /CHECI<'V - Branch to CHECK or fall through.

1 0::'
.\.J

Several forms of the branch instruction are shown in the following table:

Result

Branches to a statement labeled LABEL
Exits function
Branches to LABEL or exit function
Branches to L1, L2, or L3
Branches to L1 or L2
Exits function or falls through to next statement

Branches to LABEL or falls through}

Branch Instruction

"~I...f.IBE:1...

'-to
-tLABEI...x X::::Y
-H(X<Y); (X::::Y); (X;:'Y»/I...1.;I...;;'~;1...;3

"~(L1.; 1...2) I:l+X::::Y::I
-~(X::::Y)/()

.-t (X::::Y) /LABEI...
"t (X::::Y) r;LABEI...

Note: Branching will also work if a specific statement number is specified to the
right of the -+. For example, -+3 means branch to statement 3; or -+1+-3xA means
I is assigned the value of 3 times the value of A, and the value of I is then used as
the branch to statement number. However, these forms of branching (using
statement numbers instead of labels) can cause problems if the function is edited
and the statements are renumbered.

Local and Global Names

c)

A local name is the name of a variable or user-defined function that is used only
within a particular user-defined function. A global name is the name of a variable
or user-defined function that can be used within a user-defined function and can
also be used outside of it. An example of the use of a local variable name would
be the name of a counter used in a user-defined function (which is not required
for any use outside the function).

139

---_._-----------------



140

To make a name local to a user-defined function, it must be contained in the
function header. For example, the function header \7Z+-EXAMPLE X;J;I estab
lishes the result variable Z, the argument X, and variables J and I as local variables.
Notice that the local names, other than the result variable and arguments, follow
the right argument (if any) and are preceded by semicolons.

A local name can be the same as a global name (variable or user-defined function)
or a local name in another function. However, any reference to the name local
to the function will not change the values of any other global or local objects
(variables or user-defined functions) or cause them to be used.

After a user-defined function has executed, the following rules apply to the local
and global variables used by the function:

• Any value assigned to a local variable is lost.

• If a local variable had the same name as a global variable, the value of the glo
bal variable remains unchanged.

• If the value of a global variable was changed by the function, it retains the
new value.

(/)

i)



c_)

For example:

LOC~· :1.00
GLDIh·1. 00
VRESULT~EXAMPLE;LOC;X

cii L(JC~·~::jO

1::2::1 X~"2~:j

1:;"5::1 GL()B~·:1. ()
1::4::1 RESULT~LOC+GL()B+XV

EXAMPLE

X....>------ X has no value.after the function
VALUE E R I~() r~ has executed.

X

Cf:

(,

tOO

1.0

A

L0('" The global value associated with this.., .....---
name was unchanged by the function.

GLOB -·--The global value was changed by the
function, since GLOB was not made
local name to the function.

141



Since the value of a local name disappears as soon as execution of the function
finishes, the only time you can use or display the value of a local name is while
the function to which it belongs is still executing, is suspended, or is pendent.

Note: If a name is local to a function that calls another function, the value of
that local name can also be used by the called function.

A name local to a function that has not completed execution or that is suspended
(see Chapter 7) will be inaccessible if the name is also local to a more recently
called function. Putting it another way, the value of a name that you can use or
display is always the most recent local value of the name. Of course, as execu
tion of the more recently called functions is completed, the next earlier value of
each local variable will again be accessible. A name can therefore be said to have
one active referent or value, and possibly several latent referents or values. For
example:

v DANjXX
J::J.:I XX~<L 00
1:21 'THE FUNCTION DAN GIVES XX THE VALUE'
1:3] XX
[~] 'AND CALLS THE FUNCTION DAVE'
[~:;] DAVE
e6:1 '("'HEN DAVE IS THI~OUGH EXECUTING AND EXECUTION I~ETURNS '_----,
[7] 'TO DAN, XX ONCE AGAIN HAS THE VALUE'
en] xxv

/J

iJ

RETURNS '-

142

J: :1. :I
1:2:1
r:3J
[1+:1
1:5]
[6:1
1:'(:1
en]

1:1,]
1:2:1
C3J
1:4·]

'V DAVEjXX
XX~"20 0
'THE FUNCTION DAVE GIVES XX THE VALUE'
XX
'AND CALLS THE FUNCTION JERRY'
..JERRY
'WHEN JERRY IS THROUGH EXECUTING AND EXECUTION
'TO DAVE, XX ONCE AGAIN HAS THE VALUE'
XXV -------------------------I....J

V JEI~I~YjXX

XX~"30 0
'THE FUNCTION JERRY GIVES XX THE VALUE'
XX'AND RETUI~NS TO DAVE 'V --J

iJ

()



DAN
THE FUNCTION DAN GIVES XX THE VALUE
:1.00
AND CALLS THE FUNCTION DAVE
THE FUNCTION DAVE GIVES XX THE VALUE
200
AND CALLS THE FUNCTION JERRY
THE FUNCTION JERRY GIVES XX THE VALUE
~50 0
AND RETURNS TO DAVE
\l,IHEN JEI~I~Y I~:; THROUGH EXECUTING AND EXECI.IT:J:ON RETUI~N~:;

TO DAVE, XX ONCE AGAIN HAS THE VALUE
200
WHEN DAVE IS THROUGH EXECUTING AND EXECUTION RETURNS
TO DAN, XX ONCE AGAIN HAS THE VALUE
:tOO

XX
VALUE EI~IHlI~

XX
A

The )SIV command causes the SIV list (state indicator with local variables and
local user-defined functions listing) to be displayed. The SIV list contains a com
plete set of referents of a name.

Note: See System Functions in Chapter 5 for an example of a local user-defined
function using the DFX system function.

If the SIV list is scanned downward, the first occurrence of a variable name is its
active referent. If the name appears again, it is a latent referent. Global names
are not found in this list; they can be displayed with the )VARS command and
)FNS command.

In the following SIV display, variable P has referents as follows:

c·····)./ 01::"7]
FI:'+ ]
<lIcn
RL~]

01::~5]

)SIV
·)(·Z X I

P J .........--- Active referent of P is local to function F.

~('C X T
P .... First latent referent of P
Z X I is local to function R.

As the state indicator is cleared (see Chapter 7), latent referents become active.

143



144

INTERACTIVE FUNCTIONS

User-defined functions can display messages and/or request input from the key
board. The messages (character data) in the user-defined function are enclosed in
quotes. The 0 (quad) and [!] (quad quote) symbols are used to request input from
the keyboard during function execution. The following function is an example of
an interactive function that computes the amount of interest on a capital amount
for a given number of years:

V CI
[1:1 'ENTER THE CAPITAL AMOUNT IN DOLLARS'en A~"[]

[3J 'ENTER THE INTEREST IN PERCENT'
[I+J I~-I]

[5J 'ENTER THE PERIOD IN YEARS'
[6J y~.. []
[7:1 'THE I~ESULT I~)'

[8J AX(!+O,OlXI)*YV

eI
ENTER THE CAPITAL AMOUNT IN DOLLARS
[]:

:1. 00
ENTER THE INTEREST IN PERCENTu:

D
ENTER THE PERIOD IN YEARS
U:

THE I~ESUL T I ~3

:1.:1.6,6'+
CI

ENTER THE CAPITAL AMOUNT IN DOLLARS
IJ:

:1.000
ENTER THE INTEREST IN PERCENT
[]:

8,DB
ENTER THE PERIOD IN YEARS
[]:

THE I~E~:ll.J1. .. T I!3
1 ~:j30 ,2

..

.J

iJ I

:J



Requesting Keyboard Input during Function Execution

The 0 (quad) appearing anywhere other than immediately to the left of the assign
ment arrow indicates that keyboard input is required. When the 0 is encountered
in the function, the two symbols 0: (a quad symbol followed by a colon) are dis
played, the display is moved up one line, and the cursor appears. The quad and
colon symbols are displayed to alert the user that input is required. Any valid
expression entered at this point is evaluated and the result is substituted for the
quad. You can escape from a quad input request by entering the right arrow ~.

An invalid entry in response to request for input results in an appropriate error
message and the request for input is made again. Any system commands entered
will be executed, after which the request for input will again be made. An empty
input (no keying) is rejected and the 5100 again displays the symbols 0: and
awaits input.

When the quad quote [!] (a quad overstruck with a quote) is used, input from the
keyboard is treated as character data. The input begins at the left margin of the
display; quotes do not need to be entered to define the data as character data.
When [!] input is requested, the symbols 0: do not appear as they did with a 0
input request. The input is entered after the flashing cursor appears on the screen.
For example:

CAN'T
x

CAN'T
x-n

'CAN' 'T'
X

'CAN' 'T'

Anything you enter in response to a quad quote request for input is considered
character input. Therefore, if you enter a system command or a branch arrow
(~) to terminate the function, the entry is treated as character data for the
function and the system command or branch will not be executed. This can be
a problem if you are trying to escape from a quad quote input request. There
fore, APL provides an escape for this situation. To escape from a quad quote
input request, enter the (Osymbol by holding the CMD key and pressing the
[] key. The function is interrupted and the function name and the line nurn-

ber being executed are displayed. You can then modify the function or termi
nate it by entering the right arrow ~.

c
145

--_.._-----------------,..------------------------------



ARRANGING THE OUTPUT FROM A USER·DEFINED FUNCTION

The output from user-defined functions can be arranged by using the format func
tion (see the", function in Chapter 4) or bare output. Bare output is discussed
next.

Bare Output

After normal output, the cursor is moved to the next line so that the next entry
(either input or output) will begin at a standard position. However, bare output,
denoted by the form [!]+-X (X can be any expression), does not move the cursor
to the next line. Therefore, more than one variable or expression can be displayed
on the same line. For example:

v X TIMF!;> Y
I:: :1,] I~I~"X

1::2] ~~. TIMES '
1::3] I~I~"Y

[1+] 1~lf" H> .
1::7i] xxYV

2 TIMEE 1.)

2 TIlvlES I.j, IS B

Since the cursor does not return to the next line after bare output, when quad
quote ([!J) input is entered following the bare output, the input starts after the
last character of the bare output. Then when the input is processed, it is pre
fixed by any bare output on the input line. For example:

/)1

I: :l:I
CD
1:;'5]
t:I~.]

THH>

'it OUTPUTIJ,INPUT
I~I~'" THIS IS BARE OUTPUT!!! '

ATHE NEXT STATEMENT REQUEST ~ INPUT
I N~.. r.1

ANOW DISPLAY THE INPUTV

OUTPUTf.l.INPUT
ISBA I~E OUTPUT' ! !r- The cursor appears here.

enter THIS IS [!] INPUT.
Now

THIS IS BAI~E OUTPUT!! ! THI!;> I!;) I~I INPUT,

This is the final result.

146

~--_._-------------:---r-----------------'

..
()



Therefore, if quad quote input follows bare output (but only the input is to be
processed), the bare output must be removed from the input line. Following is
an example of a function that will remove the bare output:

[:I.]
[::.~ ]

[3::1
[1+ ]

rs ::I
1::6::1

II R~BARE60UTPUT MSG;DIO;J
C1I04.oo :l.
r~l4.ooMSG

ACHECK THE BARE OUTPUT FOR EMBEDDED CURSOR RETURNS
J~-:I.+('MSG)'DAV[157::1

RDROP ANY BARE OUTPUT PREFIX FROM THE INPUT
th· ( 6 LI· I ,J) ·HI y'

This is how the function works:

LOCKED FUNCTIONS

OUTPUT! ! '_-The cursor appears here. Now
enter THIS IS [!] INPUT.

! THIS IS t~l INPUT

IIOUT6IN .______The Bare Output

BARE60UTPUT 'THIS IS BARE ~TPUT!!! '
II ,~.__

- This function will remove the bare output.
OUTb,IN

I s BAI~E

When an error is encountered in a locked function, execution of that function is
abandoned (not suspended). If this function was invoked by another locked
function, execution of the second function is abandoned also, and so on, until
either (1) a statement in an unlocked function or (2) an input statement is
reached. Then DOMAIN ERROR is displayed. In the first case, the execution of
the unlocked function is suspended at the statement; in the second case, the 5100
waits for input.

A locked function can only be executed, copied or erased; it cannot be revised or
displayed in any way, nor can trace control and stop control (see Trace Control
and Stop Contro/later in this chapter) be changed. A function can be locked, or
protected, by opening or closing the function definition with a V(V overstruck
with ~), instead of a V.

[:l.J
I:: ;.~::I

THI~:;

THIS IS BARE OUTPUT!
THIEl IS r.:t INPUT

'-.....----- This is the final result.

Note: A locked function cannot be unlocked; therefore, if the function contains
an error, the function cannot be edited and the error corrected.

(/

147



FUNCTION EDITING

Several methods are used when in function definition mode to display and revise
a user-defined function. Also, after a function definition has been closed, the
definition can be reopened and the same methods used for further revisions or
displays. (See Reopening Function Definition in this chapter.]

Displaying a User-Defined Function

Once in function definition mode, part or all of a user-defined function can be
displayed as follows:

• To display the entire function, including the function header and the opening
and closing \J , enter [0]. APL responds by displaying the function, then wait
ing for the entry of additional statements.

• To display from a specified statement to the end of the function, enter [On],
where n is the specified statement number. APL responds by displaying the
function from statement n to the end of the function, then waiting for the
last statement displayed to be edited (see Editing Statements in this chapter).

• To display only one statement of the function, enter [nO], where n is the
statement number to be displayed. APL responds by displaying statement n
and waiting for the statement to be edited (see Editing Statements in this
chapter).

/)

The following table summarizes function display when in function definition mode:

[nO] Displays statement n

[On] Displays all statements from n onward

[0] Displays all statements

Entry Result
,iJ

148

Revising a User-Defined Function

Statements in a user-defined function can be replaced, added, inserted, deleted, or
edited as follows:

• To replace statement number n, enter [n j and the replacement statement. If
just [n] is entered, APL responds with [n], then waits for the replacement
statement to be entered. If the function header is to be replaced, enter [0]
and the new function header.

• To add a statement, enter [nj (n can be any statement number beyond the
last existing statement number) and the new statement. APL will respond
with the next statement number, and additional statements can be entered if
required.



(\

()

• To insert a statement between existing statements, enter [n] and the new state
ment. n can be any decimal number with up to 4 decimal digits. For example,
to insert a statement between statements 8 and 9, any decimal number be
tween 8.0000 and 9.0000 can be used. APL will respond with another deci
mal statement number and additional statements can be inserted between
statements 8 and 9 if required. (These and the following statements are auto
matically renumbered when the function definition is closed.)

Note: The statement number 9999.9999 is the last valid statement number.

• To delete statement n, enter [fln].

Note: The [fln] and closing 'V cannot be entered on the same line. If the func
tion definition is to be closed immediately after a statement has been deleted,
the closing 'V must be entered on the next line.

• To edit specific statement, use the following procedure:

1. Enter [nO] (where n isa statement number). Statement n is displayed.

2. Choose one of the following options:
a. To change a character, position the cursor (flashing character) at the

character to be changed. Enter the correct character.
b. To delete a character, position the cursor at the character to be

deleted. Then press the backspace ( .) key while holding the

command (CMD) key. The character at the cursor is deleted from
the line and the characters that were to the right of the deleted char
acter are moved one position to the left.

c. To insert a character, position the cursor to the position where the
character is to be inserted. Then press the forward space ( • )

key while holding the command (CMD) key. The characters from the
cursor position to the end of the line are moved one position to the
right. For example: [1] A+-1245 should be [1] A+-12345. Position
the cursor at the 4 and press the forward space and command (CMD)
keys simultaneously. The display will look like this: [1] A+-12_45.
Now enter the 3.

d. To delete all or part of a line, press ATTN to delete everything from
the cursor position to the end of the line.

