
Burroughs

8 6700/8 7700

APL/700
USER REFERENCE MANUAL

(RELATIVE TO MARK 11.7 RELEASE)

.~

$6.00

Printed in U.S. America

I

17 February 1975 5000813

Total pages in this manual is 232.

Tit Ie .
A .
i thru vii .
viii Blank .
1-1 thru 1-9 .
1-10 Blank .
2-1 thru 2-12 .
3-1 thru 3-12 .
4-1 thru 4-13 .
4-14 Blank ~ .
5-1 thru 5-69 .

Issue

Original
Original
Original
Original
Original
Original
Original
Original
Original
Original
Original

5-70 Blank .
6-1 thru 6-22 .
7-1 thru 7-11 .
7-12 Blank ..
8-1 thru 8-21 .
8-22 Blank .
9-1 thru 9-8 .
A-I thru A-7 .
A-8 Blank .
8-1 thru 8-4 .
C-l thru C-16 .
Index-l thru Index-12 ..

Issue

Original
Original
Original
Original
Original
Original
Original
Original
Original
Original
Original
Original

COPYRIGHT ® 1974, 1975 BURROUGHS CORPORATION

Burroughs believes that the infornlation described in this
manual is accurate and reliable, and much care has been
taken in its preparation. However. no responsibility. financial
or otherwise, is accepted for any consequences arising out of
the use of this material. The inforn13tion contained herein is
subject to change. Revisions may be issued to advise of such
changes and/or additions.

A 5000813

Section

Table of Contents

Title Page

INTRODUCTION • • • • • • • • • • • • • • vi

OVERVIEW • • • • • • • • • • • • • • • vii

1 APL/700 SYSTEM DESCRIPTION • • • • • • • • • 1..1

General.. •••••••
Properties and Features • • • •
Use Requirements. • • • • • •
APL/700 Interactive Environment. •
Data Elements and Objects. • • •
Constituents of APL Language. • •

Constants and Variables. • •
Functions • • • • • • •
Primitive Functions and Operators
Defined Functions. • • • •
Control Structures • • • •
Expressions. • • • • • •

User Account. ••••••
Workspaces, Library and Files • •

Self Protection • • • • •
Security and Sharing. • • •

•
•
•
•
•
•
•
•

•
•
•
•
•
•

•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•

•
•
•
•
•
•

•
•
•
•
•
•
•
•
•

•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•

•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•

•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•

1-1
1-2
1-2
1..3
1-4
1-5
1.. 5
1-5
1-6
1-6
1-7
1-7
1-7
1-8
1-8
1-9

2 INTERACTING WITH APL/700 • • • • • • • • • • 2-1

General • •••••••
APL Terminal Keyboard Configurations

APL Character Set. • • • •
Typing Conventions • • • •

Connection with the APL/700 System •
Sign-On • • • • • • • •
Transaction Entries • • • •
Transaction Editing. ••
Correcting Typing Errors within
Editing Prior Transaction • •
Sign-Off.. •••••
Recovery Operations • • • •

• •
• •
• •
• •
• •
• •
• •
• •

Entry
• •
• •
• •

•
•
•
•
•
•
•
•

•
•
•

•
•
•
•
•
•
•
•
•
•
•
•

•
•
•
•
•
•
•
•
•
•
•
•

•
•

•
•
•
•
•
•
•
•

2-1
2.. 2
2-2
2-5
2-6
2-6
2-8
2-8
2-8
2-9
2-11
2-12

i

Table of Contents (Cant)

Section Title Page

3 SYSTEM COMMANDS • • • • • • • • • • • • 3-1

General • •• ••
System Command Categories •

Session Controls • •
Terminal Controls. •
Clear Workspace Controls
Library Controls •
Name Displays • • •
Erase Names. • • •
Group Commands. • •
Run State •••

•

•

•
•
•

•

•
•
•
•

•

•
•

•
•
•
•
•

•
•

•

•

•
•
•
•
•
•
•
•

•
•
•
•
•
•
•
•
•
•

•
•
•
•
•
•
•
•

•

•

•
•
•
•
•
•

•
•
•
•
•

•
•
•
•

•
•
•
•
•
•
•

•
•

3-1
3-1
3-2
3-3
3-4
3-6
3-9
3-9
3-10
3-12

4 THE APL/700 LANGUAGE • • • • • • • • 4-1

4-1
4-2
4-6
4-7
4-7
4-8
4-8
4-9
4-10
4-13

•

•

•

•
•

•

•
•

•
•

•

•

•

•

•

•
•

•

•

•

•
•

•

•

•

•
•

•

•

•

•

•
•

•

•

•

•

•

•

•

•

•
•

General • • •• ••••
Data Objects. •••••••
Names. • • •• •
Expressions, Lists and Order of Execution

Expression Formats •••
Expression Lists •• •
Brackets.. •••
Expression Entry •
Comment ••• •
Input/Output Communicators •

5 PRIMITIVE FUNCTIONS AND OPERATORS • • • • • • • 5-1

5-1
5-2
5-4
5-6
5-7
5-8
5-10
5-12
5-13
5-14
5-16
5-17
5-19
5-20
5-22
5-24
5-26

•

•

•
•

•
•

•

•
•

•

•

•
•

•
•

•

•

•
•

•
•

•
•
•
•

•

•
•

•

•

•

•
•

•
•

•

•

•
•

•

•

•

•

•

•

•
•

•
•
•

•

•

•

•
•

•

•

•

•
•
•

•

•
•
•

•
•

•
•
•

•

General •• • • • • •
Selection Function • • • • •
Assignment Functions. • • • •

Scalar Primitive Functions •• •
Integer Part, Extreme Value Functions
Arithmetic Functions • ••••
Power, Logarithm Functions.. •
Relational Functions. • •• •
Logical Functions.. •••
Circular Functions • •• ••
Factorial, Combinatorial Functions •
Extension to Arrays of Scalar Functions

Primitive Operators.. •••
Outer Product Operator • •
Reduction Operator ••
Scan Operator •• ••
Inner Product • • • •

ii

Section

Table of Contents (Cant)

Title Page

5 Identities for Scalar Dyadic Primitive Functions
Mixed Primitive Functions • ••••••

Shape, Reshape Functions • • • • • •
Integers, Index of Functions • • • • •
Ravel, Catenate, Laminate Functions. • •
Reverse, Rotate Functions • • • • • •
Transpose, Permute Functions • • • • •
Compress, Expand Functions • ••••
Take, Drop Functions. • • • • • • •
Set Functions • • • • • •• ••
Grade Functions • • • • • • • • •
Random Functions •• ••••••
Base Value Function • • • • • • • •
Represent Function • • • • • • • •
Matrix Inverse, Divide Functions. • • •
Evaluate Function. •• •••••

Format Functions. • •• ••••
Format Syntax Diagrams • • • •
Default Format Function. • • • • • •
Numeric Format Function. • • • • • •
Character Format Function • • • • • •

•
•
•
•
•
•
•
•
•

•
•
•
•
•
•
•
•

•
•

•
•
•
•
•
•
•
•

•
•
•
•
•
•
•
•

•

5-28
5-29
5-30
5-31
5-32
5-34
5-36
5-38
5-40
5-42
5-44
5-45
5-46
5-48
5-50
5-54
5-55
5-56
5-58
5-60
5-62

6 SYSTEM VARIABLES, SYSTEM FUNCTIONS AND
SHARED VARIABLES • • • • • • • • • • • 6-1

•

General. • • • • • • • •
System Variables • ••••
System Functions •••••

Function Transformations
Name Functions. • •
Debugging Aids. • • • •
Execution Controls • • •
Special Character Sets • •
Status Inquiries • • • •

Shared Variables.. •••
Shared Variable Functions ••

SV Offer, Coupling Functions
SV Access Controls Functions
SV Query, Retract Functions

I-Bar Primitive Functions ".

•
•
•
•
•
•
•
•
•
•

•

•
•

•
•
•
•
•
•
•
•
•
•
•
•
•
•
•

•

•
•
•
•
•
•
•
•
•
•
•
•
•

•
•
•
•
•
•
•
•
•
•
•
•
•
•
•

•
•
•
•
•

•
•
•
•
•
•
•
•
•

•

•
•

•
•

•
•

•
•
•
•

•

•
•
•
•
•

•
•
•
•
•
•

6-1
6-2
6-3
6-4
6-5
6-6
6-8
6-9
6-12
6-13
6-15
6-16
6-18
6-20
6-22

iii

Table of Contents (Cant)

Section Title Page

• 7-1

• 7-1
• 7-1
• 7-1
• 7-1
• 7-2
• 7-2
• 7-2
• 7-3
• 7-q
• 7-5
• 7-6
• 7-7
• 7-8
• 7-9
• 7-10
• 7-11

• 8-1

• 8-1
• 8-1
• 8-3
• 8-5
• 8-6
• 8-8
• 8-10
• 8-12
• 8-1 q
• 8-1~
• 8-17
• 8-18
• 8-18
• 8-18
• 8-19
• 8-19
• 8-20
• 8-21
• 8-21

•

•

•

•

•

•

•
•

eo •

•

•
•

•

•
•

•
•

•

• •

• •

• •

• •

• •
• •
• •

• •

• •

• •

• •

• •

•

•

• • • •• • • ••FILE SYSTEM FUNCTIONS

General.. • • • • •
File Name • ••••••••
File Components • • ••
File Limits • •• ••••••••
File Opening, Active and Inactive Status • •
File Integrity • • • • • • • •

File System Primitive Functions • • • • • • •
File Create, Change Password, Rename, Destroy •
File Component Null, Write, Read • • • • •
File Component First In, Out; Last In, Out. •
File Component Order Reverse, Rotate. •
File Components Take, Drop • • • •
File Components Compress, Expand • • • • •
File Hold, Free, Release. e ••

File Component Existence. • • • •
File System Interrogate, Status, Query • •

FUNCTION DEFINITION, EDITING AND EXECUTION

General • •• •••••••••
Function Content • • • • •• •••

Branch, Terminate, I.label. • • • • •
Function Editing Actions •• ••

Function Define, Open, Close Actions. •
Function Line Replace, Insert Actions
Function Line Edit Actions • • • •
Function Multiline Group Specifier • •
Diagnostic Function Line Group Actions •
Display Function Line Group Actions • •
Delete Function Line Group Action. • •

Defined Function Execution. • • • • • •
Scope of Names • • •• ••••
Execution Control Sequence • • • • •
Multiple Instances. • • • • • • •
Recursive Functions • • • • • • •

Suspension of Defined Function Execution • •
Defined Function Editing Using APL Functions •
Defined Function Documentation • • • • •

7

8

iv

Table of Contents (Cont)

Section Title Page

9 ERROR REPORTS AND TIIEIR INTERPRETATION • • • • • 9-1

General • • • • • • • • • • • • • • • 9-1
Error Reports • • • • • • • • • • • 9-1
Unimplemented Constructs • • • • • • • • • 9-8

APPENDIX

A Glossary • • • • • • • • • • • A-1

B Workspace Content Space Considerations • • • B-1

C Reference Charts • • • • • • • • • • • C-1

INDEX • • • • • • • • • • • • • • · Index-1

List of Illustrations

Figure Title Page

1-1 Transaction Cycle • • • • • • • • • • • • 1-3

2-1 APL Terminal, Typical SS-Character Keyboard • • • 2-3

2-2 APL Terminal, Typical 94-Character Keyboard · • • • 2-3

List of Tables

Table Title Page

4-1 Examples of Data Object Forms • • • • • • 4-3

4-2 Tests for Properties of Data Objects • • • • • 4-5

5-1 Identities for Scalar Dyadic Primitive Functions • 5-28

6-1 Character Representation Order in Atomic Vector • • 6-11

9-1 Error Reports • • • • • • • • • • 9-4

v

INTRODUCTION

APL/700 is comprised of A Programming Language (APL) and the inter­
active environment in whIch the language is used. APL is a general
purpose language for describing procedures concisely and consistently.
These procedures are then used to process information. Capabilities
common to APL systems include:

Terminal transaction-oriented processing
Many built-in primitive functions
Array data-objects as arguments
Direct expression entry and evaluation
User defined functions

APL/700 incorporates these capabilities, and in addition includes many
exclusive features for more power and versatility:

Extended function capabilities
Improved terminal interaction
Comprehensive formatting capabilities
Enhanced function editing
Integrated file system
Explicit error reporting
Inter-process variable sharing

This APL/700 User Reference Manual, Form 5000813, contains complete
information for the user.

The APL/700 Reference Card, Form 1079936, provides a syntactic summary
of the material in this manual.

The B6700/B7700 APL/700 Installation Manual, Form 5000805, addresses
the internal details necessary for a site to install, run, and manage
APL/700 for its users. It contains no information for the APL/700
user.

Documentation for specific APL/700 applications is released with the
applications.

Documentation of the APL/700 system has been prepared and is
maintained using TEXTEDIT (c) 1974 Burroughs Corporation. TEXTEDIT is
an APL/700 application.

vi

OVERVIEW

The intent of this manual is to provide sufficient reference data
(definitions, instructions, and examples) to help the user to
understand and apply APL/700. The manual is organized into 9
sections, 3 appendices and an index. Each section covers an
independent aspect of APL/700.

Section 1 summarizes from the user viewpoint APL and its
environment.

Section 2 explains user
terminal for APL.

interaction through a suitable

Section 3 describes the system commands provided to express
the user's control over the APL environment.

Section 4
language:

introduces the general properties of the APL
its array data objects, names and expressions.

Section 5 details the primitive functions and gives exam­
ples of their application to data objects.

Section 6 shows the system variables to specialize the
processing; system functions to query or alter the
environment of the account; and shared variables for inter­
process communication.

Section 7 defines the file system functions for workspace
extension.

Section 8 illustrates the actions provided for function
definition and editing, and also their execution.

Section 9 lists the error reports displayed as they are
detected for immediate repair and resumption of processing.

Appendix A is a glossary.

Appendix B gives techniques for control of memory space.

Appendix C contains a set of summary reference charts for
the material detailed in Sections 1 through 8.

The Index includes terms and concepts used in this manual.
It also includes terms used in other APL books and manuals.

The reader is encouraged to become a user from the start; the
interactive environment allows problem formulation and solution at the
user's pace.

vii

SECTION 1

APL/700 SYSTE~1 DESCRIPTIOr~

GENERAL.

APL/700 is an interactive tool for problem solvers. One purpose is to
provide a means for the person formulating a problem solution to
obtain desired results quickly. The user works through a terminal.
Solution formulation and data entry can be intermixed. Entered
information and returned results may be displayed for immediate
review. APL is especially appropriate where user insight is important
during solution development. APL encourages experimentation, the
asking of "what if ••• " questions, and focusing upon immediate needs.
This contrasts with traditional bulk data processing, where massive
outputs are prepared in hope that somewhere therein can be extracted
the answers to any potential questions.

Problem formulation can often be in terms
APL expression for which direct response
many powerful built-in functions available
consistently to either simple data or array
parallel processing of all elements in
significant algorithms to be concisely
detail suppressed.

of an immediately executed
is provided. APL/700 has
for this use. These apply
structured data. Uniform,
a data structure permits

expressed, with irrelevant

A problem solution can be developed in a logically structured manner
(top down). It can be saved for later use. Progressive refinements
can be easily incorporated. The data required can be kept in
variables and the calculation sequence required can be retained in one
or more user defined functions. Further, a file system is available
to allow a problem solution to be easily extended to handle an
unlimited quantity of data.

A second purpose of APL and its interactive environment is to provide
a hospitable host for applications. The users of these in many cases
need not know APL in detail. Many successful APL applications exist:

Financial analysis
Inventory control
Manufacturing scheduling
Forecasting
Manpower management
Resource control
PERT
Reservation control

Text processing and documentation
Report generation
Message processing and distribution
Statistical analysis
Mathematical analysis
Simulation and optimization
Computer aided instruction
Data base search and retrieval

1-1

The common property of these applications is their use of direct input
and immediate display response. Traditional computation-bound
applications may often be re-cast into APL to provide a more
satisfactory solution for the user with the prorlem.

PROPERTIES AND FEATURES.

