Preface

I have long been struck by the contrast between the success with which the adventurous learn APL by simply using it, and the frequent failure of lecture courses to communicate the simplicity and applicability of the language. I have also felt that it should be possible to incorporate into a formal course the advantages of learning by exploration with an APL terminal, and I therefore welcomed the opportunity to begin the design and testing of such a course in early 1980.

Because of the nature of our business as a vendor of APL service for commercial users, we have aimed this course at people already active in some professional capacity, particularly those who have recognized the potential of computers in their work as well as the frustrations commonly associated with conventional computer languages and systems. For such people we proposed to provide in a three-day course “the ability to translate into APL, and therefore into computer use, procedures of interest in your own profession”, and to provide the familiarity with reference material and with techniques of experimentation which are essential to independent work and to further growth in the mastery of the language.

The course has undergone many changes in its development, evolving to give a student full freedom in choosing his own pace, to accommodate a wider range of student backgrounds and interests, and to apply to APL systems other than our own. Nevertheless, this final version has been used by hundreds of students, and the concomitant course for instructors has been used repeatedly.

I am indebted to a great number of my colleagues at J.P. Sharp Associates. On the technical side, I am pleased to acknowledge the work of Roland Pesch in designing the necessary file functions, and in participating in the design and testing of the first version of the course. On the teaching side, I have benefited from suggestions from a number of instructors who used the course, particularly Nancy Petersons, Paul Berry, and R.C. Metzger.

On the administrative side, I have enjoyed the essential support of Lael Kirk and Rosanne Wild in designing and producing the final form of the work. On the clerical side, I have benefited from the competent and cheerful services of Ginger Kahn and Deborah Rodbourne.

Finally, I must acknowledge the essential contribution of those strong-willed colleagues steeped in conventional lecture methods who forced me to thoroughly think through the preparation needed for instructors of a course of this nature.

Kenneth E. Iverson
Toronto, Ontario
July, 1981
A Working Introduction to APL is a course designed to develop independence and self-reliance by fostering a faith in the ability to learn by experimentation and by the use of reference material. The tutoring provided is therefore crucial: an instructor must not destroy this faith by plunging the student too quickly into complexities, by putting him off with the remark that a matter is too difficult to discuss at the moment, or by providing lengthy lectures that relieve the student of the burden of exploration.

The instructor is not required to have previous experience in lecturing, but is expected to be already competent in APL. The present course for instructors is therefore aimed at providing: 1) familiarity with the student material, 2) experience in handling student's questions, 3) experience in presenting brief summary lectures, and 4) a deeper knowledge of the structure and rationale of APL than that normally gained in practical application of it.

The major emphasis in this course for instructors is placed upon the handling of student questions. It proceeds in the following stages:

1. The introductory lecture is presented (on slides) as it will be to students.

2. Instructors work through the first four sessions of the student material. In this they should simulate students as much as possible, except that (already knowing APL) they should require only about one hour, and that they should be considering how they would handle relevant questions from their students.

3. Instructors will be exercised orally in the handling of a series of student questions relevant to the sessions covered.

4. Instructors will be given twenty minutes to prepare a suitable brief summary of the material covered, and one or more will be asked to present his summary for discussion.

5. The slides provided for the first summary lecture will be presented and discussed.

6. The Instructor's Guide will be reviewed and discussed.

7. Steps 2-5 will be repeated for each group of four student sessions.

8. The student's supplementary exercises will be reviewed and annotated.

9. The source material will be reviewed and annotated.

10. The facilities for remote tutoring will be used and discussed.

In the section devoted to lectures, the background material for the instructor is presented in a narrow format together with comments on the use of the slides; the slides themselves appear in the margin.
...they know enough who know how to learn.

Henry James

The purpose of this course is to teach how to program in APL; the purpose of this introduction is to clarify this purpose and to outline the teaching methods to be used.

Slide 1 shows an example of the use of computers, obtained by simply following the instruction in the user's manual for a certain computer application designed for the handling of data bases. The series shown represent France's imports by quarter, in billions of French francs. When MAGIC is loaded, several default settings are already set, including an option called TOTALS that sums each period in a year (quarters in this example) to form yearend totals.

Slide 2 illustrates how several series may be accessed and displayed at the same time.

The programs or functions (such as SCALE, DISPLAY, and IFS) used in the expressions entered to invoke the printing of the tables in Slides 1 and 2 are themselves constructed from simpler and more general primitives in the programming language used, in this case APL.

Suppose, for example, we wish to construct a function ALPHABETIZE which when applied to a table of names would produce the same table in alphabetical order, as illustrated in Slide 3. We could begin by specifying the ordering of the alphabet to be used, and continue by using the primitive function △ (called grade) to determine the order in which the rows of the argument NAMES are to be selected, and by using that result to select the rows in desired order.

These steps are shown in Slide 4. The instructor should avoid detailed discussions (such as the precise definition of △); at this point such detail will not help in communicating the overall definition of programming.

It remains to state that the name ALPHABETIZE is to be assigned to the sequence of operations specified by the last expression. This is done as shown in Slide 5, using the Greek letter omega to stand for the argument of the function. Slide 5 is an example of programming, that is, the construction of a desired function from a set of available primitive functions.
Objectives of the course. Slide 6 may be used to clarify the objectives and should be presented in the light of the following discussion.

The overall purpose is to teach how to program in APL. The student should, however, be aware of the limitations of a brief, general course in programming:

Because it is a course in programming, it concentrates on presenting the primitives of the language used, and on the methods of constructing desired functions from them, not on how to choose or analyze the functions important to a particular area of application. Therefore, in order to apply his programming ability effectively, a student must know or acquire knowledge of the functions and procedures of interest in some area of application. Fortunately, general non-specialized knowledge (such as filing, bookkeeping, and high school algebra), combined with imagination and a penchant for exploration, provides a sufficient basis for a good deal of programming.

Because it is aimed at a general audience having a variety of backgrounds and interests, the examples used are not chosen to suit any one specialty such as accounting, engineering, or actuarial work. The examples are therefore rather general in nature, and it may require some imagination (and perhaps some help from the instructor) to see how various techniques might apply to the student’s own field of interest. The development of such imagination is essential to good programming.

Because it is brief, the course cannot effectively explore, or even introduce, all of the primitives available in the language. Emphasis is therefore placed on learning how to learn, that is, on learning how to resolve questions by experimentation and by effective use of reference material rather than by reliance on an instructor. In other words, the course is intended to provide a solid basis for further growth rather than a more superficial acquaintance with all parts of the language used.

Introductory programming courses differ radically in their objectives, and students should be aware of this. Courses often aim at exposing the student to as many primitives of the language as possible. The objectives of the present course are more practical:

To impart the ability to translate into APL, and therefore into computer use, procedures of interest in a student’s own profession and known or available to him in terms understood in that profession.
To provide sufficient familiarity with APL reference material and with techniques of experimentation to allow students to continue to expand their mastery of APL through further use and independent study.

Student’s Aims. Students may choose to attend an introductory programming course not only with the ultimate aim of programming, but with related objectives such as the use of prepared programs, or the management of programmers or computer resources. The following discussion may be used to guide the use of Slides 7-10 in treating these matters:

Programmer. Although this course is aimed at teaching programming, the serious programmer should eventually supplement it by courses such as 1) Special Topics in APL (e.g., shared variables, formatting, files), 2) System Design in APL, or 3) Advanced APL, covering all aspects of the language. In particular, anyone planning to become an APL System Programmer (designing and producing application packages for use by others) should obtain further instruction and experience in system design and documentation.

However, a graduate of an introductory course should probably attempt to work in APL for a month or more before continuing with further courses.

User. Although a user of APL-based applications need not know how to program in APL, such knowledge can be helpful in making intelligent use of applications. In particular, the functions provided in applications can often be supplemented in significant ways by APL expressions. Moreover, even a programmer with limited experience can often define new functions employing the functions, provided in an application as he would primitives.

Manager. A manager can usually benefit from some first-hand knowledge of the tools used by his subordinates, and direct hands-on work with these tools is an effective way of gaining such knowledge. Even managers already familiar with a variety of conventional programming languages will probably find the present course helpful, since APL differs rather radically from conventional languages.
Teaching Method. The teaching method used is pragmatic, and differs radically from conventional lecture methods:

The method used allows you to begin work immediately on an APL terminal, experimenting under the guidance of simple written instructions, and proceeding as independently of the instructor as your ability permits. Two students work together at each terminal, to their mutual benefit, and proceed at their own pace independently of other student pairs.

The instructor therefore spends little time in formal lectures, and most of the time in individual tutoring -- answering specific questions (perhaps by directing attention to points covered in earlier sessions), and suggesting general techniques for resolving questions through further experimentation and further use of the reference material.

The foregoing may be discussed with the aid of Slide 11.
Handling Questions

The main points to be made in the handling of questions are indicated in the following list:

DO:

a) Answer a simple question of fact simply and directly.

b) Where possible, answer by suggesting experiments which will allow the student to resolve the question (and possibly related questions) for himself. These experiments may involve the terminal, or may, as in questions concerning catenation of arrays, involve manual work such as the drawing of rectangles to represent the shapes of tables.

c) Use every occasion to refer the student to sources in manuals, particularly if his curiosity is outrunning the pace of others.

d) If the source of difficulty is not clear, show the student how to pinpoint it by breaking a composite expression into its constituents to find the simplest form in which trouble appears.

e) In general, treat questions so as to develop the student's ability to analyze difficulties for himself and to use reference material effectively.

f) Encourage students to display and examine results (such as LISTOFTABLES in Session 2) produced.

DO NOT:

a) Do not use a simple question as an excuse to launch into a general discussion of some notion which the student may have just encountered and whose ramifications he is as yet incapable of grasping. For example, if he is able to use expressions such as \(+1\) and \(\times1\) correctly, do not immediately burden him with a general discussion of operators just because \(I\) happens to be one.

b) Do not use a simple question as an excuse to cross-examine the student on your own pet obsessions with language difficulties; wait until he encounters the difficulty himself. If he has absorbed the methods of experimentation he should be able to analyze such problems for himself.

c) Do not annoy the student by carrying the insistence on consulting manuals to excess. For example, if a student asks the name of a particular symbol, tell him, unless you suspect that he has not yet learned about the relevant table in the manual.

d) Do not continue discussion if the difficulty has been identified as something already treated in an earlier session. Instead, give the student the opportunity to review the earlier session and then reopen the discussion if he still requires help.

Sample dialogue. The answers provided should be a sufficient guide to the teacher in conducting dialogues based on the exercises. However, we will first give a sample dialogue for Session 1, denoting the student by S, and the instructor by I.

S: I just entered \(3 \times X + 2\) and got 9, which I find confusing.

I: What value was assigned to \(X\)?
S: Here is the whole thing:

\[
\begin{align*}
Y & \gets 2 \\
X & \gets Y + 2 \\
X & \gets 4 \\
Y & \gets 3 \\
Y & \gets 2 \\
3 \times X & \div 2 \\
\end{align*}
\]

I: Yes, you have misunderstood the order of execution. You see, in APL there is no hierarchy, and the \times is not necessarily done before the \div.

S: (Sotto voce) What in the world is hierarchy? [This term has not occurred in sessions.]

I: Furthermore, APL has the odd rule that you execute expressions from right-to-left, so that you must perform the $X + 2$ first.

S: I know that the $X + 2$ is done first, because a friend told me that about APL yesterday. But it still doesn’t come out right. Oh, I guess what I didn’t understand was that “right-to-left” implies that $X + 2$ means 2 divided by X.

I: No, no, forget that. Now I see the problem. You have misunderstood the meaning of specification, and the value of X is not what you thought.

S: (Sotto voce) What in the world is specification?

I: You see, when you entered $X + Y + 2$, the Y was evaluated at that time, giving X the value 4. Consequently, your later respecification of Y had no effect on X even though the expression $Y + 2$ used to specify X now means 5. Therefore, the X in your expression $3 \times X \div 2$ has the value 4.

S: I know that. In fact, I printed out its value just above.

I: So you did. But what is the problem then?

S: Well, $X \div 2$ gives 2, but 3×2 should give 6, not 9. Are the results in APL expressed in some weird number system?

I: No, no, they are in decimal. But why should 3×2 be 6?

S: Because 3 times 2 is 6.

I: Hmmm!

I: BUT DIDN’T YOU SEE \times USED FOR MULTIPLICATION AT THE VERY BEGINNING OF SESSION 1?!

S: Yes, but I know that \times also means multiplication on computers.

I: Not in APL. You will find its use in the middle of the page.
S: I hadn’t gotten there yet. Oh yes, power! Of course, 3 to the power 2 is 9.

S: My friend was right about the absurd difficulty of APL. This is going to be a long three days!

The foregoing dialogue may seem extreme, but worse can happen. Such exchanges not only waste precious time, but they destroy that belief in the simplicity and orderliness of the topic under investigation which must underlie any serious attempt to learn by experimentation.

An attempt to help the student pinpoint the difficulty normally proves more effective. For example:

S: I just entered \(3 \times X + 2\) and got 9, which I find confusing.

I: Even such a simple expression comprises successive steps. At what step does it seem to go wrong?

S: Well, I just displayed \(X\) to see that its value is 4, and \(X + 2\) gives 2 correctly, but \(3 \times 2\) should be 6, not 9.

To develop an instructor’s ability to handle questions from students, the exercises below should be used as follows:

a) The teacher (simulating a student) poses a question from the list to one of the instructors, and then continues a dialogue as a student might, often leading the instructor into a quagmire as in the foregoing sample dialogue.

b) Other instructors are invited to comment on the handling of the question.

c) The corresponding answer is read out, and discussion by the instructors is invited.

To make this dialogue as effective as possible, it is essential that neither the exercises nor the answers be given to the instructors in advance. Moreover, instructors should be forced to simulate real dialogue; do not allow an instructor to say “in answer to such a question I would say so-and-so”—force him to simply say so-and-so.

1.1 Why doesn’t 9-3-2 give 4?

Because the result depends upon the order in which the parts are executed, this could be either \((9-3)-2\) or \(9-(2-3)\). If you want to be explicit you should use parentheses.

The order in which the parts of an unparenthesized expression are executed will be treated in Session 6. You now have several options:

1. Until you reach Session 6, use complete parenthesization to specify the order you want.

2. Experiment with expressions like \(2 \times (3+6)\) and \((2 \times 3)+6\), and \(2 \times 3+6\) to determine what the rule for unparenthesized expressions is.

3. Consult the IBM manual either to determine the rule or to confirm the conclusions you reached in option 2.

I would recommend Option 1, because your time might best be spent in continuing with the work outlined in the sessions.
1.2 I entered $X+3$ and $Y+4$. Why won’t XY (or $X \cdot Y$) give me the product 12?

In any notation one may be able to omit the name of one of the functions used without introducing ambiguity. In mathematics one is allowed to omit the symbol for times, as in $XY+Z$ instead of $X \cdot Y \cdot Z$. However, the possibility of such omission has certain unpleasant consequences. For example, $AREA$ then means $AxRxExA$ and cannot be used as a (mnemonically attractive) name instead of a single-letter name such as A or X.

1.3 What is the meaning of DOMAIN ERROR? I entered $4/0$.

It means that the expression $4/0$ cannot be meaningfully executed, that is, it cannot yield a result which if multiplied by 0 would yield 4. In other words, the pair of arguments 4 and 0 is not in the domain (i.e., “territory or range of rule or control” [American Heritage Dictionary] of the division function.

Be sure to confirm this by reading the Table of Error Messages when you receive your APL manuals at the end of Session 2.

1.4 Why did I get LENGTH ERROR when I entered $3 \ 4 \ 5 + 6 \ 7 \ 8 \ 9$?

Because the two lists $3 \ 4 \ 5$ and $6 \ 7 \ 8 \ 9$ are to be added element-by-element, and they do not have the same number of elements, that is, the same length.

Be sure to consult the Table of Error Messages in the APL manual when available.

If you think that $3 \ 4 \ 5 + 6 \ 7 \ 8 \ 9$ should yield the same as $3 \ 4 \ 5 \ 0 + 6 \ 7 \ 8 \ 9$, then consider whether it might rather be $0 \ 3 \ 4 \ 5 + 6 \ 7 \ 8 \ 9$, and also whether this extension would be useful in conjunction with other functions such as \times and \lceil.

1.5 Why does three-quarters times one-half give three-eights (or DOMAIN ERROR on systems which do not have replicate) rather than three-eighths? I entered $3/4 \times 1/2$.

Division is denoted by \div, not by the slash ($/$). Consequently, you might write $(3\div4)(1\div2)$, or more simply, $.75 \times .5$.

The slash denotes an entirely different function which you could try to explore by experimentation or by consulting the manual, but such a digression is probably unwise at this point.

1.6 What do you call the symbols \lfloor and \lceil?

The symbol \lfloor is called “down-stile”; the function it represents in an expression such as $\lfloor 3.14$ is called “integer part”, or “floor”.

The symbol \lceil is called “up-stile”; the function it represents in the expression $\lceil 3.14$ is called “ceiling”.

APL manuals give tables of these symbols together with their names. Consult them when available.
1.7 I forgot to put a 3 in front of *2 and got a weird result. What does it mean?

Just as the minus sign in the expression \(-Y\) represents a different function (negation) than it does in \(X-Y\) (subtraction), so \(\ast\) in the expression \(*2\) represents a different function (exponentiation) than it does in \(3\ast2\) (power).

If you know about exponentiation and the number \(e\) (approximately 2.71828) then you might try a few experiments such as \(E\ast1\), and \(\ast X\) and \(E\ast X\) for various values of \(X\). If you are not familiar with such matters, forget it.

1.8 A friend told me that \(\lceil\) means the minimum function, but here you say it means to round down!

Yes, when used with two arguments, as in \(2.718 \lceil 3.14\), the "down-stile" symbol does denote the minimum function, and yields the lesser of its arguments; in this example, 2.718. When used with one argument, the down-stile means "floor" or "integer-part", and \(\lceil 3.14\) yields 3. This double use of the symbol \(\lceil\) parallels the double use of the minus sign (-) in mathematics to mean both subtraction (\(A-B\)) and negation (-\(B\)).

2.1 A friend told me that \(\lceil3\) means 0 1 2, but here it seems to mean 1 2 3?.

The integer with which the sequence produced by \(\lceil3\) begins is determined by the value of the special variable \(\mbox{DIO}\). It may properly be set to either 1 (by \(\mbox{DIO}=1\)) as it now is, or to 0 (by \(\mbox{DIO}=0\)) as you may wish to set it to experiment with it. You may also want to read about "Index origin" in the manuals.

However, if you change \(\mbox{DIO}\) be sure to reset it to 1, since succeeding sessions depend on this setting.

2.2 Would it be possible to do \(\mbox{TABLE} \ast \mbox{TABLE}\) as well as \(\mbox{TABLE} \times \mbox{TABLE}\)?

Try it, but first sketch out in pencil what you think the result might be.