3. Press EXECUTE. The next statement number is displayed.

Note: If more than one statement number is entered on the same line, only the
last statement number is used. For example, if a line contained
[3] [8] [4] 'NEW LINE', only statement 4 is replaced when EXECUTE is pressed.

149



Reopening Function Definition

If you want to edit a function that has previously been closed, the function defini
tion must be reopened. For example, if function R is already defined, the function
definition for function R is reopened by entering 'iJ R. The rest of the function
header must not be entered or the error message DEFN ERROR is displayed
and the function definition is not reopened. The 5100 responds by displaying
[n+1], where n is the number of statements in R. Function editing then pro
ceeds in the normal manner.

Function definition can also be reopened and the editing or display requested on
the same line. For example, VR[3]S~S+1 edits the function by entering the new
line 3 (S~S+1) immediately. Then the 5100 responds by displaying [4] and
awaiting continuation. The entire process can be accomplished on a single line:
VR[3]S~S+1 Vopens the definition of function R, enters a new line 3, and termin
ates function definition. VR[D]V causes the entire definition of R to be displayed,
after which the 5100 returns to execution mode.

Note: You cannot reopen the definition of a function, delete a statement, and
close the function (for example, VR[lI4 ]V) on the same line, since the closing V
cannot be on the same line as the [lin].

150

,/)

Ii)
,~

~~~~--,-,----~--_._------r---------;-


An Example of Function Editing

In this example, the user-defined function AVERAGE is used to show how the
methods used to revise and display functions work:

VAVEI~AGE X'-.-------------------Define the function.
[1] 'THIS FUNCTION CALCULATES AVERAGES'
[2:1 +/X+(+/X::::X)V

AVEIMGE 2 4· 6) B>------------------Execute and test the function.
THIS FUNCTION CALCULATES AVERAGES
"...::.1

151

VAVEIMGE 1:3J +/X+~)X_-------------Replace statement 3.
I:: IJ. :1.::1 .. Delete statement 1.
I: 0 :JAVEIMGEASUM XV. Replace the function header.

Vj~VEIMGI::lJ.mJMuJ]V .. Display the function.
'OJ AVEIMGE::t.lSUM X

'THE AVERAGE IS'
+/X'~'(JX

'THE SUM IS'
+/X

VAVEIMGEC:I.,7] 'THE AVERAGE IS '......t----------Insert a statement.
I: :1.0::1 .. =-===-Display statement 1.
'THIS FUNCTION CALCULATES AVERAGES'---
'THIS FUNCTION CALCULATES AVERAGES AND SUM~:)' Statement 1 was edited---------------1:::3::t 'THE ~:)UM IS' to look like this.

+/XV ---~---- _
Add statements 3 and 4.

Vj~VEI~AGE[[]]V____
V f~VE:RAGE X ---------......,...------Display the function.

'THIS FUNCTION CALCULATES AVERAGES AND SUMS'
'THE AVEI~AGE IS'
+/X~' (+/X::::X)
'THE SUM IS'
+/X

I: :1,::1
[~~]

en
[1.\.::I

1:4:1
L~:I

THE !:)lIM IS
20

[:1. :I
1:2::1
C?> ::I
1: '+:1I:::.'i::l

[:I.,BJ
(:f.]

I:: I. :I
[2:1
[+:1

AVE Rj~GE 2 1.1, 6 B>-----------------Execute average.
THIS FUNCTION CALCULATES AVERAGES AND SUMSC__ ! ~HE AVEIMGE IS

C
'OJ

AVEIMGEIJ.SUM ") ,+ 6 B«:

THE AVEIMGE IS
~:.:}

THE SUM IS
20

VAVERAGEIJ.SUM [[]3::JV .. Display the function from() [;'5] 'THE SUM IS' statement 3 to the end.
/ I:I~,J +/X

TRACE AND STOP CONTROLS

APL provides the ability to trace or stop execution of user-defined functions, pro
viding the functions are not locked (see Locked Functions in this chapter).

Trace Control

Trace control is used to display the results of selected statements as a function
executes. The display consists of the function name followed by the number and
results of the selected statement. For example:

............... STEVE[1] 2 • Result

Function "Statement
Name Name

Statements to be traced are specified by a trace vector. The format of the trace
control function is T I'!. STEVE+-I, where STEVE is the name of the function and
I is the vector specifying the statement numbers to be traced. For example, if
T I'!. STEVE+-2 3 5 is entered, the statements 2, 3, and 5 are traced each time
function STEVE is executed. T I'!. STEVE+-t 0 must be entered to discontinue
the tracing of function STEVE. To trace each statement of the function, enter
TI'!. STEVE+-tN, where N is the number of statements in the function:

l)

\)

[:1.::1
[2]
[:'5]
[1·1·]

I: ~:j:l

20

v'STEVEI:[]JV
V BTEVE I

~I'.-·:J. x:t:
B~"2x I
C~"3x I
DH~XJ

A+B+C+D

STEVE 2

TIJ.STEVE~··\I+

BTEVE 2 ~
BTEVE:r:: :1,::1 2 Trace the first four statements
STEVE[2J '4, in function STEVE.
STEVEI:3::1 <'.>

~3TEVE[LI·] B
20

TIJ.STE:VE~2--Trace statement 2 in function STEVE.
STEVE 2

STEVE[2::1 LI·
20

Tt\STEVE~\ 0 -DisContinue tracing in function STEVE.
~3TEVE 2

20

152

~---'------~--------:----,--------r------------

()

Trace control can also be set by statements within a function. These statements
initiate tracing when a variable contains a certain value. For example:

c
J:J.]
1::2::1
J:3J
r: 4·::1
I: ~~.i::l

VSTEVE[I]JV
V STEVE I

(.I~··j, x I
Te..STF.::VEf·3XPI::<·~_Trace statement 3 in function STEVE
£>-:3 X I when A equals 2.
D~.. I+XI
A+C+D

c

()

C)

c

()

STEVE 2
STEVEC3::J 6
11.>

STEVE :3

Note: The following instruction will establish trace control for the first statement
of each user-defined function in the active workspace:

J. "'j, -/., ' () , , • (.l ••' 'T' , . 1.1 ' , ((([lNL 3)., '~.. ') , ' :t ') , '

This instruction can be used to find out what functions are called by another
function.

The following user-defined function named TRACE will establish a trace vector
for each statement in a specified user-defined function:

VTRACE[/]JV
V TI~ACE: NAME:

1::1.::1 J. 'lb,' ,NAME, 'f-dt(.lL1CI~'·' ,N,:l)ME,""
V

153

-_._--------------------------------

When executing the function TRACE, the argument must be entered in single
quotes. For example:

CL:I
[2:1
en
[I.J.]

[::!j]

v'BTEVE[[]JV
V BTEVE I

M·lxI
B~"2xr
c-xxr
D~·I.,. x:t:
A+B+C+D

C)

154

TRACE 'BTEVE_-- Establish a trace vector for each
~:nEVE 2 statement in function STEVE.

~3TEVE[:J.] ::.~

STEVE r: 2 J ,+t--------- Each statement of function
STEVEC3:1 6> STEVE has been traced.
BTEVEI::'+] B
STEVEI::~:j] 20

TASTE:VE:~\O

BTEVE 2
20

Stop Control

Stop control is used to stop the execution of a function just before specified
statements. At each stop, the function name and statement number of the state
ment to be executed next is displayed. The statements are specified by a stop
vector. The format of the stop control function is SL'l STEVE+-I, where STEVE
is the name of the function and I is the vector specifying the statements. After
the stop, the system is in the suspended state (see Chapter 7); execution is
resumed by entering '"*DLC (see Chapter 5). S L'l STEVE+- t 0 (STEVE is the
function name) must be entered to discontinue the stop control function.

Stop control can be set by statements within a function. These statements
initiate halts when a variable contains a certain value. For example,
SL'l STEVE+-4xN >8 means stop before statement 4 in function STEVE when
N is greater than 8.

Trace control and stop control can both be used in the same user-defined
function.

()

)

C-··)/

Chapter 7. Suspended Function Execution

SUSPENSION

The execution of a user-defined function can be interrupted (suspended) in a var
iety of ways: by an error message (see Chapter 11), by pressing ATTN (see
Chapter 1), or by using the stop control vector (see Chapter 6). In any case, the
suspended function is still considered active, since its execution can be resumed.
Whatever the reason for the suspension, when it occurs, the statement number of
the next statement to be executed is displayed. A branch to the statement num
ber that was displayed or a branch to 0 LC (~D LC, see Chapter 5) causes normal
continuation of the function, and a branch out (~O) exits the function.

When a function is suspended, the 5100 will:

• Continue to execute system commands except)SAVE,)COPY, and)PCOPY.

• Resume execution of the function at statement n when ~n is entered.

• Reopen the definition of any function that is not pendent. A pendent func
tion is a function that called the suspended function. If a function called a
function that called a suspended function (and so on), it is also pendent
(see State Indicator in this chapter).

• Execute other functions or expressions.

Note: The display of output generated by previous statements might have been
interrupted when the suspension occurred. This would be caused by the delay
between execution of the statement and the display of the output.

STATE INDICATOR

The state indicator identifies which functions are suspended (*) and at what point
normal execution can be resumed. Entering)SI causes a display of the state indi
cator. Such a display might have the following form:

He..,]
G[2]
Fe;3::1

This display indicates that execution was halted just before statement 7 of fun~'

tion H that the current use of function H was invoked in statement 2 of function
G, andthat the use of function G was invoked in statement 3 of F. The *
appearing to the right of H[7] indicates that function H is suspended; the func
tions G and F are said to be pendent.

155

During the suspension of one function, another function can be executed. Thus,
if a further suspension occurred in statement 5 of function Q, which was invoked
in statement 8 of G, a display of the state indicator would be as follows:

Qc::n
GI:E}]
He,?::1
GI:~~J

FC3J

)81

*

An 81 DAMAGE error (see Chapter 11) indicates that a suspended function or
pendent function has been edited and the normal execution of the suspended
function can no longer be resumed. Therefore, when an 81 DAMAGE error
occurs, the state indicator display will not include the suspended function name
(however, the asterisk is still displayed). For example, if function Q is edited
and the modification causes an 81 DAMAGE error, the display of the state
indicator would be as follows:

) !3I

,*GCBJ ------No suspended function name is displayed.

HI::',J ~~

GI:2J
FI:3J

15&

:J

.."

---~'---r----------r---'---r-I--------~

A suspension can be cleared by entering a branch with no argument (that is, -+).
One suspended function is cleared at a time, along with any pendent functions
for that suspended function. The first branch clears the most recently suspended
function, as the following example shows:

HL:7J
G1:;!]
FCn

It is a good practice to clear suspended functions, because suspended functions
use available storage in the active workspace. Repeated use of -+ clears all the
suspended functions; as the functions are cleared, they are removed (cleared) from
the state indicator. When the state indicator is completely cleared, the state indi
cator display is a blank line.

Note: To display the state indicator with local names, enter the)SIV command
(see Local and Global Names in Chapter 6 for more information on the SIV list).

C~/

..
157

"--"-----_._---....------_._-_._---------

Chapter 8. Tape and Printer Input and Output

Input and output involving the tape or printer can be done with an APL shared
variable, which is a specific variable shared between the active workspace and the
tape or printer. During output operations, the data assigned to the shared variable
is printed, or is written on tape. During input operations, data is read from tape
and assigned to the shared variable; the shared variable can then be used in an ex
pression in the active workspace. To do tape or printer input or output, the
following steps must be performed:

1.

2.

Establish a variable to be shared.

Open a data file on tape or specify printer output.

3. Transfer the data.

4. Close the data file or terminate the printer output.

5. Retract the variable being shared.

ESTABLISHING A VARIABLE TO BE SHARED

The DSVO function is used to establish the variable namels) to be shared. The
DSVO function is dyadic (requires two arguments) and is entered as follows:

:1. UBVCl . NAME (B) . The left argument must be a 1.

~~~). ClNET~JOTHI~'

158

The right argument NAME(S) can be up to eight variables to be shared. If more
than one name is required, the names must be entered as a character matrix with
each row representing a name. For example:

BHAI~E~<~

~3HAI~E

ONE}
TWO .......t-----Each row represents a separate variable name.
THR

)



Following are three examples of how the DSVO function can be entered:

• :1. []!;;VO 'Df'iTA'

• (.:l~-'I)ATA'

1. n!3VO A

• SHARE~3 lp'ABC'
1. []E,VO GHA I~E

Establishes three names (A, B,
and C) to be shared.

/

l '

c)
(~,;-..

The 5100 will respond with a 2 for each shared variable that is successfully estab
lished and a 0 or 1 for each variable that is not. If a 1 is displayed, a value other
than 1 was specified as the left argument for the DSVO function. In this case, the
variable name must be retracted (see Retracting the Variable Name being Shared
later in this chapter) and reestablished as a shared variable before it can be used
for input/output. If a 0 is displayed, an error message (see Chapter 11) will also
be displayed.

Note: The instruction +/O~DSVO DNL 2 will display the existing number of
shared variables in the system, and the instruction (O~DSVO DNL 2)/[1] DNL 2
will display the existing shared variable names.

OPENING A DATA FILE OR SPECIFYING PRINTER OUTPUT

The first value assigned to the shared variable must be information required to
open a data file on tape or to specify printer output. When opening a data file,
this information specifies the following:

• Data to be transferred to tape or from tape

• Device/file number

• File ID

• Data format to be used

Note: If this information has already been assigned to a variable name that is
being used as the right argument for the DSVO function, the 5100 will establish
the variable name to be shared, then open the data file or specify printer output.
In this case, there is no return code assigned to the shared variable to indicate if the
operation was successful or not. The return codes are described later in this chapter.

159



This information must be character data (enclosed in single quotes) and must be
entered with a blank between each parameter, as follows:

IN A
or
OUT

~+- , or

ADD
or
PRT

where:

or
I

device/file number [ID=(file ID)] [MSG=OFF] TYPE=or
11
or
12 .:

160

~ is the name of the variable being shared.

ill specifies that the data is to be transferred from tape into the active
workspace.

OUT specifies that the data is to be transferred to a tape file.

ADD specifies that the data is to be transferred to an existing tape file,
following the last record in that data file.

PRT specifies that the data is to be printed.

Note: When PRT is specified, the only other information that can be speci
fied is MSG=OFF (which is defined later).

device/file number specifies the tape unit and file number. For example:

1003

f-~ File Number 3

~Tape Unit 1

Note: If fewer than four digits are used, tape unit 1 is assumed, and the
value entered represents only the file number.

1D=(file ID) (optional) specifies from 1 to 17 characters enclosed in
parentheses:

• For an IN or ADD operation, the entry (file ID) is compared to the file ID in
the file header; the open fails if they do not match .

• For an OUT file, the entry (file ID) is put in the file ID field of the file header
(see the )L1B command in Chapter 2). If the ID=(file ID) parameter is not

specified, the characters DATA are put in the file ID field.

It is a good practice to give the data files meaningful names; for example, a
file that contains sales data could be named SALES. Also, any blanks within

the 17 characters become part of the file ID.

Note: To do an OUT operation to an existing data file (write new data
over the existing data), the file ID specified must match the existing file

ID for the data file.

,,-)
'-



MSG=OFF (optional) specifies that no error message is to be displayed for
nonzero return codes (see Return Codes in this chapter).

A
or
I

TYPE=~ (optional] om only be specified for OUT operations.