APL/700 may be characterized as:

accessible
unobtrusive
concise
simple
readable
forgivinq
secure

irrunediate response for "trivial" requests
problems quickly solved at user's pace
powerful primitive functions on data structures
consistent, few rules
define functions in few lines
easy error correction, good recovery
protection for private or shared work

Features that make APL/700 an effective interactive system include:

built-in APL functions for processing data
expression entry and immediate execution
progressive expression development by augmentina prior entry
data entry in execution or input modes
user function creation in definition and editina mode
file system for accessing auxiliary data
shared variables for interuser or interprocess communication
formattinq functions for report preparation
system functions and commands to query and alter environment
keyboard input and display controls

USE REQUIREMENTS.

To use APL one needs only:

a terminal with APL characters
an account on an APL/700 system

Note that typing skill is not on the above list. APL is so concise
that lack of typinq skill -rs not a siqnificant barrier. Since the
reader is encouraged to learn APL on a terminal, keyboard familiarity
develops with use.

The APL/700 system cannot be damaged by user entries. The user
quickly learns to experiment: when in doubt, try it.

1-2

APL/700 INTERACTIVE ENVIRONMENT.

The user seems to have exclusive use of the APL/700 processor. This
illusion can be maintained for many users concurrently since the
amount of computer resources required for servicing anyone user is
usually a small fraction of the total resources available. Peak
requirements are spread in time.

A transaction is the alternating cycle starting with a user phase
followed by a processor phase. The user phase starts with the
terminal ready for user typing, continues through user typing an entry
requiring service and completes with the return (RETN). Then the
processor phase starts by receiving the RETN, provides the service
required by the entry, possibly generating output, and finally makes
the terminal ready for next user entry.

Response _-."..--1
..... Unlock Keyboard L- -"

Terminal

Request
RETN -----.,., APL/700

Processor

Action

Keyboard

User Phase

Type Entry RETN

Unlocked

Processor Phase

Process (Output)

Locked

Typical Time
Span, Seconds

1 to 30 o to 1 a to 6

FIGURE 1-1 TRANSACTION CYCLE

The user sets the work pace; the processor rarely slows the thought
process. When the time consumed during the user phase and during
output from the processor phase constitutes a large fraction of the
transaction cycle, the user has the illusion of a dedicated computer
system. APL/700 achieves this by scheduling "short" requests (taking
no more than a fraction of a second of processing to complete) for
almost immediate service. "Involved" requests (that a user might
expect to take a while) are scheduled for processing that can be
interrupted as necessary to service short requests from other users.
Most requests are short.

The benefits from sharing the
concurrently include:

APL processor among many users

immediate response for short transactions
work smoothing among many irregular demands for service
powerful processor available when needed
cost spread across users as resources are used
"think time" need not be penalized
data files for data accumulation and shared access

1-3

The user 0.: Al?L may select one of three modes for use at any time.
Each Hl0<le i;;):-ecogl1izable by the prompt or appearance on the display
wtlel1 tht~ l<.:-e:'})()<lrd is UI11ocked.

immeditlt.e execution of entered expressions
prog~C(~:iBi'Te expression development by altering prior entry
dssi(Jlu.1E~ni: of values to variables
call ()]l defined functions for execution
prompt; five space indent

Data Ent.r~:! 11ode.

evall1at:t~dj' in response to the prompt 0:
(:}li:ll~(lc.:·i:(~r" in respOI1se to a user established prompt

Fllnct.i()li])E~:::Lnition and Editing Mode.

creat:L()ll and editing of defined functions
estal)l._fihrtlent of automatic debugging aids
t-1r'omrJt ' [n] at left margin for line n of the open function

Data ol)j(:;(~t~; C'lre tIle units for processing. A data object has the
prof?erti.es ()f t:ype, shape, and value.

The type of a data object is either:

charclct.er
i1l1nel" i(~

any APL characters
any value representable as a number

The shape of a data object is a vector of non-negative integers
indicating f:he lengths along each dimension of the object. A data
object may he a scalar, in which it has a single element with an empty
shape (,1 gE!ometric point). A data object may be an array of some
number of dimensions with a shape vector. If there is only one
dimension, the array is referred to as a vector. The right most
element of t:he shape vector is the number of columns in the object. A
two dirnE.~n~~i(jr1al array is referred to as a matrix. The shape of a
n1atrix is tltE~ l1umber of rows, followed by the number of columns. The
rank ()f al\ (,l")j ect is the number of dimensions.

The value 01 a data object may consist of a single scalar element or
zero or rn(~l:'f: elements arrayed in some rectangular manner.

1-4

CONSTITUENTS OF APL LANGUAGE.

The APL language includes four kinds of entities:

constants and variables
functions
control structures
expressions

CONSTANTS AND VARIABLES.

A constant is a data object without a name. Constants can appear as
part of defined functions or can be entered as part of execution mode
expressions.

A variable has a name that is attached to a data object by assignment.
The name is used in APL expressions as a reference for the associated
value of an APL data object. Each successive assignment to a variable
name attaches a new data object to it. Special system variables
provide access or control over variables relating to the APL
environment. Shared variables permit interprocess communication.

Constants and variables can be used as arguments to functions in APL
expressions.

FUNCTIONS.

Functions perform processing according to particular, defined rules.
Many primitive functions of general utility are built-in to APL.
Other functions can be created by the user to solve problems. These
are called defined functions. They are defined in terms of other
language constituents.

A function accepts arguments and generally returns a value, as a
result of following the processing rule for that function as applied
to its argument values.

A function is defined for a domain of values for each of its arguments
and produces a result in the allowable result range of values. For
example, the relational function "less than", as used in:

A "less than" B

has numeric domain for arguments A and B and the values true and false
as the range of values for the result.

In APL, "less than" is expressed by the character '<', and the values
true and false are expressed by the Boolean numeric values 1 and 0
respectively:

3<5 an entry (made following the 5 space indent prompt)
1 the result response (the relation is true)

1-5

Primitive Functions and Operators.

Complete families of primitive functions are provided for numeric type
data objects:

arithmetic functions
relational functions
logical functions
higher functions
random number functions

A group of operators exist which act upon primitive functions to
produce new functions which then apply to data.

Additional function families exist that apply to both numeric or
character data types:

structure building and changing functions
mixed type functions
set functions
selection functions
assignment functions
formatting functions
input output communicators

A file system provides convenient access to extensive data using a set
of file functions.

A set of system functions permits querying and altering the
environment within which APL is used. There also exists a similar set
of system commands that can he used only in execution mode.

Shared variable functions are provided for controlled interprocess
co~~unication between a user and one other process, either another
user or a shared variable utility.

Defined Functions.

A defined function performs more complex processing than can be done
by single primitive functions. It contains one or more lines. Each
line con\bines primitive functions, operators, constants, variables,
references to defined functions, labels, punctuation, and control
structures.

A defined function can have arguments. Arguments provide the values
to use during its execution.

A defined function may optionally return a result from execution. If
so, the defined function can be used to compose expressions in a
similar manner to how primitive functions are used.

1-6

CONTROL STRUCTURES.

The APL control structures determine the order of execution. A
primitive function generally applies "in parallel" to all elements of
the data objects that are its arguments. A function is elaborated
after its argument values are determined. Elaboration order is right
to left within an expression. Lines within user defined functions are
normally executed in sequence. Non-sequential execution may be
achieved by explicit transfer to a line number, which may be computed.

If a user-defined function is called within an expression, control is
passed to the called function. Subsequently, control is returned to
the calling expression after the point of call. A function may be
called recursively.

There are no formal conditional or iterative control structures for
user defined functions. When required, these control structures are
synthesized by explicit control transfers. The need for these may be
generally avoided by mutually exclusive processing logic on elements
of data structures.

EXPRESSIONS.

An expression is the syntactically correct composition of one or more
APL language constituents. The results of elaborating an expression
include change to the state of processing, or display to the user, or
both. The constituents of APL expressions may include:

data objects (constants or variables)
primitive functions and operators
calls on functions defined by the user
file functions
system functions
system variables
control structure delimiters

USER ACCOUNT.

Each user must be assigned a valid account by the installation. This
account collects usage information. The attributes of an account
include:

account name and optional user-supplied password
workspace quota
file number quota
file space quota
computer use quota
shared variable quota

1-7

WORKSPACES, LIBRARY AND FILES.

Each user account has an active workspace. The active workspace is
the fixed size area of storage in which a user conducts transactions.
At first sign-on, this workspace is unnamed and clear. At this time,
only the default values for system variables exist as previously
established for the account. After some transactions, the workspace
may contain some variables having values, some groups, some altered
values for system variables, and some defined functions having
continuing use.

A user can name the active workspace and save a copy of it in the
account library of inactive workspaces for subsequent reactivation.
The number of workspaces in the user library is limited to the quota
established by the installation for that account. All workspaces have
the same size, determined by the installation.

Within a workspace are all retained variables, defined functions, and
temporary storage required during processing. The conciseness of APL
defined functions permits a large processing capability within a
workspace.

Each account may also have a quota of files. Each file has a name and
a set of numbered components. Each component is either null (having
no content) or contains an APL data object. Data objects can readily
be exchanged with the active workspace. Defined functions can be
represented as data objects and stored in file components. They can
be accessed as needed and reconverted into function form. This
increases the amount of data that can be processed by functions in a
workspace.

SELF PROTECTION.

The active workspace contains current work. Whenever desired in
execution mode, a copy of that workspace can be saved in the library
for subsequent resumption with the processing state the same as at the
point of saving.

Changes to function definition or experimental computation can be
done, then either kept if good, or discarded by returning to the
formerly saved version of the workspace.

The active workspace is retained in the event of unexpected
disconnection caused by either the terminal, the communications link,
or the main system. Upon next sign-on for the account, recovery
occurs automatically to within the last entered transaction if in
entry phase, or to the last line processed if in processor phase.

The commands having irrecoverable effects tend to be separated and
protected against accidental misuse. For example, the user can ERASE
names of variables, functions or groups, but must DROP a workspace.

1-8

SECURITY AND SHARING tl

Protecting an account, its workspaces and files from other users is
important. Locks and passwords provide these capabilities. Selective
sharing of workspaces and files among accounts is often desirable. A
user can grant access privileges to those he wishes, and deny
privileges to all others.

A defined function can be locked so that it can only be opened for
examination in the ac:count and workspace in which it was locked.

A user account name is unique to the installation that assigns it. It
is not considered private, but only a means for identifying the
account when signed on the system, and for other users to reference
the inactive workspaces and files retained for it.

The account user can add a distinct password for the account, and to
any of its workspaces or files. Password use can provide a degree of
security, since the assigner of that password controls its
dissemination. A password can be entered or changed at any time
through the terminal. A blot can be requested to obscure by
overprinting the area in which password entry will appear. Of course,
no security is provided against someone tapping the communications
line connecting the terminal with the APL system, or against failure
to blot display of password.

A user cannot alter ,i workspace saved in another account library; only
a copy of it can bE~ obtained (assuming that the account owner has
divulged the account name and workspace name, and password if any).

A user can alter any file in the APL file system, given knowledge of
the o,~ing account/file name (and password if any). To control
accesses to shared files, the owner should provide a locked file
access function through which all accesses to the file are made. In
this function, the :Eile password can be secured from disclosure and
necessary access conditions can be checked. Thus, the file name and
password need never appear in visible form to the user.

When a file is shared among several users, each user can make
conflict-free component updates by requesting exclusive use during the
update operation.

If a user "forgets" a password, a request to the privileged terminal,
if convincing, can r~~sult in administrative granting of one action by
the user without the password. This action should replace the
forgotten password. The privileged user does not know either the
forgotten or new password. Administrative abuse of this privilege
will be detected by the user, as the next attempt to use an old
password will not wo:r:k.

1-9/1-10

SECTION 2

INTERACTING WITH APL!700

GENERAL.

The APL!700 system communicates with the user in an interactive
manner. The user can direct the system to execute, (or edit)
expressions or defined functions. The user, through the keyboard,
supplies data and instructions for processing that data. The order in
which the characters in an entry are typed is irrelevant; the final
image of that entry is used by the system. This property is called
visual fidelity.

Typing errors can be easily corrected at any time before the end of a
transaction entry. Further the most recent expression entry can be
retrieved for editing and reentry.

During expression or function execution, the user may halt processing
and examine and possibly modify the current execution state (all of
the variables and the environment). APL provides debugging tools to
allow the user to follow the execution process in as much detail as
desired.

The APL user environment consists of an available library of
workspaces and files, accounting infor~ation, and account parameters
(print line width, 'tab interval, print precision, and index origin).
The user can establish, query and alter this environment at any time.

Interaction with APL requires a terminal which should have the special
APL typeface and keyboard configuration. Such a terminal must have
provisions for communicating with the system Data Communications
Processor. The DCP can be programmed to communicate with any standard
printing and video APL-type terminals.

This section
transaction
assume the
section.

describes procedures for sign-on, sign-off, and
entry editing. The procedural instructions presented
particular terminal configuration described in this

Instructions for using an acoustically coupled telephone interface
with the Data Communication Processor are given; procedures for other
connection means are generally simpler.

2-1

APL TERMINAL KEYBOARD CONFIGURATIONS.

Figure 2-1 shows the configuration of the most commonly available APL
terminal keyboard. The terminal has 44 keys, each containing two
characters (shifted and unshifted), 10 special keys/bars, and an on­
off switch. Re{;ently produced APL terminals contain 47 character keys
as sho\m in figure 2-2.

APL CHARACTER SET.

The APL character set consists of the 26 uppercase letters, digits 0
through 9, standard punctuation and special APL characters. Some of
the conventional characters are not in normal typewriter keyboard
locations, but are more logically grouped. All keys contain unique
cllaracters. Since APL uses more characters than there are keys and
cases, some characters are formed by overstriking.

The APL character set used throughout this manual, is the one provided
for typical (standard) APL terminals. Character appearance for other
terminals varies somewhat in form. For example upright block letters
are used on some terminals.

Letters have uppercase, italic form:

ABC D E F G H I J K L M N 0 P Q R STU V W X Y Z

A full set of underscored letters may also be used; those letters are
formed with a non-underscored letter, a backspace, and an underscore
(shifted 'F').

t.Jurnerals have upright form:

0123456 7 8 9

Other characters are included that are generally upright:

< S = ~ > ~ V A - + f x

? w € P - t + 1 0 * + ~

0. r L V 6 0 , 0 ([)]

c ::> n U .1. T , , . \ /

OFF

J K

T I
N M

(LOCK Jf; S

SET (SHIFT) IT ;
(~-----------

Figure 2-1. APL Terminal, Typical SS-Character Keyboard

c)

(!J[]I; < S = ~ > ~ V 1\ - • $]1 BACK lB.-
3 4 5 6 7 8 9 0 +)(<> SPACE ATTN

8~
CLR II ' W E P 1; t tI 1 I g1; I .. ~ I ONTAB •

Q W E R Y I J ~ I~ I REru1.[)[~ r L V A • I 0 ()LOCK -
S D F G H J K L []

~::!- (S~IFT)
C ::> n u 1. T I : I · \ I OFF

· SHIFT
Z X C V B N M · /

'---

Figure 2-2. APL Terminal, Typical 94-Character Keyboard

2-3

Additional characters defined in APL are formed by overstriking:

The order in which characters are overstruck is not important.

Overstruck ($) is not necessary on those 47-key configurations having
the dollar ($) sign.

The essential special keys and the result of pressing them are:

Return or RETN

Shift or SHIFT

Space or SPACE

Backspace or BKSP

Attention or ATTN

Local/Communicate

2-4

The return key signals the system that a user
entry is complete and ready for processing. The
cursor returns to the left margin and the keyboard
is locked initiating the processor phase.

Any character key normally produces the lower
character for that key. While SHIFT is depressed,
the upper character for the key is produced. The
shift lock can be used to keep the shift key
depressed.

The space bar positions the cursor one space to
the right; holding the space bar on some terminals
causes repetitive spacing.

The backspace key positions the cursor one space
to the left. On some terminals repetitive
backspacing is accomplished by pressing and
holding backspace key.

The attention (interrupt or break on some
terminals) key provides for initiation of special
processing. Its uses include:

correction of transaction entry error
display and adjustment of the previous line
output termination
execution suspension

The terminal must be in the remote or communicate
position to use the APL system. Local may be used
for off-line typing, without disconnecting the APL
use. (Switching between local and communicate may
transmit a spurious character that can be
eliminated by BKSP, ATTN).

Other convenience keys available on some terminals include:

Linefeed or LF

Repeat or REPT

Tabs or TAB

Tab SET/CLR

Margin

TYPING CONVENTIONS.

~rhe linefeed (index on some terminals) key
provides line advance and in-line edit correction
similar to ATTN without the displayed caret.