2.3 Why does \(\rho3\) fail to print a result?

The result of \(\rho3\) is an empty vector whose length (i.e., number of elements) is zero. The ramifications of this point may be more than you should attempt to explore completely at this point. However, the following experiments can be performed fairly quickly and should give a good deal of insight into the matter:

a) The expression \(\lceil N\) gives a vector of \(N\) elements. Experiment with the expressions \(\lceil N\) and \(\rho \lceil N\) for various values of \(N\) including 0.

b) Repeat the experiments \(\rho \mbox{LIST}\) and \(\rho \mbox{TABLE}\) and \(\rho \mbox{LISTOFTABLES}\), and note that the number of elements in each result is the number of indices required to select a single element from the original argument. Thus, the selection of an element from \(\mbox{TABLE}\) requires the specification of two indices (the row number and the column number), and \(\rho \mbox{TABLE}\) has two elements which specify the ranges of each of these indices.
A single quantity such as 3 (called a scalar) requires no index to select its only element, and \(p \, 3 \) therefore has no elements.

c) The expression \(p \, p \, X \) yields the number of elements in \(p \, X \) and is called the rank of \(X \). Experiment with the expression \(p \, p \, X \) for various arguments including the scalar 3 and those used in part b.

d) Make a note to consult your manuals on this matter when you receive them. Use the index for references to "rank" or "rank of an array".

2.4 The term "vector" you used in discussing the last question is new, but seems to be synonymous with "list". Is this so?

Yes, I used the term "vector" because that is what you will probably find used in the manual and in other APL literature.

2.5 Since \(TABLE \) is \(2 \, 3 \, p \, LIST \), I should be able to get \(LIST \) back from it. How can this be done?

Yes, \(6 \, p \, TABLE \) yields the same as \(LIST \). You might also examine the effect of \((x / p \, X) \, p \, X \) applied to any argument \(X \). Make a note to compare the foregoing expressions with the use of the \(ravel \) function, either by consulting a manual or by observing its use in Session 4.

2.6 Why would anyone use something like \(LISTOFTABLES \)?

In Session 6 you will see the tables \(OIL72 \) and \(OIL73 \) which give oil imports (by Country by Quarter) for the years 1972 and 1973, and a "list of tables" called \(OIL \) which is arranged by Years by Country by Quarter. Uses of these are explored in later sessions, showing summation over years, summation over countries, maxima over years, etc.

2.7 Is it possible to make a table of tables?

Try \(2 \, 3 \, 4 \, 5 \, p \, \{1\} \, 120 \) and \(2 \, 3 \, 4 \, 5 \, p \, 9 \) and (after trying \%9 several times) \(\% \, 2 \, 3 \, 4 \, 5 \, p \, 9 \).

3.1 What is the meaning of the first symbol in \(/ \, LIST \)?

This is your first opportunity to use the tables (in this case Figure 6) which you marked in your manual at the end of Session 2.

3.2 Why would one want to do things such as \(+/[1] \, TABLE \) and \(+/[2] \, TABLE \)?

If \(TABLE \) were a table of oil imports for some year arranged by Country by Quarter (such as the tables \(OIL72 \) and \(OIL73 \) which you will encounter in Session 6), then \(+/[1] \, TABLE \) would yield four (quarterly) sums over all supplying countries, and \(+/[2] \, TABLE \) would yield a number of (country) sums for the year.
3.3 Why do \+/TABLE and \+/LISTOFTABLES work without using numbers in brackets?

Compare the results of \+/TABLE with \+/[K]TABLE for different values of K (including \+/[1]TABLE and \+/[2]TABLE) and determine which is the "default" case of K provided by the simple case \+/TABLE. Repeat for the variable LISTOFTABLES.

3.4 Aren't the results of \+/[1]TABLE and \+/[2]TABLE reversed?

No, the index in brackets refers to the axis along which summation is applied; the shape of the result is the shape determined by the remaining axes. Thus, a sum along the second axis (columns) yields a sum for each row.

Paradoxically, this matter probably becomes clearer in the case of higher-rank arrays; try some experiments on the rank-3 array LISTOFTABLES.

3.5 Is it possible to twist a table so that its rows become columns, or to reverse it so that its columns run backward?

Yes, each of the functions \$ and \& and \angle "flips" its table argument about an axis indicated by the line in its symbol. The symbols are all composites formed by overstriking two simple symbols. You may learn how to enter them by experimentation, by consulting the manuals, or by reading instructions in the next session.

3.6 How should one read aloud expressions such as \+/[1]TABLE and \+/[2]TABLE, and \angle[2]TABLE?

Various verbalizations are useful. For example, "Column sums" (\+/[1]TABLE), "Row sums" (\+/[2]TABLE), and "Row maxima" (\angle[2]TABLE) or "Sums along the first axis", "Sums along the second axis", etc. Expressions using the term "axis" are preferable for higher rank arrays such as tables of tables (rank 4) where suitable terms analogous to "rows" and "columns" may not exist.

4.1 The variable MONTHS works because all the abbreviations are the same length, but how could I make a table of the full names of the months?

Enter enough spaces after the shorter words to pad them all out to a common length, as in:

\texttt{\textbackslash x+3 ~ 6p'JUNE~ JULY~ AUGUST'}
4.2 If $MARY+8$ and $X+'MARY'$, I can see that I cannot expect to write $2\times X$ to get 2×8, but it seems to me it should be possible to get the 8 from X somehow.

Yes, you can execute X (using the expression $\mathbf{2}X$) as discussed in Session 9. You may also want to consult the manuals.

4.3 Is it possible to make a new table of names by selecting certain of the rows from a table such as MONTHS?

Yes, try expressions such as $\text{MONTHS}[1 4 7 10;]$ (called indexing) and $1 0 0 1 0 0 1 0 0 1 0$ of MONTHS (called compression). These selection functions are treated in Session 10.

4.4 I made a list called DAYS, which gives the number of days for each of the twelve months, but I was unable to print them beside the months using either MONTHS, DAYS or MONTHS,' ',DAYS.

Apply the format function \mathbf{v} (whose symbol is called thorn) to the one-column table $12 \mathbf{1pDAYS}$ to produce a 12 by 2 table of literal digits which may be catenated with MONTHS, as in $\text{MONTHS, v12 1pDAYS}$ or (if you want a space between the names and the digits) as in $\text{MONTHS, ' ', v12 1pDAYS}$. These matters are treated further is Session 9 and in the manuals.

4.5 In Session 2, I found that I could get LIST from TABLE by writing $\mathbf{6pTABLE}$, but realized that I could write this only if I knew the total number of elements in TABLE. I now see that ravel does the same thing, but I still wonder if it is possible to write the corresponding expression using \mathbf{p} for an unknown argument TABLE?

Since $\mathbf{x/p}X$ gives the total number of elements in an array X, you may write $(\mathbf{x/p}X)pX$ instead of $\mathbf{,}X$ for any array X.

4.6 What are all of the composite symbols in APL?

Figure 4 of your manual (which you marked in Session 2) shows all of the current composite characters in the right-hand column. However, new ones are occasionally added to the language to denote new primitives.

4.7 I am a manager and came here to learn how to manage APL programmers, not to learn to program.

As I said in the introductory lecture, this course is intended primarily as an introduction to APL for people wishing to learn to program in APL. As I also pointed out, a manager can often benefit from some first-hand knowledge of the tools used by his subordinates.

I believe that a good try will convince you that the present course is an efficient vehicle for gaining such first-hand knowledge of APL. However, if you become convinced that this is not the case, you might wish to withdraw.
4.8 I have to advise my management how APL can be used and whether to install it. I do not see how learning to type on an APL keyboard will help me.

This course will not provide you with everything you need to make such decisions. However, it should give you enough knowledge of APL to prepare you to communicate effectively with people who do use and manage APL, and so to draw on their experience. Although any typing skill acquired in the course may be of no direct use to you later, the direct experience of APL which it makes possible is probably the most effective and lasting way of obtaining the knowledge of APL that you require.

4.9 When are you going to start lecturing. I didn’t pay all this money for a few sheets of paper and the use of a fancy typewriter.

If you review the statement of the objectives of this course distributed at the outset (objectives clearly indicated in publicizing the course) you will see that the course is based heavily on work and experimentation at the terminal, and on associated tutoring. Little use is made of formal lecturing.

The course will be conducted in this spirit, and you will therefore gain little benefit from it if you do not embrace the opportunity to use the powerful computing facilities available at this fancy typewriter.

4.10 Without ever touching the terminal, a student quickly reads through the first session, asks for and gets the second, and then, when the instructor is away from her desk, picks up the remaining sessions and settles down to read them.

The instructor should be careful to store the sessions in such a way that students cannot easily obtain any session before completing preceding sessions. However, if this, or any other breach of procedures should occur, the instructor should maintain discipline, and insist that the copies be returned. A student who refuses to obey should, of course, be asked to withdraw.

4.11 I already know six major programming languages and I see no advantage to the one you are now teaching.

Because APL differs rather radically from other programming languages, an experienced programmer may take more, rather than less, exposure to APL to be able to appreciate its power and convenience. I can only recommend that you continue through more complex examples of its use before concentrating on comparisons with other languages.
4.12 A student complains that he is grossly mismatched (too fast, too slow, too bright, too stupid) with his partner, and requests a change.

Serious incompatibility between partners at a terminal rarely occurs, but when it does it must be handled with tact. The following options might be considered:

a) Discuss the mismatch with both partners and see what can be done to ameliorate it.

b) If you have noted a similar mismatch (normally in rate of progress) in another pair, you might raise with them the question of a possible switch and, if it is favourably received, discuss the matter with all four.

c) If a spare terminal is available (as it should be), the pair might be assigned to separate terminals. This solution should be adopted only as a last resort because students normally benefit greatly from joint work.

Allowing such a split might move another mismatched but uncomplaining student to now request a change. This can be handled by allowing him to make his own match with one of the two singles now available.

Any techniques for imposing good matching of students at the outset (based perhaps on information required from registrants) are unlikely to prove better than the student’s own pairing based on common employment or other acquaintance. However, it might be wise to defer the selection of partners until students have made some contact, during coffee served before the specified starting hour, during the introductory lecture, or both.

4.13 My company uses the ABCD application package written in APL, and my job on returning from this course will be to modify and maintain that package. If I finish the sessions quickly, may I then get started on studying the programs in the ABCD application?

I would strongly advise you not to rush through the course. The long-term benefits of the general understanding of APL which you can gain from a thorough use of the sessions and supplementary exercises of the course will far outweigh any short-term advantage of concentrating on the specifics of your first work assignment in APL. Remember also that I will be available to you by telephone for some time after the course to provide help on any APL work you undertake.
At this point, each instructor should take about 20 minutes to prepare a suitable summary lecture covering the material of Sessions 1-4. One should then be asked to present a lecture, and the others should be encouraged to badger him with reasonable questions as students might, so that he learns the dangers of attempting a philosophical review instead of a practical summary.

Slides 12-22 provide a summary of Sessions 1-4. By drawing heavily on the manuals, they strengthen the students' familiarity with, and faith in, the manuals, and provide a more lasting summary than would screen images not later available.

Students should be urged to consult and mark the actual pages from which the slides are drawn; browsing in the adjacent material is always helpful.

In using Slides 13-15, point out briefly that the elements used to form names and numbers are drawn from the alphabets at the top, that the symbols already encountered can be easily found (together with their names), and that the table includes the quote symbol used to form literals.

Ask students to identify those symbols already encountered in the course and any others they recognize from other experience, and encourage further browsing in the Character Set table in the manual.

Students should be asked to locate and mark in their manuals the tables referred to in Slide 16.

The notions of functions and arguments are important, and should be discussed (using Slides 17-19) in the light of the following passage taken from page 25 of the IBM manual:

The word "function" derives from a word which means to execute or to perform. A function executes some action on an array (or arrays), called its argument(s), to produce an array as a result. The result may serve as an argument to another function. For example:

\[
\begin{align*}
3 \times 4 &= 12 \\
2 + (3 \times 4) &= 14 \\
(-6) \div 3 &= -2
\end{align*}
\]
Although the application of scalar functions such as + and \(\times \) to arrays is readily grasped, the application of other functions such as \([1]+[/1]\) and \([2]\times [2]\) may give students difficulty. Graphic views of the application of such functions can be very helpful, and students should be encouraged to sketch their own views and to look for such views in the manuals. Slides 20-22 illustrate the use of such aids and provide explicit references to material in the manuals.

Instructor’s Guide

At this point the instructors should read the Instructor’s Guide, and raise any questions concerning its application, with particular reference to their experience in dealing with Sessions 1-4.
Handling Questions

5.1 Why doesn’t)ERASE LESSON remove the workspace LESSON from my library?

The command)ERASE ABC erases the name ABC from an active workspace; the command)DROP ABC drops workspace ABC from a library. See the table of System Commands in the manuals.

5.2 Now that I know how to drop a workspace, I suppose I could destroy the workspace for the course by entering)DROP 12 COURSE.

Try entering)DROP 12 COURSE and note the response. Although you can load a workspace from some library other than your own, you cannot change another’s library. Your own library number, which you do not have to supply explicitly in a command like)LOAD LESSON, is the first element of the account information DAI which can therefore be obtained by entering 1+DAI.

5.3 Why do all of these things like)VARS, and)SAVE, etc., begin with a right parenthesis?

Phrases like)SAVE ABC are system commands, which concern the environment within which you use APL, but which are not themselves expressions in APL. The initial right parenthesis is used to distinguish them from APL expressions, which cannot properly begin with a right parenthesis.

6.1 Can I use underscored names, as in ABC+6?

Yes, ABC is a valid name. See the manuals for the rules of name formation.

6.2 Is it all right to enter X+SHOW 'TIMES', and if so, what is the meaning of X?

X+SHOW 'TIMES' is a list of characters, a fact that you may test by observing the result of expressions such as φX.

X is not a function (as you may see by trying 3 X 4), but can be used to define a function. You can verify this as follows: Erase the function TIMES (by entering)ERASE TIMES), verify that it no longer exists (by trying 3 TIMES 4), then enter DEFINE X and again try 3 TIMES 4.

6.3 The rule for executing an unparenthesized expression seems senseless.

In the IBM manual, the rule is stated in another, but equivalent, way as follows: “the (right-hand) argument of any function is the value of the entire expression to the right”. An unparenthesized expression can therefore be read either analytically from left to right, (the first function...
encountered at any stage being the overall function to be applied to the result of those to its right), or constructively from right to left.

These simple rules (which do not admit the complication of hierarchy rules — plus before times, etc.) are much easier to use than the more complex rules used in mathematics and in many programming languages. However, their power and convenience will become apparent only after some experience, and it might therefore be better to defer the question for a while.

If, however, you wish to pursue the matter now, you might consult the cited passage in the IBM manual, and read the comparison with mathematical notation beginning on page 461 of “Notation as a Tool of Thought” in the Source Book in APL.

7.1 I tried to make a multiplication function called T by doing $T+SHOW 'TIMES'$, but it didn’t work.

This is a variant of question 6.2, and the same answer applies.

7.2 I entered $X+SHOW 'TIMES'$ and then DEFINE $2+X$, but I can’t see that it did anything.

If you enter $2+X$ you will see that the result is a list of characters which define a function called MES. Now try $3 \text{MES} 4$ to see that such a function has been established.

Alternatively, display the list of functions (by entering $)FNS$), and look for any new function (in this case MES).

7.3 I entered $)ERASE DEFINE$ and now I can’t seem to define functions.

You can restore the function DEFINE in either of two ways:

1. Enter $)LOAD MINE$. This will return your active workspace to the state at which you last saved it under the name MINE. If you have defined any new names (functions or variables) since then, you will lose them by this action.

2. Enter $)COPY 12 \text{COURSE DEFINE}$. This will copy into your active workspace the original function DEFINE and will not otherwise affect it.

7.4 Could I define the function BEELINE without using SQUAREROOT?

Yes, by using an appropriate expression involving primitive functions only. Try it.

7.5 I was not able to define the function SUM.

a) Enter DEFINE $'SUM@+/[a]o'$.

b) Enter 1 $SUM OIL72$ to test the function SUM.

c) Try to gain an understanding of the function definition process by taking the character...
string which defines SUM (that is, $+/[\alpha]_\omega$) and substituting for α the left argument used in part b, (that is, 1) and for ω the right argument used (that is, OIL72). Enter the resulting expression (that is, $+/[1]\text{OIL72}$) and compare the result with the result of 1SUM OIL72.

8.1 I was going to produce a table of abbreviated 4-character country names by entering EDIT NAMES followed by slashes under the last five columns, but I got a DOMAIN ERROR.

You could get the result you expected by various selection functions (to be discussed in Session 10): by indexing ($\text{NAMES} [[1 2 3 4]]$), by dropping the last five columns ($\text{OIL72} \text{NAMES}$), or by taking the first four ($\text{OIL72} \text{NAMES}$).

The function EDIT is designed to apply only to a list, not to a table. You could apply it to the list obtained by ravelling the table (NAMES) and then reshape the result, as in $\text{EDIT} \text{NAMES}$.

8.2 I tried to get rid of the function RAP by revising it and removing the name entirely, but it simply says NOT DONE and RAP remains in the list of functions.

The function REVISE simply defines the function represented by the character string given by EDIT SHOW [$. In your example, you had removed the entire function name preceding the diamond; DEFINE was therefore unable to define a function, and so advised you.

A name ABC (of either a function or a variable) can be removed by entering ERASE ABC (as shown in Session 5), or by EX 'ABC'.

8.3 Why does the expression $2 \text{MAX} 5 7 4$ give a domain error?

Since the definition of MAX is $\text{MAX} [/[\alpha]_\omega$, the expression $2 \text{MAX} 5 7 4$ is equivalent to $2)/(2)5 7 4$. But this expression cannot be executed because $5 7 4$, being only a list and not a table, does not possess a second axis (as required by $2)/(2)$) along which to apply the maximum function.

8.4 The function definition used here is not real APL, which I have had some experience of before this class. Why are we using it?

The form of function definition you have seen is called the del or canonical form of definition. It presents a number of complications which obscure the essential simplicity of the important notion of function definition when it is first introduced.

We will also introduce and use the del form of definition, but somewhat later, in Session 16. Interesting examples of its use can be found in the Introductory section of the IBM manual.

8.5 I have used APL a bit before this course and had no difficulty in grasping the canonical form of definition. What are the complications which you say obscure the notion of function definition?

Consider the definition $T : I \times I + \omega$ and the matters that would have to be faced in canonical definition. For example, the header and the purposes of its various parts, the need to localize
I (and therefore the definition of local and global variables), the meaning of the single line number at the left of the display, the meaning of the message DEFN ERROR, and finally, the matter of the SI stack and "hidden" variables. Direct definition avoids stack problems by producing functions that (like primitives) terminate on any error.

8.6 I have fallen far behind the rest of the class and obviously cannot finish all sessions at this rate. What should I do?

Continue at your own pace. As you have seen, you have been able to work fairly independently so far, and if you continue at the pace at which you are able to absorb the ideas, there is no reason why you should not be able to complete any remaining work when you get home. Furthermore, I will still be available to you by phone when you are completing this work, or even if you embark on other use of APL.

Nothing will be gained by trying to force your pace. At a faster pace you may, in fact, gloss over so many important points that you will find it impossible to proceed at all.
Allow instructors time to prepare and present a lecture as in Sessions 1-4, and then present and discuss the summary on the following slides, guided by the accompanying notes.

By this time, instructors should have picked up and exploited the idea of going to the manuals for material. If not, their efforts should be compared (unfavourably, one would expect) with the slide material which is drawn from the manuals.

Emphasize the fact that an instructor should not be led into prolonged discussion of any of these topics. For details on workspaces, refer the curious student to the manuals. To avoid lengthy arguments on the order of execution, promise to return to the matter at the end of the course when the students will have experienced some of the advantages of the simple APL rule. One may also refer students to treatment of the matter in various articles in the APL Source Book provided for instructors.