12

data format to be used when writing data to tape:

It specifies the

C)

..)
C~/

c)

• When TYPE=A is specified, the APL internal data format is used; that is,
the data is written on tape in the same format that it is stored in, in the
active workspace.

• When TYPE=I or TYPE"'11 is specified, the interchange data format is used.
When the interchange data format is used, only character scalars or vectors
can be assigned to the variable being shared. Therefore, when storing nu
meric data or arrays on tape using the interchange data format, the data
must first be changed to a character scalar or vector (see the l" function
in Chapter 4).

The following items apply to an interchange data file that is used by both
the 5100 APL and BASIC languages:

1. All data items must be separated by commas. For example, the numeric
vector 1 3 5 6 must be changed to character data, then commas placed in
the blank positions.

2. Negative signs must be replaced by minus signs.

3. Enclosing single quotes must be part of any data that represents character
constants. Also, any embedded quotes in the character constant must be
represented by double quotes.

Note: The 5100 BASIC language accepts only the first 18 characters in
each character constant.

4. The 5100 BASIC language creates a logical record for each PUT statement
or each row of an array with a MAT PUT statement.

• When TYPE=12 is specified, the general interchange data format is used; it
is the same as TYPE=I (and TYPE 11) except that the data file can also be
used as a BASIC language source file.

Note: The data format can be specified only for an OUT operation. For IN
or ADD operations, the data format is specified by the data file type (see
)L1B command in Chapter 2). If the data format is not specified for an OUT
operation, the APL internal data format (TYPE=A) is used.

CAUTION
If the tape cartridge is removed from the 5100 when an OUT or ADD file is
open, the file will be unusable. See Closing a Data File or Terminating the
Printer Output in this chapter for information on how to close a data file.

161



The following four examples, using an APL shared variable named EXAMPLE,
show how the information required to open a data file or specify printer output
can be entered:

1.

2.

3.

4.

EXAMPLE~'IN 1001 ID=(TESTJ'

L L, value TEST will be compared
to the file header field.

File 1 on tape unit 1 is to be opened.

Data is to be transferred from tape
into the active workspace.

EXAMPLE~'OUT 003 ID=(TE8T2) TYPE=I'

L Lnterchange data format
is to be used.

The value TEST2 will be placed
in the device header field.

File 3 on tape unit 1 (assumed) is to be opened.

Data is to be transferred to tape

from the active workspace.

EXAMPLE~" . ADD :3'LLF;,e 3 on tape unit 1 [assumed) ls '0 be opened,

Data is to be transferred into an existing file on tape.

Note: Since the file ID was not specified, no value is compared to the file
header field.

EXAMPLE~'PRT M8G=OFF'

1 LNO error messages will be displayed

~ for nonzero return codes.

Data is to be printed.

()

162

After the information has been entered, a code (2-element vector) that indicates
whether the operation was successful or not is assigned to the shared variable. A
return code of 0 0 indicates the operation was successful, and a nonzero return
code indicates that the operation failed. See Return Codes in this chapter for a
description of each return code.



c)

Ie
I

I

I

TRANSFERRING DATA

After the data file has been opened or printer output specified, data can be trans
ferred using the shared variable. (An example using tape and printer input/output
is shown later in this chapter.)

Transferring Data to Tape (OUT or ADD Operation)

When data is assigned to the shared variable, the data is written on tape and a
return code is assigned to the shared variable. A 0 0 return code means the data
was transferred successfully and a nonzero return code means the transfer of
data failed. See Return Codes in this chapter for a description of each return code.

Transferring Data from Tape (IN Operation)

When data is transferred from tape, the data is read from tape and is assigned to
the shared variable in the same sequence as it was written to tape. New data is
read from the tape file and assigned to the shared variable each time the shared
variable is used. (There is no return code assigned to the shared variable after an
IN operation.)

When doing an IN operation with an interchange data file, the following condi
tions occur if a cursor return character (X'9C') or end-of-block character (X'FF')
was embedded in a character vector that was written to tape:

• If a cursor return character was embedded in the character vector, the data
will be read from tape in a different sequence than it was written to tape.
This condition occurs because as the interchange data is written to tape, the
system writes an end-of-record character (X'9C') after each character vector
(record) that was written to tape. The end-of-record character and the cursor
return character are the same. When used on tape, this character separates the
data (records) so that it can be read from tape in the same sequence as it was
written to tape. However, if a cursor return character is embedded in the data
that was written to tape, the system will recognize it as an end-of-record char
acter when the data is read from tape.

• If an end-of-block character was embedded in the character vector, any data
from the embedded end-of-block character to the next physical record is not
read from tape. This condition occurs because the system looks at the tape in
512-byte segments (one physical record). A physical record can be terminated
by an end-of-block character (X'FF'). When the system is reading data from
the tape and an end-of-block character is encountered, the system skips to the
next physical record and continues reading data. Therefore, if an X'FF' char
acter is embedded in the data that was written to tape, the system recognizes
it as an end-of-block character when the data is read from tape and skips
ahead to the next physical record.

163



164

Transferring Data to the Printer (PRT Operation)

When data (character data only) is assigned to the shared variable, it is printed
and a return code is assigned to the shared variable. A 0 0 return code indicates
the data was printed successfully and a nonzero return code indicates the opera
tion failed. See Return Codes in this chapter for a description of each return code.

Note: The )OUTSEL OFF command is automatically issued by the system when
doing PRT operations. The )OUTSEL option will return to its previous setting
after the PRT operation has been terminated (PRT termination is discussed next).

CLOSING A DATA FILE OR TERMINATING THE PRINTER OUTPUT

Transferring an empty vector will close the data files or terminate the printer out
put and a final return code will be issued. A 0 0 return code indicates the file
was closed or printer output was terminated successfully. See Return Codes in
this chapter for a description of each return code. Also, for an IN operation, the
file is closed and a return code is issued if an error occurs due to the device or if
an end-of-file empty vector is returned.

CAUTION
For OUT and ADD operations, if the tape cartridge is removed from the 5100
before a data file is closed, the data in the file will be unusable.

After a data file has been closed, another data file can be opened by assigning
the information required to open a file to the shared variable. Once the tape and
printer input and output operations are done and the data files are closed or print
ing is terminated, the variable name being shared should be retracted. How to re
tract the variable name is discussed next.

RETRACTING THE VARIABLE NAME BEING SHARED

The DSVR function is used to retract a variable name being shared. That is, once
the DSVR function has been used successfully, the variable name still exists as
an APL variable, but it cannot be used to transfer data to tape or printer, unless
it is reestablished as a shared variable. The DSVR function is monadic (takes one
argument) and is entered as follows:

[]SVI~ . NAME (S) .

where NAME(S) can be the names of up to eight variables. If more than one name
is required, the names must be in a character matrix with each row representing a
name (see Establishing a Shared Variable earlier in this chapter).

The 5100 will respond with a 2 (or a 1 if the left argument for the DSVO func
tion was not a 1-see Establishing a Variable to be Shared in this chapter) for each
variable name that is successfully retracted and a 0 for each variable name that is
not successfully retracted. Normally, if a variable name cannot be successfully
retracted, it was never properly established as a shared variable.

Note: If the DSVR function is used before a file is closed, the system will auto
matically close the file.

()

(J



RETURN CODES

Return codes assigned to the shared variable when doing input/output operations
indicate whether or not the operation was successful. If the return code is non
zero and MSG=OFF was not specified, an error message is also displayed.

Operation of the system does not stop when a nonzero return code is assigned.
Therefore, if you have a user-defined function that is doing input/output opera
tions, the user-defined function should check the return code that was assigned
to the shared variable to make sure each operation is successful.

Following is a description and/or user's response for each return code and error
message:

C) Code Error Message Description and/or User's Response

00 Operation successful.-"

1 0 Device error; the second element
is the error code (see
ERROR eee ddd in Chapter 11).

20 INVALID FILE The specified file cannot be used
for input/output operations.

30 INVALID DEVICE Enter tho information required to
or open the file again, using device

INVALID DEVICE NUMBER number 1 or 2.

40 INVALID FILE NUMBER Enter tho information required to
open the file again, using a valid
file number.

50 NOT WITH OPEN DEVICE The specified device is already being
used for input/output operations;
the existing open file must be closed
before another file can be opened.

60 INVALID PARAMETER The information required to open
the file was entered incorrectly;
enter it again, correcting any key-
ing errors.

7 0 WS FULL Use the )ERASE command to erase
any unwanted objects; then enter
the information required to open
the file again.

C/) 80 DEVICE NOT OPEN Open the file.

165



Code Error Message

90

Description and/or User's Response

This return code is only a warning;
an empty vector was read from tape,
but the empty vector is not the
end-of-file empty vector.

100

11 0

EXCEEDED MAXIMUM
RECORD LENGTH

INVALID DATA TYPE

This error was probably caused by
the tape being removed before the
file was closed. The remaining data
in the file cannot be read.

The wrong type of data was used;
for example, noncharacter data was
sent to an interchange file, non
character data was used as the in
formation required to open a file,
or noncharacter data was sent to
the printer.

(J

AN EXAMPLE USING TAPE AND PRINTER INPUT/OUTPUT

In this example, file number 11 on tape unit 1 will be used as a data file. First,
a variable name must be established to be shared and the data file opened so that
data can be written to the file (OUT operation):

o:L:I.
)I...IB U.

:I. []BVO • SHARE: .....

r-Fi1e 11 is an unused file.

o() 01 Cl Establish a variable name

to be shared.

(\]

/' Open the data file.

lOll ID=(INVENTORY),

166

SHAJ~Efo' OUT
o 0 SHAI~E .....t-- Check the return code

'The file was opened that was assigned to
successfully. the shared variable.

-----.---------------,,-----r-----------;-'------------



Now, as data is assigned to the shared variable, it is transferred (written) to the
data file:

()

BHARE~'" ?1+~::j63() () GCI~EW ~::;()O() •

SHARE
0 0

SHA I~E~· ' 2'+~:561+ (J (J NUT "(000'
SHI~I~E

() ()

SH~IRE~ . 21.1·~.:;l.l5::.:;0 WASHER ~:i 0 .
SHARE

0 0
SHf~ I~E ~... ~::j3~:;7B () 0 eIRC BD :1.0'
!:)HAI~E

o 0
SHA I~E ~- \ ()...----After all the data has been transferred,
SHA I~E the file must be closed.

o 0

If more data is to be added to an existing data file but the file is closed, a vari
able name must be established to be shared and the data file opened again:

Note: In this example, the variable name SHARE has not been retracted and can
still be shared.

[JSVI~ 'SHARE'

Since no more data is to be written on tape, the shared variable should now be
retracted:

_..---------'-Open the data file again.
SHARE~'ADD 1011 ID=(INVENTORY),
SHAI~E

:::;'>
These records are added

t' following the existing
. records in the file.

------The file is closed.

SHARE~'535"(951 A/W
SHAI~E

SHARE~'5357950 BOARD
SHAI~E

SHAI~E~" \ 0
SHAI~E

o 0

o 0

o 0

o 0

167



C)

()
\~

VPI~INr[']:lV

V PIHNT j WORK
AREAD DATA FROM THE DATA FILE AND ASSIGN IT TO WORK
LOOP: WORK~·DATA
ACHECK FOR AN EMPTY VECTOR--AN EMPTY VECTOR HAS A
ASHAPE OF 0 (NO ELEMENTS)

..~ ( 0::: (.)WO I~I< )IDONE
ADISPLAY AND PRINT THE VALUE ASSIGNED TO WORK
PRNT~·W··W()RK

ACHECK THE RETURN CODE FOR THE PRINT OPERATION
(0 0 ¢PRNT)/ERROR
·~LO(J P

ERROR: 'PRINT ERROR--CHECK RETURN CODE FOR CAUSE'
~O

A TERMINATE THE PRINTER OUTPUT
DONE: PI~NT~WORK

'THE RETURN CODES ARE'
DATA
PlmT

Now, assume that at a later time you want to read the data from file 11 and
print it on the printer, using the following user-defined function:

CL:I
1::2:1
en
I:: I~.::J

1::5:1
[f.>J
[7::1
[In
[9J
[:J.() J
I:U.J
[12J
[:L3J
r :I.LI·]
1::1. ~jJ
1::16::1
[:t."n

v

The variable names to be shared must be established again and the data file
opened. Also, printer output must be specified:

NAMES~2 4p'DATAPRNT'
NAMES

DATA Establish the variable names
PJ~NT ~ to be shared.

:L [I!:;VO NAMES

" Open the data file for input.
DATA~'IN :LOll ID~(INVENTORY)'

DATA
() ()

PI~NT~' PRT' 41..-------Specify printer output.

PRNT
o 0

\)

168



Now, when the function PAINT is executed, the data file is read, displayed, and
printed:

PI~J:NT

()
2+~;6:30 () SCI~EW

24,::.:;61.1·00 NUT
21+~:;6::;:::; 0 WA!3HER
5~~:'.r713 00 CI I~C sn
::i3~)7l)l:::;() BDARD
5:'~5-195:L A/W
THE r~ETURN cones
o ()
o ()

s 0 0 ()
',000

~5 ()
10

:L
ARE

I c)
!

I

I

After the operation is complete, the shared variable names should be retracted:

169



Chapter 9. More Things to Know About the 5100

DATA SECURITY

You are primarily responsible for the security of any sensitive data. After you
are through using the 5100, the data in the active workspace can be removed by
one of the following:

• Using the )CLEAR command to clear the active workspace

• Pressing the RESTART switch

• Turning the POWER ON/OFF switch to off

There are several methods available for protecting or removing sensitive data on a
tape. These methods are:

• Assigning a password to the workspace when writ'ing the active workspace on
tape.

• Rewriting a tape file, which makes the old data inaccessible.

• Filling a data file with meaningless data. For example, the following user.
defined function fills file 4, a data file named DATA on tape 1, with zeros:

VSECI.JI~:rTY[nJV

V SECURITY
1::1. ] :1. [ISVfJ 'A'
[2:1 A~'fJUT 4 ID=(DATA),
1:3J B~ 10 1000 pO
r.4] WR:AH~

[5] ~(Al:l]=O)/WR

'V

Note: ERROR 010 ddd will be displayed after the data file has been filled with
zeros.

170



Figure 4. Storage Allocation for a Model A1 5100

5100 Internal Storage Requirements for Pointers,
Counters, etc

5100 STORAGE CAPACITY

The base 5100 (Model Al) has a storage capacity of 16K (K = 1024 bytes).
Figure 4 shows how this storage is allocated for various requirements. Notice
that the workspace available to the user (active workspace) is 10,600 bytes,
while the remaining bytes are used for internal purposes. The storage capacity
is increased in the following models of the 5100:

Model A2 is 32K
Model A3 is 48K
Model A4 is 64K

In these models, all additional storage is allocated to the active workspace.
For example, on the Model A4, the active workspace is approximately 60,000
bytes.

Active Workspace

10,600
Bytes

(Suggested IMF Area, 1,000 Bytes)

Symbol Table (see note)-1--1-------------------1
5784
Bytes

l"-----_---..J
Note: The symbol table requires eight bytes of storage for
each symbol allowed in the active workspace (see )SYMBOLS
in Chapter 2).

171



Page of SA21·9213-0
Issued 15 September 1975
By TNL: SN21-0247

Storage Considerations

The following list shows how many bytes of storage are required for each data
type that can be in the active workspace:

Data Type

Character constant or variable name

Whole numbers that are equal to or
less than 23 1_1

Whole numbers that are greater than
23 1_1

Decimal numbers

Logical data

Number of Bytes Required

1 byte per character

4 bytes

8 bytes

8 bytes

1/8 byte (1 byte can contain 8
ones or zeros)

()

(j'

Because the 5100 active workspace contains a fixed amount of storage, it is good
practice to conserve as much storage as possible. Following are some considera
tions that can be used to conserve storage:

• Make all objects (variables and user-defined functions) not required for use out
side of a user-defined function local to the function.