The repeat key provides repeated, automatic typing
for any character.

The tab key positions the cursor rightward to the
next tab stop. To take advantage of the APL/700
tab conventions, the tabs should be set at
constant intervals (such as every five
characters).

~rhe appropriate end of this key sets/clears a tab
at the current cursor position. On some
terminals, tabs may be cleared by positioning the
cursor all the way to the right, holding the
(~lear, and pressing RETN.

~rhe margin key allows escape beyond mechanical
cursor limits for display.

Except for different character
rules, the APL keyboard can be
typewriter keyboard.

The following conventions apply:

key locations and
used in the same

certain special
way as any other

User Entry

Visual Fidelity

Entry Length

A user can type only when the keyboard is unlocked
(the APL system locks the keyboard, preventing
further entry when processing a user input or
displaying response). Display of user entry is
normally preceded by a prompt (5 character
indentation in execution mode). The prompt helps
to differentiate user entry from system responses
(which normally start at the left margin).

It is not necessary to type characters from left
to right; an entry is interpreted by the system
only after RETtl. Backspacing allows the typing
order to be arbitrary. That is, the time sequence
in which the various keys are typed doesn't
matter: the system interprets the entry as it
appears on the terminal.

Each user entry should fit on a single display
~line to preserve visual fidelity. Some terminals
with limited length buffers for character assembly
may lose excess characters.

2-5

CONNECTION WITH THE APL/700 SYSTEM.

The elementary steps to use APL include sign-on, a sequence of
transactions, and sign-off.

SIGN-Ot-J.

The following procedure assumes the use of an acoustic-coupler for the
telephone cOITlITlunications interface. r1inor variations to the procedure
may be required for other means of terminal connection.

1. Turn on tlle terminal and tIle acoustic coupler.

2. Lift the handset from the telephone cradle, dial a valid computer
telephone number, and listen for a high-pitched tone.

3. When high-pitched tone is heard from computer, place the handset
in the acoustic coupler so that the cord end of the handset is on
the end of the coupler marked CORD.

4. Wait for a connection response from the computer. A typical
response is:

ON-LINE TO APL/700, YOU ARE: 1234567 (LSN:6).

~Jhere : 1234567 and (LSN:6) are station name and logical
station number, respectively.

If necessary, press the ATTN key several times, a second or so
apart until a response is received.

5. Specify the APL Message Control System (",yeS) by entering:

\APL

The backs lash in the leftmost column signifies a message to the
rJ1CS \vllich 110sts APL.

6. t'lait for tIle APL system prompt (cursor indents five-spaces) then
enter the system command:

)on Acct [Password]

t"lhere:

Example:

Acct is user account identification.

The Password is an optional entry. It is required
for a previously locked account; omit the Password
and enclosing brackets if the account is unlocked.

) O/v TERRY[liAPPY]

2-6

7. Press RETN and wait for the system sign-on response, which has
the typical format:

FRIDAY 74/08/30 11.51 AM [V27000 W00120 TOO S006J

Where: V27000 is the version of APL/700 being used.

W00120 is the terminal width (maximum number of
character positions per line) assumed for the user
account before automatic display line folding
loccurs.

'TOO is the terminal tab interval assumed for the
account.

S006 is the number of the station to which the
terminal is connected (used for communication
purposes).

8. An optional news line may be displayed as determined
system management. A typical instance might be:

SYSTEJ-1 OPEl?ATION TODAY 8.00 AM TO 12.00 ',lIDNIGHT

by the APL

9. Observe the systero proropt (five-space indention) and keyboard
unlock indicating completion of connection and readiness for
transaction entry in execution mode. A light may exist that
gives visual indication of keyboard unlocked condition.

The entire sign-on sequence appears on the display as:

ON-LINE TO APL/700, YOU ARE: 1234567 (LSN:6).
\APL

)ON TlsRRY[IIAPPY]
FRIDAY 74/08/30 11.51 AM [V27000 W00120 TOO 8006]
SYSTEM OPERATION TODAY 8.00 AM TO 12.00 MIDNIGHT

2-7

TRANSACTION ENTRIE

When the system 5

consisting of user
~-on process is completed, transactions (cycles
~ntry and system response) may be initiated:

1. Make certail. that the APL system has initiated the transaction
cycle (by unlocking the keyboard).

2. Using the character keys, TAB, BKSP, and SPACE, type the desired
entry. For example, to set the active workspace identification
to CINDY, type:

)WSID CINDY

3. After the transaction is completely typed, press RETN to complete
the entry and initiate processing.

4. Wait for the system to provide any required display response.
Such a response will generally start at the left margin. The
response can be a transaction result, an error report, or a
special prompt.

After any displayed response, a prompt is given and the keyboard is
unlocked to complete the transaction and enable the next transaction
entry. Repeat steps 2 through 4 for each subsequent transaction.

If an error message is received, make the appropriate correction and
re-enter the transaction. (Refer to Section 9 for error-message
descriptions and to the paragraphs describing editing and recovery
procedures in this section.)

TRANSACTION EDITING.

There are a number of variations in performing transaction editing in
the APL/700 system. The procedures required for editing depend on the
mode of operation, on the state of the keyboard (locked or unlocked),
on whether an ATTN entry is initial or non-initial, and on the type of
editing required.

CORRECTING TYPING ERRORS WITHIN ENTRY.

A typing error may be corrected if it is noticed before the
transaction text entry is completed:

1. Using BKSP and SPACE, position the cursor at the left-most
character that is in error.

2. Press ATTN. The system will display the down caret (v) under the
character backspaced to in step 1 and then advance the display
one line. (This action eliminates from the entry the characters
above and to the right of the caret.) The INDEX key (if
available) can be used instead of ATTN, however, the line with
the down caret is not displayed.

2-8

3. When system response is completed, (keyboard unlocked), type the
remainder of the transaction entry.

Example:

)ON MYACCT rKEYLOADJ
y

CKJ

backspace under A, ATTN
correction mark
entry correction, then RETN

The corrected entry)ON MYACCT [KEYLOCKJ is now entered by the
RETN.

EDITING PRIOR TRANSA(~TIO~l.

APL!700 has provisions for retrieving the most recently entered
transaction and modifying it. This may be userl to develop a
computational expression, or in response to an error message or wrong
result. The procedure for applying transaction editin9 is:

1. Without entering anything else, and with the cursor at the prompt
position, press ATTN.

2. The previously entered transaction entry is displayed and the
cursor returns to left margin.

3. Type edit characters below the displayed characters (spacing the
cursor accordingly):

"/"
If ...

Each slash causes deletion of character above it.

Each period segments display into another phrase,
starting with the character above the period. (The
first phrase starts at the left of the line, the last
terminates at the end of the line.)

4. Terminate edit line by pressing RETN.

5. A phrase will be displayed with slashed characters deleted (up to
the next period of the edit line, or the entire remaining phrase
if no period is used).

6. Alter or augment the displayed phrase.

7. Enter another]\TTN at the right-most position of the (possibly
altered) phrase to display the next phrase (an ATTN not at the
right-most position is used for intra-phrase error correction).

8. Repeat steps 6 to 7 until the entry is complete. A transaction
entry is completed by entering RETN.

2-9

Any character entered but not recognized by APL/700 results in a
"CHARACTER ERROR" report. An example of this and subsequent editing
that also includes revision is:

'THIS IS A BXD LINE.'
*** CHARACTER ERROR ***

'THIS DD A BCD LINE. t

II. IIII
'THIS IS NOW A LINE.'

v
FIXED LINE.'

THIS IS NOW A FIXED LINE.

invalid characters
error message
display with invalids marked
ATTN, enter edit characters
ATTN after typing "NOW"
backspace to "L", ATTN
completed entry - RETN
display of entry

All invalid characters are replaced by the "squish-quad" 0 display
character. Entry of ATTN exdents to the left margin. Editing can now
be started at step 3 of the transaction editing procedure.

If RETN is pressed during the above sequence while one or more of the
phrase delimited by the I.' in the immediate edit line have not been
displayed, those phrases are lost. RETN completes th~ entry.

Entering any character other than a slash or period below the
characters of a line re-displayed for editing results in the following
error message:

*** EDIT ERROR ***

Pressing ATTN reinitiates the transaction editing sequence.

The use of ATTN for in-process typing corrections does not conflict
with the applications described above. That is, for within-entry
typing, the cursor is not at the right-most entry position when ATTN
is pressed.

An ATTN can be used to interrupt the display of a line for immediate
edit (step 2). This display is frequently already present, so an ATTN
can save time. The result is a cursor return to the left margin,
ready for step 3.

If a character error occurred as part of an entry given in response to
prompted character input, the system will first display the error
message, then the erroneous line, and exdent to the left margin ready
for step 2. Entry of ATTN there causes a "twitch" prompt (3 spaces
and 3 backspaces) to be returned, again ready for step 2. Another
ATTN moves the cursor to the right end of the erroneous line.

2-10

SIGN-OFF.

When all user transactions are completed, or when it is necessary to
temporarily interrupt operations at the terminal, sign-off from the
system:

1. Hake certain that an execute mode (5 blanks) prompt has been
displayed and that the keyboard is unlocked.

2. Type one of the following sign-off system command entries,
followed by RETN to terminate the work session:

)OFF

)COFF

discards the active workspace

preserves the active workspace
to continue later

3. The usage record for the account will then be displayed:

)OFF
THURSDAY 74/02/01 12.47 PM
CONNECTED 00.55.48 TO DATE 02.06.20
CPU TIME 00.00.22 TO DATE 00.01.09
IN APL-MCS

This response indicates the type, time and date of sign-off; the
four other numeric responses indicate time (hours, minutes, and
seconds) spent on the current session, plus the total time to
date for connection and CPU usage.

4. Another account can be signed on at this point. Start with step
5 of the sign-on actions.

Otherwise, remove the telephone handset from the acoustic coupler
and return to the telephone cradle.

s. Turn off terminal and coupler power as required.

2-11

RECOVERY OPERATIONS.

The APL/700 system provides automatic recovery from temporary work
session interruptions, accidental disconnections, or system
malfunctions. For any of these, or when a user signs-off from the
system for a temporary work session interruption by using)COFF, the
active ~~orkspace is retained for use when the next session is
initiated on that account.

vlhen the active workspace is preserved from a session and the account
is signed-on, the system responds with the normal sign-on display. An
additional statement may include the name of a preserved workspace
WS Ha~e and the time and date from which it was continued.

)ON TERRY [HAPPY]
WEDNESDAY 74/01/30 11.18 AM [V2700 W00130 TOS S018]
WS CINDY CONTINUED FROM 74/02/30 11.02.33

It is possible that an accidental disconnection or system malfunction
will occur during a work session. In either case, the system will
automatically preserve the active workspace and provide a CONTINUED
message when the account is again signed-on.

If execution was interrupted, then the word EXECUTION will appear
between the active workspace name and CONTINUED The execution will
continue until the line being executed is completed; then if in a
defined function the function name and line number are printed,
followed by an asterisk 1*' to indicate that the function is
suspended. The system then types an input prompt and waits for a
transaction entry.

If a function was being defined when a work session was interrupted,
the word DEFINITION appears between the workspace name and the
word CONTINUED in the message. A function definition prompt is then
returned to enable continuation of the function definition. An
accidental interruption that occurs while an entry is being composed
results in the loss of that entry.

If the continued active workspace had not been named, the WS Name is
omitted.

2-12

SECTION 3

SYSTEM COMMANDS

GENERAL.

APL/700 has a set of special instructions called system commands.
These commands deal with such practical matters as signing onto and
off of the system, saving workspaces, setting default control values,
copying workspaces, functions, or variables, and controlling terminal
functions. These operations are only initiated in execution mode;
they can not appear as part of a user defined function. A system
command is executed immediately after being entered (if possible).

SYSTE~-1 COr.~1AND FORMAT.

The conventions used to describe the system commands are chosen to
allow ready recognition of the fixed and variable; required and
optional parts.

Convention

)
[] () /

COr-1MAND
~1ame

Optional
n

Meaning

system command prefix
separators -- matching pairs for [] and ()
upper-case is required literal word
initial capitals is technical term
underscore is optional part
number

Optional parts (names, numbers, separators) change the meaning of the
basic command. A command without an optional part is often an
inquiry. The optional part provides a value or a name for more
detailed specification.

SYSTEM COf\'U.1A1~D CATEGORIES.

The system commands are grouped according to categories:

session controls
terminal controls
clear workspace controls
library controls
name displays
erase names
group commands
run state

3-1

)ON
)COFF
)OFF

SESSION CONTROLS.

Session controls are used to initiate and terminate a work session.

)ON AccQuntname [Password]

)COFF [Oldpassword/Newpassword]

)OFF [Oldpassword/Newpassword]

signs on account

signs off to continue

signs off

)ON loqs the account on the APL/700 system and initiates work. If any
continuation workspace exists, it is reactivated at the point at which
it was interrupted.

)COFF loqs the account off, retaining the active workspace for
reactivation at next)ON for that account.

)OFF logs the account off and discards the active workspace, so at
next)ON for that account, the user will have a clear workspace.

Both)OFF and)COFF return date and time, then the amount of CPU
(processor) time and elapsed time used. These amounts are given both
for the session and cumulative for the installation accounting period.
Units are hours, minutes, and seconds.

The AccQuntnarne is assiqned by the installation. It is considered to
be public knowledge.

The optional Password allows protection of a user's own account from
unauthorized use. The Password can be initially set by the
installation, or by the user at any sign-off. Once set and until
removed, the proper Password must be used for any successful sign-on.
Either Oldpassword or Newpassword may be empty. The forms for
aajustin~ the password at si~n-off are:

[/Newpassword]

[Oldpassword/Newpassword]

[Oldpassword/]

establishes password

changes password

removes password

An AccQuntname may have 1 to 6 characters; a Password 1 to 12. These
characters are alphanumeric (excludinq the APL underscore alphabet).
A Password must begin with a letter.

)ON DOREEN
)COFFf/SESAME]
)ON DOREENrSESAME]
)OFF [SESAME/NEWKEY3]

3-2

)BLOT obscure an area

)BLOT
)WIDTII
)TABS

)BLOT provides multiple overprinting of a 17 character area, then
backspaces to the prompt position to obscure subsequent display of a
sensitive entry such as the Password on the account. It can be used
hefore) orJ or clurinq a nor~al use sess ion.

)BLOT
BHBBHBBBBBBHHHHBB

TERr-~It~AI.J cor.JTROLS.

An account can be used from any terninal. The line width and tab
settin~ are ~iven default values. The suggested cefaults are
indicated in the initial NAS n display response in the examples. If
these are unsatisfactory, alternatives may be specified and retainec
with the account (~hich is assumed to be normally used fro~ the same
terf"linal) •

) l-JIDTII n maxi~uw characters in display line

The numher of characters n is in the inclusive range 30 to 32767. If
n is not specified, the result is the current width. The width
settin~ affects the maximum characters that can be disrlayed on one
line. Data objects requiring more characters are auto~atically folded
onto several output lines.

) ftlIDTII 65
vlAS 120

)viID 'jnlI
IS 65

) TI\DS n physical tab interval

The inteqer n is the nu~ber of characters between the physical tab
settings. ~his single interval should match the tabs as actually set
on the terMinal. If n is not 0, then output with "white space" will
CllltoMaticallj' use ta'hs to rrinirnizc the time to reach a position on the
display. Thus the tabs should be used if available on the terminal.
~he tRh yey can also be usee for entry if tabs are set. The ~aximum

value for n is 30.

)TABS 5
,.IAS' 0

)TABS
IS 5

3-3

)CLEAR
) SYI~IS
)ORIGIlv

CLEAR WORKSPACE CONTROLS.

Workspace controls provide the default SYMS, ORIGIN, DIGITS, SEED, and
FUZ~ for a clear workspace that is suited to the normal desires of the
account user.

) CLEAR n clears the workspace

The clear cowroand without n destroys the prior active workspace and
replaces it with a clear workspace having no names in it and the
default attributes hereafter described. If n is specified, it refers
to the number of symbols reserved for the symbol table. This number
must be in the domain 16 through 1024.

)CLEAR
CLEAR WS

)CLEAR 300
TvAS 256

TIle response inclicates the number of symbols in the prior active
\"orl~space. It does not change the default number, which is controlled
by) SYIJIS.

The following commands return current values or specify new default
values for controls applicable onlv to an initially clear workspace.
The examples illustrate typical in;tallation-provided default values
and samples of changes to them.