Slides 24 and 25 may be used to discuss workspaces and libraries in the light of the following excerpts from the manuals:

The common organizational unit in an APL system is the workspace. When in use, a workspace is said to be active, and it occupies a block of main storage. Part of each workspace is set aside to serve the internal workings of the system, and the remainder is used, as required, for storing items of information and for containing transient information generated in the course of a computation. (From IBM Manual, page 29)

An active workspace is always associated with a terminal during a work session, and all transactions with the system are mediated by it. In particular, the names of variables (data items) and defined functions (programs) used in calculations always refer to objects known by those names in the active workspace; information on the progress of program execution is maintained in the state indicator of the active workspace; and control information affecting the form of output is held within the active workspace. (From IBM Manual, page 29)

Inactive workspaces are stored in libraries, where they are identified by arbitrary names. They occupy space in auxiliary storage and cannot be worked with directly. When required, copies of stored workspaces can be made active, or selected information may be copied from them into an active workspace. (From IBM Manual, page 29)

Slide 26 may be used to discuss the omission of parentheses, in the light of the following excerpts from the manuals:

Parentheses are used in the familiar way to control the order of execution in a statement. Any expression within matching parentheses is evaluated before applying to the result any function outside the matching pair. (From IBM Manual, page 26)
In conventional notation, the order of execution of an unparenthesized sequence of monadic functions may be stated as follows: the (right-hand) argument of any function is the value of the entire expression to the right. For example, Log Sin Arctan x means the Log of Sin Arctan x, which means Log of Sin of Arctan x. In APL, the same rule applies to dyadic functions as well. Moreover, all functions both primitive and defined, are treated alike; there is no hierarchy among functions (such as multiplication being done before addition or subtraction). (From IBM Manual, page 26)

An equivalent statement of this rule is that an unparenthesized expression is evaluated in order from right to left. For example, the expression $3 \times 8 \div 3 \times 5 - 7$ is equivalent to $3 \times (8 \div (3 \times ((5 - 7))))$. Their result is 27. A consequence of the rule is that the only substantive use of parentheses is to form the left argument of a function. For example, $(12 + 3) \times 2$ is 8 and $12 + 3 \times 2$ is 2. However, redundant pairs of parentheses can be used at will. Thus, $12 + (3 \times 2)$ is also 2. (From IBM Manual, page 26)

Slide 27 may be used to discuss the notion of defined functions, in the light of the following excerpts from the manuals:

Names are used for two major categories of objects. There are names for collections of data, made up of numbers or characters. Such a named collection is called a variable. Names may also be used for programs made up of sequences of APL statements. Such programs are called defined functions. Once they have been established, names of variables and defined functions can be used in statements by themselves or in combination with the primitive functions and objects. (From IBM Manual, page 13)

Programming is the art of defining new functions that take as their arguments some data you have, and produce as their results some data you want. A program is usually a definition for a function. Presumably, if there already exists a function that does just what you want, you won’t need a new definition; so, in practice, programming is writing a definition for a new function that would not otherwise be available to you. (From Berry Manual, page 12)

A definition must be stated in terms that can be understood. The primitive functions of a programming language are those functions that need no explanation. (From Berry Manual, page 12)
Handling Questions

9.1 Sometimes \(A,[1]B \) works, sometimes \(A,[2]B \) does, and sometimes neither; I don't understand why.

The shapes of the two arguments to a function must **conform** in certain ways. For example, in the expression \(A+B \), the shapes \(\rho A \) and \(\rho B \) must agree unless one of \(A \) or \(B \) contains a single element.

The conformability rules for catenation (denoted by the comma) are more complex, but are presented clearly in the manuals. If you wish to experiment, define a tall table \(TT \leftrightarrow \begin{array}{c} 4 \rho \end{array} \), a long table \(LT \leftrightarrow \begin{array}{c} 6 \rho \end{array} \), a long vector \(LV \leftrightarrow \begin{array}{c} 6 \rho \end{array} \), and a short vector \(SV \leftrightarrow \begin{array}{c} 4 \rho \end{array} \). Then display them and try expressions such as \(TT,[1]TT \) and \(TT,[2]TT \) and \(TT,[2]SV \), etc.

9.2 The experiments with \(\forall \) and \(\exists \) suggested in this session involve vectors (such as \(N \leftrightarrow \begin{array}{c} 123 \ 456 \end{array} \) and \(C \leftrightarrow \begin{array}{c} 123 \ 456 \end{array} \)). Only when \(M \leftrightarrow \begin{array}{c} OIL72 \end{array} \) or \(T \leftrightarrow \begin{array}{c} OIL \end{array} \), they work as I expect, but why do \(\forall M \) and \(\exists T \) give domain errors?

Although the execute function (\(\exists \)) happens to be the inverse of format (\(\forall \)) when applied to vectors, its primary purpose is more general, namely, to **execute** its vector argument as an APL expression. For example, \(\exists 'OIL72+OIL73' \) and \(\exists 'X \leftarrow 3' \). This definition could be extended to a higher-rank argument in several ways (such as to execute the rows in sequence or, as suggested by your question, to form an array from the execution of all of the rows). The definition is therefore (as yet) restricted to vector arguments.

9.3 How, then, could we obtain the numeric matrix \(OIL72 \) from the character matrix \(M \leftrightarrow \begin{array}{c} OIL72 \end{array} \)?

Obtaining the numeric \(OIL72 \) from the character matrix \(M \leftrightarrow \begin{array}{c} OIL72 \end{array} \) could be done as a sequence of operations, (that is, \(\exists M[I ;] \) for each row \(I \) of \(M \)). The definition of functions to perform such sequences will be discussed in Sessions 16 and 18.

Alternatively, you might apply \(\exists \) to the ravel of \(M \), or better (taking a hint from the example \(\exists C \leftrightarrow ' ' \) in Session 9) to the expression \(',' M ',' \). It remains to reshape the result \(R \leftrightarrow \exists M ',' \) by an expression \(D \rho R \). Note that \(D \) is neither \(\rho M \) nor \(\rho R \), but can be produced by some expression involving both.

10.1 I see how the expressions \(U/[1]M \) and \(U/[2]M \) select rows and columns, respectively, but how could I select both rows and columns?

Apply \(U/[1] \) to the result of \(U/[2]M \), that is, enter \(U/[1]U/[2]M \). Conversely, you could use \(U/[2]U/[1]M \).
10.2 I have 3 5 12 4 7 and understand U/X, but I inadvertently entered X/X and got a result I do not understand. (On systems which do not have replicate, the question might be that X/X gave a domain error rather than the "obvious" result actually produced by replicate.)

Try other experiments such as 0 1 2 3 4/X or (16)/16, and try to deduce the general definition of this function, remembering that your definition must cover the boolean cases (zeros and ones only) that occur in the expressions in the session.

You may not find this definition in the manuals, since it is a recent extension of the more limited definition for boolean left arguments. It is not yet incorporated in some APL systems, and may even be incorporated in a system, but not yet in its manual.

10.3 With 3 5 12 4 7, I tried 5X, and similar experiments and I now understand how to extend a vector to the right with zeros. How can I extend it to the left?

Try 5+X, and similar experiments. You might also try similar experiments on higher-rank numeric arrays (tables, lists of tables, etc.), and also on character vectors and matrices. Alternatively, read about the functions take and drop in the manuals.

10.4 Is there a simple rule I could use to predict the shape of any array obtained by indexing?

Yes, there is a simple rule for the shape of the result of indexing. Try ρM[I;J] for various shapes and ranks of I and J, and compare with ρI and ρJ. Note that I and J can themselves be scalars, vectors, matrices, or anything, provided only that their elements are all proper indices to M. Confirm your conjecture by consulting the manuals.

10.5 I understand how (1+V)-(1+V) produces differences, and how these differences can be useful. However, I cannot fathom how the function DIFF works.

Yes, DIFF is difficult, but only because it comprises a sequence of things which are individually simple and probably well-understood. One general technique for understanding such a function is to try it for some case (such as 2 DIFF OIL), then substitute 2 for α and OIL for ω in the definition, and then execute each small part of the expression in the proper sequence.

However, this reading technique is the topic of the following session, and you may want to defer further work on DIFF to the end of that session.

11.1 I found the o.+ very interesting and consulted all three of the tables in the manual that we were told to mark at the outset, but found no clues.

Look for "function tables" in the index in one or both of the manuals.
11.2 What is the point of doubling each quote mark in entering the definition of the function `BARCHART`?

Any character used (as the quote is used) to delimit a sequence, cannot itself be included in a sequence without invoking some special convention. A convention often adopted is the one used here for the quote, namely, two quote marks in succession denote an actual quote symbol, not the termination of the sequence.

Consult either or both manuals on this matter. The use of literal input (to be discussed in Session 13) avoids the need to double quotes. If you wish to try it in the present context, enter `Z+{"}` followed (in the next entry) by the appropriate character string without doubled quotes, that is, the one shown in Session 11 as the result of `Z`. Thus:

```
Z+{"
BARCHART'O '.*'[1+ω.≥((1α)÷α)×f/ω]
```

11.3 Why is 1 added to `S` in the expression for the barchart?

Try the expression with the 1+ deleted. Also review the experiment concerning limitations on indices in Session 10.

11.4 Can you suggest further examples of function definitions to try out the reading techniques of this session?

You might try detailed reading of expressions from earlier sessions, although most of them, except possibly the function `DIFF` of Session 10, are probably already too well-understood to be interesting.

Later sessions and the supplementary exercises will provide more challenging examples, and these reading techniques should be applied to them as much as possible.

A wealth of examples can be found in references such as Notation as a Tool of Thought, APL in Exposition, and Programming Style in APL. However, many of these are (like the functions `EDIT, DEFINE, etc., in the workspace 12 COURSE`) based upon notions introduced in Sessions 16 and 18, and should perhaps not be attempted until these sessions are completed.

12.1 Your definition of "parameter" as "named quantities used in the calculation" conflicts with the normally accepted meaning of the term.

As may be seen from the Usage note in the American Heritage dictionary, "the newer nonmathematical senses of parameter are widely disputed". The main definition given by American Heritage is "A variable or an arbitrary constant appearing in a mathematical expression, each value of which restricts or determines the specific form of the expression", a definition which accords with the one given in Session 12.

In programming jargon, the term "global variable" is often used in the sense used here for "parameter".

© 1981 IR Sharp Associates
12.2 Your answer concerning the use of the word parameter, seems to denigrate programmers as users of jargon.

Every trade uses jargon, that is, terms having specialized meanings in the trade. In the present instance, “parameter” may be found in any good dictionary, with a definition that accords with that used here, but an entry for “global variable” cannot be found, nor can the intended meaning be properly derived from the individual words “global” and “variable”.

12.3 What is the meaning of $+BPI$ and where is it discussed in the manuals?

The expression $+BPI$ gives the cumulative sums of the elements of BPI. For further information in the manuals, look for the word “scan”.

12.4 I don’t understand the definition of the function TAX.

Review the reading techniques of Session 11 and try to apply them systematically to gain an understanding of the function TAX.
A better grasp of the selection functions can be attained with the aid of graphic examples of them. Many are provided in the manuals; Slide 29 shows one of them for the specific case of indexing, and Slide 30 gives points of reference for the other cases.

Slide 31 may be used as a further exercise in reading, first **without** the use of a terminal, and then with the use of the terminal as an aid or as a check. Ask a student to perform the reading.

Function tables are a special case of the use of operators. The instructor should be familiar with the discussion of operators on pages 39-43 of the IBM manual, and should be particularly careful to avoid confusing students by the common practice of using "operator" as a synonym for "function".

Although the notion of operator should be introduced at this point, extended discussion of it should be avoided. An appropriate level of discussion is suggested by Slide 32.
Handling Questions

13.1 I don’t understand the function KE.

The function KE provides another way of accepting keyboard input. Since its definition is dead simple (assuming that you have learned the use of [] and 1), your difficulty probably arises from a failure to see the point of the function, that is, its potential use.

It might therefore be best to proceed with the work of this and later sessions in order to see the use of the function, and perhaps to further appreciate its point by trying to substitute other equivalent expressions for it wherever it occurs.

13.2 I don’t understand the function KETAX.

Carefully review the techniques suggested in Session 11, and try to apply them to gain an understanding of the function KETAX. If you still feel uncertain about the function, it might be best to make a note to review it again after proceeding through the next three or four sessions.

14.1 Does the use of [→ that we have here explain the rather mysterious behaviour of the function EDIT that we have been using?

Yes, you may want to enter SHOW 'EDIT' to examine the use of [→ within it. However, you will still not be able to understand the whole definition of EDIT until you understand the conditional and recursive definition of functions discussed in Session 18.

14.2 What is the purpose of 0+ in the definition of the function PR?

a) Revise the definition of PR so as to remove the execute symbol (1), and then experiment with the expression PR MSG.

b) Now revise PR so as to remove 0+ as well, and repeat the experiments.

c) Revise PR further so as to replace the original 0+ by 3+ and repeat the experiment.

14.3 Could the expression [] used in the definition of the function PR be replaced by KE, using the keyboard entry function defined in Session 13?

A good idea. Try it.
15.1 Are there other files available that I could use?

Yes, for example, one of the supplementary exercises (which you can begin after finishing Session 20) concerns the use of a file of geographical data called NATIONS. You may experiment with it now if you wish. Since it belongs to account number 13, the name NATIONS must be prefaced by 13, as in RANGE '13 NATIONS'.

15.2 I was told that the use of files was more complicated, involving "tieing", "creating", and so on.

Yes, the primitive functions provided for handling files are more difficult for beginners to use and we have here provided you with more convenient functions defined using those primitives.

If you ever begin to use files in ways in which more precise control is required (to provide more efficient execution, for example) you will want to learn about the primitive file functions. Study of the use of these primitive functions in the functions provided here will make a good introduction to the topic.

16.1 I got the function INQUIRY working all right, but why does it give a value error when I enter \texttt{Z+INQUIRY}.

Primitive functions always produce explicit results which can be used as arguments to further functions (as in \texttt{2*(3+4)}) or can be assigned a name. A function defined in direct definition form also invariably produces a result, but a function in del form can be defined to produce an explicit result or not, as desired.

Del form definitions which produce explicit results will be found in Session 17. They can also be found in the introductory section of the IBM manual.

The different functional forms possible in del form are determined by the header. You may wish to consult the manuals for that term.

16.2 Is there something like the function \texttt{EDIT} for making modifications in a function defined in del form?

Yes, consult the manuals for "function definition mode". In particular, see the large chart near the beginning of Chapter 10 of the Berry manual, and try to follow it by experimenting on your INQUIRY function.

16.3 What kinds of expressions can follow a branch arrow?

Consult the manuals for discussions of "branch", and test your understanding by experiment.

It is often convenient to use labels in branch expressions. Consult the manuals for their definition and use. The functions in the introduction to the IBM manual contain examples of their use.
For each of the functions listed on Slide 33 and detailed on Slides 34-37, ask one student to do a detailed reading of it on the blackboard, and allow others to follow by use of their terminals.

SLIDE 33

Perform a detailed reading of each of the following functions:

- KETAX
- PRTAX
- INQUIRY (As modified)
- GOGET α, , ω

SLIDE 34

KETAX: \[KE[K] + 0.01 \times KE[K] \times 0.01 \times KE[K] \times \alpha \times \omega \times KE[K] \times \omega + KE \]

SLIDE 35

PRTAX: \[(PH'BV') + 0.01 \times (PR'BV') + 0.01 \times PR'BV' \]

SLIDE 36

INQUIRY:

\[\text{INQUIRY} \]

\[\text{ENTER FILE NAME} \]

\[\text{ENTER FILE INDEX} \]

\[\text{GET A}, ', \omega \]

\[\text{SET B} \]

\[\text{SET C} \]

\[\text{SET D} \]

\[\text{SET E} \]

\[\text{SET F} \]

\[\text{SET G} \]

\[\text{SET H} \]

\[\text{SET I} \]

\[\text{SET J} \]

\[\text{SET K} \]

\[\text{SET L} \]

\[\text{SET M} \]

\[\text{SET N} \]

\[\text{SET O} \]

\[\text{SET P} \]

\[\text{SET Q} \]

\[\text{SET R} \]

\[\text{SET S} \]

\[\text{SET T} \]

\[\text{SET U} \]

\[\text{SET V} \]

\[\text{SET W} \]

\[\text{SET X} \]

\[\text{SET Y} \]

\[\text{SET Z} \]
Handling Questions

17.1 What is the M produced by $M+\{CR 'G'$? Is it itself a function?

Devising experiments to show that the M produced by $M+\{CR 'G'$ is not a function, and that it is simply a table of characters, having the shape 2 7.

You might also enter \texttt{DFX M, 2 20 '2'} to produce a modified definition of the function G.

17.2 What is meant by a comment, and how is it used?

Look up the word "comment" in the manuals.

17.3 What is \texttt{\textasciitilde TRAP}, and why does it occur in direct definitions?

\texttt{\textasciitilde TRAP} is used to "trap" an error, that is, to control what happens in the event that an expression cannot be completely executed. As used here it ensures that a badly-defined function simply terminates with a \texttt{DOMAIN ERROR}, and shields the user from many complications associated with "suspension", with the "stack" produced by suspension, etc.

Traps are discussed further in supplementary exercises. You may also wish to consult either manual for the terms "suspension" and "stack". Traps are treated only in the Berry manual.

17.4 Why have two forms of function definition? Can I concentrate on just one of them?

Each form of definition has its advantages; every one should at least learn to read both, and the serious programmer should learn to write both.

Of their relative advantages, the most important are:

a) Because of its simplicity, direct definition is best for introducing the meaning and use of function definition.

b) Direct definition requires the use of prepared functions (\texttt{DEFINE, EDIT}, etc., as found in workspace \texttt{12 COURSE}), whereas primitive facilities (\texttt{DFX} and the "del function editor" discussed in the manuals) are provided for the del form. Primitive facilities for direct definition can be expected to be provided eventually.

c) Because del definition has been in use much longer than direct definition, most current applications are defined in del form, and any modification, or extension, of present applications will need competence in the del form.

d) Because of the clarity and compactness of direct definition, it is commonly used in APL publications, and a reading knowledge of it is needed to make these publications accessible.

e) \textbf{Modular} design (i.e., the construction of a complex function as a simple expression which itself employs simpler \texttt{component} functions, rather than as a single monolithic whole) usually leads to systems which are easier to understand, to document, and to modify and extend.
Direct definition encourages modular design: on the one hand, it makes the definition of simple functions convenient, and, on the other hand, it makes it awkward to string together long sequences of (often tenuously-related) expressions.

Finally, it should be remembered that the uses of the two forms of definition can be intermixed, as they are in workspace 12 COURSE. In particular, systems defined in del form can be modified or extended using direct definition.

18.1 I find recursive definition difficult.

Yes, many find recursive definition difficult, but it is a powerful design tool well worth learning.

As for anything else, it is probably best to begin by reading a lot of recursive definitions prepared by others before attempting to write difficult recursive definitions yourself. In fact, your first writing should perhaps be modifications of existing recursive definitions.

Be sure to begin by using the stepwise reading techniques of Session 11, abbreviating or abandoning them only when you are able to grasp larger units directly without more detailed reading.

18.2 But where can I find recursive definitions to read?

If you have already read FAC, FIB, and EDIT, you might best let the matter of recursive definitions rest until you get the Supplementary Exercises, which you will receive when you finish Session 20. These exercises provide further examples of recursive definitions, and references to other sources.