• Store data in data files on the tape, and use an APL shared variable (see
Chapter 8) to transfer the data into the active workspace when required.

• Clear suspended functions (see Chapter 7) from the active workspace.

• Group user-defined functions by related operations and store each group into
a workspace file on tape. Then when a certain group of related functions is
required to process data in the active workspace, the stored workspace contain
ing these functions can be copied into the active workspace. When the pro
cessing is done, the functions can be expunged (see Chapter 5) and another
group of functions (one workspace) can be copied into the active workspace.

• If a value consists of all ones and zeros, store the value as logical data. For
example, you have the following vector:

VECTClI~~"l0 (ol (2 ..··:1. )
VECT()I~

11:1. 1 :I. :I. :I. :I. :I. :I.

The result is a vector of 10 ones, and each 1 requires four bytes of storage.
However, the vector can be changed to a logical vector as follows:

VECTDI~~"11\VECTDr~

VECT()I~

:I. :I. :I. 1 1 :I. :I. :I. :I. :I.

The result looks just like the previous result; however, only 2 bytes of storage

was required.

172

c)



Page of SA21-9213.Q
Issued 15 september 1975
By TNL: SN21-0247

• Names of 3 characters or less require 8 bytes of storage in the symbol table
(the symbol table is part of the active workspace where the names of all the
symbols, including variables, user-defined functions, and labels, are stored).
Names of 4 characters or more require an additional 8 bytes plus 1 byte for
each character in the name.

Note: Even if an object is erased from the active workspace, the storage used
for its name will not be available for use unless the contents of the active
workspace are written to tape with a )SAVE command and then loaded or
copied back into the active workspace.

• Identical names that are local to more than one user-defined function do not
require additional symbol-table space for each function.

When the contents of the active workspace are written to tape using the
)CONTINUE command, then the stored workspace is loaded into a 5100
with a larger active workspace, the amount of available workspace (see OWA
system variable in Chapter 5) remains the same as it was when the contents of
the active workspace were originally written to tape. To take advantage of the
additional storage in the larger active workspace, write the contents of the active
workspace to tape using the )SAVE command, then load the stored workspace
back into the 5100.

TAPE DATA CARTRIDGE HANDLING AND CARE

• Protect the tape data cartridge from dust and dirt. Cartridges that are not
needed for immediate use should be stored in their protective plastic envelopes.

• Keep data cartridges away from magnetic fields and from ferromagnetic mater
ials that might be magnetized. Information on any cartridge exposed to a
magnetic field could be lost.

• Do not expose data cartridges to excessive heat (more than 1300 F) or sunlight.

• Do not touch or clean the tape surface,

• If a data cartridge has been exposed to a temperature drop exceeding 30
0

F since
the last usage, move the tape to its limits before using the tape. The procedure
for moving the tape to its limits is:

)MARK 2001 n

where n is the number of the last marked file, plus one.

2. Use the )MARK command to mark from the last marked file to the end of
the tape. For example:

Use the) LIB command to move the tape to the last marked file.1.

3. When ERROR 012 (end of tape) is displayed, use the )REWIND command
to rewind the tape.

(

(

173



Page of SA21-9213-0
Issued 15 September 1975
By TNL: SN21-0247

Chapter 10. The 5103 Printer

POWER ON/OFF Switch

The IBM 5103 Printer is available as a feature attachment and has these
characteristics:

• Bidirectional printing (left to right, then right to left). The 5103 bidirectional
printing operates as follows:

The print head moves from the left margin and prints a line. Succeeding lines
will be printed in either direction depending on which end of the new line is
closest to the current position of the print head. The print head will be
returned to the left margin periodically when printing is not imminent.

• 132 characters across the print line.

Note: If the width of the forms is less than 132 characters and the DPW
system variable (see Chapter 5) is greater than the width of the forms,
loss of data will occur as the print head leaves the form.

• Capability of using individual or continuous forms. Maximum number of
copies is six, but for optimum feeding and stacking, IBM recommends a
maximum of four parts per form.

• Adjustable forms tractor that allows the use of various width forms. The
forms can be from 3 to 14.5 inches (76.2 to 368.3 rnm) wide for individual
forms and from 3 to 15 inches (76.2 to 381 mrn) wide for continuous forms.

• Print position spacing of 10 characters per inch and line spacing of six lines
per inch.

• Stapled forms or continuous card stock cannot be used.

• The character printing rate is 80 characters per second. The throughput in
lines per minute is function-dependent.

• A vernier knob (located on the right side of the printer) that allows for fine adjust
ment of the printing position. This knob should only be used when the print head
is in its leftmost position.

174

(/J
"



Page of SA21·921 3.0
Issued 15 September 1975
By TNL: SN21·0247

The following sections describe how to insert forms and replace ribbons in the
5103 Printer.

HOW TO INSERT FORMS

( -,-,.

The diagrams at the left show the proper forms path
for singlepart and multipart forms. The steps to
insert forms begin below.

()