) SYr1S ~ default symbol table size

~r11e default symbol table size for a clear tV'orJe:space is set to n, in
the domain 16 through 1024.

)SYMS
IS 256

)SYl1S 400
fvAS 256

) ORIGI~J n default ordinal index origin

Origin affects
default index
variable OIO.

primitive functions that
origin can be overridden

use ordinal numbering. The
by the index origin system

)ORIGIIJ
IS 1

)ORIGIfl 0
r~l AS 1

3-4

)DIGITS ~ default print precision

)DIGITS
)SEED
)FUZZ

The default maximum number of significant digits displayed in either
fractional or exponential form is established in a clear workspace by
the value of n. This must be an integer from 1 through 12 inclusive.
This number has no effect on the internal precision of representation.
The default digits can be overridden by the system variable OPF, print
precision.

)DIGITS
IS 10

)DIGITS 4
WAS 10

) SEED ~ default random number seed

The pseudo-random number generator used in the roll and deal primitive
functions is pre-set to the default value of Seed. This permits
repeated execution of an algorithm to receive the same supplied random
values if desired. The value of n is a non-negative integer: 0
through 549755813887 (the largest integer). The seed is the starting
value for the random link. The random link changes with each use of
roll or deal and can be changed by the system variable DRL, random
link.

)SEED
IS 0

)SEED 37752963
WAS 0

)FUZZ ~ default comparison tolerance

The comparison tolerance by which two approximate representations of a
number are considered equal is established in a clear workspace by
)FUZZ n. The allowable range for n is 0 $ n < 1. The default fuzz
may be overridden by the system variable OCT, comparison tolerance.
See that description for details.

)FUZZ
IS iE-10

)FUZZ 0.1
WAS 1E-l0

3-5

) FILES
)LIB

LIBRARY CONTROLS.

The library of an account includes named files and workspaces.
Commands to interrogate the names and to totally or selectively access
workspaces are provided. File access is done through primitive file
system functions.

)FILES display file names of account

The names of files owned
public part of the name
omitted.

)FILES
DATA FILE
DOCUMENT

by the account are displayed.
is nisplayed; any password on

Only
a file

the
is

)LIB display library names of account

The identifiers of workspaces in the account library (but not their
passwords) are displayed.

)LIB
llEW
TEXTEDIT

The form for referencing workspaces in the following) LOAD,)eOpy, and
)PCOpy commanns is:

Workspacename is (Account) Wsid [Password]

The Wsid is the identifier by which the workspace is known. It must
start with a letter followed by 0 to '1 letters or digits.

~he Account portion is the owning account name of the library in which
the workspace resirle~. It may be elided if it is in the user's own
account.

The Password is used only if the workspace is locked. The password is
also a name starting with a letter and followed by 0 to 11 letters or
digits.

3-6

) LOAD Workspacename

)LOAD
)eopy
)PCOpy
)SAVE

load copy of workspace

The prior active workspace is eliminated. A copy of the specified
workspace becomes the active workspace. The Wsid of the loaded
workspace (not the Account or Password) becomes the name of the active
workspace.

)LOAD TEXTEDIT
)LOAD JOANNE[KOLOHE]
) LOAD (LIB) NEWS

) COpy Workspacenarne Namelist replace copy

Copy into the present active workspace from the library workspace
identified by Workspacename. If Namelist is present, copy only the
items attached to names in it that are present in that workspace. If
Namelist is absent, copy all functions, variables and groups in the
workspace. A copied item will replace a prior item of the same name
in the active workspace.

) COpy TEXTEDIT
) COpy JOANNE[KOLOHEJ FORECAST SCHEDULE

)PCOpy workspacename Namelist protect copy

Same as)COPY except that any name in Namelist already existing in the
active workspace will not he copied.

)PCOpy (LLg)NEWS SCHEDULE INDEX
flOT SCIIEDULE

)COPY and)PCOPY are more complex commands using more resources than
)LOAD, so should only be used when)LOAD is inadequate.

)SA~m Wsid [Oldpassword/Newpassword] save workspace

A copy of the active workspace can be saved in the account library of
the user. If Wsid is present, that name is the one used for
subsequent library reference; if absent, the prior active workspace
identifier is used. This will replace a former like-named workspace.
The forms for establishing, changing or removing the workspace
password are the same as for the account. See)OFF and)COFF for
details. If the Newpassword is present, subsequent)LOAD or)COPY of
that library workspace must supply the password.

)SA VE 010RK
)SAVE NEW [/VERSIONJ

3-7

) DI?OP
) TvSI D

)DROP Wsid [Password] drop account library workspace

A workspace in the account library can be destroyed by using)DROP.
The passvlord is required if the workspace is locked. A workspace in
one account library cannot be dropped from any other account.) DROP
does not destroy the active workspace, even if it has the same name as
tlle command) ~'JS ID returns.

)DROP NEWrVERSIONJ

The normal response from the)LOAD,)COPY,)peOPY,)SAVE and)DROP
commands is typically:

SAVED 74/10/01 8.00.01

A suffix identifying the account and workspace name is appended for
) £A\TE.

) v}SID t'-Jame workspace name

~he workspace name provides a reference for the workspace when saved
in the account library. The clear workspace is unnaMed.

) fltJI D
IS UlINAl-fED WS

) TlJ-CJID NEff
rvAS U171lfA '~1ED vl/;

) Tl"C) I D
IS lJEfv

3-8

)F~lS

)VARS
)GRPS
)ERASE

NAME DISPLAYS.

The following system commands display classes of primary names
currently in the symbol table:

)FNS Name

)VARS Name

)GRPS Name

display primary function names

display primary variable names

display group names

The primary names are those existing in a workspace when the state
indicator is empty. Thus no local names are displayed for these
commands. If Name is absent, the entire class is displayed in
alphabetical order. If Name is present, only the members of the class
starting with (or after) Name are displayed. The display result can
not be used as an APL data object. The system function DNL, name
list, should be used for that purpose.

)FJllS
FINDER FORMAT

)VARS
fl Z COllVERT

)GRPS
DISPLAY

ERASE NAMES.

)ERASE Nameset erase set of names

Names of functions, variables and primary names of groups named in
Nameset are erased from the workspace. The names in Nameset are
entered, separated by spaces. Function names can not be erased while
in the state indicator. Notice is given for non-existent or non­
erasable members of its nameset. See discussion in Group commands
following:

)ERASE W X Y Z FINDER
flOT X
NOT Y

)ATTACH
)DETACH

GROUP COl~4ANDS.

A group of names can be formed and named for collective reference
including)ERASE or)COPY.

) ATTACII Groupname ~~ameset group association

The Groupname is the identifier for the group. The Nameset provides
the names that are associated with the group, and thereby, with each
other. Normally, names in a Narneset match names of variables,
functions or other groups. Names in the Nameset need not have any
current meaning.

If Nameset is not present, the effect is to reserve Groupname, as a
group, for subsequent attachment of a nameset. If the group Groupname
already exists, the effect is to unite Nameset with the nameset
already associated with Groupname (no name will be duplicated).

A group name included in Nameset causes the elements of that group's
narneset to be implicitly included in the group.

If the Groupname is included in its own Narneset, then actions on the
group apply also to the Groupname.

)ATTACB GROUPl FNAME VNAME GROUP1
)ATTACH GROUP2 GROUPl GROUP2 HOW

) DETACII Groupname t~ameset group disassociation

The names in Uameset are detached from the group Groupname. If
Uameset is absent, then the group Groupname ceases to exist.

Detach doesn't affect the existence of the names (other than
Groupname). This is contrasted with)ERASE which eliminates the named
objects.

)DETACH GROUP2

3-10

)GRP Groupname

)GRP

display group association

The names directly attached to Groupname are displayed in the order
they were attached.

A group can contain in its Nameset its own name. If so, an action on
the group nameset affects the group as well. A group (say G) can
contain names of other groups. If so, an action on group G will
replace each named group in its Nameset by that group's nameset. Any
one group will only be replaced once. A second occurrence of a group
name signifies the name itself rather than a replacement. Thus the
primary definitions of names in a Nameset are the unique names
remaining after applying the following for each name:

substituting for first occurrence of any Groupnarne its Nameset

retaining the Groupname on its second occurrence

ignoring any additional occurrences, giving warning: NOT Name

An example of this process illustrates these steps:

) CLEAR
CLEAR WS

)ATTACH A B
)ATTACH B C B
)ATTACH C D A A

NOT A
A THIS WAS FOR THE SECOND OCCURRENCE
)GRPS

ABC
)ERASE A

NOT D
R D HAD NEVER BEEN GIVEN MEANING
)GRPS

c
)GRP C

D A

The illustrations at the right show
the nameset tree for group A after
substitution of group namesets; and
the resulting primary definitions.
Note that the primary definition
includes groups A and B (but not C)
and undefined name D. This was
done while the 3 groups existed.

A
I

B
1\
C B
1\
D A

!~ameset

Tree

A
/1\

DAB

Primary
Definitions

3-11

)SI
)RESET

RUN STATE.

The run state is the record of user defined functions in process,
suspended, or pending completion of other called functions.

lSI state indicator query

The result is the stack indicating the run state of suspended and
pending functions. The first line (if non-empty), is the most
recently suspended function. Below are pendant functions (awaiting
completion of functions above) and earlier suspended function.

Each line gives function name, bracketed
execution is pendant or suspended, and an
functions only.

)SI
RUY[l]*
MAIN[S]
RUN[4]*

line number
asterisk for

at which
suspended

A function can appear more than once in the state indicator. In line
5, NAIN called RUN. r~IN is pending completion of RUN. More than one
suspended function can appear. A function can reappear (independent
restarts, or recursive calls are permitted).

Usually the state indicator should be emptied of unnecessary entries,
as space is consumed and global names may be shielded by local names.
The state indicator may also include suspensions with evaluate
functions or evaluated input requests are incompleted. In each such
case, the appropriate symbol ~ or 0 appears prior to the function line
causing suspension.

The suspended function at the top of the state indicator may be
restarted by entering ~N where N is a line number. The suspended
function and any pending on it may be aborted by entering~. Response
is a line showing the next suspended function if any.

~

RUN[4]*
)SI

RUN[4]*

) RESET state indicator reset

The entire run state can be cleared using)RESET. The resulting state
indicator is reset:

)RESET
)SI

3-12

SECTION 4

THE APL/700 LANGUAGE

GE~~ERAL.

The APL/700 language contains many powerful primitive functions that
apply to data objects.

A data object may be:

an element of either character or numeric type,
an array structure formed of these elements,
named, forming a variable by assignment, not declaration.

Each primitive function:

is represented by a single character,
applies to one or two arguments that are data objects,
returns a data object result.

An APL expression is the syntactically correct composition of one or
more APL language constituents.

data objects
primitive functions and operators
calls on defined functions
file functions
system variables
shared variables
system functions
input-output cOMmunicators
control structures

The results of executing an expression include change to the state of
processing, or display to the user, or both.

This section describes data objects, names, expression composition and
order of elaboration, input-output communicators, and the convention
for comments. The other constituents are subsequently described.

11_1

•

DATA OBJECTS.

A data object is defined in terms of its type, rank, shape, and value.

The~ is either numeric or character (any of the APL characters
literally representing themselves).

The rank is the number of dimensions. Allowable ranks are 0 through
16. ~array is a data object with positive rank. Rank can be viewed
in geometric terms: a scalar (rank 0) as a point, a vector (rank 1)
as a line segment, a matrix (rank 2) as a rectangle, a rank 3 object
as a rectangular solid, etc.

The shape is the vector of dimension lengths, from first to last.

The value of each element of a data structure must be within the
allowable domain for that type.

In general, an array is characterized as follows:

homogeneous (single type for all elements)

N-dimensional Cartesian (rank N, independent dimensions)

rectangular (all planes across a dimension have the same shape)

dense (all elements have values, as contrasted with sparse in
which some means is provided to indicate the locations of
elements having significant values)

A plane is a slice of an array that is orthogonal (at "right angles")
to a given dimension of that object. A plane across the K-th
dimension of an N dimensional object has N-1 dimensions. It retains
all but the K-th dimension. Thus, a plane across a vector is a
scalar. A plane across a matrix is a vector (either from a row or a
column, depending on K).

A vector along dimension K is parallel to the axis for dimension K.
The axis for dimension K is the vector along K formed by holding all
the other dimensions at their first (origin) values.

A corner element of an array has for each dimension either the origin
or anti-origin (or last value for that dimension) as index value. An
N-dimensional array thus has 2*N corner elements.

A corner of an array is another array of the same rank containing at
least one corner element that is also a corner element of the original
array.

The size of a data object is the number of elements it contains,
independent of shape.

4-2

T;'\ble 4-1

Examples of Data Object Forms

Numeric Type Data Character Type
Structure

Value Rank Shape Value Rank Shape

100.341 0 (empty) SCALAR A a (empty)

2. 5 0 3 1 3 VECTOR ABCDEF 1 6

11 12 13 2 2 3 MATRIX ABeD 2 2 4
21 22 23 EFGH

111 112 3 3 3 2 ARRAY ABeD 4 2 3 1 4

121 122
131 132 EFGH

211 212 IJKL
221 222
231 232

/~NOP

311 312
321 322 QRST
331 332

UVWX

Table 4-1 shows examples of data objects. For both numeric and
character type, various values are shown as if displayed, and their
rank and shape are indicated. The default display of numeric vectors
has 2 spaces between successive elements in a row. The column spacing
for numeric objects with rank 2 or more is uniform based on the
largest space required between elements in a row. The display of rank
3 arrays has one blank line separating planes across the first
di~ension; display of rank 4 arrays has two blank lines separating (3
dimensional) planes across the first dimension, etc.

Character data can include any of the 256 allowable APL characters of
the atomic vector as literal elements. Only displayable and
designated special characters (see Section 6) should be entered or
used for output to the display. Entry of a character string is
enclosed in quotes. An embedded quote pair is entered if the quote
literal is required. Thus, entry of 'DON'tT' results in the data
object DON'T.

The display of negative numeric data uses the "-II character (read as
negative) to the upper left of the number. This character is distinct
from the subtract character "_" (read as minus or negate) in primitive
functions. For example:

23 negative 17-5 minus

1l-3

Fixed point number entry for decimal fractions need not be preceded by
0; display (or constant representation in a defined function) does
have the leading O•

• 3125 .2
0.3125 -0.2

If fixed point representation is excessively long, or if numbers have
very large or small magnitude, an exponential or "scientific"
representation is provided. Default output in this representation
takes the form of a signed number with magnitudes between one and ten
times a power of 10. Fractional parts are only displayed if
necessary. Input using this notation can be any real integer or fixed
point number with an exponent.

387E3
12E-4
200

equivalent
-387000
0.0012
2.0E2

canonic form
-3.87ES

1.2E-3
2E2

The domains for numeric type data elements are:

Sub type

Boolean
Integer magnitude
Real magnitude

(normalized)

Domain

o AND 1
o THRU 549755813887 +~ 1+8*13
o AND 8.75811540203E-47 +~ 8*-51

THRU 4.31359146674E68 +~(-1+8*13)x8*63

Integers are the subset of reals having 0 exponent. (Almost 12 digits
are available for precision for either).

Booleans are a subset of integers (and reals).

Some data objects have special properties that are not always evident
from their display.

A scalar is a data object with one element but having empty shape
(rank 0).

A shaped data object is one with positive rank.

A single (element data object) of any rank has size one and is
displayed on a single line. Any dimension must have a length of 1.

An empty data object has no elements. It does have type, resulting
from the way it was generated. Its rank must be greater than 0 as the
length of at least one dimension must be zero.

A string is a character type data object that is either a scalar or a
vector. If the content appears as a valid numeric value, there may be
no distinction in the display.

4-4

Table 4-2

Tests for Properties of Data Objects

Property

Scalar
Vector
Matrix
Shaped object
Single
Empty
Numeric type
Character type
String
Integer
Boolean

Holds if result is true (1)

O=ppD
1=ppD
2=ppD
O<ppD
l=x/pD
O=x/pD
O=O\OpD
, '=O\OpD
(' '=O\OpD)A2>ppD
«-1+2*39)A.~I,D)A(,D)A.=r.V
o l:>D

Table 4-2 provides tests for these properties of a data object (D) in
terms of primitive functions that will subsequently be defined.