You may also wish to read all of the recursive definitions in the workspace 12 COURSE.

18.3 I still find it easier to define functions like FAC in del form than to use recursion.

Yes, facility in anything as powerful as recursive definition will not be achieved in a day. However, recursive definition may also be used in del form, and you may use your facility in del form to help you to grasp recursive definition.

In particular, take the recursive definitions that you have in direct definition and display their del form definitions, in the manner shown in Session 17. These should show you how to make recursive definitions in del form.

19.1 Is the inner product +.x the same as what is called matrix product in mathematics?

Yes +.x in APL is the same as matrix product in mathematics, except that it applies to arrays of rank 3 or more as well. Try some examples of A+.xB with arrays of rank 3 or more. You will perhaps learn everything needed by observing the shape of A+.xB (that is, pA+.xB) relative to the shapes of A and B.
19.2 What is the best way to learn about other APL primitives that we have not used in this course?

You will find a few new primitives in the supplementary exercises, and you might wish to scan the tables of functions provided in the manuals.

However, it is probably best to learn new primitives by reading functions defined by others, using manuals and experimentation when necessary to clarify the definitions of the new primitives encountered. In this way you will see some motivation for each primitive in at least one application of it, and will often learn imaginative programming techniques as well.

20.1 I don't understand the function SET.

Review the behaviour of the execute function (↑) in Session 9, and then apply the reading techniques of Session 11 to the expression which defines the function SET.
Instructors should if possible:

1. Ensure that students are allowed continued access (perhaps with CPU limits applied) to their student account numbers for a week or two following the course, and be sure that they are aware of this privilege.

2. Encourage graduates to call them for help for as long as they wish after completion of the course.

Suggestions for further study:

- Complete the sessions and supplementary exercises.
- Read the APL Language Manual to gain an overall view of the language.
- Begin work on a simple application of APL in a topic in your own discipline.
The purposes of the supplementary exercises are stated in the instructor's guide as follows:

Supplementary exercises are provided in a final section. They may be used in various ways: as a source of exercises for review or tests, as material to supplement each session for weaker students or students working independently, or as material for further study following a course. Completion of all of the supplementary exercises would probably require a further three days.

In a brief intensive course the supplementary exercises should be used sparingly, if at all, since the time they take may prevent students from progressing far enough to gain a comprehensive view of the essential topics.

Although an instructor may make little direct use of the supplementary exercises, he should be familiar with them. During the course, they can be used for weaker students to reiterate, in different examples, ideas already presented in the sessions. They can also be used to suggest answers to more probing questions.

Their main use will probably be by students continuing work after the end of the course. Since any help offered by the instructor may then be restricted to telephone or mailbox communication, it is particularly helpful to be acquainted with the exercises.

Doing all the exercises would be too trivial and time-consuming for instructors, and we will instead develop the necessary familiarity by briefly annotating the exercises. A list of suggested annotations is appended, but the instructors should first be asked, in turn, to suggest annotations for the successive exercises.

In the annotations below, the abbreviation R indicates that the exercise simply reiterates ideas presented in the session or earlier exercises, and NF indicates the simple introduction of a new function.

Annotations

1.1 R

1.2 The same function (\(\times\)) may have widely different interpretations in different areas of application.

1.3 R

1.4 R of 1.2

2.1-2 Combined use of functions (\(1\) with \(+\), \(-\), and \(\times\)) to produce obviously useful "grids".

2.3 Input editing. Use if students complain about having to abandon faulty entries. On a system that uses \(\) to recall a previous line, that might also be introduced.

2.4 R of 2.1 (using functions together)

2.5 NF and ambivalent use of symbols

3.1-3 NF and ideas on the utility of higher-rank arrays
4.1-3 R
4.4 NF and answer to question “how can I produce real reports”.
5.1 R and new material on libraries
6.1-2 R (Substitution in function definition)
6.3 R (Omission of parentheses)
7.1-3 R (Examples of function definition)
8.1 R and NF (Definition and revision; ω)
9.1-2 R and NF (scan)
10.1-2 R
11.1-3 R
12.1-2 R
13.1 R of Session 11 (Further reading)
13.2 Use of tabs (with forward reference to Session 19)
14.1-3 Further exercise in function definition using keyboard input—introduction of “drill” type functions.
15.1-3 R and the use of established files
15.4 NF (Grade)
15.5-7 Enhanced control of files and introduction to primitive file facilities.
16.1 Further material on V form of definition, including use of labels.
17.1 R
17.2 Introduction of localization of names.
17.3 R
17.4 Further work on V function definition, using a small system so defined.
18.1 Use of reading (Session 11) to fix the notion of recursive definition.
18.2 Sources of further examples of recursive definition.
19.1-2 R
20.1-6 R
20.7 Notion of consulting standard references and translating their statements into APL.

20.8 Further use of reading techniques.

20.9 Introduction to traps via their use to prevent suspension of functions produced by direct definition.

20.10-11 Further work on file primitives.

20.12 Introduction of shared variables by way of their use in the functions for remote tutoring.
They are not his weapons, but his armor.
W.M. Davis

In his Geographical Essays*, from which the above quotation is taken, Davis argues that in teaching even the most elementary geography classes, the teacher with a thorough background knowledge of geologic processes can use that knowledge as “a foundation on which to build explanatory stories in his many times of need”, and that “... his class will find entertainment and bright instruction, if he addresses them as one who is well-informed beyond the page of his text-book and who knows more than he tells”.

But Davis also cautions that “It must be borne in mind that it is not supposed for a moment that every teacher who has learned such facts as these would forthwith teach them to his classes. They are not his weapons, but his armor”.

The several papers included in the APL Source Book (APL Press, 1981) should be considered as background information to be used as Davis recommends. An instructor thoroughly familiar with them will find them useful in providing immediate answers, and in providing students with further reading; an instructor not familiar with them will run the risk of further contributing to the wealth of misinformation about APL.

The Source Book should be distributed to persons registered for the instructors course so that it may be studied before the course begins. Failing this, it should be distributed on the first day of the course, and its study should be assigned as work outside of class hours.

To ensure familiarity with the material in the Source Book, each instructor should be assigned the task of preparing and presenting a brief report on at least one of the references, in such a manner that all are treated.

Brief model reports appear below.

The Design of APL

This paper treats the general principles that guided the design of APL, illustrates their application to a number of aspects of the language, and provides (in an Appendix) a brief chronology of the development of APL up to 1973. The authors state the general principles as follows:

The actual operative principles guiding the design of any complex system must be few and broad. In the present instance we believe these principles to be simplicity and practicality. Simplicity enters in four guises: uniformity (rules are few and simple), generality (a small number of general functions provide as special cases a host of more

specialized functions), **familiarity** (familiar symbols and usages are adopted whenever possible), and **brevity** (economy of expression is sought). Practicality is manifested in two respects: concern with actual application of the language, and concern with the practical limitations imposed by existing equipment.

The specific aspects of the language discussed include:

* The **character set** and the keyboard arrangement.

* **Valence** (monadic or dyadic), and the **order of execution** and its consequences.

* **Scalar functions**, with emphasis on the matter of generality (for example, important Boolean functions such as **exclusive-or** fall out as special cases of more generally useful **relational** functions.

* **Operators**, with discussion of the belated recognition of their importance.

* **Formal manipulation** of APL expressions, and the use of identities.

* **Execute**, as a function which "... makes the language 'self-conscious' ...".

* **System Commands** and other environmental facilities.

* **Shared variables** as a generalized communication facility.

The Evolution of APL

This paper discusses the evolution of APL in a manner which complements the earlier "The Design of APL" (IBM Journal of R and D, July, 1975). Although this treatment also includes questions of design choices, it is organized chronologically to give a clearer picture of the lines of development. The periods identified are:

* **Academic Use** [to 1960], covering the initial motivation as a tool for communication among people, and the double influence of mathematical and programming background.

* **Machine Description** [1961-1963], covering developments stimulated largely by the work of formally describing IBM's System/360 family of machines.

* **Implementation** [1964-1968], covering developments stimulated by the production of a software implementation of the language, including the influence of typewriter restrictions.

* **Systems** [after 1968], covering the environment of an APL program, with emphasis on shared variables as a general communication facility.

The paper concludes with a detailed example (the vector constant) of the evolution of a small facet of the language, and with a discussion of the relation to mathematical notation.
The Inductive Method of Introducing APL

This paper treats the philosophy behind the present course, and develops analogies with the teaching of natural languages by the so-called direct method used by M.D. Berlitz.

The book by Diller referred to in the paper is excellent, and should be read by any serious teacher of languages.

Programming Style in APL

This paper discusses general approaches to improving one's use of APL, and illustrates them by specific examples. It uses direct definition exclusively, and provides some further examples of recursive definition. An appendix provides an explicit translator from direct to del form, itself expressed in del form.

The approaches to improving programming style include:

1. Techniques for assimilating difficult primitives and commonly used phrases. The inner product and the dyadic transpose (which often pose difficulties) are both treated at length in a manner motivated by applications.

2. The advantages of striving for generality in the design of functions, and techniques for achieving generality are discussed at length. The examples used include the application of functions over specified subsets.

3. The uses of identities and proofs are introduced in concrete and fairly simple examples.

4. The importance of reading (in the sense introduced in Session 11) is emphasized, and a number of sources of algorithms for further reading are provided.

Notation as a Tool of Thought

This paper applies APL to a number of topics to show how it combines the advantages of executability and generality offered by programming languages, with the “thinking” advantages (identities, proofs, etc.) of mathematical notation. It employs direct definition exclusively, provides a number of recursive definitions, and shows their role in inductive proofs.

Many of the examples used will be outside the experience of the non-mathematical student. However, because every example is presented in brief, explicit, direct definitions, any student enjoying the use of an APL terminal should be able to gain a good deal from most of them.

Moreover, many of the topics, such as permutations, directed graphs, and functions on subsets, are of very general utility (even in rather mundane applications in which their utility often goes unrecognized). Consequently, many of the functions presented may be found to be of immediate use, even by people who may not completely understand their internal structure.
Conventions Governing Order of Evaluation

This paper discusses the conventions used in mathematics and compares them with those of APL. The conventions in mathematics are shown to be more chaotic and less well-understood than is commonly realized. It is interesting to note that comprehensive treatments of the established conventions are difficult or impossible to find. For example, Cajori’s two-volume *A History of Mathematical Notations* does not address the matter.

Algebra as a Language

Adopting the point of view that “...the algebraic notation taught in high school is a language (and indeed the primary language of mathematics)...”, this paper discusses the inconsistencies and deficiencies of algebraic notation, and shows how they are remedied in APL. Analogies between the teaching of algebra and the teaching of natural languages are also discussed.
The following statements of objectives and methods of the course are reproduced from the introductory lecture:

The objectives of this course are:

1) to give you the ability to translate into APL, and therefore into computer use, procedures of interest in your own profession and known or available to you in terms understood in your profession,

2) to provide sufficient familiarity with APL reference material and with techniques of experimentation to allow you to continue to expand your mastery of APL through further use and independent study.

The method used allows you to begin work immediately on an APL terminal, experimenting under the guidance of simple written instructions, and proceeding as independently of the instructor as your ability permits. Two students work together at each terminal, to their mutual benefit, and proceed at their own pace independently of other student pairs.

The instructor therefore spends little time in formal lectures, and most of the time in individual tutoring -- answering specific questions (perhaps by directing attention to points covered in earlier sessions), and suggesting general techniques for resolving questions through further experimentation and further use of the reference material.

The approach used differs markedly from most conventional lecture courses; its main characteristics may be summarized as follows:

- It is practical in that the student spends most of the time, from the very outset, in practical work at a terminal, guided by simple written instructions. The necessary facility at the keyboard and familiarity with the character set, error messages, etc., are absorbed naturally in the course of addressing more interesting questions.

- It is inductive in that the grammar and structure of APL and the characteristics of its primitives are presented largely by examples, rather than by formal definitions.

- It is heuristic, not only in the sense that the inductive method leads the student to discover the general rules of the language, but also in presenting and exercising general techniques of investigation, including experimentation at the terminal, critical reading of APL expressions, and experience in the use of manuals and other sources of information.

All of these attributes tend to foster in the student an independence which is more valuable than the more superficial exposure to a wider range of APL primitives that might be achieved in a lecture course. Moreover, they are particularly relevant to APL -- not only does its simple and uniform structure make induction from specific examples easier and the techniques of experimentation more
The demands placed on the instructor differ greatly from those imposed by a conventional lecture course. On the one hand, because the few brief lectures are not central to the course, little or no experience or ability in lecturing is required. On the other hand, the instructor needs a greater ability to "lead out" (that is, "educate" in the sense implied by the etymology of that word) students to examine and experiment with the ideas inherent in the material presented, and requires a greater working knowledge of APL.

The greater knowledge of APL is required because the emphasis on exploration may lead students into areas not normally covered in an introductory course, and not necessarily understood by instructors whose knowledge of APL is largely confined to the content of lecture notes.

Because the demands differ from those imposed by a traditional lecture course, instructors are advised to study thoroughly the remainder of this guide, and to adhere closely to the procedures suggested, particularly for the first few trials. Moreover, an instructor should, regardless of the amount of previous experience in using or teaching APL, go through the sessions on a terminal as a student would. Finally, it would be wise to review the material in the guide before each of the first few trials of the course.

Conduct of the Course

In order to conduct the course in the spirit outlined in the introduction, the instructor should observe the following specifics:

1) Allow the students to begin work on the terminal with as little delay as possible. In particular:

 a) Have the terminals already signed on to a clear account number (having an empty workspace library and no associated files) and defer any mechanics of dial-up and sign-on until the second day.

 b) Open the session with a brief lecture based on the slides provided; then distribute the first session only and allow the students to get to work.

2) Assign two students to each terminal even if extra terminals are available; joint work by students is invariably helpful.

 To allow students to choose suitable partners, it is best to begin with an informal, unseated, period (perhaps with refreshments) in which the need for choosing a partner is announced first, and each student is then asked to introduce himself.

 If a student complains of a mismatch (usually in rate of progress), discuss it with both partners and perhaps suggest a switch with any other mismatched pair you may have noted. If a spare terminal is available (as it should be), a pair can be split. Although pairing is normally advantageous, it is not essential. In particular, the course may reasonably be offered to a single student, especially if the instructor has other work to occupy his free time.

3) Some students will read anything in sight rather than start work at the terminal; begin by confining attention strictly to the first session. In particular, do not distribute the reference manuals until they are needed, at the end of the second session.
4) Leave students alone as much as possible to make and correct their own mistakes, and to gain confidence in their ability to find their own way out of difficulties. Answer questions as directly and simply as possible, suppressing the urge to tell more about an issue than the student is prepared to absorb at the time.

5) Allow each student pair to proceed at their own pace. There is no advantage in pushing or constraining them to keep the group synchronized, and no increase in the burden on the tutor due to the lack of synchrony. However, sessions should be handed out one at a time on demand, since this provides added opportunity for contact between student and tutor.

6) Do not rush the sessions, particularly the earlier ones when the students are faced with the most fundamental ideas as well as with an unfamiliar keyboard.

7) Three six-hour days should suffice for the twenty sessions, but it is important not to rush sessions in order to finish them all. Some effort should be made to cover everything up to and including files (Session 15), and perhaps the \(\land \) form of definition (Session 16), but the remaining sessions should not be considered essential.

There is, in fact, some advantage in leaving some of the final sessions untouched so that the student has an easy and familiar continuation available to him. Try to assure that the student has immediate access to a terminal when he returns to work; in particular, his access to the student account number should be continued for some period, to encourage him to copy into his own library the workspace he has developed (including the original 12 COURSE workspace provided), and to continue his use of APL without interruption.

8) Supplementary exercises are provided in a final section. They may be used in various ways: as a source of exercises for review or tests, as material to supplement each session for weaker students or students working independently, or as material for further study following a course. Completion of all of the supplementary exercises would probably require a further three days.

In a brief intensive course the supplementary exercises should be used sparingly, if at all, since the time they take may prevent students from progressing far enough to gain a comprehensive view of the essential topics. Nevertheless, the instructor should be thoroughly familiar with the supplementary exercises in order to provide guidance for further study, particularly since some of them (such as 15.5, 15.6, 20.10, and 20.11) lead to more general and more efficient use of some of the functions introduced in the main sessions.

Reference Material

Two reference manuals should be given to each student, one for the core language common to all serious APL systems (of which the best is Reference 1 below), and one for the particular system used (of which the best for SHARP APL is reference 2):

1. APL Language, Form # GC26-3847, IBM Corporation.

The first reference is also available from IBM in both French (Form # GCF2-0135) and German (Form # GC12-1328).

Each instructor is expected to study the papers in A Source Book in APL provided with the course. He should also try to familiarize himself with existing literature on APL, including that cited in the supplementary exercises.
Physical Facilities and Class Size

Because of the tutoring role played by the instructor, the maximum manageable class size depends on the background, interests, and abilities of the students as well as on the experience of the instructor. However, an experienced instructor should be able to handle up to two dozen students. A new instructor should begin as an assistant, or with a class of modest size.

A slide projector and screen should be provided for the prepared slides for the lectures, and a blackboard or overhead projector should be available for handling questions treated during lectures.

A terminal must be provided for each pair of students, and an extra terminal for the instructor is a convenience as well as a desirable back-up in the event of terminal failure.

Any terminal which provides a complete APL character set may be used, but printing terminals are probably to be preferred over video screens for the following reasons:

- They provide printed copy which students may detach for study and revision, or may take away for study after course hours.
- Their usually lower speed is perfectly adequate for the purposes of the course, and discourages playful waste of resources which may occur on entering expressions such as 110000.
- They commonly provide better resolution so that students are not faced with blurred representations of unfamiliar characters.

However, some printing terminals are noisy and video terminals may therefore be preferred, particularly in crowded classrooms.

Installation of Workspaces

Material for the workspace referred to in the sessions and supplementary exercises as 12 COURSE is provided on a tape in the instructor’s kit. The instructor must select from this material the workspace suited to the particular APL system in use, and install it under the name 12 COURSE. There are three main cases to be considered: use of the SHARP APL time-sharing service, use of an in-house SHARP APL system, and use of a non-SHARP APL system:

1. SHARP APL Time-Sharing system.

The workspace 12 COURSE is available, and no further action is required.

2. SHARP APL In-house system.

Install the workspace 12 COURSE provided on the tape.

3. Non-SHARP systems.

Install the workspace 12 NONSHARP under the name 12 COURSE.
Limitations of Particular Terminals and APL systems

Limitations imposed by facilities may force minor changes in the conduct of the student sessions as follows:

1. If the use of library 12 is restricted so that it cannot be used for the course, the instructor must advise students of the library number and name to be substituted for 12 COURSE.

2. If either the terminals or the APL system fail to provide the diamond symbol (⊙), a substitute symbol must be chosen, and students must be advised of the substitution:

 a) Because some non-SHARP systems do not provide the ⊙, the substitution of the colon (:) for the diamond has already been made in the workspace NONSHARP.

 b) In the workspace COURSE, replacement of the diamond by the colon can be made by a systematic substitution in all of the functions except for the file functions GET, RANGE, REMOVE, and TO.