Forms Path for Singlepart Forms

~~~~!Si&i~....Forms Guide Rack

"'-.1
Friction Feed Rolls

Form Guide Rack

1. Pivot the plastic shield forward.

2. Push the print head to the extreme left position.

For singlepart forms, pivot the form guide rack
up and forward to a vertical position. For multi
part forms. leave the form guide rack in the
horizontal position.

3.

4. Push the paper release lever to the rear to actio
vate the friction feed rolls.

Plastic Shield
Print Head Paper Release Lever

(..~.

"-- .

175

Page of SA21-9213-0
Issued 15 September 1975
By TNL: SN21-D247

Tractors

/J
\

()

(J

Note: The forms must be positioned behind the
printer so that the forms feed squarely into the printer.

Place the forms in position behind the printer.

Thread the paper down, over the rollers, behind the
tractors, and behind the platen.

Note: To move the form backward, turn either
paper-advance knob backward and pull the form
from behind the printer to keep the form from buck
ling at the print head.

5.

6.

16. Turn either paper-advance knob to position the form
for the first line to be printed. The paper should
exit over the form guide rack.

17. Close the plastic shield. If you are installing the
printer, return to step 7 of Printer Installation
Procedures.

7. Turn the paper-advance knob to move the paper around
the platen until you can grasp it with your fingers.

8. Open both tractor covers.

9. Pull the paper release lever forward to disengage the (J
friction feed rolls.

10. Pull the paper up and place the left margin holes over
the tractor pins. Be sure the left tractor is in its left-

Rollers most position.

11. Close the left tractor cover.

12. Squeeze the two knobs on the right tractor and slide
the tractor to align the pins with the right margin holes.

13. Place the right margin holes over the tractor pins. rJ\
14. Close the right tractor cover.

Paper-Advance Knob

15. For singlepart forms, pivot the form guide rack to a
horizontal position.

Platen

CAUTION
The switch that senses end of forms is deactivated when the
friction feed rolls are engaged. Thus, the print wires could

Paper-Advance Knob Right Tractor Knobs hit the base platen if no forms are in the printer.

Tractor Cover and Pins

Tractor Cover and Pins

176

HOW TO ADJUST THE COPY CONTROL DIAL FOR FORMS THICKNESS

Copy Control Dial

If you are using singlepart forms, set the copy
control dial on O.

If you are using multipart forms and the last sheet
is not legible, rotate the copy control dial toward 0
one click at a time to obtain the legibility you desire.

If you are using multipart forms and the ribbon is
smudging the first sheet, rotate the copy control
dial toward 8 one click at a time until smudging
stops.

(~) 1.

2.

()
3.

HOW TO REPLACE A RIBBON

Forms Tractor

()

()

Power On Switch Printer Cover

1. Turn off power to the printer.

2. Tilt the forms tractor back by lifting both sides at the
front.

3. Raise the printer cover.

177

6. Open the ribbon box cover.

9. Lay the ribbon loop on the top of the ribbon in the rib
bon box. Pick up the entire ribbon and discard it.

5. Turn the feed roll release knob counterclockwise until !/.~
it points to the right. 0

Be sure that the print head is to the extreme left.4.

7. Put on the gloves supplied with the new ribbon.

8. Remove the old ribbon from the guides being careful to (J
disengage it from the clip on the print head. -.

Ribbon Box Cover

Feed Roll
Release Knob

I
Ribbon Loop

Print Head

Loop

Coil

Ribbon Box

Ribbon Holder

10. Eject the new ribbon from its holder into the ribbon
box by pressing on the disk.

11. Remove the disk from the ribbon and discard the disk
and the holder.

12. Hold the coil lightly with one hand and pull about 10
inches (254 mm) of ribbon from the coil.

13. Form a loop from the ribbon across the print head.

178

14. Thread the part of the loop nearest the platen between
the feed rolls and on the inside of the upper guide post.

15. Turn the feed roll release knob clockwise to close the
feed rolls.

Ribbon Box

Insert the horizontal part of the ribbon twist (bottom
edge first) between the two horizontal guides.

20. Move the print head back and forth across the
platen to remove the slack from the ribbon. Con

tinue moving the print head until you are sure
that the ribbon feeds properly.

17. Thread the other part of the loop through the slot in the
bottom of the ribbon box.

16. Thread the ribbon between the print head and the platen.
Be sure the ribbon is under the clip on the print head.

18. Thread the ribbon through the guide shoe and around
the left guide post.

Feed Rolls

(::)_ Feed Roll 19.

Release Knob

Slot

Platen

Guide Shoe

Upper
Guide Post

Left
Guide Post

()

()

21. Close the ribbon box cover.

22. Close the printer cover and turn the power on.

23. Reposition the form tractor.

••~/

..
179

Chapter 11. Error Messages

Error messages can result when using APL primitive (built-in) functions, user
defined functions, system commands, system variables, or input/output opera
tions. The following list contains the APL error messages along with some pos
sible causes for the error condition and a suggested user's response:

Error Message

ALREADY MARKED

CHARACTER ERROR

DEFN ERROR

DEVICE NOT OPEN

DEVICE TABLE FULL

180

Cause

The specified file was previously marked.

An invalid character was entered.

An invalid request to use the function
definition mode was made:

• A 'V symbol was erroneously used in
a statement.

• An attempt was made to reopen a
locked function.

• An attempt was made to reopen a
function using more than just the
function name.

• An attempt was made to open a new
function definition using the name of
a previously defined global variable name.

• An invalid edit request was made in
function definition mode.

• An attempt was made to edit a pen
dent function.

An attempt was made to read a data file
and the file is not open.

An attempt was made to establish more
than eight variable names to be shared
for tape or printer input/output.

User's Response

If the file is to be remarked, enter GO.

Note: Any existing data in the files .J..
following the last re-marked file will no ..
longer be available.

Enter a corrected statement.

If the statement was intended to open or
close a function, the 'V is valid only in the
beginning and ending positions.

(J-
-,

Enter a corrected statement.

Enter a different function name or erase
the global variable.

Enter a valid edit request.

If the suspended function execution can be
terminated, clear the state indicator (see
Chapter 7), then edit the function.

Assign the information required to open the
file to the shared variable.

Retract any unused shared variable names.

eee is the error code for an input/output device operation and ddd is the device number.
The device numbers are: 500-printer; 001-built-in tape unit; 002-auxiliary tape unit.
Following is a list, cause, and user's response for the input/output device error messages:

..
\ (~)

Error Message

ERROR eee ddd

ERROR 002 ddd

ERROR 003 ddd

ERROR 004 ddd

ERROR 005 ddd

ERROR 006 ddd

ERROR 007 ddd

ERROR 008 ddd

ERROR 010 ddd

ERROR 011 ddd

ERROR 012 ddd

ERROR 013 ddd

ERROR 014 ddd

ERROR 050 ddd

Cause

Command error.

Tape error.

Tape error.

The tape cartridge is not inserted in
the indicated tape unit.

An attempt was made to write on a tape
that is file-protected. (The SAFE switch
on the tape cartridge is in the SAFE
position.l

Tape read error.

The tape cartridge was probably removed
from the tape unit when data or a work
space was being written to tape. The
data in the file cannot be used.

Data is to be written to a data file, but
all the space in the file has been used.

An attempt was made to write the active
workspace on tape with a)SAVE
command, but the specified file could
not contain all the information from the
active workspace.

A file number was specified that has
not been marked.

The end of the tape has been reached.

The specified device is not attached.

Device error.

The printer has run out of forms.

Page of SA21-9213-Q
Issued 15 September 1975
By TNL: SN21-0247

User's Response

Performing tape operations with an un
MARKed cartridge will cause error 004.
Otherwise, try the operation again. If the
error occurs a second time, call your ser
vice representative.

Insert a tape cartridge and try the
operation again.

If you want to write on the tape, turn the
SAFE switch on the tape cartridge off of
the SAFE position.

Use the)PATCH command and Tape
Recovery program (see Chapter 2) to
recover as much data as possible.

Try the operation again. If the error
occurs again, copy the files following the
file that caused the errors onto another
tape. Then use the)MARK command and
re-mark the tape from the file that caused
the error.

Use the)MARK command to format a
larger file and do the operation again.

Use a larger file to save the active
workspace.

Specify the correct file number or use the
)MARK command to mark the tape.

Use another tape cartridge.

Try the operation again. If the error
occurs a second time, call your service
representative.

Insert forms in the printer (see Chapter 10).

181

Page of SA21·9213-0
Issued 15 September 1975
By TNL: SN21.Q247

Error Message

ERROR 051 ddd

ERROR 052-059 ddd

DOMAIN ERROR

EXCEEDED MAXIMUM
RECORD LENGTH

IMPLICIT ERROR

INCORRECT COMMAND

182

Cause

The printer POWER ON/OFF switch is
turned off.

Printer errors.

The function indicated by the caret (A)

cannot operate on the arguments given:

• The result exceeds the capacity of
the 5100 « 5.3976E-79 or
>7.237E75).

• A character argument cannot be used
in an arithmetic operation.

• The argument is not mathematically
defined for the function (12+0).

• Numeric and character data cannot
be joined together.

• An error occurred in a locked function.

The tape was removed before the data
file was closed during a tape input/
output operation.

The system variable that precedes the
error message was previously assigned
an invalid value or was undefined in a
function dueto the system variable
being made local to the function.

Note: This error message is not displayed
until the system variable in error is used
by the APL system.

A system command was entered
incorrectly:

• The command keyword was not a
valid keyword.

• One of the parameters was entered
incorrectly.

• Too many parameters were entered
for the command.

User's Response

Turn the POWER ON/OFF switch on.

Try the operation again. If the error
occurs a second time, call your service
representative.

Determine the correct arguments for the
function in error. Then correct the state
ment in error.

The data in the file cannot be used.

Assign a valid value to the system variable
(see Chapter 2).

Enter the command in its correct form.

()

()

c)'

()

()

C)

Error Message

INDEX ERROR

INTERFACE QUOTA
EXHAUSTED

INTERRUPT

INVALID DATA TYPE

INVALID DEVICE

INVALID DEVICE
NUMBER

Cause

The index values given are outside the
boundaries of the array or a primitive
function or APL operator being sub
scripted by index [I] has been given
an argument that does not have an Ith

dimension.

An attempt was made to establ ish more
than eight variable names to be shared
for tape or printer input/output.

Attention was pressed twice when the
5100 was processing data or an invalid
tape input/output operation was
attempted.

Only interchange data can be used, but
there was an attempt made to use data
that is not a character scalar or vector.

An attempt was made to open a data
file with other than character data.

A device was specified that does not
exist or is incorrect for the operation
to be performed.

A device number that does not exist
was specified.

User's Response

If a variable is being indexed, check its
shape (o A) against the index values.

If a primitive function or operator is being
indexed, determine the rankfs) (p pAl of
its arqurnentts}: then check the index to
see if it is equal to or less than the re
quired rank.

Check the index origin (010) to ensure
that it is consistent with the statement
being executed.

Retract any unused shared variable names.

If an invalid tape input/output operation
was attempted, check the file open infor
mation to make sure the file was opened
correctly.

Change the data to a character scalar or
vector.

Enclose the information required to open
the data in single quotes.

Specify the correct device number.

Specify the correct device number.

INVALID FILE

c)

c.

The file type is not valid for the
attempted operation. For example,
an attempt was made to load a data
file or read a workspace file.

An attempt was made to load or copy
a damaged file. The file was probably
damaged by the tape being removed
from the tape unit before a save
operation was complete.

The wrong file ID was specified.

Use the)L1B command to determine the
file type.

The data in the file is unusable. The file
can be dropped (use the)DROP command)
and reused.

Use the)L1B command to find the correct
file 10 and reenter the statement.

183

Error Message

INVALID FILE NUMBER

INVALID OPERATION

INVALID PARAMETER

LENGTH ERROR

LINE TOO LONG

NONCE

NOT COPIED: names

184

Cause

The file number 0 was specified for a
)LOAD,)SAVE,)CONT,)DROP,
)COPY or)PCOPY command.

An attempt was made to open a data
file, but the file number was not valid.

An invalid tape input/output operation
was attempted. This message is followed
by an INTERRUPT error message.

A keying error was made or an incorrect
parameter was specified when entering
the information required to open a data
file or specifying printer output.

A keying error was made when entering
the parameters for a system command.

The shapes of the two arguments are
not valid for the function indicated by
the caret (x l,

An attempt was made to edit a statement
(in a user-defined function) that is greater
than 115 characters.

An attempt was made to save a work
space that contained a user-defined func
tion with a statement having more than
115 characters. In this case, the error
message is preceded by the function name
and the statement number that caused
the error.

An I-beam function was used. These
functions are not used in the 5100 APL
system.

A)PCOPY was issued, but each object
named in the message was not copied.
The active workspace already contained
a global object with the same name.

User's Response

Reenter the command specifying the
correct file number.

Use the)L1B command to find the correct
file number. Then reenter the information
required to open the data file.

Check the file open information to make
sure the data file was opened correctly
or make sure you are using the shared
variable correctly.

Enter the file open information or system
command again, correcting the keying
errors.

Make sure the arguments are valid for the
function. Then reshape (restructure) the
arguments.

Break the statement up into two state
ments or use the OCR and DFX functions
to edit the statement.

Use the OCR function to make the user
defined function a matrix; then save the
workspace on tape.

Do not use the I-beam functions.

Issue a)COPY command if the named
objects should be copied.

()

()

(J

(
- I

/

Error Message

NOT FOUND: names

NOT SAVED, THIS WS
IS workspace ID

NOT WITH OPEN DEVICE

NOT WITH SYSTEM
ERROR

NOT WITH SUSPENDED
FUNCTION

RANK ERROR

Cause

A)ERASE command was issued, but
the global objects named in the message
were not found in the active workspace.

A)COPY or)PCOPY command was
issued, but the specified global object
does not exist in the specified workspace.

A)SAVE command was issued but the
stored workspace ID is not the same as
the active workspace ID.

An attempt was made to issue a system
command or open a file on a tape unit
that is already being used for input/out
put operations.

A)OUTSEL command was issued, but
printer output has been specified for a
shared variable.

An attempt was made to do an opera
tion other than)CLEAR after a
SYSTEM ERROR occurred.

An attempt was made to do a)SAVE,
)COPY, or)PCOPY operation and the
active workspace contains a suspended
function.

An attempt was made to use a function
that requires the rank of the arguments
to conform, but they do not. For
example, a function requires the rank
of the arguments to be the same, but
they are not.

An attempt was made to use an argument
whose rank is too large for the operation.

The number of semicolons in the index
does not equal the rank minus 1.

User's Response

Reissue the command using the correct
object names.

Reissue the command using the correct
object name or stored workspace.

Use the correct ID or change identifica
tion of the active workspace, using the
)WSID command; then reissue the)SAVE
command.

Close the data file or wait until the input/
output operation is complete before
issuing the command or the file open
information again.

Retract the printer shared variable.

(see SYSTEM ERROR)

Clear the suspended function by using
-+ (right arrow).

Make sure the arguments are valid. Then
reshape (restructure) the arguments so that
they have the correct rank (o p A).

Use the correct number of semicolons.

185

Note: Erasing a symbol from the active
workspace does not remove it from the
symbol table; however, saving the active
workspace and loading it again will remove
any unused symbols from the symbol table.

Error Message

SI DAMAGE

SYMBOL TABLE FULL

SYNTAX ERROR

SYSTEM ERROR

VALUE ERROR

186

Cause

The state indicator was made invalid
because one of the following occurred:

• A function exists in the state indica
tor list, but the function was erased.

• A suspended function's header was
changed.

• A label was removed or changed
on the suspended statement.

• Statements were added to or erased
from a suspended function.

More symbols were used than the number
of symbols allowed.

The symbol table in the stored work
space is full and a load operation was
attempted. This error is caused by the
latent expression variable even if it
has not been assigned.

The part of the statement indicated by
the caret (1\) is syntactically invalid.

A malfunction occurred in the APL sys
tem program and the data in the active
workspace is lost.

The object indicated by the caret (1\)

has not been given a value:

• If the object is a variable name, the
variable was not previously assigned
a value.

• If the object is a function name, the
function header did not specify a
result, or the function did not assign
a value to the result variable.

User's Response

Use the)SI or)SIV command to display
the state indicator. Clear out the state
indicator by entering -+ repeatedly.

)SAVE the workspace,)CLEAR the active
workspace, increase the number of sym
bols allowed by using the)SYMBOLS
command, then)COPY the stored work
space into the active workspace.

Enter a corrected statement.

Enter the)CLEAR command; if the error
continues to occur, call your service
representative.

Note: If SYSTEM ERROR occurred on a
load or copy operation, the error may be
caused by a bad stored workspace file.
Try loading or copying another stored
workspace file to see if the error occurs
again.

Assign a value for the indicated variable or
correct the function so that it has an ex
plicit result. The value must be assigned
before the object is used.

()

(J

(..)
\,

Error Message

WS FULL

c)

WS LOCKED

WS NOT FOUND

WS TOO BIG

Cause

One of the following conditions occurred:

• A)COPY or)PCOPY command was
issued, but the active workspace could
not contain all the objects requested.

• The active workspace could not con
tain all the information required to
build a defined function.

• The active workspace could not con
tain the intermediate results of an
APL expression.

• The active workspace could not con
tain the final results of an APL
expression.

• The active workspace could not con
tain the information required to do
input/output operations.

• A workspace was written to tape
with a)SAVE command, but the
extra storage required when loading
the stored workspace back into the
active workspace exceeds the avail
able storage.

The workspace is password-protected,
but no password or the wrong pass
word was specified in the command.

A)LOAD,)DROP,)COPY, or
)PCOPY command was issued, but
there is no stored workspace with the
identification specified in the command.

One of the following conditions occurred:

• An attempt was made to load a work
space stored with the)CONTI NUE
command into a 5100 with less in
ternal storage.

• An attempt was made to load a work
space stored with the)CONTINUE
command into the active workspace,
but IMFs have been applied reducing
the available internal storage.

• An attempt was made to write the
active workspace (using the)CONTINUE
command) into a file that is too small.

User's Response

Erase unnecessary objects. If there is still
not enough space, do a)SAVE and
)LOAD of the active workspace.

Use the)COPY command to make the
stored workspace into two workspaces.

Reenter the command with the correct
password specified.

Reenter the command with the correct
workspace identification.

Use a 5100 with enough internal storage.

Clear the active workspace, load the stored
workspace into the active workspace,
)SAVE the active workspace, apply the
IMFs, then load the stored workspace again
or copy only the required objects.

Use a file that is large enough.

187

Appendix A, Installation Procedures and Installation Planning Information

INSTALLATION PLANNING

IBM 5100 Portable Computer 50 Ib (24 kg)

The 5100 Portable Computer and associated units are designed for these
environments:

()
Operating Environment

Relative humidity 8%-80%

Maximum wet bulb
temperature 730 F (230 C)

Nonoperating Environment

Relative humidity 8%-80%

Maximum wet bulb
temperature I,)

IBM 5103 Printer
56lb (26 kg) IBM 5100 Portable Computer

50 Ib (24 kg)
IBM 5106 Auxiliary Tape Drive
181b (8 kg)

o

I

10 inch
(26 em)

17-1/2 inch
r(45Cm)

t-- 23 inch
(59 em) -----...I

13-1/4 inch
(34 em)

.e:
(h=:=~-+-===::~ 24 in

1
h

(61 cml.!

7-1/4 inch 1(((fr~~~~~~ f r-:.r:==--~+-'-

(19cm~ L9 [:~ r;~;;;(J

c 12-1/4 inch ==J-1
(31 em)

188

Electrical

All attachment power cords are S feet (1.8 meters) long.

The auxiliary tape unit power plug has a tap so that a printer, TV monitor, or
communication modem can be attached for electrical power.

3.0 amps
1.0 amp
0.5 amp

780 BTU per hour
300 BTU per hour
130 BTU per hour

5100 Portable Computer
5103 Printer
510S Auxiliary Tape Unit

5100 Portable Computer
5103 Printer
510S Auxiliary Tape Unit

Current Requirements are:

A duplex receptacle is recommended so that the 5100 Portable Computer and an
auxiliary tape unit or a printer can be powered from the same outlet.

A 115-volt, 15-ampere, single-phase, SO-cycle grounded receptacle is required for
each unit. Allowable tolerance is ±10% on the voltage and ±1/2 cycle on the
frequency.

Page of SA21oS213-0
Issued 15 September 1975
By TNL: SN21..()247

The heat output is:

Cabling

.:

(:1
The 5100 Portable Computer is connected to the printer by a 4-foot (1.2-meter)
signal cable and to the auxiliary tape unit by a 2-foot (O.S-meter) signal cable.
The cables are supplied with the features.

When both the printer and auxiliary tape unit are installed, the printer must be
attached to the auxiliary tape unit instead of the 5100 Portable Computer.

When only the auxiliary tape unit is installed without a printer, the terminator
assembly must be moved from its storage position to the signal cable receptacle
immediately below it, on the back of the auxiliary tape unit.

c'

l)
189

Communications

The required 6·foot (1.8·meter) cable is supplied.

Contact your IBM marketing representative to obtain modem specifications. i)

iJ
"

1111111111/111

BNC Connector for External Monitors
(40 mA of current is available to drive
external monitors, the last monitor in
a parallel string must be terminated
with 75 ohms)

Contact your local communications company representative immediately to allow
adequate time for equipment hookup.

The modem connector must be compatible with Amp Corporation receptacle
#205207 (25 position) or equivalent.

Terminator (storage position)

\/~)

<c:>

190

I
I

!
I

I

I

()

..-'
()

Page of SA21-9213-0
Issued15 September 1975
By TNL: SN21.0247

INSTALLATION PROCEDURES

5100 Installation Procedure

After you haveplaced the 5100 where you intend to use it, make sure the red POWER
ON/OFF switch (located on the front panel) is in the OFF position. Plug the power
line into agrounded electrical outlet.

Note: For proper operation, the 5100 must be plugged into a grounded outlet.

Set the POWER switch to ON, and be sure that the fan is operating:

• If your machine location is not too noisy, you should hear the fan motor
operating.

• If you are not sure, hold a light piece of paper near the air intake on the back of
the machine. The loose end of the paper should be pulled toward the machine.

If the fan does not appearto be operating, check your power outlet. If it is OK, set
the POWER switch to OFF and call for service. Do not continue with these
instructions.

If the fan is operating, wait for about 20 seconds and your 5100 will be ready for
operation.

APL Checkout Procedure

o 1. After power hasbeen on 20 seconds, the display screen should show:

l CLEAI~ we"
_/The underline (cursor) flashes on and off.

If the display screen does not show the above information, check the
following top panel switches:

a. Turn the BRIGHTNESS control to get the best character definition.
b. Set the DISPLAY REGISTERS switch to the NORMAL position.
c. Set the L32 64 R32 switch to the center (64) position.
d. Set the BASIC/APL switch (combined machinesonly) to the APL

position.
e. If information displayed is not asshown above,press the RESTART

switch. This recyclesa portion of the power-on sequence. If the infor
mation displayed is still not asshown above (after the 20-seconddelay),
call for service.

191

Page of SA21.9213-0
Issued 15 September 1975
By TNL: SN21.()247

Where the bottom portion of the key is shown shaded, hold the shift key

Enter the data shown by the key drawings below. The data will be displayed
as the keys are pressed.

()

()

(aboveIf you make a keying error, you can press the backspace key

EXECUTE) to backspace the cursor, then press the correct key.

If the display screen does not show the correct results in the remaining steps
of this procedure, press RESTART once, go back to step 1 and try again. If
the correct result is still not shown, call for service.

02.

Besure to use the multiply
'-------key and not the alphabetic

X.

down while you press the character key. (Enter the unshaded character.)

Press the following keys in sequence line by line:

The display now shows:

CLEAR WB
VTEST

[1.J

~~I

~~~~I

(J

o 3. Below the lines of the test program that you just entered, the answer of 27
will be displayed (the program multiplies 3 times 9):

VTEST
[1.J At-3
t:2J Bt-9
[3J Ct-AxB
[I+J CV

TEST ()
27

192



()

I 04.

Page of SA21-9213.Q
Issued 15 September 1975
By TNL: SN21-0247

If you checked out the tape operation under the BASIC checkout procedures,
insert the tape cartridge into the 5100 and go to step 6. Remove an unused or
scratch tape cartridge from its package. Check that the arrow is pointing away
from the word SAFE as shown in the illustration. Insert a coin or screwdriver
into the slot if you must turn the triangular arrow away from the word SAFE.

Note: Do not use any prerecorded tape cartridges that were shipped with your
machine.

This edge goes into machine first.

o 5A. Insert the tape cartridge into the 5100 (metal bottom down), and press it in
until it seats firmly, Then press the following keys (you must leave a space
before each number):

c

c

.../

5B.

06.

The previous step initialized the tape to hold information. If a message of
MARKED is displayed, go to step 6. If a message of ALREADY MARKED is
displayed, the tape is already marked. To re-mark the tape, press:

Press the following keys:

193



194

o 7. The last step wrote the program onto tape, but it is still recorded in the
storage workspace. To prove the program can be read from tape, the program
must be erased from the workspace. To do this, press the following keys:

o 8. To read the program from tape into the 5100, press the following keys:

o 9. When LOADED 1002 WS is displayed, press these keys:

The display screen should again show:

lJ
TEST

27

~
Position 1 ~

Position 7

This completes the APL checkout procedure.

()

()

()

()
I

.: .:



Page of SA21·921 3-0
Issued 15 September 1975
By TNL: SN21-o247

If the words above the top row of numeric keys are labeled on the left with:

COMM }
BASIC , you have a combined machine with the communications feature.
APL

o 10. Check to see that you received the following documentation:
a. IBM 5100 APL Introduction, SA21·9212
b. IBM 5100 APL ReferenceCard, GX21·9214, located in the back of this

binder
c. Maintenance Library Binder

} ,you have a combined machine.
BASIC
APL

l)

(~)

COMM }APL ' you have an APL machine with the communications feature.