Data objects
elaboration.

are used in expressions and are the results
A data object may receive its value by several means:

of

inclusion as a constant in an expression

entry in response to an input prompt

direct result of function elaboration

reference to a variable name

reference to a file component

default (for initial values of system variables)

acceptance of a variable shared with another process

A constant is either a number (or vector of numbers) or a literal (a
quoted string) entered as part of an expression. The linear entry
mode restricts constants to rank 0 or 1.

A data Object that is a direct result of function elaboration and that
is only used as an argument to another function (other than
replacement) disappears after that second function has been
elaborated.

4-5

NAMES.

Names are used as identifiers of items that may change during the life
of the workspace or account.

A name begins with a letter, underscored letter, A or A. The rest
(if any) of the name consists of additional characters chosen from
these characters, the digits and the underscore.

Most names may be of any practical length: 1 to 69 characters. Names
of restricted length are used as identifiers of workspaces (12
characters), files (12 characters), accounts (6 characters), or
passwords (12 characters). As well, these restricted names may
include only letters and digits (an account name may begin with a
digit as well). Names are used in the following ways.

variables: A name can be associated with a data object through
assignment. Thereafter, until some other meaning is given to that
name, it is called a variable. Subsequent references to that name
yield that data object until some other assignment of that same name,
or the name becomes undefined (see user-defined functions, ERASE
system command or EXPUNGE system function). There is no need to
explicitly declare a name or its type or shape as these attributes are
part of the data object being assigned.

User defined functions: A function name provides a reference to the
processing algorithm thereby described.

Labels: Local to the user defined function in which it appears, a
label is a named constant having value the number of the line on which
it occurs.

File names: Each file created or referenced by a user is identified
by its account name (if owned by another account), its file name, and
its password (if locked).

Shared variable names: Variables shared with some other process have
external names or surrogates known to both processes.

GrouE names: For purposes of copying and erasing, a group of names
may e named. One of the group members may be the group name itself.
A group member may be a function name, variable name, shared variable
name, or group name. A group may also serve as documentation.

Workspace names: A workspace may be named and saved. Thereafter it
can be loaded or copied by name, or names within it may be copied.

Account names: Each user account has a name supplied by the system
and used for sign-on and accounting purposes.

Passwords: Each user account, workspace name
appended a password established by the user
access.

4-6

or file name
and used to

may have
control

EXPRESSIONS, LISTS AND ORDER OF EXECUTION.

An expression is formed from APL language constituents. Proper
formation of an expression requires understanding of the order of
elaboration of its constituents. Elaboration is the process of
determining the value of an expression. Three general rules apply:

A function is elaborated only when the values of its arguments
(the quantities it requires for its elaboration) are known.

The order of elaborating functions in an expression is from right
to left.

Parentheses are used in the conventional mathematical way to
alter the order of execution.

Thus, a monadic function is elaborated when the value of its (right)
argument is determined. A dyadic function is elaborated when both of
its arguments (left and right) are determined. An argument can itself
be an expression. A niladic function is elaborated when its result is
required in the expression in which it is the rightmost constituent.

The order of argument elaboration for a dyadic function is undefined,
and is generally unimportant (both arguments could be elaborated in
parallel if independent). The order is usually right-to-!eft. An
exception to this is where the right argument is a variable name. If
elaboration of the left argument changes the meaning of that right
argument name, the right argument is changed to conform.

EXPRESSION FORMATS.

In the following samples of expression formats, "V" represents a data
object value being used as an argument, "rn" represents a monadic
value-returning function, and "d" represents a dyadic value-returning
function. Each elaboration of a function replaces the function and
its argument(s) with a value. Each elaboration of an expression
within parentheses replaces it with a value. Note that there is no
ambiguity in determining whether a function is monadic or dyadic; a
function is dyadic if it has an argument to its left; otherwise, it is
monadic.

V d V d V
V d(V d V)

2 1

V d m V
V d(rn V)

2 1

(V d V)d V
1 2

m(rn(V d V)d In V)d V d m V
8 6 4 5 3 7 2 1

expression
equivalent expression
order of elaboration

expression
equivalent expression
order of elaboration

expression
order of elaboration

expression
order of elaboration

4-7

within parentheses.
defined functions,

expression containing

It is not necessary to enclose right arguments
Redundant parentheses will be ignored. In
redundant parentheses are eliminated once the
them has been elaborated.

The following examples include both the entered expression (shown
indented) and the result of its elaboration (on the next line). This
is the typical appearance of the examples entered and displayed on a
terminal. The equivalent columns could also have been entered (they
would actually also be indented for entry, no indenting for result
display).

Expression Equivalent

3XS+2 3 x (5+2)
21 21

1-2-3 1-(2-3)
2 2

(1-2)-3 1-3
4 4

SX-2 5 X (-2)
10 10

EXPRESSION LISTS.

Equivalent

21

2

10

A list is either an expression, or has components separated by
delimiters. A delimiter is either a semicolon, or one of matching
parentheses or brackets. Each component is either an expression or
null (two adjacent delimiters). Components are elaborated right-to­
left. The value of a component that is only a variable name will be
affected by any change in its meaning from subsequent component
elaboration in the list. If the list is used for display purpose, the
display order is left to right after all the components have been
elaborated. No type requirements exist between successive components.

BRACKETS.

m Vi V d Vi m Vi V
6 5 432 1

expression list
order of elaboration

Bracketing is used to bound an expression list used for subarray
selection from an array, or for qualification to identify the
dimension about which a function is to be applied. A bracketed
expression or expression list is elaborated before the related
expression that is its left argument. Matching brackets are treated
as a single function.

4-8

v [m Vi m V
4 3 2 1

V d [m V]V
321

d V
5

index expression list
order of elaboration

dimension selector
order of elaboration

EXPRESSION ENTRY.

Expression constituents are entered in free form: the o~der of
character entry is immaterial. The visual fidelity as displayed (and
as in-line corrected) is what is accepted as the entry.

One blank must appear as a separator between two names or numbers.
Extra blanks are ignored. The only context in which an exact number
of blanks is preserved as significant is in character strings or
comments. Extra matching pairs of parentheses in an entered
expression may help to clarify it and do no harm. In defined function
representations once elaborated, both extraneous parentheses and
blanks are removed from subsequent display of the defined function.

The last entered expression is available for further editing. This is
normally the last expression elaborated in execution mode. This can
be used for ~rogreSSiVe expression development. Entering a correct
system cornman or entering function definition and editing mode has no
effect on the last entered expression (unless an immediate edit is
done to replace it by a line of a function as described in Section 8).
It is also possible to capture the last entered expression in a
function by editing it to include opening of the function and
specifying the line in which the expression is to be placed.

D+X+3 4 5
345

+/X
12

+/x.
(+/X)fpX

4
VA VE XV
(+/X)+pX

'7AVE[l] (+/X)+pXV
AVE 1 2 3

2
AVE 1 2 3

display after assignment to X

sum over X

ATTN redisplays
edit mark
add' (', ATTN for +/X, then rest

create defined function header, close
ATTN recovers last entered expression
edit mark
reopen function for insert in line 1
execute AVE with new argument

ATTN recovers
RETN cancels

The entry of an expression must be syntactically valid in its
composition, or an appropriate error message is given. This is true
in either execution mode or function definition and editing mode. An
errored entry is available for recall using ATTN. It can be then
repaired by editing. See Section 9 for error reports.

A syntactically correct expression may still contain errors sensed
during elaboration, such as an undefined, improperly shaped or typed
variable. Again after the error message, the errored entry is
available for correction.

It is permissible to use as part of an expression up to five
characters typed in the indent space of the execution mode prompt.

4-9

COMMENT
A

Forms:

A C

E A C

Where:

Results:

Conditions:

Examples:

12

4-10

conunent text C

comment text C after expression E

C is any string of valid APL characters.
E is any APL expression, label or branch

A comment is uninterpreted text. It has no effect on
execution of E to its left.

In a defined function each comment does take space for
storage.

Locating a comment in a defined function on an
unexecuted line is slightly advantageous (if no extra
control transfer must be introduced to achieve this).

3x6-2 A RIGHT TO LEFT FUNCTION EXECUTION

A A COMMENT BY ITSELF

prompt is
A character
accepted as

Forms:

o
0+ E
~

~+ E
E

E1;E2 ••• ;En

Where:

Results:

INPUT/OUTPUT
COMMUNICATORS (1)

o ~

Evaluated input
Explicit output
Character input
Set character input prompt
Implicit output
Mixed type output

E, E1, E2, En are APL expressions

The terminal keyboard is the input source; the display
is the output destination.

Evaluated Input: The prompt 0: is displayed, followed
by an indent on the next line and keyboard unlock.
Input from the user of any value-producing expression
is then accepted for evaluation as if in execution
mode. Evaluated input occurs when 0 appears in an
expression where a value is required. The resulting
value replaces the 0 in that expression evaluation.

Character input: The character input
displayed and the keyboard is unlocked.
string including that prompt as prefix is
input.

Explicit output: Assignment to the pseudo-variable 0
causes display of the value. Each such assignment
causes display of the appropriate value. Several such
assignments in one line result in display in the order
that the values are determined.

Set character input prompt: Assignment of a character
string to the variable ~ establishes the character
input prompt which is thereafter shared with the APL
processor. That prompt subsequently will be displayed
prior to character input. The ~ can be a local
variable. The default for ~ prompt is the empty
character vector It Once set, a prompt is retained
until changed (or cancelled by exit from the function
to which it is local).

Implicit output: The value resulting from expression
evaluation is displayed if it is not assigned to a
variable name (the last function executed was not an
assignment primitive), or the last primitive executed
was not done primarily for side effect (e.g., create a
function, expunge a name, offer to share variable).
This is the common result of expression evaluation in
execution mode. It is equivalent to placing 0+ at the
left of the expression.

4-11

INPUT/OUTPUT
COMMUNICATORS (2)

o ~

Mixed type output: this is a redundant means for
producing output with mixed type. This form is a list
of expressions of possibly different types separated by
semicolons. The expressions are evaluated right to
left (En then En-1, ••• E1), then the results are
displayed left to right and without extra space between
for each scalar or vector result. Each array result of
rank at least 2 starts on a new line, as does any
following sequence of scalar or vector objects.
Formatted . conversion of numeric output with. is
preferable.

Conditions:

Output to the display is also constrained by the print
width established for the terminal. Automatic folding
of output that is too long for the available print
width occurs. For numeric vector output, folded lines
are indented and a fixed number of blanks are inserted
between each element. Numeric array output is put in
fixed width columns.

Failure to enter a value producing expression for
evaluated input results in another 0: prompt. Escape
from this can be achieved by terminate entry: '~'.

Escape from character input equivalent to the terminate
entry above can not be by ,~, as that is an acceptable
character. Instead, escape is by entering the double
overstrike (the only one allowed), and only in this
context:

D (0, backspace, U, backspace, T)

Note that combinations are meaningful:

Request character input to estab­
lish new character input prompt

Display prompt, accept input and
echo it back including prompt

o ~ 0 Accept and evalute
display value

input and

4-12

Accept and evaluate input and use
character result to set prompt

INPUT/OUTPUT
COMMUNICATORS (3)

o (!J

Examples:

A REQUEST EVALUATED INPUT

A EXPLICIT WITHIN EXPRESSION, THEN IMPLICIT

A INCLUDES PROMPT AND 'ENTRY'

A SET CHARACTER INPUT PROMPT
A DISPLAY PROMPT FOR CHARACTER INPUT

A INPUT IN RESPONSE. IMPLICIT OUTPUT

A EXPLICIT OUTPUT

0+5
0:

3 4 5
8 9 10

D+X+l+3
4

2+0+Xx 2
8
10

A DROPS PROMPT, KEEPS REST INCLUDING COMMENT
A SOME TEXT ENTRY

A SOME TEXT ENTRY
'RANK=';ppX;' SHAPE=';pX;' VALUE=';X+2 3P16

RANK=2 SHAPE=2 3 VALUE=
123
456

A NOTE ARRAY STARTS ON NEW LINE OF MIXED OUTPUT

?NEW
NEW

[!J+ t ? t

X+(!]
?ENTRY

X
?ENTRY

1 +I!l

4-13/4-14

j

j

j

j

j

j

j

j

j

j

j

j

j

j

j

j

j

j

j

j

j

j

j

j

j

j

j

j

j

j

j

j

j

j

j

j

j

j

j

j

j

j

j

j

j

j

j

j

j

j

j

j

j

j

j

j

j

j

j

j

SECTION 5

PRIMITIVE FUNCTIONS AND OPERATORS

GENERAL.

APL/700 provides a set of standard functions referred to as primitive
functions because they are immediately available as part of the APL
language to the user for application. These primitive functions are
discussed under the following categories:

Selection function
Assignment functions
Scalar functions
Compound operators
Mixed functions
Format functions

The primitive functions and operators are represented by single APL
characters. The same character is often used to represent both a
monadic (having only right argument) and a related dyadic (having both
right and left arguments) function. The descriptions of such related
uses are located together.

The following notation conventions are used to describe the APL
primitive functions and operators. They are not part of APL.

o
e
~

X +~ y

any monadic scalar primitive function
any dyadic scalar primitive function
any dyadic scalar primitive function
formal equivalence of expressions X and Y

Formally equivalent expressions may not yield computationally
identical results. Numeric precision restrictions in computation may
cause differences in the allowable extreme domains that can be
accepted by the formally equiva.lent expressions. As in any
computations using finite precision numeric representations, algorithm
differences may cause small differences in the results obtained. The
implementation of the APL primitive functions has been done using
algorithms that in general provide stable computation with accuracy of
about 12 decimal digits.

Examples of function application are given to illustrate their use,
often with shaped data objects as arguments. This is done to provide
a variety of significant results in a m1n1rnum of space. Numeric
precision for display of fractional numbers is typically 5 digits.
The results are rounded. Up to 12 digits of precision can be
displayed per number if desired.

5-1

SELECTION
FUNCTION (1)

[]

Form:

A[L] Select elements of A indicated by L

Where:

Result:

Conditions:

5-2

L is a index list of the form E1i ••• iEii ••• iEk

A is an array name (or parenthesized value producing
expression) having positive rank K.

Selection accesses a rectangular subarray of A. The
index list (also called subscript list) L identifies
the members of each dimension of A being selected. The
typical subscript list component Ei refers to indices
along dimension I of A. Ei may be omitted (null)
meaning the ordered vector of all indices (the domain)
for dimension I +~ l(pV)[I]. Otherwise Ei may be any
integer value-producing expression of any rank with all
values in that domain.

The result shape is the catenation of the shapes of the
Ei. The result rank is the sum of the ranks of the Ei.
If all Ei are scalars, so is the result.

Each element of the result has the same value as a
single element of A selected with one dimension value
from each dimension of A. Each element from any Ei is
used with all members from each of the other
dimensions. This is similar to the outer product
applied between each of the Ei to develop the product
set of possible indices.

Selection may appear to the left of the assignment
arrow, in which case only the selected elements are
inserted or modified. Either the data object to the
right of the assignment is a single or it has the same
shape as that of the selection.

If the same elements are selected more than once for
insertion, the results are ill-defined.

Selection is origin sensitive.

Selection is a general function with attendent
complexity. Simpler functions should be used for
regular, contiguous subarray access. Selection should
be reserved for accesses to irregular subarrays of
shaped data objects.

SELECTION
FID'lCTION (2)

[]

Examples:

A A[1 3;2 4]
11 12 13 14 12 14
21 22 23 24 32 34
31 32 33 34 A[2 2 1;1 3 1]

A[2;2] 21 23 21
22 21 23 21

pA[2;2] A SCALAR 11 13 11
V

A[.2;.2] ABCDE
22 V[1 3 5]

pA[.2;.2] A ARRAY ACE
1 1 V[3 5 4 5]

A[3;] A ALL ROW 3 CEDE
31 32 33 34 V[2 3p2 1 4 3 1 2]

A[;2] A ALL COLUMN 2 BAD
12 22 32 CAB

5-3

ASSIGNMENT
FUNCTIONS (1)

Forms:

N + E

A[L] + E

M e+ E

A[L] e+ E

Where:

Results:

5-4

Replace the data object identified by N (if any) with
the object resulting from E

Insert the value of E into locations from index list L
of the previously existing array A

Modify M, short for M+MeE

Modified Insert, short for A[L]+A[L]eE

M is name for which current meaning is not a label,
function, or group (M is a variable name)

N is M, 0, ~, shared variable, system variable, or has
no current meaning

E is result of evaluating an expression

A is name of a variable with shape, i.e., an array

L is index list valid for A

e is any scalar dyadic primitive function

L r + - x t 1*. < s = ~ > ~ A V ~ ¥ 0

Assignment functions give value to or alter the value
of the left argument.