3. Because some APL systems do not provide the necessary facilities for “locking” a function “compiled” from direct definition form in order to make it behave like a primitive, any instructor using the workspace NONSHARP should advise students as follows:

 a) Recognize any error message which includes a number within brackets as an indication of a domain error in the function whose name precedes the brackets, and ignore all further detail.

 b) After any such error enter → alone on a line to escape from “suspension of execution.” Because the variable □LC contains an index for every line in execution, the comparison 0=□LC yields the value 1 if no functions are suspended. It can therefore be used to indicate when further entry of → is needed. Excessive entry of → will do no harm.

4. The file facilities provided by different APL systems differ widely, and often differ from one host operating system to another even for the same APL interpreter. It is therefore impractical to provide the file access functions GET, TO, etc. in a form that utilizes the file facilities on non-SHARP APL systems.

The file access functions provided in the workspace NONSHARP therefore mimic the behaviour of the corresponding functions in COURSE by using variables within the workspace. For the purposes of the sessions (specifically Session 15) the equivalence is complete, and the instructor need make no comment.

However, the file functions provided in COURSE are satisfactory for much general use in file problems (on a SHARP APL system), whereas those provided in NONSHARP are not. The student should either be warned of this limitation, or the instructor should modify the functions to utilize the particular file facility available. Although the provision of functions which apply to all such facilities is impractical, adaptation to a particular system should not be too difficult.

5. The default setting of certain parameters such as □PP (which controls printing precision) differs on certain APL systems. If the effects of these settings become apparent to students (as they will, for example, in Session 1 when using the IBM 5100 which has a default setting of 5 for □PP), the instructor must be prepared to explain the control parameter and either show how to set it to the standard value (10 for □PP) or explain how to interpret results which differ from those given in the sessions.
6. The function *DEFINE*, and the functions it employs, have been written with emphasis on clarity rather than efficiency. On micro- or mini-computers, efficiency may become important, and the instructor may wish to replace these functions by equivalent functions designed to execute efficiently on the particular computer in use.

7. Because facilities for correcting errors differs on different systems, the instructor must be prepared to give appropriate advice in Session 4.

8. Slow or otherwise limited workspace file facilities provided by some APL systems may make it inappropriate to use the `SAVE` and `COPY` commands as suggested in Session 5, and the instructor must provide appropriate information. For example, `SAVE` on an IBM 5120 will be much slower than the somewhat different, but usable, `CONTINUE`.

Lectures

Lectures should be brief and infrequent, perhaps 15 minutes at the end of each half-day. Moreover, they should be aimed as much at evoking questions as at presenting prepared material. Answers can often be kept brief by suggesting expressions which the students may enter later to further illustrate the behaviour of the functions in question.

The lectures represented by the prepared slides and associated notes are designed to avoid problems posed by the individual pacing allowed the students: for the faster students they serve as reviews and overviews, and for the slower students they serve as general introductions to new material which may help to accelerate their pace. The last lecture discusses avenues of further development.

Remote Tutoring Facilities

An instructor may use the function `MONITOR` to converse with a student (at a remote location) using the function `TUTOR` in the manner described by the function `HELP`.

Remote tutoring in the main course should be avoided if possible, but its use in any follow-up period should be encouraged. Instructors should therefore become familiar with the tutoring functions, and should practice their use as well as study their construction.

An instructor using a non-SHARP system may have to adapt the functions, although they employ only the most elementary shared variable facilities. On systems which do not provide shared variables, communication could be provided by way of files.

The coordination provided by the message facilities can, of course, be provided by alternate means, including even ordinary telephone calls.
<table>
<thead>
<tr>
<th>Session</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Names and Expressions</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>Experimentation</td>
<td>3</td>
</tr>
<tr>
<td>3</td>
<td>Further Experimentation</td>
<td>5</td>
</tr>
<tr>
<td>4</td>
<td>Literals</td>
<td>7</td>
</tr>
<tr>
<td>5</td>
<td>A Library of Workspaces</td>
<td>9</td>
</tr>
<tr>
<td>6</td>
<td>Exploring Workspaces</td>
<td>11</td>
</tr>
<tr>
<td>7</td>
<td>Defining Functions</td>
<td>13</td>
</tr>
<tr>
<td>8</td>
<td>Revising Functions</td>
<td>16</td>
</tr>
<tr>
<td>9</td>
<td>Literal Digits</td>
<td>18</td>
</tr>
<tr>
<td>10</td>
<td>Selection Functions</td>
<td>20</td>
</tr>
<tr>
<td>11</td>
<td>Reading Expressions</td>
<td>24</td>
</tr>
<tr>
<td>12</td>
<td>Using Parameters</td>
<td>28</td>
</tr>
<tr>
<td>13</td>
<td>Literal Input</td>
<td>32</td>
</tr>
<tr>
<td>14</td>
<td>Prompting Functions</td>
<td>34</td>
</tr>
<tr>
<td>15</td>
<td>Public Data (Files)</td>
<td>35</td>
</tr>
<tr>
<td>16</td>
<td>Sequential Functions</td>
<td>37</td>
</tr>
<tr>
<td>17</td>
<td>Modes of Definition</td>
<td>40</td>
</tr>
<tr>
<td>18</td>
<td>Choice and Recursion</td>
<td>41</td>
</tr>
<tr>
<td>19</td>
<td>Some Useful Primitives</td>
<td>43</td>
</tr>
<tr>
<td>20</td>
<td>Presetting Parameters</td>
<td>46</td>
</tr>
<tr>
<td></td>
<td>Supplementary Exercises</td>
<td>47</td>
</tr>
</tbody>
</table>
The left side of each page provides examples to be entered on the keyboard, and the right side provides comments on them. Each expression entered must be followed by striking the RETURN key to signal the APL system to execute the expression.

```
AREA←8×2
HEIGHT←3
VOLUME←HEIGHT×AREA
HEIGHT×AREA
48
VOLUME
48
3×8×2
48
LENGTH←8 7 6 5
WIDTH←2 3 4 5
LENGTH×WIDTH
16 21 24 25
PERIMETER←2×(LENGTH+WIDTH)
PERIMETER
20 20 20 20
1.12×1.12×1.12
1.404928
1.12×3
1.404928
C←2000×(1.12×3)
C
2809.856
LC
2809
L.5+C
2810
(LC×100)÷100
2809.85
```

The name `AREA` is assigned to the result of the multiplication, that is, 16.

If no name is assigned to the result, it is printed.

Names may be assigned to lists.

Parentheses specify the order in which parts of an expression are to be executed.

Decimal numbers may be used.

Yield of 12 percent for 3 years.

Capital from investment of 2000.

Rounded down to nearest dollar.

Rounded to nearest dollar.

Rounded down to nearest cent.
The purpose of a specific example is to provide a basis for grasping the idea of the general case. Thus the example 1.12*3 should suggest that any pair of numbers may be used with the power function denoted by the asterisk. What, then, are the meanings of 9*2 and 9*.5 and 6*.5? What is the meaning of ↓, a symbol not yet used, but showing a graphic similarity to the symbol ↓?

Review the foregoing examples with a view to grasping the general cases they exemplify, trying your own examples to test your conclusions.

Terminology. Symbols such as + and × denote functions which apply to arguments to produce results. Thus the expression 8÷2 means that the divide function, denoted by the symbol ÷, is to be applied to the left argument 8 and the right argument 2 to produce the result 4, which is the quotient of 8 divided by 2. The essence of using a computer lies in learning the meaning of a relatively small number of given primitive functions such as + and ×, and learning how to use them in combination to construct and define new functions suited to perform the tasks required in a particular profession.
It is often easiest to gain an understanding of a function or expression by using it in a few examples, and then attempting to state briefly in English what it does. Beside each expression below, describe the point that it illustrates. For example:

A) The function denoted by \(\iota \) (Iota) produces a list of integers up to its argument.

B) \(S \times \iota N \) produces a list of \(N \) elements spaced \(S \) apart.

\[
\begin{align*}
\iota 10 \\
.2 \times \iota 10 \\
3 + .2 \times \iota 10 \\
LIST + \iota 6 \\
TABLE + 2 3 \rho LIST \\
LIST \times LIST \\
TABLE \times TABLE \\
2 \times TABLE \\
LISTOFTABLES + 2 3 4 \rho 124 \\
5 \rho 1 0 \\
5 5 \rho 1 0 \\
4 4 \rho 1 0 0 0 0 \\
\rho LIST \\
\rho TABLE \\
\rho LISTOFTABLES \\
6 - \iota 11 \\
-2 \times (6 - \iota 11) \\
-10 -8 -6 -4 -2 0 2 4 6 8 10
\end{align*}
\]
Terminology. The symbols + and ×, which are called St. George’s Cross, and St. Andrew’s Cross, respectively, denote the functions plus and times. In reading expressions using them it is best to use the name of the function denoted, rather than the name of the symbol, as in “three plus four”, not “three St.George’s Cross four”.

Similarly, the expression 2 3 ρ LIST should normally be read as “2 3 reshape (of) LIST” rather than “2 3 rho LIST” (ρ is the Greek letter rho), and LIST, 7 8 should be read as “LIST catenated with 7 8”, or simply as “LIST with 7 8”. Learning the function names as well as (or instead of) the symbol names facilitates both reference and understanding.

* Put markers in your APL Language reference manual at the following important tables, and mark corresponding information in your second manual:

- Figure 4: The APL Character set
- Figure 6: Primitive Scalar Functions
- Figure 10: Primitive Mixed Functions

* Use the manuals to give the names of each of the new symbols encountered in this session, and the names of the functions they represent.
Beside each expression below, write a brief statement of what it does. If necessary, consult the hints which follow certain groups of expressions:

\[+\text{/LIST}\]
\[\text{LIST}\]
\[\text{/LIST}\]
\[\text{/LIST}\]
\[\text{L/LIST}\]
\[\text{+/[1]TABLE}\]
\[\text{+/[2]TABLE}\]
\[\text{A+LISTOFTABLES}\]
\[\text{+/[1]A}\]
\[\text{+/[2]A}\]
\[\text{+/[3]A}\]

Hint: Examine the shapes of the arguments and results, that is, \(\rho A\) and \(\rho+/[1]A\), etc.

\[\text{LIST,LIST}\]
\[\text{TABLE,[1]TABLE}\]
\[\text{A,[1]A}\]
\[\text{A,[2]A}\]
\[\text{A,[3]A}\]

Hint: Examine the shapes of the arguments and results.
* Give the names of the new symbols encountered in this session, and the names of the functions they represent.

* Enter ?6 several times and try to determine the use of the question mark. Then enter expressions of the form 2 3ρ9 and $M+\,?\,2\,\,3\rho\,9$ to examine its application to a table.

Hint: ? is a random-number generator. It is handy for producing arbitrary lists and tables for use in further experiments. For example, display M and repeat some of the earlier experiments on it.
Janet received 5 letters today
The maximum received by one of them
The minimum
Mary received more than Janet
They did not receive an equal number

What sense can you make of the following sentences:

JANET has 5 letters and MARY has 8
JANET has 5 letters and MARY has 4
'JANET' has 5 letters and 'MARY' has 4

The last sentence above uses quotation marks in the usual way to make a **literal reference** to the (letters in the) name itself as opposed to what it denotes. The second sentence points up the potential ambiguity which is resolved by quote marks.

LIST←24.6 3 17
pLIST
3

WORD←'LIST'
pWORD
4

SENTENCE←'LIST THE NET GAINS'
pSENTENCE
18

GIBBERISH←'JANFEBMARAPRMA...'
MONTHS←12 3pGIBBERISH
MONTHS

NOTES
The *composite* symbol \(\phi \) is formed by \(\circ \) \text{BACKSPACE} | See the manuals

\[\phi \text{[1]} \text{MONTHS} \]
\[\phi \text{[2]} \text{MONTHS} \]

\[\text{["","[2] MONTHS} \]
\[\text{["","[2] MONTHS} \]

\[\text{MONTHS} \]
\[\text{["","[2] MONTHS} \]

* The comma is used here to denote both a *monadic* function (which applies to one argument), and a *dyadic* function (which applies to two arguments). Give the names of the functions denoted by comma for the two cases.

* Ravel \textit{TABLE} and \textit{LISTOFTABLES}.

Facilities for the correction of errors differ slightly on different APL systems. If yours does not behave as described below, you may wish to ask the instructor for help.

Because omission of the closing quote is a common error, you are given an opportunity to add it (after an intervening carriage return) as illustrated below:

\[S \leftarrow \text{"NOW IS THE TIME}\]
\[\text{EDIT OPEN QUOTE}\]
\[S \leftarrow \text{"NOW IS THE TIME}\]
\[S \leftarrow \text{"NOW IS THE TIME}" \]

Enter carriage return alone here
Enter closing quote and carriage return

Striking the \textit{linefeed} key erases anything at and to the right of the position of the carriage (or cursor). Corrections can therefore be made by backspacing to any point, striking linefeed, and continuing typing. Experiment with this facility.

* Review Sessions 1-4 and summarize for your own use the material covered.
The **workspace** in which your work is carried out by the computer contains a record of the names used and of the quantities assigned to them. It also keeps a catalog of these names (or **variables**, as they are often called) which can be obtained by entering:

```
)VARS

This command is useful to remind you of names used or to help you explore a workspace prepared by someone else.

)SAVE LESSON

A copy of this active workspace will be saved in your **library** under the name `LESSON`.

)LIB

Listing the names of workspaces in your library verifies that it contains the workspace `LESSON`.

PERIMETER 20 20 20 20

Verify that the active workspace is not destroyed by saving a copy of it.

)VARS

)CLEAR

Clear the active workspace, and verify that it has been cleared.

)VARS

)LOAD LESSON

Load the library copy and verify that the active workspace has been restored.

)VARS

)ERASE VOLUME

Erase the name `VOLUME`.

VOLUME VALUE ERROR

VOLUME ^

)COPY LESSON VOLUME

SAVED 18.10.21 01/31/80

VOLUME

48

A Library of Workspaces
)ERASE VOLUME

)LOAD LESSON
SAVED 18.10.21 01/31/80
VOLUME

48

)LIB 12
COURSE
)LOAD 12 COURSE
SAVED 18.22.24 03/24/80

)SAVE MINE

Add the workspace 12 COURSE to your library under the name MINE

)LIB
LESSON MINE

List your library of workspaces

List the workspaces in public library 12

Load COURSE from library 12
List your library of workspaces, load MINE, and explore its variables.

This workspace also contains user-defined functions which supplement the primitive functions such as +, x, *, and L:

- \( \text{AT} \)
- \( \text{DEFINE} \)
- \( \text{DELETE} \)
- \( \text{DESCRIBE} \)
- \( \text{EDIT} \)
- \( \text{FLIB} \)
- \( \text{GET} \)
- \( \text{HELP} \)
- \( \text{MONITOR} \)
- \( \text{PRALL} \)
- \( \text{PRINT} \)
- \( \text{RANGE} \)
- \( \text{RC} \)
- \( \text{REMOVE} \)
- \( \text{ROUND} \)
- \( \text{TUTOR} \)
- \( \text{CFD} \)
- \( \text{EQ} \)
- \( \text{FORM} \)
- \( \text{LCL} \)
- \( \text{GROSS} \)

GROSS
24.783 31.146 42 29.56
ROUND GROSS
25 31 42 30

RC GROSS
24.78 31.15 42 29.56
YEARS AT RATE
1.404928
CAPITAL TIMES YEARS AT RATE
2809.856

SHOW 'ROUND'
ROUND + 0.5 +
SHOW 'RC'
RC (ROUND \( \omega \times 100 \)) : 100

The function \( \text{ROUND} \) does what its name suggests.

RC Rounds to nearest cent.

The function \( \text{AT} \) determines yield.

Show the definition of the function \( \text{ROUND} \).
Read this definition of AT as "Divide the right argument by 100, add 1, and raise the result to the power given by the left argument."

Review the comments on terminology in Session 2, and state how the symbols α and ω (the first and last letters of the Greek alphabet) should be read when they occur in function definitions.

Enter HELP to obtain instructions for communicating with a remote tutor, and use the manuals to clarify any new terms encountered. If you have not been assigned a remote tutor you may wish to skip this.

Omission of parentheses. If an expression is not completely parenthesized, then it is to be executed in an order as if parentheses are inserted beginning at the right, as shown below. Until this rule becomes familiar, one should mentally, or actually, insert the full set of parentheses.

Enter A←10 and B←13. Then enter some of the following expressions to verify that they are equivalent:

\[
\begin{align*}
A + 3 \times (B - 6) & \\
A + 3 \times (1 \times (B - 6)) & \\
A + (3 \times (1 \times (B - 6))) & 
\end{align*}
\]

\[\alpha + \omega \equiv \text{placeholders for variables}\]
Define an equivalent function having a shorter name.

Except in the simplest cases, function definition should be approached in the following steps:

1) Choose some sample values for which the desired result of applying the function is known.

2) Enter an expression expected to give this result, and revise it until it does.

3) Define the desired function, using the final correct expression, but with \(a\) substituted for the left argument, and \(w\) substituted for the right.

For example, define a function called \(\text{ROWSUMS}\) which applied to a table yields the sums of the rows. As an example, use the table \(\text{OIL72}\) which gives oil imports from each of eight countries for each month of the year 1972. We first try:

\[+/\{1\}\text{OIL72}\]

and see that it gives a twelve-element result. Since \(\text{OIL72}\) has 8 rows and 12 columns (as given by \(\rho\text{OIL72}\)), this result cannot be correct, and we revise it to:

\[+/\{2\}\text{OIL72}\]
We now define **ROWSUMS** by this expression, with \( \omega \) substituted for the argument name **OIL72**. Thus:

\[
\text{DEFINE 'ROWSUMS\(\omega\) +/[2]\omega'}
\]

* Try the function **ROWSUMS** on various tables.

* Define and use a corresponding function **COLSUMS**.

* Define a function **SUM** such that
  1. **SUM** \( T \) gives column sums of a table \( T \), and
  2. **SUM** \( T \) gives row sums of \( T \).

Hint: Try the following sequence:

\[
A\text{+1}
+/[A] \text{ OIL72}
A\text{+2}
+/[A] \text{ OIL72}
\]

* Try the function **SUM** on the argument **OIL** with various left arguments 1, and 2, and 3. State the general behavior of the function.

* The cost of a list of order quantities \( Q \) whose prices are \( P \) is obtained by multiplying each quantity by the corresponding price and summing the results. Define a function **CAT** (**Cost At**) to give this result. For example, if

\[
P\text{+20 15 10 24}
Q\text{+5 4 0 2}
\]

then \( Q \text{ CAT } P \) should give 208.
at the end of each session to save the current state of your workspace, and hence to save any new functions you may have defined. The command \texttt{SAVE} saves a copy of the active workspace in the library under its current name. At this point this name would normally be \textit{MINE}, but this name could have been changed to \textit{CONTINUE} by a line drop, that is, a break in communication with the central computer. For further information, locate the reference to “line drop” in the index to the manual used.
It is often necessary to revise the definition of a function several times before getting it right. To facilitate this we will now introduce a function `EDIT` which allows convenient insertions and deletions in the argument of characters to which it is applied: slashes delete the characters under which they appear, and anything following the first comma is inserted ahead of the position occupied by the comma. For example:

```
TEXT←'DELETE AND INSERTION'
Z+EDIT TEXT
DELETE AND INSERTION
/ // ,I0
DELETE AND INSERTION
```

Apply `EDIT` to erroneous text
Line printed by the function
Line entered on keyboard
Line printed by the function
Line entered on keyboard
Line printed by the function
Empty line entered on keyboard (carriage return alone) ends execution of `EDIT`

The result of the function is the final corrected line printed

```
Z
DELETE AND INSERTION
```

Revision of a function.