COMM }BASIC ' you have a BASIC machine with the communications feature.

If you have not checked out BASIC on a combined machine, set the
BASIC/APL switch to the BASIC position, press RESTART, and go to the
BASIC Checkout Procedures in Appendix C of the IBM 5100 BASIC
ReferenceManual, SA21-9217. If you already did the BASIC checkout
procedures, continue with step 11.

C) o 11. If the auxiliary tape unit is to be installed, unpack the tape unit and pro
ceed to the Auxiliary Tape Unit Installation Procedure which follows.
After installing the auxiliary tape unit, proceed to step 12.

o 12. If the printer is to be installed, unpack the printer and proceed to Printer
Installation Procedure, which comes later in this appendix. After install
ing the printer, return to step 13.

o 13. If your 5100 is equipped with the communications feature, follow the
Installation Instructions in the IBM 5100 Communications Reference
Manual, SA21·9215; then go to step 14.

o 14. When the preceding devices or features are installed, or if none are, begin
reading the IBM 5100 APL Introduction to learn how to operate your 5100.

C)
195

I

I
i..



Auxiliary Tape Unit Installation Procedure

()Set the 5100 and auxiliary tape unit power switches to OFF.

Remove the shipping tape from the signal cable (flat cable) and connect the
signal cable into the back of the 5100. Make sure the connector fits squarely.
Turn the knob in a clockwise direction until the connectors fit together firmly:

o 1.

02.

Terminator Plug

The terminator plug connects
into the lower position.

Storage Position for Terminator Plug

Power Line Plugs

o 3. Check that the terminator plug is in place on the rear panel as shown in the
preceding diagram.

o 4. Remove the shipping tape from the power line and plug the power line into
a grounded electrical outlet.

05. Set the auxiliary tape unit POWER switch to ON, and be sure that the fan
is operating.
a. If your location is not too noisy, you should hear the fan motor operating.
b. If you are not sure, hold a light piece of paper near the air intake on the

left side of the tape unit. The loose end of the paper should be pulled
toward the tape unit.

If the fan does not appear to be operating, check your power outlet. If it is
OK, set the POWER switch to OFF and call for service. Do not continue with
these instructions.

o 6. Set the 5100 POWER switch to ON and continue to the checkout procedure.

.,

196



TapeUnit Checkout Procedure

o 1. Insert a tape cartridge into the auxiliary tape unit after checking that the
arrow is pointing away from the word SAFE.

Note: The following steps assume you are using the same cartridge that you used
to check the 5100. If you are not, write any program onto the cartridge in the
auxiliary tape unit and read it back.

Press the following keys to read in the program that was stored on tape during
the 5100 checkout procedure:

Page of SA21·9213.Q
Issued 15 September 1975
ByTNL: SN21·0247

02.

"" C) D

o 3. After the message LOADED 2002 WSappears on the display screen, press
the following keys:

I C)

o 4. The message CONTINUED 2002 WS appears on the display to verify that
the program was written back to tape and was checked by the 5100.

This completes the checkout procedure for the auxiliary tape unit.

Return to step 12 of the 5100 checkout procedure.

r.

197



Printer Installation Procedure

D 2. If you have an auxiliary tape unit, remove the terminator plug from the
bottom position and insert it into the top position (storage position).

Page of SA21·9213-o
Issued 15 September 1975
By TNL: SN21-0247

()

Set all POWER switches to OFF.

Remove the shipping tape from the printer signal cable (flat cable) and
connect the signal cable to the back of the auxiliary tape unit, if it is
attached, or to the back of the 5100. Make sure the connector fits
squarely. Turn the knob in a clockwise direction until the connectors
fit together firmly:

D 1.

D 3.

,)

Printer (rear)

1111111111111111111111111111111111111111111111111111111111111111111111

Forms Tractor

5100 Portable
Computer (rear)

-

BNC Connector
for TV Monitor

The printer signal connects to the back of the
5100 if the auxiliary tape unit is not attached.

Auxiliary Tape
Unit (rear)

Connector
Position

Storage Position for
Terminator Plug

D 4. Remove the shipping tape from the printer power line and plug the power
line into the back of the auxiliary tape power plug or into a grounded elec
trical outlet.

(J

198



PrinterCheckout Procedure

Return to step 13 of the 5100 checkout procedure.

Page of SA21-9213-0
Issued 15 September 1975
By TNL: SN21.Q247

Must be in this position.

Position this part of the
forms tractor first. Press
down firmly to snap into
place.

l_~~--- Forms Guide Rack

~---------'Thenrocktheforms

tractor forward and
snap this part into place.

Set both the printer and 5100 POWER switches to ON and continue on to
the checkout procedure.

Unpack the forms tractor and set it in place on top of the printer as shown
in the drawing. Install the forms guide rack on the forms tractor.

Press several alphameric keys to display some information. Then, hold down the
CMO key I,nd press the key Q below Copy Display on the

command word strip. The printer will provide a copy of the information on the
display screen.

07.

o 6. Insert paper in the printer. Use the printer information in this manual if you
need help in inserting the paper (see Chapter 10).

05.

Hole for Forms Guide Rack
(inside frame)

c/)

(\

c

C)

c)
I •

'\ c)

199



Appendix B. APl Character Set and Overstruck Characters

(~

Overstruck characters are formed by entering one character, backspacing, and enter-
ing the other character. The 5JOO APL character set consists of all the characters
represented on the 5100 keyboard plus the following overstruck characters: ()

Function Character Keys Used

Comment A OJ CJ
Execute CD CJ (~j

r

CD CJFactorial, combination

Format W CD CJ
Grade down W CD (I)
Grade up ~ CD (I)
Logarithm il CD Q] )
Matrix division ffi CD CD'"

L

Nand A OJ CD
Nor v CD CD
Protected function '?J CD CD
Quad quote [!J CD CD
Rotate, reverse ¢ (I) Q] ()

OJ "Transpose ~ Q]
Compress of (see note) OJ GJ )
Expand ~ (see note) OJ [J
Rotate, reverse e (see note) Q] GJ

)Note: These are variations of the symbols for these functions; they are used when
the function is acting on the first coordinate of an array.

200



Appendix C. Atomic Vector

The following chart shows the character, the character name, and the index of
that character in the atomic vector:

I c~

C)

Character

I"'
::I

/

,.~

+

,~

r
I..
I

1',

v

Character Name

I~E~;;E I~VED ,
I:<E!;;ERVED,
I~E~;;E RVED. ,
I~ESEI~VED. ,
I~ESE I~VED ,
I:<E~;;E RVED ,
F(E~:)F I~VFD .
F<F~:;ER\/ED, .
I~E~;;E I~VED .
I;(EE;EI~VED .
F(E~:;E RVED, ,
RE!:>EI~VED. , , , , .
I~E~;;E I~(VED .
I~E!:)E I~VED .
LEFT BI~ACJ<ET. .
RI DHT B I~I:~)CI( ET
LEFT PARENTHE!:>IS,
RIGHT PARENTHESIS .
SEi'vj I CClLClN ,
r I '\ r Ij,:) ..,f·'I':) '1 , , ,

BACI( SL(.~I~;IH,

LEFT (.~I;!I~c)~J,

RIGHT (.~ I~ 1;!C)iAl
I~E!;IEI~VED. . . , , . , , .
I~ESE RVED , , .
DIERESIS (UPPERSHIFT 1)
PLU!;I.. , .. , .
i'1I NU!;; , , , . ,
TI;\'IES ,
DIVIDE.
!;rfAR, . .
MI~)< H1l.Jiyj . , . . , .
MINIMUM
F<E!;;IDUE
MHI r , ,

ol~, . ,
LESS TH('~N

LE!:>!:> THAN OR EQUAL,
E(~UAL , ,
GREATER THAN OR EQUAL
GI~E('~TER THAN.
NClT E(~UAL . . .

Index
(010+-1)

:I.
")
.t:.•

:-5
1+
I::'
,.J

()

"?
D
<.1
:1.0
:1, :I.
:1.2
:1.3

2:::.~
'j"'"
.~.,,:')

2 1+
2~:.:;

30
3:1.

201



Character Character Name
Index
(010+-1)

J]

(.'J'-
'.

67
60
69
70
7:1.

~:,:jD

::)9
60
6:1.
(,)

61:'5
(~)I+

L ,::'
':>d
<f... l>

~::i3

~:,:,il+

1.1,3

'+ LI'
I+~:,:;

1+6)
1+7
I+D
1.~9

~::,i 0
~:) :I.

.... I·..
{ ;,'J

73
71.1,

77
'lD
7<.1
sn
0:1.
D2
0:'3
DI.i,
B::)
D6
07
DB
B<.1
?O
?:I.
jl;?
93

, I I I

I I , I

I I I I I

I , I , ,

I I I , I II I t I

ALPH(~ ,
EP~;;ILON

IOTA, ..
I~HO , . . • • . , . . .
OME[)I~ . .
COi"Ii"IA , ,
SHRIEK (EXCLAMATION),
I~~EVEI~BI:':JL. , . , , . . ,
ENCODE CBASE) . , , . ,
DECODE (REPRESENTATION)
CI RCLE. , •
(-H,IEI~Y . . . .
NOT , . , •
UP 1:':jlxl~OI,J. .
DOWN (.II~ F1 0 (.,1 , •

SUB~;;ET, . ,
I~I(3HT ~:;UX:{~;)ET,

CI~P , . , .
C;lJP , I I I I I I I I

UNDE IxSCOI~E ,
T1MNSPW:;E . • .
:11: ""ElEf)M . , ,
NULL (SMALL CIRCLE) .
(WI~D, . , .
(~UAD (~UOTE, . , . • . , . • .
LOG ... , . ,
i\U)ND, , , .
i'1() I~ I I I , I I I I I t I I

LAMP-COMMENT, , .. ,
DI~I~lDE UP, , , .
GI~I~DE DOWN, , ,
OVERSTRUCK CIRCLE-HYPHEN. ,
OVEI~STI~UCK SLI~SH""HYPHEN .
OVERSTRUCK ElACKSLASH-HYPHEN .
i"I{~ITI~I:X: DIVIDE
FOI~i\i(~T, .
EXECUTE ,
(.IMPEI~S(.IND ,
A'Y', I I , I I r f

POUND , .
DClI...L(..lR, ,
UNUSED. , ,
TRACE (T DELTA) , .. , ...
STOP .( !;; DELT(.l).
~I I I I I I

B
r
D
F
F
[) .

::1

o
!J

N
A
N
V

O!

\

(01

(,)

!
(I)

,I.

T

o

n
I~I

(f)

A
El
r
D
I'"
I'""
(":J

202



OEI...Tp. ".,
(~""UNOEI;!~:;CClI~E, .
B-UNOERSCClHE, , , .••... , ,
C····UNOE 1~~3CClI~E. .
O·..·UNDEI~!:;COI~E, .
E····UNDE IxSCCllxE. •
F····UNDEI:>,SCClI~E ,
G····UNDE 1~!:;CCllxE. .
H.... UNDE 1~!:;CClI~E, •
I-UNDERSCORE .. , •• , .••• ,
,.I·..·UNDE Ix!:;CClI~E, •
1< ····UNDE Ix!:;CClI~E. •
I... ·..·UNDE Ix!:;CClI~E ,
l"l ..··UNDEI~!:;C()I~E. •
N-UNDERSCClRE. , .••.•..•.
()····UNDERSC()I~E.
P··.. UNDEI~!:;C()RE •
(~''''UNDEI~!:;C()I~E, ,
R····UNDEI~SCClI~E, .
!:;····UNDEI~!:;C()I~E .
T ..··UNDEI~!:;C()I~E .
U·..·UNDE 1~!:;CClI~E. ,
V ..··UNDEI~SCDI~E ,
~J····UNDEI~!:;CDI~E. , . • • • .
X····UNDEI~SCClI~E •
y····UNDEI~SC()I~E. ,
Z ..··UNDE I~!:;C(] I~E .
DEI...Tt~··"UNDEI~!:;CClI~E. •
() I , I I ,

:I. •

9 1+
9::':;
(t6
97
90
99
:1.00
:I. 0:1.
:1.02
:1.03
:I. 0 1+
:I. 0s
:l.O{.
:1.07
:l.OB
:1. O(t
:1.:1.0
:1.:1. :1.
:1.:1.2
:1.:1.3
:1. :1. 1+
:1. 1. s
:1.:1.6
:1.:1.7
:I.:l.B
:1.:1.9
:1.20
:1.2:1.

:1.2~5

:1.2 1+
:1.2::;;
:1.26
:1.27
:l.2B
:1.29
:1.30
:1.31.
:1.32
:1. 3~5
:1.3'+
:1. :~::5
:1.36
:1.3"1
:I.3B
:1.39
:1. 1+0

:1.1.1·:1.
:1. 1+2
:1.4:3
:1. 1+1+

Index
(010-+-1)

I • , I , I I I •

R .

>(
y'
..,
,-t•• I

H , ,
I . ,
\.J ,
II, ,
I... ,
1"1 •
1'1 , •
Cl •
P ,
(~

Character Name

x
y
"1<••

I~,

f',:l

T
U
ij
iJ
X
,?
z
t.\
(i
:I.
r)
~..

T
U
V
kl

H
I
..J
1<
I...
l"1
1'1
o
P
(~

H

Character

()

o

C)

c)

C)

C)
203



Character

I.J.

B
9

'il

N
"!;'

N
,!>.

Character Name

1+ •
I::'
...J I

6
.•?
I

(:l I I , I , , , I I I

?
PEI~IOD. . ,
OVE I~Btll~

BLANI( .
(~UOTE ,
COLON . .""
DEI... CFN DEF CHAR)
CUI~~:;DR I~ETUI~N . ,
END DF BLDCKCCANNOT BE DISPLAYED)
BACI( s PtlCE
I... INEFEED, , , , .
PI~DTECTED DEI...
UNUSED.
UNUBED.
UNUSED, .
UNU!:;ED,
UNUSED,
UNU!:;ED. ,
UNUSED, . , . , , , ,
LENGTH OF Z-SYMBDL TABLE, .
D-U-T FOR CDMMUNICATION TAPE.
I..,DGI CAl.., NOT , . , , . , . , ,
DOUBLE C~UOTE. . . . ,. .".
PERCENT , . , , ,
PROTECTED DELTA . , , ,
BUI..,I..,~:; EYE
i; UMLET .
[) UMLET .
U UMLET . . . . . . ,
i;NGST IWr1. , . . . .
AE DIAGRAPH. .,..".
P SUI:l T . .
N TILDE . . , , . .. ...,
POUND STEI~LING. . . . . . .
C~E::NT, ~ I , I , I

D TILDE . . . . . . . .
A TILDE . , . . . . . .

Index
(010+-1)

:l.1+~':;

:1. 1+6
:I.I.I·"{'

:1.I.I·B
:1. 1+~;..'

:I. s ()
:1.::':;:1.

:I. :::i~5

:I. ~:51+

:1. ss
:I.~:.i6

:I. ~5G
:I.:7i9
:1.60
:1.6:1.
:1. {;l2

:1.6:3
:1.6 1+
rss
:l.6c>
:1.67
:l.6B
:1. (~l9

:1.70
:1.7:1.
:I. 7::~
:1.73
:1.71.(·
:1. vs
:1.76
:1.77
:l.7B
:1.79
:I.BO
:1.0:1.
:1.B2
:l.B3
:I. ElI.J·
ras
:l.B6

()

i\~

..