Results are only explicitly returned if required for
further expression elaboration. If the assignment
function is the last to be elaborated on a line, no
explicit result is returned for display unless the
leftmost argument is D.

Replace: The value returned is E. This value is
displayed if N is D. If N is M the returned value is
ignored unless required as an argument to a function.

Insert: The value returned if required is the same as
the value inserted: E.

Modify: The result is the value assigned to M: MeE.

Modified Insert: The result is the value inserted:
A[L]eE.

Conditions:

ASSIGNMENT
FUNCTIONS (2)

Replace: The value and all attributes of E are given
to N, destroying any prior associated meaning for the
name N. If N is M and no prior occurrence of N
existed, N is added to the symbol table.

Insert: The shape of E must conform to the shape of
the array selected by L, and the types of A and E must
be the same.

Modify: The shape of E must conform to the shape of M.
The types must be the same.

Modified Insert: Saves computer time if determination
of L involves expression evaluation. The shape of E
must conform to the shape of the array selected by L,
and the types of A and E must be the same.

For Insert or Modified Insert, if any element from L is
repeated, the result is ill-defined.

Examples:

X+'APL'
X

APL
O+X+-1 0 1

1 0 1
Z+y+X
Y

1 0 1
Z

1 0 1
A

1 2 3
4 5 6

D+A[2;J+X
1 0 1

D+A[;3J+4
4

A
1 2 4
1 0 4

O+Ax+2
2 4 8
2 0 8

D+A[;l 3]f+2
1 4
1 4

A
1 4 4
1 0 4

A REPLACE X BY CHARACTER VECTOR 'APL'

A REPLACE OLD VALUE WITH NEW AND DISPLAY

A MULTIPLE REPLACEMENTS

A EXISTING ARRAY NAMED A WITH SHAPE 2 3

A INSERT X INTO ROW 2 AND DISPLAY

A COERCE AND INSERT TO COLUMN 3 AND DISPLAY

A MODIFY ALL ELEMENTS OF A AND DISPLAY

A MODIFIED INSERT COLUMNS 1 AND 3 AND DISPLAY

5-5

SCALAR PRIMITIVE FUNCTIONS.

The scalar primitive functions include both monadic and related dyadic
functions that apply element by element to the values of their
arguments.

The scalar attribute indicates that scalar arguments return scalar
results. An array argument to a monadic function returns a result of
the same shape. Array arguments to dyadic functions of the same shape
return results of that shape. Coercions are defined for single
element arguments of any rank, and for one argument having shape that
is a plane across the other argument when the function is qualified to
apply to that dimension.

The scalar primitive functions include:

integer part and extreme value functions
arithmetic functions
power and logarithm functions
relational functions
logical functions
circular functions
combinatorial and factorial functions

Scalar primitive functions are used individually. The dyadic scalar
primitive functions are also used as the function arguments to the
primitive operators and to assignments including modify.

5-6

Forms:

L B
r B

ALB
ArB

lfuere:

Results:

INTEGER PART,
EXTREME VALUE
FUNCTIONS

L r

Floor of B
Ceiling of B
Minimum of A or B
Maximum of A or B

A and B are numeric

Floor: Return the greatest integer not greater than B.

Ceiling: Return the least integer not less than B.

Minimum: Return the lesser (more negative) value of A
or B.

Maximum: Return the greater (more positive) value of A
or B.

5-7

ARITHMETIC
FUNCTIONS (1)

+ - x T I

Forms:

+ B
- B
x B
T B
I B

A + B
A - B
A x B
A + B
A B

l~here :

Results:

Identity
Negate
Signum
Reciprocate
!.1agnitude
Add A to B
Subtract B from A
Multiply A by B
Divide A by B
A residue of B

A and B are numeric

Identity: Return the argument value. +B +~ O+B

Negate: Return the negative of B (unless B is 0, in
which case the sign remains non-negative) • -B +~ O-B

Signum: Return the integers -1, 0, 1 if B is negative,
zero or positive. xB +~ (8)0)-B<0

Reciprocate: Return the reciprocal of B for non-zero
B. TB +-+ lfB

Magnitude: Return
negative number).

the absolute value of B (a non­
IB +-io- BxxB

The expected arithmetic results occur
subtract, multiply and divide when B is
Divide, if both A and B are 0, returns
limiting value of Xi-X as X approaches 0).
division by 0 is a domain error.

for add,
non-zero.

a 1, (the
Otllerwise I

5-8

Residue: Return a remainder on division by non-zero A
having sign of A and magnitude less than A. If A is
0, the result is B. If A<O (>0), the result R is the
least non-positive (non-negative) remainder for some
integer G such that B +~ R+GxA.

Conditions:

ARITJ:L.'1ETIC
FUNC'l'IOl~S (2)

+ - x T I

Note the argument order for divide and residue appear
to conflict. For residue the divisor is A, whereas for
divide, the divisor is B.

The identity may be used for a numeric variable to
avoid the side-effect of subsequent assignment to the
same name in the same expression respecifying the new
value in place of the old. See Expressions, Lists, and
Order of Execution in Section 3.

Examples:

+7.2 3.42E-6+2.537E-S
7.2 0.00002879

+0 5 10 15 1+0 5 10 15
0 5 - 10 15 1 6 - 9 16

-1.2E3 175-225
1200 50

-0 -5 10 15 5-0 5 10 15
5 10 15 5 0 15 10- 5 0 5 3 1 4x - 5 2 3x

1 0 1 15 2 12
+2 5 10 5 12 15+4

0.5 -0.2 0.1 1.25 3 3.75
15 0 5 3 3 - 3 - 314 - 4 4 4

5 0 5 1 2 2 1

5-9

POWER,
LOGARITIll·1
FUNCTIONS (1)

* •

Forms:

* B
• B

A * B
A • B

vlhere:

Results:

Conditions:

5-10

Base e to the power B
Base e logarithm of B
Base A to the power B
Base A logarithm of B

A and B are numeric (see domain restrictions).

TIle resul ts are numeric. The monadic forms are
equivalent to the dyadic forms with A being e, the base
of the natural logarithms:

2.7182818284 •.• +~ e

Power: Domain restrictions depend on the sign of A.

If A>O then B can have any value.

If A=O then B must be non-negative.

If A<O then B must be either an integer or an expres­
sion whose value is N+D where N is an integer and D
is an odd integer. The comparison tolerance effects
this determination whether Nand D could be in the
proper domains. (Tllese cases yield a negative real
root or an even power thereof).

Logarithm: The domain restrictions are:

A and B must be greater than zero.

A can only be 1 if B is 1.

Examples:

POWER,
LOGARITH~~

FUNCTIONS (2)
* •

*1 A BASE E -*2 7 3
2.71828 2 7 - 3- 1 a 3 *.2 7 1*
0.367879 1 20.0855 2 7 1

2* - 2 - 1 0 1 10 13 820 8192
0.25 0.5 1 2 1024 8192 2.99573 9.01091

2 -1 0 1 2*2 2.0.5 1 2 4 8
It 1 0 1 4 1 0 1 2 3

1 2 3 4*0.5 A SQUARE ROOT 1 2 3 4-1 J... 27 2
1 1.41421 1.73205 2 1 2 3 0.5

16 * T 1 2 3 4 383*5
16 4 2.519814- 2 5

8 - 27 - 32*+ 3 3 5 3*386
2 3 2 6

5-'1

RELATIONAL
FUNCTIONS
< S = 2; > ~

Forms:

A < B
A s B
C = 0
A ~ B
A > B
C ;t D

Where:

Results:

Conditions:

Is A less than B
Is A not greater than (less than or equal to) B
Is C equal to D
Is A not less than (greater than or equal to) B
Is A greater than B
Is C unequal to 0

A and B are numeric
C and D are either numeric or character type

Each Boolean result is 1 if the relation is true, a if
false.

The equal and unequal relations having one or both
character arguments are defined but they do not extend
to the scan and reduction operators.

The relational functions with Boolean arguments apply
also as logical functions.

The comparison tolerance applies to the results for
numeric arguments. If the relation is true, to within
the relative comparison tolerance based on the left
argument, the result 1 is returned. See the discussion
of OCT for details.

Examples:

3<2 3 4 'CAB' = 'TAB'
0 0 1 0 1 1

3 4 5S5 4 3 3= t A '
1 1 0 0

5=2 7 5 1 2 3~tC'

0 0 1 1 1 1
1;t2 3p1 0 1 1 1 0 'RETN'~'RATEt

0 1 0 0 1 0 1
a 0 1

3>5 3 1
0 0 1

3~5 3 1
0 1 1

5-12

Forms:

".. B
A 1\ B
A v B
A 1c B
A ¥ B

LOGICAL
FUNCTIONS

Not B
A and B
A or B
A nand B
A nor B

Where:

Results:

Conditions:

Examples:

A and B are Boolean numerics

Not: The result is the Boolean complement of B.

The dyadic logical functions, when extended by the six
relational functions restricted to Boolean arguments,
provide the ten non-trivial dyadic Boolean logical
functions. The examples indicate their truth tables
and their Boolean results.

The dyadic use of ~ as set difference is described with
the set functions.

The comparison tolerance affects the determination
whether a possibly non-integral numeric value is 1.

With this complete family of logical functions, it is
rare that the not function is required. To illustrate:

A>B +-+ AI\""'B
AsB ++ (""'A)vB

~1 0
o 1

o a 1 11\0 1 0 1
o 0 0 1

o 0 1 1 > 0 101
o 0 1 0

o 0 1 1 < 0 101
o 1 0 0

o 0 1 1 ¥ 0 101
1 0 0 0

o 0 1 1 = 010 1
1 0 0 1

o 0 11ft 0 1 0 1
1 1 1 0

o 0 1 1 SOl 0 1
1 1 0 1

o 0 1 1 ~ 0 101
1 0 1 1

o 0 1 1 VOl 0 1
o 1 1 1

o 0 1 1 ~ 0 101
011 0

5-13

CIRCULAR
FUNCTIONS (1)

o

Forms:

o B
A 0 B

Where:

Results:

Pi function: (pi times B)
Circular function A of B

A selects the specific circular function
B is argument

oB +~ BX3.141S9265 •••

Direct Functions Arc (Inverse) Functions
domain range

ooN +~ (1-N*2)*O.5 l~IN l~IX

loR +~ sin R ioN +~ arcsin N 1~IN (oo.5)~IX

20R +~ cos R 20N ++ arccos N l~IN (O~X)AX<ol

3aR + tan R 30N + arctan N (oo.s»lx
40N ++ (1+N*2)*O.5 40N +~ (-1+N*2)*O.5 ls:IN O~X

soN ++ sinh N soN +~ arcsinh N
60N ++ cosh N 60N +~ arccosh N isH osX
70N +-+ tanh N 70N ++ arctanh N 1> IN

Where:

Conditions:

5-14

R is argument measured in radians
N is any numeric value in indicated domain
X is numeric result in indicated range

The domains indicated above (where restricted) for the
arc function arguments are. the ranges for the
corresponding direct function results. The result
ranges for the cyclic arc functions (arcsin, arccos,
arctan) are the principal ranges.

Memory Aids: The positive left arguments apply to
direct functions with unlimited domains for their right
arguments. The negative left arguments apply to arc
functions with indicated right argument domain and
result range.

CIRCULAR
FUNCTIONS (2)

o

The even left arguments are associated with even
functions (f(B»=f(-B)i The odd left arguments are
associated with odd functions (f(B»=-f(-B).

Both the trigonometric and hyperbolic forms are ordered
sin (sinh), cos (cosh) and tan (tanh) with increasing
magnitude of A.

The functions with square roots must yield real surds.
Thus they all require non-negative radicands. The
three forms shown are the only ones possible. The sign
of A determines the sign of the constant (lor -1) for
the two forms that add the squared term. A=O subtracts
the squared term.

Examples:
01 2 3 A MULTIPLES OF PI

3.14159 6.28319 -9.42478
1 2 3000.5 0 0.25 A SIN 90 0 , COS Do, TAN 450

111
4 0 40 0 0.8 1 A SQUARE ROOT FUNCTIONS

1 0.6 0
5 6 700 A SINH, COSH, TANH

010
1 2 301 A ARCSIN, ARCCOS, ARCTAN IN RADIANS

1.5708 a 0.785398
(-1 -2 -301)x180~01 A PRINCIPAL ANGLE IN DEGREES

90 0 45

5-15

FACTORIAL,
COMBINATORIAL
FUNCTIONS

Forms:

A
B
B

Factorial B
Combinatorial A of B

Where:

Results:

Examples:

B is numeric
A is numeric

Factorial: For non-negative int~ger B the result is
Bx!B-1 +~ !B where 1 +~ !O (alternatively x/1B +~ !E in
one origin).

For non-integer B the result is the generalization of
the factorial, the Gamma function of B+1:

Gamma (B+1) +~!E

Factorial is singular (undefined) for negative integer
B.

Combinatorial: The result is (!B)f(!A)x(%B-A) so long
as all the indicated factorials are defined.

For non-negative integer A, B and A ~ B, the result is
the number of combinations of B things taken A at a
time.

For A > B, the result is identically O.

For non-integer A or B, the result is a generalization
of combinations. It is related to the complete Beta
function 9f A and B:

Beta (A,B) +~ tBx(A-1)!A+B-1
+~ (:A-1)x(!B-l)f!A+B-1

!O 1 2 3 4 5 6 A FACTORIALS
1 1 2 6 24 120 720

!-0.5 A +~ GAMMA (0.5) ~~ (01)*0.5
1.77245

!-2.9 1.9 0.9 0.1 1.1 2.1
5.56345 -10.5706 9.51351 0.951351 1.04649 2.19762

o 1 2 3 4!4 R COMBINATIONS OF 4 TAKEN 0 1 2 3 4 AT A TIME
1 4 6 1+ 1

1.1%2 3 4 5
1.98713 3.13758 4.3277 5.54833

5-16

EXTENSION TO
ARRAYS OF SCALAR
FUNCTIONS (1)

Each scalar primitive function applies element by element to its
arguments.

Monadic oB where 0 is any monadic scalar primitive function

The result of a monadic scalar primitive applied to an array B is an
array of the same shape as B. Each element of the result is
determined by applying the function 0 to the corresponding element of
B the argument.

Dyadic A~B where ~ is any dyadic scalar primitive function

If A and B are arrays of the same shape, the result also has that
shape. Each element of the result is determined by applying ~ to the
corresponding elements of A and B.

Coercion is the process of making two data objects conformable for the
dyadic function to which they both are arguments. Conforming
arguments have the same shape. Coercion generally replicates the
smaller size object to the rank and shape of the other.

If either A or B is a single, it is effectively coerced by replication
to the shape of the other array and the result is as above. The
single element is one argument for 8 applied with each element of the
array as the other argument.

If both A and B are singles, the result is a single element object
with rank that of the larger rank of A or B.

A~[KJB qualified application of e along dimension K

If the ranks of A and B differ by one and the shapes are the same when
dimension K is elided from the one with larger rank, then the result
has the same rank and shape as the larger rank array. Elements of the
result are formed after first e~fectively coercing the smaller rank
array to have the same shape as the larger rank array. This coercion
is by replication of the entire smaller rank array as a plane for each
position on dimension K of the larger. If K refers to the last
dimension of the larger rank array, it may be elided. K is a single.

Without loss of generality, let A be the larger rank array, then the
coercion condition may be expressed as:

(K~(lppA)/pA +~ pB

For J each scalar value in l(pA)[KJ the plane of the result R so
determined is:

R[••• ;J; ••• ;NJ ++ A[••• ;J; ••• ;J8B

5-17

EXTENSlor~ TO
ARRAYS OF SCALAR
FUNCTIONS (2)

Examples:

-3
3

A MONADIC SCALAR

1 2
1.1- 5

o 1
o 0
o 0

5-18

2 a

1
4

11
14

3
o

2
8

101
104

11
14

1
14

13
1
3

17

A
3
6

-A
2 3
5 6
10+A

12 13
15 16
A-4
2 1
1 2
A+A
4 6

10 12
A+l 1 lp100
102 103
105 106
A+[l]10 20 30

22 33
25 36

A+O 10
2 3

15 16
B

17 12 11
5 29 4

16 6 19
fiB

29 19
B=r/B

o 0
1 0
o 1

A MONADIC VECTOR

A ARRAY (MATRIX)

A MONADIC ARRAY

A SCALAR + ARRAY

A ARRAY - SCALAR

A ARRAY + ARRAY WITH SAME SHAPE

A ARRAY + SINGLE OF RANK 3

A ARRAY + VECTOR ALONG FIRST DIMENSION

A ARRAY + VECTOR ALONG LAST DIMENSION

A RANDOM ARRAY

A MAXI~JA OVER ROWS

A LOCATION OF ROW MAXIMA OF B

PRIMITIVE OPERATORS.

operators are provided that have one or two function arguments and
produce a new function from them. This function is then applied to
the data object arguments.