```
SHOW 'RC'
RCQ (ROUND w×100)÷100
Q+EDIT SHOW 'RC'
RCQ (ROUND w×100)÷100
//,RAP
RAPQ (ROUND w×100)÷100
/,*α
RAPQ (ROUND w×10*α)÷100
/,*α
RAPQ (ROUND w×10*α)÷10*α
Q
RAPQ (ROUND w×10*α)÷10*α
DEFINE Q
3 RAP 3.45678
3.457
```

Q is simply a character string; the function `RAP` becomes defined only when the `DEFINE` function is applied to it.
Define a function for revision

```
DEFINE 'REVISE' DEFINE EDIT SHOW w

REVISE 'SUM'
SUM +/[α]ω
\\,MAX
MAX +/[α]ω
\,Γ
MAX Γ/[α]ω
```

```
2 MAX OIL72
6880 10359 30193 6509 5674 5310 5219 21079
```

* Apply the function MAX to various arguments

* Define an analogous function MIN.

The definition of the function EDIT may be displayed in the usual way by SHOW 'EDIT'. However, because it uses some primitives not yet introduced, its discussion will be deferred to a later session. Save your workspace at the end of this session.

* Extend your summary of notation to cover material to the end of this session.

Give Summary Lecture

5-8

Slides 23-27
The following pairs of experiments illustrate the fact that literal digits behave differently from the numbers that they represent. Enter the expressions which appear on the same line as two separate entries, one after the other:

\[
\begin{align*}
N+123 & \quad 456 \quad C \leftarrow '123 \quad 456' \\
\rho N & \quad \rho C \\
2 \times N & \quad 2 \times C \\
N,N & \quad C,C \\
N,C & \quad C,N
\end{align*}
\]

The following experiments illustrate the use of a function which applies to numbers and produces the character strings which represent them, and an inverse function which "executes" character strings to produce the numbers represented:

\[
\begin{align*}
CA \leftarrow N & \quad NA \leftarrow C \\
\rho CA & \quad \rho NA \\
2 \times CA & \quad 2 \times NA \\
CA,CA & \quad 'C,C' \\
CA,C & \quad 'C,,C'
\end{align*}
\]
Reports may be produced by catenating literal textual information with the literal table representing the numeric data:

\[
\text{SALES80}
\]

\[
\text{COPY LESSON MONTHS}
\]

\[
\text{MONTHS,[2] ⍪SALES80}
\]

\[
B+MONTHS,[2] 'l',[2] ⍪SALES80
\]

\[
B
\]

\[
\text{ITEMS}
\]

\[
\text{ITEMS,[1] ' ','[1] B}
\]

\[
\text{NAMES}
\]

\[
\text{NAMES,[2] ⍪OIL72}
\]

* Define a function called \text{REPORT} such that the expression

\[
\text{NAMES REPORT OIL72}
\]

yields a report for 1972.

Display table of monthly sales for 1980

\text{MONTHS} was specified in Session 4 and saved in Session 5

\text{EX3} \quad \text{index applies to the array of greatest rank e.g. } \quad \text{COPY 2 4, then}

\begin{align*}
\text{COPY 2 1} & \text{ adds } X \text{ as a row for } Y \\
\text{COPY 1 3} & \text{ adds } X \text{ as a row for } Y \\
\end{align*}

Names of oil exporting nations

A report of oil imports
\[ X + 3 \quad 5 \quad 12 \quad 4 \quad 7 \]
\[ U + 1 \quad 0 \quad 1 \quad 0 \quad 1 \]
\[ U/X \]
3 12 7
\[ \sim U \]
0 1 0 1 0
\[ (~U)/X \]
5 4
\[ (X > 4)/X \]
5 12 7
\[ M + 5 \quad 5p125 \]
\[ U/[2]M \]
\[ U/[1]M \]
\[ Z + OIL73 \]
\[ C + (+/[2] Z) > 150000 \]
\[ C/[1] Z \]
\[ C/[1] NAMES \]
2+X
3 5
2+X
12 4 7
2 3+M
1 2 3
6 7 8

* Determine the names of the selection functions introduced above.
Do experiments such as $X[0]$ and $X[8]$ to determine the limits on meaningful indices.

Try expressions such as 

\text{'ABCDEF'[3 1 6 5]} and \text{'.*[2 1 2 2 1 2]'}
\text{ALPH}←'ABCDEFGHIJKLMNOPQRSTUVWXYZ'

\text{ALPH}[X]

\text{ALPH}[M]

V←2 3 5 7 11 13 17

1+V

-1+V

(1+V)-(−1+V)

Differences between successive elements

B←OIL72

0 1+B

Drop first column of \text{B}

0 −1+B

Drop last column

(0 1+B)-(0 −1+B)

Difference gives month-to-month change

D←1 0 0

(D+OIL)-((-D)+OIL)

Year-to-year changes

D←0 0 1

(D+OIL)-((-D)+OIL)

Month-to-month changes
A+1

pOIL
7 8 12
ppOIL
3
1ppOIL
1 2 3
D+A=1ppOIL
D
1 0 0

DEFINE'DIFF\( (D+\omega)-(D+\alpha=1pp\omega)\)+\omega'

2 DIFF OIL

* Use the function DIFF with the right argument OIL and with various left arguments, and interpret the results.

* Apply the function DIFF to various vector (list) right arguments, and interpret the results.

)SAVE
To read a simple but unfamiliar expression such as $A^o+B$ (that is, to grasp its meaning), apply it to various arguments, and try to abstract the meaning from the results:

\[
\begin{array}{c}
A+2 \ 3 \ 5 \\
B+4 \ 3 \ 2 \ 1
\end{array}
\]

\[
A^o+B
\]

6 5 4 3 7 6 5 4 9 8 7 6

Also try related expressions such as $A^o \times B$ and $A^o < B$

* The tables produced by the foregoing outer products are **function tables** in the sense of **addition tables** and **multiplication tables** used in elementary school. Border the tables by their arguments so as to make clear the calculation that produces them. Make the table by entering a suitable expression, and then border it by hand, as illustrated below for the expression $C^o+C+14$

<table>
<thead>
<tr>
<th>+</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
</tr>
<tr>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
</tr>
<tr>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
</tr>
</tbody>
</table>
To read a more extensive expression, begin in the same way by applying it to suitable arguments to get a notion of its overall behavior, and continue by applying parts of the expression in the order in which they are executed in the overall expression:

\[
N \rightarrow 25 \\
A \rightarrow \text{NAMES} \\
B \rightarrow /1/[3] \text{OIL} \\
B
\]

2009404 1886577 1512669 935940 898471 817481 808492 2500696

\[
A, '.*'[1+B \times (\text{IN}) \div N]
\]

ARABIA ******************** ....
NIGERIA ******************** ....
CANADA ******************** ....
INDONESIA ************* ....
IRAN ************ ....
LIBYA ************ ....
ALGERIA ************ ....
OTHER ********************

Do not spend too much time studying the foregoing example before continuing.

Since \(B\) was obtained from \(\text{OIL}\) by summing over both months and years, it represents the total imports from each of the eight countries in the period covered. The result of the long expression above is clearly a barchart of these totals, labelled with the country names. We now examine the expression

\[
A, '.*'[1+B \times (\text{IN}) \div N]
\]

piece-by-piece, assigning names to intermediate results when convenient:

\[
N
\]

The width of the barchart

\[
Q+(\text{IN}) \div N
\]

Numbers from 0 to 1 in 25 equal steps (display if desired)

\[
\text{IN}/B
\]

The largest value to be charted

\[
C+([\text{IN}]/B) \times Q
\]

Numbers from 0 to the largest value to be charted
Comparison of each value of $B$ with each value in the range to be charted.

Examine a piece of $1+S$

The quote character must be doubled.
If no name is assigned to a result, it is displayed
If a name is assigned, it is not displayed

The notation □← causes the result to be printed regardless of name assignments. □ does not denote a normal variable but serves to produce explicit display.

Revise the function \textit{BARCHART} to insert □← just before (10) and observe the behavior of 2+30 \textit{BARCHART} \textit{Bx}.

Revise \textit{BARCHART} again to display a different intermediate result.

Revise \textit{BARCHART} again to display all intermediate results.
Computations are often based on published rate tables. For example, a tax calculation function used in the form $TAX(TI)$, where $TI$ is the taxable income, must use tax table data, such as the values that determine the tax brackets, and the rates applicable in each bracket. To avoid explicit concern with them when using the function $TAX$, they may be treated as parameters, that is, as named quantities used in the calculation.

The parameters used in tax calculations might be called $BP$ (for Bracket Points), $BR$ (for Bracket Rates in percent), and $BV$ (for the value of the tax owing at the beginning of a bracket). They may be entered from a tax table such as shown in Table 2 at the end of this session. Thus:

$$BP\leftarrow 1000 \times 0 \ 1 \ 2 \ 3 \ 4 \ 8 \ 12 \ 16 \ 20 \ 24 \ 28 \ 32 \ 36 \ 40 \ 44 \ 52$$

$$BP\leftarrow BP, \ 1000 \times 64 \ 76 \ 88 \ 100 \ 120 \ 140 \ 160 \ 180 \ 200$$

BP

$$\ .001 \times BPI \leftarrow 1 \ \text{DIFF} \ BP$$
$$1 \ 1 \ 1 \ 4 \ 4 \ 4 \ 4 \ 4 \ 4 \ 4 \ 4 \ 4 \ 8 \ 12 \ 12 \ 12 \ 12 \ 20 \ 20 \ 20 \ 20$$

Examine intervals in $BP$

$$0., + \backslash \text{BPI}$$

Recompute $BP$ from intervals

$$BR\leftarrow 14 \ 15 \ 16 \ 17 \ 19 \ 22 \ 25 \ 28 \ 32 \ 36$$

$$BR\leftarrow BR, 39 \ 42 \ 45 \ 48 \ 50 \ 53 \ 55 \ 58 \ 60 \ 62$$

Examining intervals between rates

$$1 \ \text{DIFF} \ BR$$

$$1 \ 1 \ 1 \ 2 \ 3 \ 3 \ 4 \ 4 \ 3 \ 3 \ 3 \ 3 \ 2 \ 3 \ 2 \ 2 \ 2 \ 2 \ 2$$

Enter $BR$ from intervals

$$BV\leftarrow 0., + \backslash .01 \times (\sim 1 + BR) \times 1 \ \text{DIFF} \ BP$$

$$TI\leftarrow 42500$$

$$K\leftarrow /TI > BP$$

$$K$$

$$BP[K], BR[K], BV[K]$$

$K$ is an index of relevant bracket point

$K, BR[K], BV[K]$ are relevant bracket quantities

Taxable income

$$40000 \ 48 \ 12140$$

$$BP[K], BR[K], BV[K]$$

$$40000 \ 48 \ 12140$$

$$BV[K] + .01 \times BR[K] \times TI - BP[K]$$

$$13340$$

Tax calculation
DEFINE 'TAXO BV[K]+.01xBR[K]xω−BP[K=ω>BP]'

TAX TI
13340
TAX 82345
34700.1

DEFINE 'AVTRO 100x(TAX ω)÷ω'

AVTR TI
31.38823529
ROUND AVTR 82345
42

Only the taxable income appears in these expressions; the parameters BP, BR, and BV do not, although they are used within the function

Average tax rate

Corporate taxes use different values of the parameters BP, BR, and BV as given in Table 1. Since the personal tax values might be needed again, retain them under the names OBP (old BP), etc.:

OBP–BP
OBR–BR
OBV–BV
BP–0 25000
BR–22 48
BV–0 5500
TAX TI
13900
ROUND (AVTR TI), AVTR 82345
33 40

The personal tax table parameters can be collected into a single "personal tax table" as follows:

PTT–(3,pOBP)pOBP,OBR,OBV

3 5+PTT
0 1000 2000 3000 4000
14 15 16 17 19
0 140 290 450 620
Compare the following calculations with those of a previous page:

\[ TI \leftarrow 42500 \]
\[ K \leftarrow \frac{TI}{PTT[1]} \]

\[ COL + PTT[K] \]
\[ COL \]

40000 48 12140

\[ COL[3] + 0.01 \times COL[2] \times TI - COL[1] \]

\[ COL[3] + 0.01 \times COL[2] \times TI - (COL + PTT[K] + \frac{TI}{PTT[1]})[1] \]

* Define a general tax function \( GTAX \) such that \( PTT \ GTAX \ TI \) yields the correct tax on taxable income \( TI \) for the tax table \( PTT \). Since the tax table information is now provided by an explicit argument, the function \( GTAX \) does not use any parameters.

* Specify a corporate tax table \( CTT \) and use it with the function \( GTAX \) to compute corporate taxes.

* Revise your summary of notation to bring it up to date.

\)SAVE\)

<table>
<thead>
<tr>
<th>Taxable Income over:</th>
<th>But not over:</th>
<th>Tax equals</th>
<th>of excess over:</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>25,000</td>
<td>0+22%</td>
<td>0</td>
</tr>
<tr>
<td>25,000</td>
<td>....</td>
<td>5,500+48%</td>
<td>25,000</td>
</tr>
</tbody>
</table>

CORPORATE TAX TABLE
Table 1
<table>
<thead>
<tr>
<th>Taxable Income over:</th>
<th>But not over:</th>
<th>Tax equals over:</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1,000</td>
<td>0+14%</td>
</tr>
<tr>
<td>1,000</td>
<td>2,000</td>
<td>140+15%</td>
</tr>
<tr>
<td>2,000</td>
<td>3,000</td>
<td>290+16%</td>
</tr>
<tr>
<td>3,000</td>
<td>4,000</td>
<td>450+17%</td>
</tr>
<tr>
<td>4,000</td>
<td>8,000</td>
<td>620+19%</td>
</tr>
<tr>
<td>8,000</td>
<td>12,000</td>
<td>1,380+22%</td>
</tr>
<tr>
<td>12,000</td>
<td>16,000</td>
<td>2,260+25%</td>
</tr>
<tr>
<td>16,000</td>
<td>20,000</td>
<td>3,260+28%</td>
</tr>
<tr>
<td>20,000</td>
<td>24,000</td>
<td>4,380+32%</td>
</tr>
<tr>
<td>24,000</td>
<td>28,000</td>
<td>5,660+36%</td>
</tr>
<tr>
<td>28,000</td>
<td>32,000</td>
<td>7,100+39%</td>
</tr>
<tr>
<td>32,000</td>
<td>36,000</td>
<td>8,660+42%</td>
</tr>
<tr>
<td>36,000</td>
<td>40,000</td>
<td>10,340+45%</td>
</tr>
<tr>
<td>40,000</td>
<td>44,000</td>
<td>12,140+48%</td>
</tr>
<tr>
<td>44,000</td>
<td>52,000</td>
<td>14,060+50%</td>
</tr>
<tr>
<td>52,000</td>
<td>64,000</td>
<td>18,060+53%</td>
</tr>
<tr>
<td>64,000</td>
<td>76,000</td>
<td>24,420+55%</td>
</tr>
<tr>
<td>76,000</td>
<td>88,000</td>
<td>31,020+58%</td>
</tr>
<tr>
<td>88,000</td>
<td>100,000</td>
<td>37,980+60%</td>
</tr>
<tr>
<td>100,000</td>
<td>120,000</td>
<td>45,180+62%</td>
</tr>
<tr>
<td>120,000</td>
<td>140,000</td>
<td>57,580+64%</td>
</tr>
<tr>
<td>140,000</td>
<td>160,000</td>
<td>70,380+66%</td>
</tr>
<tr>
<td>160,000</td>
<td>180,000</td>
<td>83,580+68%</td>
</tr>
<tr>
<td>180,000</td>
<td>200,000</td>
<td>97,180+69%</td>
</tr>
<tr>
<td>200,000</td>
<td>........</td>
<td>110,980+70%</td>
</tr>
</tbody>
</table>

PERSONAL TAX TABLE
Table 2

Summary Lecture 9-12, slides 28-32
The boxed-quote denotes the literal list next entered on the keyboard.

It can be used as an argument to `SHOW` to avoid using explicit quotes.

Defining `SH` to take literal input makes it more convenient to use than `SHOW`.

Similarly for `DEFINE`.

* Use the function `DEF` to define a function `REV` which is related to the function `REVISE` as `DEF` is to `DEFINE`. Use the resulting function `REV` to revise the function `SQUAREROOT` so as to shorten its name.
Execution of literal input yields numeric results

Define and use a Keyboard Entry function which produces numeric results from keyboard entries

* Use the function \( REV \) to revise the function \( TAX \) to the following form

\[
KETAXO KE[K]+.01xKE[K]\times\omega-KE[K++/\omega>KE]
\]

* Use the function \( KETAX \) to perform the following pair of experiments:

\[
Q+KETAX 42500 \quad Q+KETAX 42500
\]

<p>| | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>25000</td>
<td>OBP</td>
<td>OBP</td>
<td>OBP</td>
</tr>
<tr>
<td>0</td>
<td>25000</td>
<td>OBR</td>
<td>OBR</td>
<td>OBR</td>
</tr>
<tr>
<td>22</td>
<td>48</td>
<td>OBV</td>
<td>OBV</td>
<td>OBV</td>
</tr>
<tr>
<td>0</td>
<td>5500</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

\[
Q \quad Q
\]

\[
13900 \quad 13340
\]
Review the use of □- at the end of Session 11 before continuing with the rest of this session.

```
DEF
PR □-, 0□- 'ENTER ', w.
```

A Prompting function

```
MSG←'DAYS IN CURRENT MONTH:'
```

```
Z+PR MSG
```

```
ENTER DAYS IN CURRENT MONTH:
29
Z
29
```

* Use the function REV to revise the function TAX to the following form:

```
PRTAX□ (PR 'BV')[K]+.01×(PR 'BR')[K]×w-X[K←+/ω>Χ+PR 'BP']
```

* Perform the following pair of experiments with the function PRTAX:

```
PRTAX 42500
ENTER BP
0 25000
ENTER BR
22 48
ENTER BV
0 5500
13900
```

```
PRTAX 42500
ENTER BP
OBP
ENTER BR
OBR
ENTER BV
OBV
13340
```

* Review the techniques for reading expressions and definitions presented in Session 11, and use them to analyze the details of the function PRTAX.
Data in your active workspace is available to you only, but can be made available to others by transferring it to a file. A file in SHARP APL is a collection of numbered components, each of which can contain a single variable. This may not seem like much information per component, but when combined with the ability to assemble several variables and functions into a package, files can be very useful indeed. Packages will be explored in the next Session.

Before you can use a file, you must first create it. You do this with the first of several system functions which SHARP APL uses to manipulate files. Each of these functions has a name beginning with the quad character, to distinguish these functions from the ones you create.