()

204

Note: The remaining elements (187-256) are unused.

i

.. I
. I

\---



o

C)

C)

C)

C)

Appendix D. 5100 APL Compatibility with IBM APLSV

The 5100 APL system differs from the IBM APLSV system primarily because the
5100 is a single user system with different input/output devices and it has display
screen output rather than typewriter output. The differences are as follows:

• Turning power on signs the user on; therefore, no sign-on or ID number is
required.

• The 5100 active workspace is generally smaller than APLSV active workspace.
It is further Iimited by the shared variable processor which uses it for input/
output buffers and work areas.

• The default number of symbols is 125 instead of 256, which increases the avail
able workspace for most users.

• The library number that appears in system commands has been redefined to a
device/file number. It is a 1- to 5-digit number that specifies the device and
file number where a workspace is to be )SAVE'd or )LOAD'ed. If the number
is less than 4 digits, it is only the file number; device 1 is assumed; otherwise,
the high-order 1 or 2 digits is the device number.

• The )LOAD, )COPY, )PCOPY commands require the library (device/file) num
ber and workspace ID parameters. The )DROP command requires the library
(device/file) number and if the specified file is a stored workspace file, the
workspace ID parameters. These requirements protect the user from inadver
tently destroying his or her saved workspaces.

• The following commands are not supported because they apply only to multi
terminal systems and remote systems:

lOFF; )OFF HOLD; )CONTINUE HOLD; )PORTS; )MSGN; )MSG; )OPRN;
)OPR; all special system operator commands

• The following commands are not supported because the function is not
supported:

)GROUP; lGRPS; lGRP

• The following commands are not supported:

)ORIGIN; )WIDTH; )DIGITS

They are available with the system variables 010, OPW, and OPP, respectively.

205



• The following commands have been added to support the 5100 processor and
its input/output devices:

)MARK

)OUTSEL

)REWIND

)MODE

)PATCH

- To format tape files

- To specify which transactions are to be printed

- To rewind the tape unit

To select communications mode

To load an IMF or Tape Recovery program into storage
from an IBM-supplied tape

(,)

• The )CONTINUE command has been changed to save workspaces with sus
pended functions. The parameters are the same as )SAVE but the stored work
space cannot be )COPY'ed, or )LOAD'ed into a 5100 with a smaller active
workspace.

• Since the 5100 system is not in a communications environment, the RESEND
message will not occur.

iJ

• )SAVE and) LOAD have to be implemented with only one workspace area
(no spare); therefore, the following error messages have been added:

1.

2.

Function name [statement number] LINE TOO LONG - Cannot save
functions with statements greater than 115 characters.

WS TOO BIG - Workspace is too big to fit in the active workspace.

3. NOT WITH SUSPENDED FUNCTION - Only the )CONTINUE command
will work to write the workspace to tape.

• For diagnostic reasons, occurrence of SYSTEM ERROR does not clear the
workspace. The following message occurs when attempting anything other than
)CLEAR after a system error:

NOT WITH SYSTEM ERROR

• Saved workspaces are not time-stamped and dated because that information is
not available in this system; therefore, the following messages now occur after
library operations:

206

COPIED
LOADED
SAVED
CONTINUED
DROPPED

device/file
device/file
device/file
device/file
device/fiIe

wsid
wsid
wsid
wsid
wsid iJ



C···)~"

()

()

()

C)

• The )LI B command does more than Iist the saved workspaces. It lists all the
files on the specified device. The response, therefore, contains more informa
tion (see )L1B command in Chapter 2).

• The following system messages have been added for the new system commands
and input/output operations:

ALREADY MARKED
DEVICE NOT OPEN
DEVICE TABLE FULL
ERROR eee d
EXCEEDED MAXIMUM RECORD LENGTH
INVALID DATA TYPE
INVALID DEVICE
INVALID DEVICE NUMBER
INVALID FILE
INVALID FILE NUMBER
INVALID OPERATION
INVALID PARAMETER
MARKED b n
NOT WITH OPEN DEVICE

• The shared variable processor on the 5100 is designed to provide an interface
between only one APL user and one I/O processor. Thus, only one processor
number is supported (1).

The response to DSVO is 2, since, if it is a valid share, it is always accepted
before the APL user regains control. (If an unsupported processor is specified,
the response is 1.)

The response to DSVR is the same as the response to DSVO.

Being strictly a sequential machine, the only mode of interaction is reversing
half-duplex: that is, the I/O processor always responds to each action by the
APL user. Therefore, the access control vector (DSVC) is always 1 1 1 1.

Since there are never any outstanding offers, DSVO always returns an empty
vector.

• This is a single user system without an internal clock; therefore, the following
system variables and functions are not supported:

DTS - Time stamp
DAI Accounting information
DTT - Terminal type
DUL - User list
DDL - Delay

• The l-beam functions have been replaced with system variables or system func
tions and are not supported.

• Catenation using semicolons has been replaced by format, but it is still supported
on the 5100.

207



• Data can be exchanged between APL and BASIC or other systems via comrnun
ications; therefore, the following characters have been added to the APL char
acter set:

$,#,@,&,',%,"

• The display screen is 64 characters wide; therefore, the initial values for OPW
and OPP system variables are 64 and 5 instead of 120 and 10.

If the print width is altered to something greater than 64, any output that ex
ceeds 64 characters is wrapped to another line on the display screen.

• Bare (I!l) output followed by bare (I!l) input yields a different reply. For
APLSV, the I!l input is prefixed by the same number of blanks as the previous
I!l output. For 5100 APL, the I!l input is prefixed by the previous I!l output.
(See Chapter 6 for more information on bare output followed by bare input.]

• The display screen provides the ability to edit lines of data directly; therefore,
the following changes were made to function definition:

iJ

\J

The use of the ATTN key to delete a line works, but only in function de
finition mode, not while entering function definition mode.

[NO]

[NOM]

[t,N]

- Now displays line N in the display screen lines 1 and 0 for
editing.

Has the same result as [NO]; the M is erased when execute is
pressed.

Allows line N to be deleted. N must be a single line number.

(J

208

To prevent problems when displaying or editing statements in a user-defined
function, the print width (OPW) is automatically set to 390 when the 5100
is in function definition mode. The print width automatically returns to its
previous setting when the function definition is closed.

There is only limited editing space; therefore, function statements that are
greater than 115 characters cannot be edited, and the message
LINE TOO LONG is displayed.

• The 5100 will insert a quote if an uneven number of quotes is entered.

\)

iJ

J



C)

••

C~)

C)

IBM is grateful to the American National Standards
Institute (ANSI) for permission to reprint its definitions
from the American National Standard Vocabulary for
Information Processing (Copyright © 1970 by American
National Standards Institute, Incorporated), which was
prepared by Subcommittee X3K5 on Terminology and
Glossary of the American National Standards Committee
X3.

ANSI definitions are identified by an asterisk. An asterisk
to the right of the term indicates that the entire entry is
reprinted from the American National Standard Vocabulary
for Information Processing; where definitions from other
sources are included in the entry, ANSI definitions are iden
tified by an asterisk to the right of the item number.

active referent: The usage of a name that was most recently
localized, or the global usage if the name is not localized.

active workspace: A part of internal storage where data and
user-defined functions are stored and calculations are
performed.

ADD operation: Using a shared variable to add informa
tion to an existing data file.

alphameric keys: The keys on the left side of the keyboard
that are arranged similar to a typewriter keyboard.

APL internal data format: See internal data format.

arguments: Data supplied to APL functions.

array: A collection of data that can range from a single
item to a multidimensional data configuration. Each ele
ment of an array must be the same type as the other ele
ments (all characters, all numeric, or all logical).

assign: To use the +- (assignment arrow) to associate a
name with a value.

available storage: The number ofunused 1o24-byte blocks
of storage in a file on tape.

Glossary

bare output: To display output without the cursor return
ing to the next line.

branch Instruction: An instruction that modifies the nor
mal order of execution indicated by the statement memo
bers. Branch instructions always begin with a -+ (branch
arrow).

branching: Modifying the normal order of execution indi
cated by the statement numbers.

built-in function: See primitive function.

byte: A unit of storage. For example, a character takes
one byte of storage.

character constant: Characters that do not represent num
bers, variables, or functions. Character constants are en
closed in single quotes when they are entered (except for
[!Jinput); however, the single quotes do not appear when
the character constants are displayed.

command keyword: The name of a system command in
cluding the right parenthesis. For example, the command
keyword for the )MARK command is )MARK.

comment: An instruction or statement that is not to be
executed. A comment is indicated by a A as the first
character.

conditional branch: A branch that is taken only when a
certain condition is true.

coordinate: A subset of data elements in an array. For
example, a matrix has a row coordinate and a column
coordinate.

cursor: The flashing character on the display that indicates
where the next input from the keyboard will be displayed.

209



data file: A file on tape (file type 01, 02, or 08) where
data was stored using a shared variable.

defective record: A 512-byte block of storage on tape that
cannot be read.

device/file number: Specifies the tape unit and file to be
used when doing tape input or output operations.

dual-language machine: A 5100 that can execute either
APL or BASIC statements.

dyadic functions: Functions that require two arguments
(a right and a left argument).

editing: Modifying an instruction or statement that already
exists.

element: The single item of data in an array.

empty array: A variable that has a zero in its shape vector.
The array has no (zero) elements.

execute: To press the EXECUTE key to process data on
the input line.

execution: The processing of data.

execution mode: The mode that is operative when state
ments or functions are executed. Contrast with function
definition mode.

file number: The files on tape are sequentially numbered
starting from one.

file type: Identifies the type of data stored in a file.

function body: Consists of the statements within a user
defined function. These statements determine the opera
tion(s) performed by the function.

function definition: Defining a new function (a user
defined function) to solve a problem.

function definition mode: The mode that is used when
defining or editing user-defined functions. The 'V symbol
is used to change the mode of operation. Contrast with
execution mode.

function header: Defines the function name, number of
arguments, local names, and whether or not the function
will have an explicit result.

general interchange data file: The data in the file is in the
general interchange format.

general interchange data format: The data consists of all
character scalars or vectors.

global names: The value associated with these names can
be used within or outside of a user-defined function unless
the name has been made local to a user-defined function
that is executing, suspended, or pendent. Contrast with
local names.

\)

(J

explicit result: The result of a function that Can be used in
further calculations. The function must contain a result
variable if it is to have an explicit result.

file: A specified amount of storage on tape. The tape is
formatted into files by using the )MARK command.

file 10: The name of a file on tape. If the file contains a
stored workspace, the file ID is the same as the stored
workspace ID.

210

identity element: The value that generates a result equal
to the other argument.

IN operation: Using a shared variable to write information
into a data file.

index entry [I]: (1) A value or values enclosed in brackets
that selectts) certain elements from an array. (2) A value
enclosed in brackets that determines the coordinate of an
array to be acted on by a primitive mixed function.

..



C)

()

C~)

index origin: Either 0 or 1 and is the lowest value of an index.
The index origin is set to 1 in a clear workspace and can be
changed by using the 010 system variable.

input: Information entered from the keyboard or read
from tape using a shared variable.

input line: Consists of the 128 positions on lines 0 and 1
of the display screen. Any information on the input line
will be processed when the EXECUTE key is pressed.

instruction: A function or series of functions to be
performed.

integer: A whole number.

interactive function: A user-defined function that requests
input from the keyboard as it executes.

interchange data file: The data in the file is in the inter
change data format.

interchange data format: The data consists of all character
scalars or vectors.

internal data file: The data in the file is in the internal
data format.

internal data format: The format in which the data is stored
in the 5100.

keyword: See command keyword.

labels: Names that are placed on statements in a user
defined function for use in branching.

latent referent: The usage of a name that has been made
local to a more recently called function. The value for that
usage cannot be used or set.

length: (1) The length of a vector is the number of ele
ments in the vector. (2) The length of a coordinate of
other arrays is the number of items specified by that coor
dinate. For example, a matrix has a row coordinate with
the length of 2, therefore, the matrix has two rows.

library: A tape cartridge where data is stored for future
use.

local name: A name that is contained in the function
header and has a value only during the execution of that
user-defined function.

locked function: A function that cannot be revised or dis
played in any way. The opening or closing 'V was over
struck with a ~ .

logical data: (Boolean data) Data that consists of all ones
and zeros.

matrix: A collection of data arranged in rows and columns.

mixed function: The results of mixed functions may
differ from the arguments in both rank and shape.

monadic functions: Functions that require one argument.
The argument must be to the right of the function symbol.

multidimensional array: An array that has two or more
coordinates.

n-rank array: An array that has more than two coordin
ates (a rank of more than 2).

niladic function: A user-defined function that does not
require any arguments.

numeric keys: The keys on the right side of the keyboard
that are arranged similar to a calculator keyboard.

object: A user-defined function or variable name.

operators: Apply one or more dyadic primitive scalar func
tions to arrays.

OUT operation: Using a shared variable to read informa
tion from a data file.

211



output: The results of statements processed by the 5100.

overstruck character: A character formed by entering one
character, backspacing, and entering another character.
Only certain combinations of characters can form over
struck characters.

scalar: A single data item that does not have a dimension
(p p = 0).

scalar function: The results of the scalar functions are the
same shape as the arguments.

iJ

parameter: (1) Information needed by a system command
(such as device/file number). (2) Information required to
open a data file or specify printer output.

password: A sequence of characters that must be matched
before the contents of a stored workspace can be loaded or
copied into the active workspace.

pendent function: Any function in the state indicator list
that is not a suspended function.

physical record: A 512-byte block of storage on tape.

plane: The coordinates of an n-rank array other than the
rows and columns.

primitive function: The functions that are part of the APL
language (such as , + - t xl,

PRT operation: Using a shared variable to output data on
the printer.

rank: The number of coordinates of an array Ioo l.

record: Data assigned to a shared variable.

result variable: A variable to the left of the assignment
arrow in the function header where the results of the func
tion are temporarily stored for use in further calculations.

return code: Assigned to a shared variable after a PRT,
OUT, or ADD operation. This code indicates whether or
not the operation was successful.

212

scale: An integer representing the power of ten when
scaled representation is used.

scaled representation: Stating a value in a convenient '\)
range and multiplying it by the appropriate power of ten.

scroll: Moving the information on the display screen up or
down.

shape: The length of each coordinate of an array. t)
shared variables: A variable shared by the active workspace
and the tape or printer. Used to transfer data during IN,
OUT, ADD, or PRT operations.

significant digit: * A digit that is needed for a certain pur
pose, particularly one that must be kept to preserve a spe
cific accuracy or precision.

single-element array: A single data item that has at least
one coordinate. For example, a matrix with one row and
one column.

state indicator: Contains information on the progress
(statement number of the statement being executed) of
user-defined function execution. Can be displayed to show
all suspended and pendent user-defined functions.

statement: A numbered instruction within a user-defined
function.

statement number: The number of a statement within a
user-defined function.

stop control (8£1): Stopping execution of a user-defined
function before the execution of a specified statement.

stop vector: Specifies the statements when using stop
control.

stored workspace: The contents of the active workspace
stored on tape.

..



c)

c)

c)

(/"-/

l)

suspended: See suspended function.

suspended execution: See suspended function.

suspended function: Execution has stopped because of an
error condition, ATTN being pressed, or stop control being
used.

system commands: Are used to manage the active workspace
and tape or printer operations.

system functions: Are used to change or provide informa
tion about the system.

system operation: Processing input data.

system variable: Provides controls for the system and infor
mation about the system to the user.

trace control (T1I): Displaying the results of specified
statements during the execution of a user-defined function.

trace vector: Specifies the statements when using trace
control.

transferring data: Using a shared variable to write data to
tape, read data from tape, or output data to the printer.

user-defined functions: New functions defined using the
primitive functions. See function definition mode.

variable name: A name associated with the value of a
variable.

variables: Data stored in the 5100.

vector: An array with one dimension (o p =1).

workspace: See active workspace.

workspace available: The amount of unused storage
(number of unused bytes) in the active workspace.

workspace 10: A name given to the contents of the active
workspace. A stored workspace has the same name as the
active workspace when the contents of the active work
space were written to tape.