The 21 scalar dyadic functions are the only primitive functions that
are used with the operators.

The following primitive operators are provided:

operator

outer product
reduction
scan
inner product

Possible functions

21
21
21

441

The examples given include some of the more useful operators. The
user should be aware of the many opportunities to use these and other
operators as well.

Reduction and scan have a dimension selector appearing to the right of
the function character and indicating in brackets the index number or
dimension of function application. The index number is a single and
is origin sensitive.

Assignments achieved by modification or modified insertion may be
viewed as primitive operators, even though they are actually only a
brief notation for the corresponding replace and insert functions.

5-19

OUTER
PRODUCT
OPERATOR (1)

Form:

t~ere:

Results:

Conditions:

5-20

Generalized outer product of A with B using function $

A is a data object
B is a data object
e is any primitive dyadic scalar function:

L r + - x f 1*. < ~ = ~ > ~ A V W ¥ 0

The result is a data object with rank (ppA)+ppB and
shape (pA),pB formed by applying e between all pairs of
elements; the first from A and the second from B.

If both A and B are vectors, the matrix result may be
considered to be a table of values formed with A as the
left argument and B as the right argument. The
elements of A form the row headings; the elements for B
form the column headings. If desired, the headings may
be catenated onto the matrix result.

Outer product generates a data object with size that is
the product of the sizes of its arguments. This may
give a space limit error report. See Appendix B for
suggestions on controlling space.

If reduction is the next operator to be applied after
an outer product, they sometimes can be combined. This
will avoid generating the large object, only to
immediately reduce it again.

OUTER
PRODUCT
OPERATOR (2)

o ••

Examples:

1 2 30.+1 2 3 4 A ADDITION TABLE
2 3 4- 5
3 4 5 6
4 5 6 7

1 2 3o.fl 234 A MAXIMUM TABLE
1 2 3 4
2 2 3 4
3 3 3 4

1 2 3o.~1 234 A NUMERIC COMPARE
1 0 0 0
1 1 0 0
1 1 1 0, *'[1+6 543 2 1 o .s1 3 4 2 5 6] A HISTOGRAM

*
**

* **
** **

******'ABC'o.='BANANA' A CHARACTER COMPARE
01010 1
1 0 0 0 0 0
o 0 0 0 0 0

1 20.00+6 3 2 1 A SIN COS 30 60 90 180 DEGREES
5.00000E-l 8.66025E-1 1.00000EO 5.12669E-12
8.66025E-l 5.00000E-l 2.56334E-12 1.00000EO

5-21

REDUCTION
OPERATOR (1)

/ t

Forms:

e/[K] A
~/ A
.f[K] A
-f A

Where:

Results:

Conditions:

5-22

• Reduction of A along dimension K from the first
• Reduction of A along last dimension
$ Reduction of A along dimension K from the last
• Reduction of A along first dimension

A is a numeric data object
K is a dimension selector (origin sensitive): K£\ppA
$ is any dyadic scalar primitive function:

l r + - x 7 I * • < S = ~ > ~ A V " ¥ 0 :

The reduction operator applies the indicated function
to all planes across the indicated dimension. The
forms with [X] indicate the dimension K explicitly; the
other two forms implicitly specify the dimension.

The rank of the result for shaped data object A is one
less than the rank of A. K is the dimension
eliminated. The shape of the result is {K~\ppA)/pA.

For scalar A, the result is A.

For vector A, the result is as if • were placed between
the last two elements of the vector and then the
resulting expression executed between that pair. The
scalar result replaces the pair. This sequence is
repeated along the entire vector until the last scalar
result is returned. This sequence is equivalent to
placing $ between each element of the vector and
executing the resulting expression.

For array A, each vector along the indicated dimension
is treated as above.

Each partial result must match in type and be in the
right argument domain for the next occurrence of $.

The only exception to the simpler explanation to
reduction of a vector given above is that =/ and ~/ are
undefined for character data objects even though these
primitive dyadic scalar functions are defined for mixed
type data.

REDUCTION
OPERATOR (2)

.1

Examples:

+/1 2 3 1/3 5.5 17
6 0.5

p+/1 2 3 f/1 3 2 5 7
5

+/[1]2 3p\6 l/-4 -7 3 8 0
5 7 9 7

+1-2 3p\6 */4 3 2
5 7 9 262144

+1[1]2 3p\6 -/2*1 4 32
6 15 3

+/[2]2 2 2p\8 ! 13 4 5
4 6 10

12 14 S/l 3 5 A LEFTMOST 1 Sl
-/\6 1

3 ~/2 4 6 A LEFTMOST 2s1
xli 2 3 a

6 vlO 1 1 A LEFTMOST Ov1
+/\6 1

0.3125 ~v/O 1 1
+/ x t3 2p\6 0

0.3125 "'10 1 1 A LEFTMOST O¥O
1

5-23

SCAN
OPERATOR (1)

e\

Forms:

e\[K] A
e\ A
e~[KJ A
e\ A

Where:

Results:

Conditions:

5-24

e Scan of A along dimension K from the first
e Scan of A along last dimension
e Scan of A along dimension K from the last
e Scan of A along first dimension

A is a numeric data structure
K is a dimension selector, KE lppA
e is any primitive dyadic scalar function:

L r + - x f I * • < ~ = ~ > ~ A V ft ¥ 0

The rank and the shape of the result are the same as A.

The dimension selector K determines the dimension
vectors along which scan is applied.

For scalar A, the result is scalar A provided A is in
the domain of a valid right argument of e.

For vector A, element I of the result R is formed from
e reduction of the first I elements of the vector
R[I] +~ $/I+A (in one origin).

For array A, each vector along the dimension K of A is
developed as in the case of vector A.

The corresponding reduction must be defined for scan to
be defined.

SCAN
OPERATOR (2).,

Examples:

+\1 2 3 4 A TRIANGULAR NUMBERS
1 3 6 10

A A ARRAY
1 2 3
456

+\A A SCAN ALONG ROWS
136
4 9 15

+\[l]A A SCAN DOWN COLUMNS
1 2 3
579

+~A A SCAN ALONG FIRST DIMENSION
1 2 3
579

+~[l]A A SCAN ALONG LAST DIMENSION
1 3 6
4 9 15

x\\6 A FACTORIALS
1 2 6 24 120 720

-\\6 A DIFFERENCES
11223 3

-\6p4 3
41526 3

7\16 A QUOTIENTS OF ALTERNATING PRODUCTS
1 0.5 1.5 0.375 1.875 0.3125

r\3 2 4 0 6 A SEQUENCE OF ENCOUNTERED MAXIMA
33446

A\l 1 0 0 1 A LEADING ONES
1 100 0

v\O 0 1 0 1 A LEADING ZEROS
00111

<\0 0 1 0 1 A FIRST ONE
o 0 100

S\l 0 1 1 0 A FIRST ZERO
1 0 111

X A AN EXPRESSION STRING OF CHARACTERS
A+((IxJ)pK)+B

+\(X:t(t)-X=t)t A PARENTHESIS DEPTH IN STRING X
o 0 1 2 222 1 1 1 0 0 0

Y A RAGGED ARRAY
ALIGN

ALL
LEFT

(+/A\Y=' t)~y A LEFT JUSTIFY Y
ALIGN
ALL
LEFT

5-25

11-1r~ER

PRODUCT
OPERATOR (1)

EP.e

Form:

Where:

Results:

Conditions:

5-26

Generalized inner product of A with B using functions
$ and e.

A and B are conforming data objects
$ ~ are any primitive scalar dyadic functions:

L r+-x+1 *.<;S;=~>;tAVW¥O:

Elements of the result are formed by taking conforming
vectors along the last dimension of A and along the
first dimension of B, applying ~ between them, and then
reducing the result by $.

The rank of the result is (Or-l+ppA)+Or-l+ppB.

The shape of the result is (-l~pA)tltpB.

For vector or scalar arguments: the result is scalar
$/AeB.

For A vector (or scalar), B matrix the vector result R
has element R[I]+$/AeB[;I].

For A matrix, B vector (or scalar) the vector result R
has element R[I]+$/A[I;]eB.

Generally for A and B arrays, the array result R has
element R[I; ••• ;K;L; ••• ;N]+$/A[Ij ••• ;K;]eB[;L; ••• ;!v].

Conformability requires that after allowed coercions,
(-l+pA)=ltpB The valid coercions are:

Scalar A becomes (ltpB)pA.

If 1=-1+pA then the plane across ti!at last
dimension is replicated (ltpB) times:

A+(l~~lppA)~~«(ltpB)t-l~pA)pA

Scalar B becomes (-ltpA)pB.

If 1=1tpB then the plane across that first
dimension is replicated (-ltpA) times:

Examples:

1 2+.x3 4
11

2+.x2 3 4
18

5 3-.x3 2
9

A23
1 5 3
6 2 q

B34
1 7 5 4
4 2 3 5
5 6 2 1

A23+.xB34
36 35 26 32
34 70 44 38

A23l.rB34
1 5 3 3
4 2 3 4

A22
1 1
0 1

B22
0 1
1 0

A22V.AB22
1 1
1 0

A22A.=1

INNER
PRODUCT
OPERATOR (2)

•• 8

A (l x 3)+2 x 4 ++ +/1 2x3 4

A +/2 2 2x2 3 4

A -/5 3x3 2

A CONVENTIONAL INNER PRODUCT

A MINIMAX

A MINTERM

A SINGLE COERCED TO 1 1
1 0

1 QA.=A22
1 0

A22A.=B22
0 0
1 0

'ON'A.=2 3p'FORANY' A CHARACTER MATCH ROW WITH COLUMN
0 1 0

5-27

IDENTITIES FOR
SCALAR DYADIC
PRIMITIVE
FUNCTIONS

An identity argument for a dyadic scalar primitive function is that
value which when the function is applied with any other argument
returns that other argument. Let I be the identity argument, A the
other argument and ~ a scalar dyadic primitive function:

Left identity:
Right identity:
Two-sided identity:

A+~IeA

A+-+AeI
A +~ A e I +~ I e A

The result of the reduction operator (using a primitive dyadic scalar
function) on an empty vector or a length zero coordinate of an array
is the identity (if it exists) for that function. If the indicated
dimension is the only one with length 0, the result is replication of
the identity element in the entire plane across that dimension, so
long as some identity element exists.

Inner product and base value are both based on reduction, so they also
have this property when applied to a zero length coordinate.

Table 5-1 shows for each primitive scalar dyadic function the identity
element if it exists, and whether it is left, right or two-sided
(both) •

Table 5-1 Ide11tities for Scalar Dyadic Primitive Functions

For numeric arguments For Boolean argumen"ts only

49 identity side ~ identity side

l MAX * both < 0 left
r -~1AX * both ~ 1 left
+ 0 both = 1 both

0 right ~ 1 right
x 1 both > 0 right
.- 1 right ;it 0 both

0 left 1\ 1 both

* 1 right v 0 both
• none tN none
0 none ¥ none

1 left

*1-iAX is the largest numeric value directly representable:
4.31359146674E68 +~ MAX +~ LllO

5-28

MIXED PRIMITIVE FUNCTIONS.

The mixed primitive functions include both monadic and related dyadic
functions that apply to shaped data objects as arguments.

The functions generally use structure properties instead of the
element values.

Rules for conformability, coercions, and extension from vector
arguments to higher rank objects are more complex than for the scalar
primitive functions.

The mixed or structure primitives may be classified as:

shape, reshape functions
integers, index of functions
ravel, catenate, laminate functions
reverse, rotate functions
transpose, permute functions
compress, expand functions
take, drop functions
set functions
grade functions
random roll, deal functions
base value function
represent functions
matrix inverse, divide functions

Many of these functions have a dimension selector appearing to the
right of the function character and indicating in brackets the index
number or dimension of function application. The index number is a
single and is origin sensitive.

Some of the mixed primitive functions augment an existing data object
with fill elements. The value of a fill element is 0 if the type of
the object is numeric; or is a blank space if the type of the object
is character.

5-29

SHAPE,
RESHl'...PE
FUNCTIONS

p

Forms:

p B
A p B

Where:

Results:

Examples:

Shape of B
A reshape of B

A is a non-negative irteger vector or single
B is a data object, either numeric or character

Shape: The result is an integer vector indicating the
length of each dimension of the data object B. In ori­
gin one, pB indicates the largest index value for each
dimension. In either origin the index domain for
dimension I of B is l(pB)[I].

Reshape: The result is an array whose shape is A, and
whose elements are taken in raveled order from B and
are repeated as often as necessary. Fill of the type
of B is used if B is empty.

If A is an empty numeric vector, the result is scalar.
Single A is coerced to a one element vector. If A con­
tains any zero element, the result is an empty array.

3
p1 2 3

10
p 'APL CAN DO'

7p 1 2 3
123 1 231

2 3pl1 12 13 21 22 23
11 12 13
21 22 23

3p 1
111

p12345 PI SCALAR

10p'o'
0000000000

2 3p'ADDONE'
ADD
OllE

p2 34p'A'
234

p'12345' PI VECTOR

pp12345 PI RANK a
o

p,12345 PI VECTOR
1

5

o

p 'A '

p p 'A '

A SCALAR

A RANK 0

Op 0 PI flUft1ERIC p , 'A ' PI VECTOR

pt' PI EMPTY VECTOR

pp,'A'

5-30

a

1

pOpO A EMPTY VECTOR

(OpO)p2 3P16 PI SCALAR

p (Op 0) p 2 3p 1 6

1

1

o

, ,
A RANK 1

A CHARACTER

Forms:

\ A
B \ C

Where:

Results:

Conditions:

Examples:

INTEGERS,
INDEX OF
FUNCTIONS

1

Integers to A
Index of C in B

A is a non-negative integer single
B is a vector
C is a data object

Integers: The result is a vector containing the first
A integers in ascending order, starting with the index
origin. .A ++ pt,A. Also called index generator.

Index of: The result is a data object with the same
shape as C with integer elements. Each element of the
result indicates the index position (of the first
occurrence) in B of the corresponding element of C.
The result range is \l+pB. For any element of C not
occurring in B, the corresponding result element is
DIO+pB.

Both functions are index origin dependent: \1 ++ .OIO.

The comparison tolerance applies to determine if A is
an integer and if an element of C is in B.

OIO+1A ORIGIN 1 fJIO+OA ORIGIN 0
\ 5 \ 5

1 2 3 4 5 0 1 2 3 4
tOA EMPTY NUMERIC VECTOR \ 0

\1A ORIGIN SINGLE VECTOR 11R ORIGIN VECTOR
1 0

3 1 1 211 2 3 14- 5 3 1 1 211 2 3 ll- S
2 4 1 5 5 1 3 0 4 4

'ABCDE'l 'BEAR' 'ABCDE' 1 'BEAR'
2 5 1 6 1 4 0 5

DDt'301'A DD++'Ol ••• 9' DA \ 3 4p'APL DOESWELL'
4 1 2 0 15 11 26

'+-x-!-' 1 'A+BxCD' 3 14 4 18
5 1 5 3 5 5 22 4 11 11

5-31

of B in row
along last

along second
returns a one

RAVEL,
CATENATE,
LAMINATE
FUNCTIONS (1)

Forms:

, B
A , B
A , [K] B
A , [D] B

Where:

Results:

5-32

Ravel B into a vector
Catenate B to the last dimension of A
Catenate B to dimension K of A
Laminate A as the first plane and B as the last plane
of a new dimension between dimensions LD and flD

A and B are data objects of the same type
K is an index number of A or B
D is a non-integer dimension injector

Ravel: Form a vector from the elements
major order: first (leftmost) to last
dimension, then first (topmost) to last
last dimension, etc. Ravel of a scalar
element vector.

Catenate: Join two conformable data structures of the
same type, B after A (elements from B will then have
larger indices along the joined dimension). The rank
of the result is lr(ppA)rppB. If both A and Bare
scalars or vectors, the result is a vector formed by
appending B after A.