```
'TAXES' □CREATE 1

OBP □APPENDR 1
1
OBR □APPENDR 1
2
OBV □APPENDR 1
3
A+□READ 1 2
```

Create a file named TAXES and tie it to the number 1. You will be using this number to refer to the file with other system file functions.

Add OBP as a component of the file by appending it to the file (the 1 is the tie number). The result is the number of the component you added.

Individual items are retrieved by reading a component
How big is the file so far? See the SHARP APL Reference Manual for the meaning of the result.

You can change the data in any existing component.

Files may contain hundreds of millions of characters of data, and are sometimes used to complement the storage available in the active workspace, which, in the present system, is limited to about 650 thousand.

1↑AI

File library of active account

LIB 1↑AI

Names of files you have tied, with the account numbers which own them

NAMES

TAXES

NUMS

1

UNTIE 1

Release the file

Note: Files which have already been created may be tied either with TIE, which gives you exclusive access to the file until you UNTIE, or with STIE, which allows others to STIE the file at the same time. Unless you have pressing need for exclusive access to a file, you should use STIE.
Several different APL objects - both functions and variables - may be bundled together into a special type of variable called a **package**. One common use of packages is to group related functions and data for storage together in a single component of an APL file. Then all these objects may be retrieved in a single operation.

The **SHARP APL** language includes several system functions for manipulating packages.

```
TAXPACK+\PACK 'PRTAX PR BP BV BR OBP OBV OBR trap'
TAXPACK
PACKAGE
```

You have packaged up the tax functions and both sets of tax tables plus *trap* (or *TRAP* on some terminals), whose secret use you'll see in the next Session. You can't see what is in a package 'from the outside'. You must use special functions to open it up.

```
PFILES TAXPACK
PRTAX
PR
BP
BV
BR
OBP
OBV
OBR
trap
'Bp' PVAL TAXPACK
0 25000
)SAVE
```

What objects are in **TAXPACK**

What is the value of the object **BP**

Save the workspace before going on!
Place the entire package in one component

Read the package back in
Now unpack it into the workspace

Try using PRTAX (see Session 14). Note that you could have skipped the step of creating the variable TP by unpacking the component when you read it.

You can also add objects to an existing package.

NOTE: \(\text{\textit{PINS}}\) will replace objects in the 'target' package with the same names as objects in the 'source' package.

* See the SHARP APL Reference Manual for more information on packages and the system functions which manipulate them.
To define functions which perform sequences of actions, we will use an alternative form of definition called the canonical, or def form.

```
VINQUIRY
[1] ' ENTER FILE NAME'
[2] A+D
[3] ' ENTER COMPONENT NUMBER'
[4] B+D
[5] A STIE 1
[6] READ 1,B
[7] UNTIE 1
[8] V

INQUIRY
ENTER FILE NAME
TAXES
ENTER COMPONENT NUMBER
2
14 15 16 17 19 22 25 28 32 etc.

VINQUIRY
[8] 1
[9] V

INQUIRY
ENTER FILE NAME
TAXES
ENTER COMPONENT NUMBER
```

The bracketed line numbers are printed automatically.

Close the definition.

Use the function.

Reopen the definition and add a branch on line 8 which will cause line 1 to be executed next.
Repetition of line 1 begins here

Execution of INQUIRY continues. Enter 0 backspace U backspace T to escape from endless loop.

Branch out of halted function.

Make branch go to line 3 instead of 1
Branch out of halted function.

Add a conditional branch between lines 4 and 5 to branch to 0 (i.e., terminate) if the component number entered was empty (i.e., a return only)

* Use the function `INQUIRY` and verify that an empty entry will terminate the loop.

Display the modified definition

You have now learned two modes of function definition.

This mode is called **direct** definition
This mode is called **canonical** function definition.

The functions $F$ and $G$ are equivalent.

$CR$ produces the canonical representation of its argument:

```
Expunge G
```

$FX$ fixes the definition of the function represented by its argument:

```
Though produced by direct definition F is actually represented in canonical form, with a final comment line (which is never actually executed) for use by the function SHOW, and with
```
an initial trap line which prevents suspension of the function in execution (now you know where trap is used).

* Use \hspace{1em} CR to display the canonical definitions of other functions (such as \textit{TAX, PRTAX, etc.}) which you have previously defined.

* The function \textit{EDIT} used in the function \textit{REVISE} defined in Session 8 provides for convenient editing of functions defined in the direct definition form. Corresponding facilities for editing the del form may be found in the manuals and (for full screen terminals) in workspace 7 \textit{DEL}.
Data in your active workspace is available to you only, but can be made available to others by transferring it to a file. The following sequence uses the function TO to transfer tax table data to a file called TAXES:

\[
\begin{align*}
OBP & \ TO \ 'TAXES \ 1' \\
OBR & \ TO \ 'TAXES \ 2' \\
OBV & \ TO \ 'TAXES \ 3' \\
A & \gets \ GET \ 'TAXES \ 2' \\
\end{align*}
\]

The indices 1, 2, and 3 identify the individual items in the file.

Individual items are retrieved by index $A$.

\[
\begin{align*}
14 & \ 15 & \ 16 & \ 17 & \ 19 & \ 22 & \ 25 & \ 28 & \ 32 & \ 36 & \ 39 & \ 42 & \ 45 & \ 48 & \ 50 & \ 53 & \ 55 & \ 58 & \ etc. \\
A & \gets \ TABLE \ <<- \ GET \ 'TAXES \ 1 \ 2 \ 3' \\
3 & \ 25 \\
\end{align*}
\]

A set of items may be retrieved together. This is the same combined table used at the end of Session 10.

Items may be selected in any order.

If the first dimension of an array (list, table, or list of tables) has the value $N$, (for example, \(1_{\#}pOIL = 7\)), then it may be distributed to $N$ items of a file by a single operation. For example:

\[
\begin{align*}
OIL & \ TO \ 'IMPORTS \ 72 \ 73 \ 74 \ 75 \ 76 \ 77 \ 78' \\
\end{align*}
\]

Get individual items from the IMPORTS file to verify the effect of the preceding expression.

\[
\begin{align*}
OIL & \ TO \ 'IMPORTS \ 100' \\
\end{align*}
\]

The whole array may be entered as a single item.

\[
\begin{align*}
NAMES & \ TO \ 'IMPORTS \ 1' \\
\end{align*}
\]

Non-numeric data may be entered.
The functions `RANGE` and `REMOVE` are useful in managing files:

```
RANGE 'IMPORTS'
72 73 74 75 76 77 78 100 1

REMOVE 'IMPORTS 100'

RANGE 'IMPORTS'
72 73 74 75 76 77 78 1

DEFINE 'SORT \(\omega \)'

SORT RANGE 'IMPORTS'
1 72 73 74 75 76 77 78
```

Files may contain hundreds of millions of characters of data, and are sometimes used to complement the storage available in the active workspace, which, in the present system, is limited to about one-quarter million.

```
1+\[\[\]
Current active account number

FLIB 1+\[\[\]
File library of active account
```

Data bases employ files. To get an idea of how data bases are used, obtain a listing of those available on the system you are working on, and perhaps try one of interest. On the Sharp APL system you may try the following:

a) First save your current workspace, then load `DATABASES`, then enter `DATABASES`, and then enter answers to the prompts provided. In particular, answer the first with 2 and the second with `ALL` to get a complete listing.

b) Load `BIBLIOGRAPHY`, then enter `START` and answer the successive prompts with `LR` (for List Records) and `AUTHOR=FALKOFF` and `TITLE,SOURCE` and `DATE` and finally with a single space. When printing is completed, enter `QUIT`. 
To define functions which perform sequences of actions, we will use an alternative form of definition called the **canonical**, or del form.

```
VINQUIRY
[1] ' ENTER FILE NAME'
[3] ' ENTER FILE INDEX'
[4] B+1
[6] V

VINQUIRY
ENTER FILE NAME
TAXES
ENTER FILE INDEX
2
14 15 16 17 19 22 25 28 32 36 39 42 45 48 50 53 55 58 etc.

VINQUIRY
[6] ->1
[7] V

VINQUIRY
ENTER FILE NAME
TAXES
ENTER FILE INDEX
1
0 1000 2000 3000 4000 8000 etc.

VINQUIRY
ENTER FILE NAME
TAXES
ENTER FILE INDEX
2
14 15 16 17 19 22 etc.
```

The bracketed line numbers are printed automatically.

Close the definition.

Use the function.

Reopen definition and add a branch on line 6 which will cause line 1 to be executed next.

Repetition of line 1 begins here.
Execution of INQUIRY continues
Enter 0 backspace U backspace T to escape from endless loop

Branch out of halted function

Make the branch go to line 3 instead of 1 to avoid reentry of the file name

Enter 0 backspace U backspace T

Add a conditional branch between lines 4 and 5 to branch to 0 (i.e., terminate) if the index entered was empty (i.e., a return only)

* Use the function INQUIRY and verify that an empty entry will terminate the loop.
The function EDIT used in the function REVISE defined in Session 8 provides for convenient editing of functions defined in the direct definition form. Corresponding facilities for editing the del form may be found in the manuals.

* Revise your summary of notation.
This mode of function definition is called **direct** definition.

This mode is called **canonical** function definition.

The functions \( F \) and \( G \) are equivalent.

\( \Box CR \) produces the canonical representation of its argument.

\( \Box FX \) fixes the definition of the function represented by its argument.

Although produced by direct definition, \( F \) is actually represented in canonical form, with a final **comment line** (which is never actually executed) for use by the function \( SHOW \), and with an initial **trap** line which prevents suspension of the function in execution (This result may differ on different APL systems.)

* Use \( \Box CR \) to display the canonical definitions of other functions (such as \( TAX \), \( PRTAX \), etc.) which you have previously defined.
In a **conditional** definition, the function is defined by three expressions separated by diamonds. The first expression is a **proposition** (having only results 0 or 1, which may be thought of as **false** or **true**) which is executed first; if it is false, the next expression is executed, otherwise the last is executed. For example:

```
DEF
ABC◊ ω>0 ◊ ω*2 ◊ ω*.5
ABC 4
2
ABC -4
16
```

Square root if argument is positive, square otherwise

* The function **SHOW** is conditional. Display it and analyze its definition, using the techniques of stepwise examination presented in Session 11.

In a **recursive** definition, the function being defined recurs in its own definition. For example:

```
DEF
FAC◊ ω=0 ◊ ω×FAC ω-1 ◊ 1
FAC 4
24
```

*probably will have to work through this w/ students*
Reading from the definition we see that \( \text{FAC} \, 4 \) is equivalent to \( 4 \times \text{FAC} \, 3 \), that \( \text{FAC} \, 3 \) is equivalent to \( 3 \times \text{FAC} \, 2 \), etc. Thus, the following expressions are all equivalent:

\[
\begin{align*}
\text{FAC} \, 4 & \\
4 \times \text{FAC} \, 3 & \\
4 \times 3 \times \text{FAC} \, 2 & \\
4 \times 3 \times 2 \times \text{FAC} \, 1 & \\
4 \times 3 \times 2 \times 1 \times \text{FAC} \, 0 & \\
\end{align*}
\]

Finally, since the proposition \( \omega = 0 \) is true for the case \( \text{FAC} \, 0 \), the result of \( \text{FAC} \, 0 \) is the rightmost expression in the definition, namely 1. Thus:

\[
\text{FAC} \, 4 \leftrightarrow 4 \times 3 \times 2 \times 1 \times 1
\]

* Analyze the recursive definition of the function \( \text{EDIT} \).

* The function \( \text{FIB} \) applied to a positive whole number \( N \) produces the first \( N \) \text{fibonacci} numbers, each of which is the sum of the preceding two. It is defined by \( \text{FIB} \, \omega = 1 \Omega, +/\, 2 + \text{FIB} \, \omega - 1 \Omega \). Use and analyze it.

ratio of volume enclosed in each chamber of chambered mantiss.
A brief introductory APL course cannot usefully treat all primitives in the language, and even many of those used cannot be treated in full generality. The student should therefore become familiar with one or more APL reference manuals, and should be on the alert for further primitives which may simplify the work of programming. The following examples suggest a few of the primitives which should be explored:

**Format**

```
A+3 4↑OIL72↑1000
A
6.456 3.082 6.474 6.88
6.384 5.806 4.335 6.069
26.915 25.426 26.923 25.33
```

```
2↑A
6.46 3.08 6.47 6.88
6.38 5.81 4.34 6.07
26.92 25.43 26.92 25.33
```

```
8 2 ↑ A
6.46 3.08 6.47 6.88
6.38 5.81 4.34 6.07
26.92 25.43 26.92 25.33
```

```
5 0 8 2 5 0 8 2 ↑ A
```

A one-element left argument determines the number of digits following the decimal point.

Two elements specify column width and decimal point.

Two elements per column specify widths and decimal points for each column.
Inner Products

\[ V+1 \ 2 \ 3 \ 4 \ 5 \]
\[ W+2 \ 0 \ 1 \ 3 \ 2 \]
\[ +/ V \times W \]
\[ 27 \]
\[ V+.xW \]
\[ 27 \]
\[ M+4 \ 5 \ 1 \ 2 \ 0 \]
\[ M \]
\[ 1 \ 2 \ 3 \ 4 \ 5 \]
\[ 6 \ 7 \ 8 \ 9 \ 10 \]
\[ 11 \ 12 \ 13 \ 14 \ 15 \]
\[ 16 \ 17 \ 18 \ 19 \ 20 \]
\[ M+.xW \]
\[ 27 \ 67 \ 107 \ 147 \]
\[ 3 \ 0 \ 1 \ 2+.xM \]
\[ 46 \ 52 \ 58 \ 64 \ 70 \]
\[ V+.xV=x3 \]
\[ 12 \]
\[ M+.xW \]
\[ 12 \ 27 \ 42 \ 57 \]
\[ M^+.x=.11 \ 12 \ 13 \ 14 \ 15 \]
\[ 0 \ 0 \ 1 \ 0 \]

The manuals provide illuminating examples and diagrams of inner products.
Transpose

The transpose function changes the order of the axes of its right argument. Thus:

- \text{OIL}
  - Years by suppliers by months
- 2 1 3 \& \text{OIL}
  - Suppliers by years by months
- 1 3 2 \& \text{OIL}
  - Years by months by suppliers
- \& \text{OIL}
  - Months by suppliers by years

* Examine the shapes of each of the foregoing results.

Selector Generators

Read the brief section on this topic in the IBM Manual, and experiment with some of the examples given there. Also use the atomic vector \( \& AV \) as a left argument of the index of function in expressions such as \( \& AV \ 'ABCD' \) and \( \& AV \ 'ABCD' \) and \( \& AV \ '+-x' \).

Latent Expression

Read the discussion of this topic in the manuals and perform appropriate experiments.
\textsc{define} \[ \text{define} \]
\[ \text{set} \left( \frac{\ast}{\omega} \right) \left( \frac{\ast}{\omega} \right), 0, 0 \rightarrow \text{enter}, \omega \]
\[ \text{define} \]
\[ \text{setup} \left( 0 = \left( 1 + \frac{\pi}{\omega} \right) \left( \left( \frac{1}{0}, 0 \rightarrow \text{set} \left( \frac{\omega}{\omega} \right) \left( \left( \frac{1}{0}, 0 \rightarrow \right) \left( \frac{\omega}{\omega} \right) \right) \right) \right) \]
\[ \text{names} \left( 3 \rightarrow \frac{2}{\omega} \left( \frac{\pi}{\omega} \right) \left( \frac{\pi}{\omega} \right) \right) \]
\[ \text{names} \]
\[ \text{bp} \]
\[ \text{br} \]
\[ \text{bv} \]
\[ \text{ex names} \]
\[ 1 \ 1 \ 1 \]
\[ \text{bp} \]
\[ \text{value error} \]
\[ \text{bp} \]
\[ \wedge \]
\[ \text{setup names} \]
\[ \text{enter} \text{ bp} \]
\[ 0 \ 25000 \]
\[ \text{enter} \text{ br} \]
\[ 22 \ 48 \]
\[ \text{enter} \text{ bv} \]
\[ 0 \ 5500 \]
\[ \text{bp} \]
\[ 0 \ 25000 \]
\[ \text{tax ti} \]
\[ 13900 \]

* Repeat the setup of names, using \( OBP, OBR, \) and \( OBV \) as responses. Then enter \( TAX TI \). (The result should be 13340.)

* Use the techniques of Session 11 to determine the behaviour of the following functions, and then state clearly what they do:

\[ STO \left( \omega \rightarrow \omega \left( \frac{\ast}{\omega} \right), 0 \rightarrow \text{enter}, \omega \rightarrow \omega, \frac{\ast}{\omega} \right) \]

\[ SPO \left( 1 + \frac{\pi}{\omega} \rightarrow \text{sp} \left( 1 \rightarrow \left( \frac{0}{0} \rightarrow \text{sp} \left( \frac{\omega}{\omega} \right) \right) \right) \right) \]

\text{summary lecture 17-20, slides 35, 39}
The first part of each exercise number indicates the session with which it is associated.

1.1 Annotate each of the following expressions in the manner shown in Session 1:

\[ \text{KM} \leftarrow \text{MILES} \times 1.6 \]
\[ \text{MILES} \leftarrow \text{KM} \div 1.6 \]
\[ \text{GRAMS} \leftarrow \text{POUNDS} \div 0.022 \]
\[ F \leftarrow 32 + (1.8 \times C) \]
\[ C \leftarrow (F - 32) \div 1.8 \]

1.2 For each of the following expressions, first enter expressions which assign values to the arguments (i.e. the names) used, and then enter the given expression:

\[ \text{PRICE} \times \text{QUANTITY} \]
\[ \text{FORCE} \times \text{DISTANCE} \]
\[ \text{LENGTH} \times \text{WIDTH} \]
\[ \text{COST} \leftarrow \text{PRICE} \times \text{QUANTITY} \]
\[ \text{WORK} \leftarrow \text{FORCE} \times \text{DISTANCE} \]

1.3 Annotate the sequence produced in Exercise 1.2. For example, the final expression might be annotated by “The work done is computed as the force applied times the distance through which it acts”.

Supplementary Exercises
1.4 The names used for the arguments and results in Exercise 1.2 are mnemonic in that they suggest the interpretation to be given to the expressions in which they appear. However, all of the expressions concern the same function (multiplication) and their similarity could be emphasized by using brief neutral names (as in $Z \leftarrow X \times Y$) and providing annotations for each area of application, accounting, physics, etc. For each of the following expressions suggest two or more areas of application and provide annotations for them:

$$Z \leftarrow X \div Y$$

$$Z \leftarrow (A+B) \div 2$$

$$C \leftarrow A \times B$$

$$Z \leftarrow (\lceil A \times B \rceil) \div B$$

2.1 Use the function in expressions to:

a) assign to MILES the integer values from 0 to 10, inclusive.

b) assign to $F$ the integer values from 0 to −40.

c) assign to POUNDS the integer and half-integer values from 5 to 15.

2.2 Use the expressions from Exercise 1.1 to obtain metric and Celsius equivalents of the quantities entered in Exercise 2.1 above.

2.3 Experiment with revising an entry (before striking the carriage return or entry key) by backspacing to some point, striking the attention, linefeed, or index key (according to the particular terminal) and then continuing with the revised entry.
2.4 Annotate the following expressions:

\[ \text{MILES, (MILES} \times 1.6) \]
\[ 2, \text{pMILES} \]
\[ (2, \text{pMILES}) \text{p}(\text{MILES, (MILES} \times 1.6)) \]

2.5 Consult the definition of the function \( \div \) in the Table of Primitive Scalar Functions in an APL reference manual, and check your understanding of it by performing experiments with both one argument (as in \( \div 4 \)) and two (as in \( 3 \div 4 \)). Repeat for a few other functions in the table.

3.1 Determine the behaviour of the function denoted by \( ? \) by applying it in expressions such as \( ?6 \) and \( ?6 \ 6 \) and \( ?20 \ 20 \ 20 \). Confirm your understanding of it by consulting the manual, and then annotate the following expressions:

\[ \text{NINES} \leftarrow 3 \ 5 \ 12 \ \text{p} \ 9 \]
\[ \text{RAIN} \leftarrow ?\text{NINES} \]

3.2 Enter each of the following expressions, examine the results, and annotate them in the manner shown for the first, assuming that \text{RAIN} represents the monthly rainfall in three succeeding years in five counties:

\[ +/[1] \text{RAIN} \quad \text{Three-year rainfall totals from each county by months} \]
\[ +/[2] \text{RAIN} \]
\[ (+/[1] \text{RAIN}) \div 3 \]
\[ (+/[2] \text{RAIN}) \div 5 \]
3.3 Write expressions to determine:

a) the average yearly rainfall for each county for each year.

b) the average yearly rainfall for the entire area over the three years recorded.

4.1 a) Carefully observing the number of spaces within the quotes, enter the expression:

\[ Z \leftarrow 3 \ 8 \ \rho 'JANUARY \ FEBRUARY \ MARCH' \]

b) Examine the value of \( Z \) and use the result as a guide for an expression which assigns to \( TM \) the names of all the months spelled out in full.

c) Repeat part b using an expression of the form \( TM \leftarrow MONTHS \cdot (12 \ 6 \rho X) \), where \( MONTHS \) is the table of abbreviated spellings produced in Session 4, and where you have previously assigned to \( X \) the characters necessary to complete the spelling of the months.

4.2 Experiment with the function \( \& \) by applying it to each of the tables \( MONTHS \) and \( TM \), and confirm your understanding of its behaviour by consulting the manual.

4.3 Apply the function \( \& \) to various numerical tables produced in earlier sessions.

4.4 If at this point you wish to experiment with producing "reports" from both numerical data and tables of literal characters, perform the experiments shown at the beginning of Session 9, and consult the manual for the definitions of the functions \( \forall \) and \( \# \).

5.1 Read the introductory material on workspaces and libraries in the APL language manual, and confirm your understanding of it by experiments.
6.1  "The effect of executing the expression \( ROUND \ X \) for any argument \( X \) is the same as would be obtained by substituting \( X \) for each occurrence of the symbol \( \omega \) in the expression which defines the function \( ROUND \), that is, in the expression \( L \cdot 5 + \omega \). Confirm this statement by entering expressions using different values of the argument \( X \).

6.2  Make a statement similar to that in Exercise 6.1 concerning the function \( AT \) which applies to two arguments. Confirm your statement as in Exercise 6.1.

6.3  Examine the expressions used in earlier sessions and identify (and verify by experiment) those in which some or all of the parentheses could be omitted without changing their meanings.

7.1  For each of the following functions, describe its purpose and illustrate its use by entering its definition and applying it to appropriate arguments:

   a) \( ROWMAX \) \( [2] \omega \)

   b) \( PLANEMIN \) \( [1] \omega \)

   c) \( MAX \) \( [\alpha] \omega \)

7.2  The following functions concern areas and other properties of triangles, rectangles, and other polygons. In each case define the function and choose appropriate arguments to illustrate its use.

   a) \( PERIMETER \) \( +/\omega \)

   b) \( SEMIP \) \( .5 \times \)PERIMETER \( \omega \)

   c) \( TRIAREA \) \( x/(SEMIP \omega - 0, \omega)*.5 \)
d) $DIAGONAL \cdot (+/\omega^2)^{.5}$

e) $TEST \cdot \omega \leq SEMIP \cdot \omega$

Hint: $TEST \ 2 \ 5 \ 4$ yields $1$, showing that the lengths $2 \ 5 \ 4$ can form the sides of a triangle. Lengths $2 \ 7 \ 4$ cannot.

7.3 The following functions concern boxes, i.e. rectangular solids. Define each function and apply it to appropriate arguments.

a) $VOL \cdot x/\omega$

b) $PERIM \cdot 2x+/\omega$

c) $SURFACE \cdot 2x+/\omega^2$  

d) $DIAGONAL \cdot (+/\omega^2)^{.5}$

8.1 a) Using the formula “four-thirds pi times $R$ cubed” as the formula for the volume of a sphere of radius $R$, and the value $3.1416$ as an approximate value of pi, define a function $SVOL$ for the volume of a sphere.

b) Revise the function $SVOL$ to replace $3.1416$ by the more exact value $\pi$.

9.1 Define the function $CUMSUMS \cdot \alpha, \psi+\{2\} \cdot \omega$, execute the expression $\text{NAMES} \ CUMSUMS \ OIL73$, and discuss the meaning of the result. Note that the backslash symbol \ has not been used before -- experiment with it or consult the manual.

9.2 Repeat Exercise 9.1 with the function $CUMMAX \cdot \alpha, \psi \{2\}$.
10.1 Discuss the uses of the following functions:

a) \textsc{foryears} a[w-1971;]

b) \textsc{forcountries} a[;w;]

c) \textsc{formonths} a[;w;]

10.2 State the meaning of each of the following results:

a) \( 7 8 6+oIL \)

b) \( +/[3] 7 8 6+oIL \)

c) \( 0 0 6+oIL \)

d) \( 7 8 -6+oIL \)

e) \( 3 8 -6+oIL \)

f) \( ((6p1),6p0)/[3]oIL \)

g) \( (2|12)/[3]oIL \)

h) \( (1=3|12)/[3]oIL \)

11.1 Use the techniques of Session 11 to read the following definitions:

a) \textsc{divisibilitytable} o=(\(1\omega\))o.\(1\omega\)

b) \textsc{dt} o=(\(1\omega\))o.\(1\omega\)

c) \textsc{primes} (2=+/[1]dT\omega)/\(1\omega\)

d) \textsc{srt} \(\omega* .5\)
14.1 Enter and experiment with the functions DRILL and COACH as follows:

\[ \text{DRILL} \left( \text{\textasciitilde},0\text{\textasciitilde} \right) \left( \text{MULTIPLY } \text{\textasciitilde},(\omega[1])\text{\textasciitilde}, \text{AND } \text{\textasciitilde},\omega[2] \right) \]

\[ Z \leftarrow \text{DRILL 3 7} \]

MULTIPLY 3 AND 7
21
Z
21

COACH\( \left( 2 \ 5 \ ' \text{RIGHTWRONG}' \right) [1+(x/\omega) \neq \text{DRILL}\omega;] \)

COACH 3 7
MULTIPLY 3 AND 7
20
WRONG

14.2 Experiment with the function

\[ \text{TEST} \left( 2 \ 5 \ ' \text{RIGHTWRONG}' \right) [1+(x/X) \neq \omega,0\text{\textasciitilde} \leftarrow X \neq \omega \alpha \omega;] \]

14.3 Revise the function TEST to deal with functions such as + and \( \int \) instead of \( x \).

15.1 Because of differences in the file facilities provided by APL systems, Exercises 15.1-6 may be expected to apply only to a SHARP APL system.

Every file name is associated with the account number of a user that produced it, and the full reference to the file includes the account number. For example, on the SHARP APL system you may enter:
CAPITALS←GET '13 NATIONS 1'

COUNTRIES←GET '13 NATIONS 2'

to get items 1 and 2 of the file called NATIONS in account number 13.

(If the account number is not specified, as in GET 'TAXES 2 1' in Session 15, it is assumed to be the account number in use, that is, 1+[]AI.)

15.2 a) Examine the shapes of the tables CAPITALS, and COUNTRIES, produced in Exercise 15.1.

b) Print the first 15 countries and then print the first 15 capitals.

c) Make a single table of the countries and capitals side by side, and print the last ten rows of it.

15.3 Define a function as follows:

```
DEFINE NATIONS
```

Use expressions such as AREAS←NATIONS 3 to assign the names AREAS, POPULATION, LATITUDES, and LONGITUDES to file elements 3, 4, 5, and 6, respectively. (Use shorter mnemonic names if you prefer).

15.4 a) Enter the expression COUNTRIES[AREAS;] and state its meaning.

b) Define a function called BY such that the expression COUNTRIES BY POPULATION produces a table of the countries in order of increasing population.
c) Produce a table of capitals in **decreasing** order on the populations of their countries.

d) Produce a table of countries in increasing order on population **density**.

15.5 Access to a file can be restricted to any desired list of **account numbers** (your own account number can be determined by entering $1\text{tDAI}$), and the **type** of access permitted (such as **read only**) can be specified for each account number. The general facilities provided for controlling file access are rather complex (as may be seen, for example, from the discussion of **file access control** in the SHARP APL manual), but the function **ACCESS** provides simple controls adequate for a wide range of use.

In order to observe the effects of such restrictions it will be necessary to attempt to access a file from one or more different account numbers. We will therefore assume that you have the use of two terminals other than your own which have the account numbers (as determined by entering $1\text{tDAI}$ on each) $AN1$ and $AN2$. We will further assume that your own account number is $AN$.

a) Verify that the files that you have produced using the function **TO** permit reading by anyone, but writing only by your account.

b) The expression $A \text{ TO } 'TAXES \_1'$ not only enters $A$ as a component of the file $TAXES$ having the special index $\_1$, but the value of $A$ (called the **access control matrix**) will then control access to the file until such time as the component $\_1$ may be changed by a further use of the function **TO**.

Enter $A\leftarrow3 2pAN,1,AN1,0,AN2,1$ and $A \text{ TO } 'TAXES \_1'$. Then display $A$ and try to determine the significance of the access matrix by trying to read and write the file $TAXES$ from the different account numbers.

c) The **access codes** in the second column of $A$ specify the access permitted to the corresponding account numbers in the first column, the code 1 permitting complete access, and the code 0 permitting read access only.

Verify that $(1 2p(1\text{tDAI}),1) \text{ TO } 'TAXES \_1'$ provides a private file.
d) The number 0 in the first (i.e., account number) column of the access control matrix denotes all accounts. Verify that \((1 \ 2 \ p \ 0 \ 1) \ TO \ \text{"TAXES"} \ -1\) gives complete access to all accounts.

15.6 The function \(INDEX\diamond (\alpha \land = (\neg 1 + \rho \alpha) + \omega) \ \downarrow 1\), can be used to determine the row index of an entry in a table. For example:

\[
\cdot \leftarrow T \leftarrow 3 \ 5 \rho 'ABEL BAKERDOG' \\
\text{ABEL} \\
\text{BAKER} \\
\text{DOG}
\]

\(T \ INDEX \ 'DOG'\)

3

a) Use the information in Exercises 15.1-3 to construct a table \(T\) of names appropriate to the components 1 through 6 of the file 13 NATIONS.

b) Define the function \(GOGET '13 NATIONS', \ \wedge T \ INDEX \ \omega\) and experiment with expressions of the form \(G 'AREAS'\).

15.7 If you are using a non-SHARP APL system, study the file facilities available on your system and modify the functions \(TO\), \(GET\), \(RANGE\), \(REMOVE\), and \(FLIB\) so as to use the available file facilities, but to preserve as far as possible the appearance of the functions to the user. If possible, include access control as described in Exercise 15.5.

15.8 Read and experiment with the functions \(PRINT\) and \(PRALL\).

16.1 Read the sections on function definition in both manuals. In particular, read about labels and experiment with their use.
17.1 Display the definition of the function *INQUIRY* by entering `CR 'INQUIRY'`, and compare the display with that produced at the end of Session 16.

17.2 The function *PRTAX* defined in Session 14 assigns a value to the argument *X* for use within the definition. This name is made "local" to the function definition so that it does not affect the value of a similarly named variable. Use `CR 'PRTAX'` to display the definition of the function, note the inclusion of the name *X* in the header, and re-read the discussion of local variables in the manuals.

17.3 Use `CR` to display the definitions of other existing functions, and carefully compare the details of the del form of definition with the direct form given by the function `SHOW`, or by the comment line at the end of the del form.

17.4 As an exercise in the use of the canonical form of function definition, read the section **A Prepared Workspace** in the introduction to the IBM Manual, and enter and use some or all of the functions and variables shown.

Because of small but significant differences in the treatment of **bare output** (denoted by the phrase `[*]`) on different systems, the function *NEWSTOCK* will not work on all APL systems. A study of **bare output** in the manuals will suggest ways to rectify the matter; the easiest (which works on all systems) is to simply omit all occurrences of the phrase.

18.1 Use the techniques of Session 11 to read the following function definitions:

   a) `SORT◇ 0=ρω ◇ (U/ω),SORT (~U≡ω=\(L/ω)/ω ◇ 10`

   b) `TSORT◇ α[((ρω)[2]) S α\1ω]
      ◇ α=0 ◇ (α-1) S ω[\(\Deltaω[;α];\)] ◇ ω`

   Hint: Try `'ABCDEFGHIJKLMNOPQRSTUVWXYZ` TSORT NAMES`

   c) Sort into alphabetical order the table *CAPITALS* produced in Exercise 15.1.
18.2 In most published use of direct definition (as in all of the references given in this exercise) the separation of the segments is indicated by the colon (:) rather than the diamond. The order of the expressions also differs, with the proposition occurring between the other two expressions rather than before them.

Read the discussion of recursive definition on pages 141-146 of Iverson Elementary Analysis (APL Press, Palo Alto, CA, 1976), and do Exercises 10.16 to 10.23. Study the functions defined in the two papers by D.B. McIntyre, and the one paper by K.E. Iverson in the proceedings of An APL Users Meeting, I.P. Sharp Associates, 1978. Many recursive definitions may also be found in Notation as a Tool of Thought, CACM, Aug., 1980.

19.1 Consult the manuals for the definitions of format, inner product, and transpose, and try further experiments to confirm your understanding of them.

19.2 Display the matrix \( Q \leftarrow (\Gamma (112) \div 3) \odot 14 \) and show that the expression \( OIL \times Q \) produces quarterly summaries of the oil data.

20.1 Use the techniques of Session 11 to examine the definition of the function \( SETUP \).

20.2 Define a function \( TOTAL \) which prints the prompting message \( ENTER \ YEAR \ DESIRED \), and then gives the overall total oil imports for the year entered.

20.3 Modify the function \( TOTAL \), if necessary, to allow the entry of several years (e.g., 73 75 77), and compute the single overall total for those years. Ensure that the function still works for a single year.
20.4 Define a function \textit{MAXCHANGE} which gives, for each supplier, the maximum change
(either positive or negative) occurring from year to year in total yearly imports. The
argument to which this function must apply is a two-element list specifying the first
and last years in the desired range. For example, \textit{MAXCHANGE} \texttt{73 77} should treat
years 73 to 77, inclusive.

20.5 Define a function \textit{IMSS} which yields the index of the most stable supplier for the
range of years specified by its argument, that is, the index of the supplier whose
yearly totals showed the least maximum change as given by \textit{MAXCHANGE}.

20.6 Define a function \textit{NMSS} which yields the name of the most stable supplier.

20.7 Choose computational procedures of interest in your particular discipline (consulting
handbooks or textbooks if necessary), and define and test corresponding functions. For
example, the text \textit{Essentials of Managerial Finance} (by J.F. Weston and E.F.
Brigham, published by The Dryden Press, Hinsdale, Ill.) gives, on pages 180-182
of the third edition, a procedure for computing \textit{economic order quantity}, and an
example of its use. The statement of the procedure may be paraphrased as follows:

The economic order quantity is the square root of twice the product of the
annual sales in units with the quotient obtained by dividing the fixed cost
of placing and receiving an order by the carrying cost per unit of inventory.

Weston and Brigham quote an example in which the annual sales are 100 units, the
carrying cost is $.20 per unit, and the fixed cost of ordering is $10.00; they give the
correct result of the economic order quantity computation as 100 units.

a) Choose names for the relevant variables, and assign to them the values
specified in the example.

b) Write the expression for the economic order quantity, and verify that the
result agrees with that given by the authors.
c) Define a function $EOQK$ which accepts the variable quantities from the keyboard.

d) Define a function $EOQP$ which prompts for entries from the keyboard.

e) The three parameters of the eoq computation can be combined into a single vector, as, for example, $0.20, 10, 100$. Define a function $EOQ$ which applies to such a vector, and test it for the case $EOQ\ 0.20,10,100$.

20.8 Apply the function $DEFINE$ to the argument $DEFTEST$, and use the techniques outlined in Session 11 to analyze it and the functions that it employs.

20.9 In the following exercise, consult the manuals for elucidation of any unfamiliar terms.

a) Define the function $F\bowtie\omega$, and the corresponding function $G$ as follows:

$$\begin{align*}
\n\forall \ Z \bowtie \ G \ X \\
[1]\ Z \leftrightarrow X \forall
\end{align*}$$

b) Compare the results of $G$ and $F$ for various arguments, and then compare their behaviour for the argument $0$.

c) Enter $)SI$ to verify that the function $G$ is suspended in execution and that $F$ is not.

d) Suspension of $F$ is prevented by the statement $\Box TRAP+TRAP$, which may be seen in the canonical representation of $F$ by entering $\Box CR\ 'F'$.

e) Display the value of the parameter $TRAP$, then respecify it as an empty vector (by entering $TRAP-'1'$) and again compare the behaviour of $F\ 0$ and $G\ 0$. 

NOTES

Supplementary Exercises

1981 I.P. Sharp Associates
Review exercise 15.5 and then (using the index to locate the relevant pages) read about the general file access control facilities provided by the system function \$STAC. In particular, examine the table of permission codes associated with \$STAC.

a) Enter \(\text{VTO [\[\text{V}}\) to display the definition of the function \text{TO} used to enter data in files, and identify the line that sets the access state.

b) In the line that sets the access state, replace the expression in parentheses by \(1 \, 3p(1+\text{AI}), \sim 1\, 0\) and verify that any new file established by the modified function is private.

c) Change the function name in the header of the modified function to \text{PTO} (for "Private to"). Since this change destroys the function named \text{TO}, you may wish to enter \(\text{COPY 12 COURSE TO}\) so that both \text{TO} and \text{PTO} are available, and then save the resulting workspace.

d) Modify the function \text{TO} to make the left argument of \$STAC the parameter \text{ACC}. Then experiment with the modified function with various settings of the parameter \text{ACC}.

A file (such as \text{13 NATIONS} used in exercise 15.1) which was not produced by the function \text{TO} can nevertheless be read by the function \text{GET}. The ability to handle such "foreign" files complicates the definition of the function \text{GET} and adds to the cost of using it.

a) Display the definition of the function \text{GET}.

b) Enter \(\text{VGET[\[\text{]}\text{A10 11 12 13]}\text{V}}\) to remove lines 10 through 13 of the definition of the function \text{GET}. Verify that the more efficient modified function can still be used to read files established by the function \text{TO}, but fails to read a foreign file such as \text{13 NATIONS}.

c) Display the definition of the modified function \text{GET} and compare the line numbering with the display of the original function.
The function *TUTOR* permits a student to communicate with a remote tutor who uses the complementary function *MONITOR*; the actual communication is provided by a simple and important facility called **shared variables**. The two functions may be used as an introduction to the topic of shared variables as follows:

a) Read the first four pages of the section on shared variables in the IBM manual, and look at Figure 17.

b) Enter *HELP* to obtain a discussion of the use of the function *TUTOR*.

c) Display the definitions of the functions *TUTOR* and *MONITOR*, and spend some time trying to read them without attempting to execute them.

d) To experiment with the functions, sign on two terminals on account numbers *AN1* and *AN2* (as discussed in Exercise 15.5) and use *TUTOR* on account *AN1* and *MONITOR* on account *AN2*. 

NOTES

1961 I.P. Sharp Associates

Supplementary Exercises