213



--..--.-.--------------:r------,------- ----------

abandoned execution 147
absolute value 52
active referent 132, 142
active workspace 11
adapter for TV monitors 1
ADD operation 160,163
add statements 148
alphameric keys 6
amount of unused space 126
and function A 62
APL character set 200
APL charscters 126
APL command keyword 7
APL internal data format 161
APL language symbols 6
APL operators 111

Index

)CLEAR command 11, 14
)CONTINUE command 12,14,19,26,173
)COPY command 11, 14, 25
)DROP command 12,16
)ERASE command 11,16
)FNScommand 12,17
)L1 B command 12,17
)LOAD command 11,19
)MARK command 12,19
)MODE command 12, 21
)OUTSE L command 12, 21, 164
)PATCH command 12,22
)PCOPY command 11, 14, 25
)REWIND command 12,26
)SAVE command 12,14,19,25,173
)SI command 12, 27, 155
)SIV command 12,27,143
)SYMBOLS command 11,28
)VARS command 12,28
)WSID command 11,15,19,27,29
[I] index entry 75
[0] 148
[On] 148
[nO] 148
[L~n] 149
0: - 145
Oinput 145
oAV system variable 126
OCT system variable 124
OCR function 128
OEX function 132
OFX function 129
010 system variable 125
oLC system variable 126
oLX system variable 126
oNC function 133
ONLfunction 132
OPP system variable 125
oPW system variable 126
DR L system variable 126
OSVO function 158
OSVR function 164
OWA system variable 126
[!)input 145
[!)output 146
I±J function 105
'e' raised to a power 54
'V symbol 134
-+() 138
fD character 145
* 155
+ function 44
- function 45
x function 46
f function 48
r function 50
Lfunction 51

214

I function

* function
~function

Ofunction
I function
? function
Afunction
Vfunction
~ function
A function
II function
> function
=function
<function
;::function
:0; function
~function

p function
, function
/ function
\ function
~ function
t function
t function
+function
1. function'
¢ function
~ function
.L function
Tfunction
EO function
.t.function
.,. function
/ operator
\ operator
• operator
o. operator

52
54
55
56

59
61,95
62
63
64
65
66
67
68
69
70
71
72
75

77
81
82
83
84
86
87
88
89
93
96
99
104
107
108

111
118
113
116

C)

(\)

() I

I
. 1



canonical representation 0CR 128
catenate function, 37, 77
catenation 37
ceiling function r 50
change an array to a character array 108
change the device/file number and workspace 10 29
change the number of symbols allowed 28
change the sign 45
character constant 31, 172
character set 200
checkout procedure

APL 191
printer 199
tape unit 197

circular function 0 56
clear suspended functions 157, 172
clear workspace attributes 14
clearing suspended functions 157
close data files 164
coefficient matrices 105
combinations of B 60
command key 7
command keyword 7
commands that control the active workspace 11
commands that control the library (tape) 12
commands that provide information about the system
commands, system 11

comment iCl 121, 135
communications adapter 1
communications mode 21
communications program 21

comparison tolerance OCT 124
compress function / 81
conditional branch 138
conjugate function + 44
consecutive integers 88
conserve storage 172
coordinate 33, 75
copy display 9
copy display key 6
copy objects into the active workspace 15,25
creating a new coordinate 79
creating lists 39
cursor 1,7
cursor return character (X'9C') 163

dark characters 5
data file 159, 172
data representation 30
data security 170
data to be printed 21
deal function? 95
decode function 1 96
defective records 18
defining a function 134
del V'symbol 134
delete characters 8
delete statements 148
device/file number 13,160
display characters in alternate positions 5
display device/file number and workspace 10 29
display file headers 17
display local names 142
display messages 144
display namesof suspended functions 27
DISPLAY REGISTERS switch 5
display screen 1
display screen control 5
display tha existing sharad variable names 159
display the number of symbols allowed 28
display the variable names 28
display user-defined function names 17
display value of e variable 30
displaying a user-defined function 148
displaying more than one value on the same line 146
divide function';' 48
drop elements from an argument 87
drop function {- 87
dual-language machines 4
dyadic 43
dyadic functions 135
dyadil: mixed functions 7312

139

126

10
43

172

backspace key 8
bare output 146
bare output prefix 146
basevalue 96
BASIC/APL switch 4
binomial function I 60
branch arrow~ 120, 137
branch instructions 139
branch to a specific statement number
branch to zero 138
branching 137
brightness control
built-in functions
bytes of storage

APL shared variable 21,158
arguments 43

C··.'.arranging output 146
.1 arrays 32

.-"' assignment arrow +- 120
atomic vector 0 AV 126, 201
attention key 6, 155
automatically execute expression
auxiliary tape unit 1
available storage 18
available workspace 126

(~)

()

215

._------------....,--"--"--------._-------------



edit statements 148
editing statements 134
empty array 36, 39
empty vector 138
encode function T 99
end of block character (X' FF') 163
entering system commands 13
equal to function = 68
erase information 6
eraseobjects from the active workspace 16, 132
error message 155,180
error message displayed 165
escapefrom 0 input 145
escapefrom [!J input 145
establish a variable to be shared 158
examples of function editing 151
execute function .t 107
execute key 7
executes the argument 107
execution mode 134
expand arguments 82
expand function \ 82
expl icit resuIt 135
exponential function * 54
expunge 132

factorial function I 59
fall through 138
file header 11, 17
file 10 17
file number 17
file size formula 20
file type 17
files 11
fix function OFX 129
flashing character 1
floor function L 51
form a matrix into a function 129
format 108
format a function into a matrix 128
format function If 108,146
formats the tape 19
formatted tape 11
forms an array 76
forms thickness 177
formula for file size 20
forward space key 7
function definition 134
function definition mode 134
function definition, reopen 148
function editing 147
function header 135, 139
functions, primitive 32

216

gamma function 59
general interchange data format 161
generalized transpose function 1sI 94
generate empty arrays 36
generating arrays 33
global names 139
global variable 140
grade down function' 84
grade up function ¢ 83
greater than function > 67
greater than or equal to function > 70

hold key 6,9

10 = (file (0) 160
identity elements 111
IMF 22
IN operation 160, 163
index entry

decimal 79
integer 78

index entry [I] 75
index entry assumed 75
index generator function 1 88
index of function t 88
index of specified elements 88
index origin 010 125
index values

in ascending order 83
in descending order 84

indexing 32, 39
indicate the sign 46
indicator lights

process check 9
in process 9

indices 34
information printed 9
in ner product operator 113
input 1
input line 6
input, processed 7
insert characters 8
insert forms, printer 175
insert statements 148
installation procedure

auxiliary tape unit 196
printer 198
5100 191

integers 172
interactive functions 144
interchange data format 161, 163
interchanges the coordinates of the argument 94

()

\J;

!\J



internal checks 4
internal data format 161
internal machine fix (IMF) 22
interrupted function 155
invert a nonsingular matrix 105

models 171
monadic 43
monadic functions 135
monadic mixed functions 73
MSG=OFF 161,165
multiplier 31

magnitude function I 52
mark a file unused 16
matrices 32
matrix divide function ffi 105
matrix inverse function ffi '05
maximum function r 50
membership function E 104
minimum function L 52
minus function - 46
mixed functions 43

labels 137
laminate function, 77,79
language in operation 4
larger of two arguments 50
last valid statement number 149
latent expression 0 LX 126
latent referent 142
least squares solution 106
length of the output line 126
less than function < 69
lessthan or equal to functlon s; 71
library 11
light characters 5
line counter OLC 126
load a stored workspace into the active workspace
local function 131
local names 27, 139
local names, display 142
local objects 132,172
local user-defined functions 143
local variable 139
locked functions 147
log of B to base 'e' 55
log of B to base A 55
logarithm function ~ 55
logical data 32, 172
L32 64 R32 switch 5

(,

..

..

c

join two arrays
join two items

keyboard 6
keys 6
keyword 7

37,78
37,78

19

N-rank array 34
name classification 0 NC 133
namelistONL 132

names of the objects in the active workspace 132
nand function II 65
natural log function ~ 55
negation function - 45
negative sign 30
new coordinate, creating 79
next larger integer 50
next smaller integer 51
niladic functions 135
nonsingular 105
nor function V 66
not equal to function ~ 72
not function ~ 64
numbers 30

decimal 172
whole 172

numeric keys 6

objects 12
opening a file 159
operators 43, 111
or function V 63
order of execution 122
other commands that control the system 12
OUT operation 160,163
outer product operator o. 116
output 1
output line, length 126
overstruck characters 200
overview, system 11

parameters for system commands 13
parentheses () 122
pendent functions 156
physical record 163
pi times B 56
pi times function 0 56
plane 75
planning information 188
plus function + 44
portable computer 1
positioning information 7
positioning the cursor 7
power function * 54

217



power on procedure 4
power ON/OFF switch 4
power on/off, printer 174
precision 108
primitive functions 32, 43
primitive mixed functions 73
primitive scalar functions 43
print data 160
print information 9
print input and output 21
print output 21
print width DpW 126
printer 21, 174
printer characteristics 174
printer output 158
printer power on/off switch 174
printing precision DpP 125
process input 7
processing 6
processing input 10
product of A times B 47
product of all positive integers 59
protect objects 25
protecting sensitive data 170
PRT operation 160, 164
pseudoinverse of a rectangular matrix 105

quadD 120
quad input 145
quad quote [!] 121
quad quote input 145
quotient of A divided by B 48

radians 56
raise A to the B power 54
random integer 61
random ttnk j'[Bt, 126
random numbers 61,95,126
rank 34,42
ravel function, 77
reciprocal function f 48
reduction operator / 111
remainder 53
remove bare output 147
removing sensitive data 170
reopening function definition 148, 150
replace ribbon 177
replace statements 148
representation of an argument in a specified number system 99
representation of the class of names 133
request input 144
reshape function o 33, 76
residue function I 53
restart procedure 4
RESTART switch 5,9
restart system operation 4

218

result variable 135
resume execution 155
retract shared variable 16, 164
retract the variable name being shared 164
return codes 162
REVERSE DISPLAY switch 5
reverse function ¢ 89
reverses the coordinates of the argument 93
reverses the elements of the argument 89
revising a user-defined function 148
rewind the tape 26
ribbon, printer 177
roll function? 61
rotate function ¢ 91
rotates the elements of the argument 91

scalar 32
scalar functions 43
scale 31
scaled representation 31
scan operator \ 118
scroll 9
scroll down 9
scroll up 9
select elements from arguments 81
sensitive data 170
shape function p 75
shape of an array 34
shape of the argument 75
shared variable 158
shift key 6
significant digits displayed 125
signum function x 46
SIV display 143
size of files 18
smaller of two arguments 52
solution to one or more sets of linear equations 105
sort vector

in ascending order 83
in descending order 84

special symbols 120
specify order of execution 122
specifying printer output 12,21, 164
state indicator 27, 143, 155
state indicator with local names 143
stop control 147,154
stop control vector 155
stop processing 6
stop system operation 6
stop vector 154
storage capacity 171
storage considerations 172
store data 11, 30
structure 76
subtract 46
sum of two arguments 44
suspended function execution 155
suspended functions 155
suspended functions, cleared 157
suspension 155

(~

..



C)

switches
BASIC/APL 4
DISPLAY REGISTERS 5
L3264 R32 5
POWER ON/OFF 4
RESTART 5
REVERSE DISPLAY 5

symbols 6
system command description

commands that control the active workspace 11
commands that control the library 12
commands that provide information about the system
other commands that control the system 12

system command parameters
brackets 13
device/file number 13
object 13
password 13
workspace ID 13

system commands
control the active workspace 11
control the library 12
provide information about the system 12
other commands 12

system commands, entering 13
system commands, parameters 13
system functions 128
system malfunction 9
system operation 4,9
system overview 11
system ready 4
system variables 123

12

tape cartridge
care 173
handling 173

tape error recovery program 22,25
tape input and output 158
tape unit, auxillarv 1, 13
terminate printer output 164
times function X 47
trace control function 147, 152
TRACE user-defined function 152
trace vector 152
transfer data from tape 160, 163
transfer data to tape 160, 163
transferring data 163
transpose function ~ 93
trigonometric functions 56
TV monitor adapter 1
TYPE= 161

unused space 126
unused storage 18
user-defined function, revising 148
user-defined functions 134

value expressed in a specified number system 96
variable name 30, 172
variables 30
vectors 32

take elements from an argument 86
take function t 86
tape 11

c)

C··.\)
/

workspace available DWA 126
wrap around 7
write the active workspace to tape 14, 26
write the contents of the active workspace to tape 14,26

21"

/
/

!

I
/

!

/
/._-----------



\
\

\

\ 220

\
\
\------

\J

(iJ

iJ

J



READER~COMMENTFORM

IBM 5100
APL Reference Manual

YOUR COMMENTS, PLEASE .••

SA21·9213-o

()

C)

Your comments assist us in improving the usefulness of our publications; they are an important
part of the input used in preparing updates to the publications. All comments and suggestions
become the property of IBM.

Please do not use this form for technical questions about the system or for requests for additional
publications; this only delays the response. Instead. direct your inquiries or requests to your IBM
representative or to the IBM branch office serving your locality.

Corrections or clarifications needed:

PlIge Comment

Due to the current paper shortage. we will not send a reply to your comments unless you
check the box below.

I would like a reply. 0
Name _

Address _

• Thank you for your cooperation. No postage necessary if mailed in the U.S.A.



SA21·9213·0

Fold

BUSINESS REPLY MAIL
NO POSTAGE STAMP NECESSARY IF MAILED IN THE UNITED STATES

POSTAGE WILL BE PAID BY ...

IBM Corporation
General Systems Division
Development Laboratory
Publications, Dept. 245
Rochester, Minnesota 55901

Fold

International Business Machines Corporation
General Systems Division
57750 Glenridge Drive N.E.
Atlanta, Georgia 30301
(USA Only)

IBMWorld Trade Corporation
821 United Nations Plaza, New York, New York 10017
(International)

Fold

FIRST CLASS

PERMIT NO. 387

ROCHESTER, MINN.

Fold

I
I
I
I
~ i~
»
0-
"CQ

c:
"<II



Date 15 September 1975

Technical Newsletter This Newsletter No.

Base Publication No.

File No.

SN21·0247

SA21·9213·0

None

·C) IBM 5100
APL Reference Manual

© IBM Corp. 1975

Previous Newsletters None

This technical newsletter provides replacement pages for the subject publication. Pages to be inserted
and/or removed are:

3,4
19 through 22
22.1, 22.2 (added)
27,28

171 through 174
175. 176
181. 182
189 through 200

•
(..

c)

c

Changes to text and illustrations are indicated by a vertical line at the left of the change.

Summary of Amendments

Miscellaneous changes

Note: Please file this cover letter at the back of the manual to provide a record of changes.

IBM Corporation, Publications, Department 245, Rochester, Minnesota 55901

© IBM Corp. 1975 Printed in U.S.A.



r/J.. "
(



..
o

C)

C)



SA21·9213·0

I

I

I
I

() \

I
)

Ot

o

International Business Machines Corporation
General Systems Division
57750 Glenridge Drive N.E.
Atlanta, Georgia 30301
(USA Only)

IBM World Trade Corporation
821 United Nations Plaza, New York, New York 10017
(International)

o

()