Catenate to dimension K: If either A or B is an array,
and the other is an object of rank one smaller and
shape the same as a plane across dimension K of the
larger rank object (the same shape as when dimension K
of the larger rank argument is omitted), then
catenation increases the length of dimension K by one
and the smaller rank Object A (or B) becomes the first
(or last) plane across the kth dimension of the result.

A scalar is coerced by replication to have the shape of
all but dimension K and the above catenation is
performed.

If both A and B have the same rank and the same shape
except for dimension K, then the result of catenate is
an array with shape the same as A and B except that the
length of that dimension K becomes the sum of the
lengths of that dimension in A and B with the first
planes across dimension K from A and the last planes
from B.

Examples:

RAVEL,
CATENATE,
LAMINATE
FUNCTIONS (2)

The [K] may be omitted if it refers to the last
dimension of the larger rank object.

Laminate: Create a structure with a new dimension of
length two. Laminate may be recognized distinct from
catenate by the arbitrary fractional part of D,
identifying the new dimension being injected (either
before the first, between two existing, or after the
last dimension). Elements from A are placed in the
first plane across the new dimension and elements from
B are placed in the second plane across that new
dimension.

The possible values for the integer part D are from one
less than the first dimension number to the last
dimension number. The fractional part of D must be
non-zero. Note that in 0 origin D may be negative.

Either the shapes of A and B must match, or one of A or
B must be a scalar. A scalar is coerced by replication
to the shape of the other argument.

The rank of the result is l+(ppA)rppB. The shape of
the result is the larger shape of A or B, augmented by
the new dimension of length two.

6
A,2 4p - 1 0 1 2

11 12 13 - 1 0 1 2
21 22 23 1 0 1 2

O,[l]A R FIRST DIMENSION
0 0 0

11 12 13
21 22 23

, 3
3

p , 3
1

A
11 12 13
21 22 23

,A
11 12 13 21

p,A

A VECTOR

A ARRAY

A ROW MAJOR ORDER
22 23

R VECTOR

• t C'
c

P t t C'
1

CA
ABCDEF

,3 2pCA
ABCDEF

CA t [0 • 5] t ? t

ABCDEF
??????

0,[1.5J1 3
o 1
a 3

5-33

REVERSE,
ROTATE
FUNCTIO~S (1)

<I> e

Forms:

<1> B
e B
<I>[K]B
e[K]B

A <I> B
A 9 B
A <I>[K]B
A e[K]B

Where:

Results:

Reverse along last dimension of B
Reverse along first dimension of B
Reverse along Kth dimension from front of B
Reverse along Kth dimension from end of B
A rotate along last dimension of B
A rotate along first dimension of B
A rotate along Kth dimension from front of B
A rotate along Kth dimension from end of B

B is a data object with shape
K is a dimension selector single with integer value
in lppB

A is an integer data object, scalar or with shape the
same as the planes across the dimension of B about
which rotation is performed

The type, shape and rank of the result are the same as
B. Each element of B occurs, generally in a different
position in the result.

Reverse: The general form is ~[K]B. The order
planes across dimension K is reversed. Thus,
of the result is plane «pB)[X])-J+DIO of B.

of the
plane J

If K = r/lppB, referring to the last dimension, the [X]
may be elided, resulting in ~B.

Equivalent to the general form but referenced to the
end or anti-origin rather the front of the shape is
e[X]B. Thus, 4>[K]B +~ e[(ppB)+(2 xOIO)-K+1].

If K = L/lppB or DID referring to the first dimension,
the [K] may be elided, resulting in eB.

5-34

If B is a matrix,
indicate the axes
takes place.

lines through the forms without [X]
of symmetry about which reversing

Conditions:

Examples:

REVERSE,
ROTATE
FUrJCTIONS (2)

<l> e

Rotate: The general form here described is A~[KJB.

The other forms for determining the dimension for
rotation are equivalently developed as above. A has
shape a plane across the Kth dimension of B, i.e.,

(pA) ++ (K~lppB)/pB

Each element in A determines the amount that the
corresponding elements of all planes across dimension K
are rotated cyclically (or end around). For an element
of A~O, the direction is toward decreasing indices.
For an element of A<O, the direction is toward
increasing indices.

The amount rotated is «pB)[K])IA. Thus, there is a
non-negative equivalent for any negative element of A.

If A is a scalar it is coerced to a plane with all
elements the same:

A + «K~lppB)/pB)pA

<1>1 2 3 4 14>1 2 3 4-
4 3 2 1 2 3 4 1

<t>'LIVED' A REVERSED 5<!>1 2 3 4
DEVIL 2 3 If. 1

A -3$1 2 3 4
11 12 13 2 3 4 1
21 22 23 1 2<PA

<f>A 12 13 11
13 12 11 23 21 22
23 22 21 o 1 2Q>[1]A

<P[l]A 11 22 13
21 22 23 21 12 23
11 12 13 B

eA TAKE OUT EXTRAS
21 22 23 (xvl<t>X+B~' t) / B
11 12 13 TAKE OUT EXTRAS

5-35

TRANSPOSE,
PERf.1UTE
FUNCTIONS(1)

~

Forms:

~ B
A ~ B

vlhere:

Results:

5-36

Transpose dimensions
Permute dimensions

A is an integer numeric vector of index numbers
B is a data structure

Transpose: The result is an array with rank at least
2. The elements are the same as the elements of B with
the order of the dimensions reversed.

If B is a scalar, the single result has shape 1 1.

If B is a vector with shape S, the result is a column
matrix having shape S,1. If B is a matrix having
shape S,T, the result R is a matrix having shape T,S
such that element R[I;J] is the same as B[J;IJ.

Analogously, if B is an array, the shape of the result
is ~pB and element R[I;J; ••• ;NJ +~ B[N; ••• ;J;I].

Permute dimensions: Each element of the result R is an
element from B as specified by A. A must be a vector
with shape the rank of B. A must contain the index
origin and possibly successive integers referring to
index numbers of the result 1 +~ A/(lr/A)€A.
Index numbers may reoccur. The number of
different integers determines the rank of the result:
ppR +--+ pAUlO.

If A is a permutation of lppB (no repeated dimensions)
then the result shape is the A permutation of B:
pH +~ (pB)[A] and element R[IiJ; ••• iMJ is:
B[A[1]iA[2Ji ••• ;A[M]].

If any element of A is repeated, the rank of R will be
smaller. In that case, the principal diagonal
selection across the dimensions of B is taken where
elements of A are repeated. The length of the result
dimension is the minimum of the lengths of the
dimensions on which the diagonal is being taken.

(<t>lpB)~B +-~ ~B

(lpB)~B +-~ B

TRANSPOSE,
PERMUTE
FUNCTIONS (2)

~

Conditions:

Elements of A are origin sensitive. Examples are given
in origin 17 they would be one smaller in origin O.

If B is a scalar, then A must be the empty numeric
vector and the result is an identity: R ++ B

Examples:

A SINGLE MATRIX (lO)~3 A IDENTITY
3

1 1
p~3

~3 4 5 A COLUMN MATRIX

3
R SCALAR

(.l)~'ABC' A IDENTITY

A
012
345

~A

(.1)~3 4 5 A IDENTITY
345

2 l~A A +~ ~A

3
4
5

3 1
pt\)3 4 5

ABC

o 3
1 4
2 5

o 4
1 l~A A DIAGONAL

221
222

A R[I;J;KJ++B[K;I;JJ
A I.J,K IN 1 2

2 1 1~C A MATRIX
211
222
233

A R[I;J]+~C[J;I;IJ

A I IN 1 2 3+~ll/3 4
A J IN 1 2++\2

1 1 l~C A VECTOR
222

A R[I]++C[I;I;I]
A I IN 1 2++1L/2 3 4

o 3
1 4
2 5

~3 3p'AHAPIPLET'
APL
HIE
APT

B
111 112
121 122

211 212
221 222

C
111 112 113 114
121 122 123 124
131 132 133 134

211 212 213 214
221 222 223 224
231 232 233 234

4

111
112

121
122

111
122
133

111

+/1 l~A

3 1 2G)B
211
212

A TRACE

5-37

1'5 in A as there are
+/A +~ (pB)[,KJ.

COMPRESS,
EXPAND
FUNCTIONS (1)
/ r \ \

Forms:

A / B
A f B
A /[K]B
A f[J]B
A \ B
A \ B
A \[K]B
A \[J]B

Where:

Results:

Conditions:

5-38

Compress with A the last dimension of B
Compress with A the first dimension of B
Compress with A dimension K of B
Compress with A dimension J from end of B
Expand with A the last dimension of B
Expand with A the first dimension of B
Expand with A dimension K of B
Expand with A dimension J from end of B

A is a Boolean single or vector
B is an array of any type
K is an index number single, in lppB
J is an index number single, K +~ (~lppB)[J]

The rank of the result is the rank of B, with only the
length of the indicated dimension altered.

Compress: The general form is A/[K]B. The Boolean
compression vector A must be the same length as the
dimension K being compressed of B: (pA)=(pB)[.X]

Planes across dimension K of B are selected in
ascending order wherever the corresponding elements of
A are 1, and planes are ignored wherever the elements
of A are O. Thus, the length of the Kth dimension of
the result is +/A.

Expand: There must be as many
elements along coordinate K of B:

The result is an object with rank the same as A but
having dimension K expanded to size pA. Each 1 in A
indicates the position along K of the planes of B.
Each 0 in A indicates a plane created from fill.
Depending on the type of B, the fill element is 0 for
numeric, blank for character.

If A is a scalar, it is coerced to the length of the
indicated dimension, i.e., (pB)[,KJpA.

COMPRESS,
EXPAND
FUNCTIONS (2)

/ -} \ ~

Dimension selector J counts dimensions from the end, or
anti-origin whereas K counts from the beginning
J ++ (~lPpB)[K]. For example:

A/[K]B ++ A~[(~lppB)[J]]B

Af[J]B ++ A/[(~lppB)[K]]B

K (or J) may be elided if the desired function applies
to the last (or first) dimension respectively.

Examples:

1 1 o 1/1 2 3 4
1 2 4

A
1 2 3
4 5 6

1 1 a/A
1 2
4 5

1/1 2
1 2

0/1 2

1 0 1/A
1 3
4 6

1 O/[l]A
1 2 3

o l,tA
4 5 6

o 1,t[1]A
1.+ 5 6

1 1 o 1 O/'APPLY'
APL

CA
USABLE
APPEAL

1 1 0 0 0 1/eA
USE
APL

1 1 o 1\1 2 4
1 2 0 4-

1 0 l\[l]A
1 2 3
0 0 0
4 5 6

1 0 1 1\1 0 l\A
1 0 2 3
0 0 0 0
4- 0 5 6

0\2 Op1
0
0 , '=O\O/'AB'A CHARACTER?
1

0=0\0/3 4- A NUMERIC?
1

1 0 1 0 l\'APL'
A P L

1 0 1,2 3p'PORALL'
FOR

ALL

5-39

TAKE, DROP
FUNCTIONS (1)

t ~

Forms:

A t B
A ~ B

Where:

Results:

Conditions:

5-40

Take corner with shape A from B
Drop A planes from B

A is integer vector or single (p,A)=ppB
B is data object

Each function returns a shaped data object of the same
type as n having a corner that is also a corner of B.
The rank of the result is ppE.

A[I] refers to the number of planes across dimension I
of B. Elements A[I]>Q reference the first A[I] suc­
cessive planes in increasing index order starting at
the origin. Elements A[I]<O reference the last A[I]
successive planes in increasing index order ending at
the anti-origin, (pB)[IJ. A[I]=O references no planes.

Take: The result has shape A. The planes of the
result across each dimension remain in the original
order as they had in B. The result is strictly a
subarray of B if ('A)~pB.

Overtake: Occurs for all the dimensions K[I] such that
O<K+(IA)-pE. In this case, K[I] planes of fill are
appended before (after) the (pB)[I] planes as the sign
of A[I] is negative (positive). The fill is blank for
character type B and zero for numeric type B.

Drop: The result has shape Or(pB)-IA. If A[I]>Q then
the first A[I] planes are dropped from the origin of
dimension I of B. If A[I]<O then the last IA[I] planes
are dropped from the anti-origin of dimension I of B.

If A is a single, it is coerced to a vector:

A +,A

If B is a scalar, it is coerced to a single with rank
p,A.

R + «p,A)pl)pB

TAKE, DROP
FUNCTIONS (2)

t .Jr

a "corner" of B.
the same corner
drop.

Take and drop both return
overtake is required, then
specified with either take or

If
can

no
be

Take or drop are origin independent. They often can be
used in place of indexing, possibly in conjunction with
other structure primitive functions such as compress
and rotate to permit processing on a dense array.

Examples:

3+1 234 5 2-j,1 2 345
1 2 3 1 2 3

3+1 2 3 4 5 2~1 2 3 4 5
3 4 5 3 4 5

4+1 2 A OVERTAKE 4-1-1 2 A EMPTY
1 2 0 0

A p4~1 2
1 2 3 0
4 5 6

1 2+A 1 1~A

2 3 2 3
p1 2tA p 1 l~A

1 2 1 2
1 3tA 1 Oi-A

4 5 6 4 5 6
3 4tA A o FILL 2 O-j,A R Eft1PTY

0 1 2 3
0 4 5 6 p 2 O-rA
0 0 a 0 0 3

3t'ABCDE' - 2.f.-'ABCDE'
ABC ABC

6t'ElvD' A BLANK FILL (,3)~'ABCDE'

END DE
2 3+7 A COERCED 34-'ABCDE'

7 0 0 DE
0 0 0 - 2 - 5 t ' ? '

?

5-41

SET
FUNCTIONS (1)
£ C :J U n "'-I

Forms:

A € B
A c B
A :> B
CuD
A n B

A ,.., B

lvhere:

Results:

Conditions:

5-42

Membership of A in B
Is A a subset of B
Is A a superset of B
Union of C and D, unique elements in (,C) ,,0
Intersection of A and B, unique elements in both (,A)
and (,B)
Set exclusion, unique elements in A but not in B

A,B are data objects
C,O are data objects of the same type

Membership: The shape of the Boolean result is the
shape of A. Each element is 1 if the corresponding
element of A occurs an~vhere in B; 0 otherwise.

Subset: The Boolean scalar result is 1 if all unique
elements of A also appear in B; 0 otherwise.

Superset: The Boolean scalar result is 1 if all unique
elements of B also appear in A; 0 otherwise.

Union: The result is a vector of the common type of C
and D containing the unique elements in (,e)"n in the
order that they first occur in the catenation.

Intersection: The result is a vector of the same type
as B containing the unique elements of A also occurring
as elements of B. The order is the order that they
first occur in ,A. For non-empty result, the types of
A and B must be the same.

Set exclusion: The result is a vector of the same type
as A containing unique elements of A that are not also
in B in the order of the first occurrence in A. Set
exclusion is also referred to as set difference.

Union with an empty argument provides the unique
elements in the originally non-empty argument.

SET
FUNCTIONS (2)
E: C ::l U n ~

Examples:

1 2 2 3 4€2 5 'A+4xABC+3'e:'ABCDE'
0 1 1 0 0 1 0 0 0 1 1 1 0 0

(2 3p16)€3 1 9 (24p'GOODWORK')e:'BOOK'
1 0 1 0 1 1 0
0 0 0 0 1 0 1

1 3 5 3c2 3p\6 'APL'c'APPLICATIONS'
1 1

1 3 5 3=>0 1 'BASIC,~rAPLt

a 0
1 3 5 3u4 3 2 'EASE'u'SAY'

1 3 5 4 2 EASY
1 3 5 3n4 3 2 t APPLIED' n 'PLAN'

3 APL
1 3 5 3"""4 3 2 'APPLE'''''' CORE'

1 5 APL
(to):>1 2 2 3#v3 2 1 ' ':> ' AB ' n ' CD '

1 1

5-43

GRADE
FUNCTIor~s

4 t

Forms:

4 A

'" A
~vhere :

Results:

Conditions:

Examples:

Grade up A
Grade down A

A is a numeric vector

Each result is a permutation of the integers in lpA.
The permutation can be used as a vector of indices to
the selection function which when applied to A will
produce a monotonic sequence.

Grade up: The selection sequence ascendingly sorts the
argument. A[l\A]

Grade down: The selection sequence descendingly sorts
the argument. A['A]

The permutation can be used to construct multi-column
sorts, one COllIInn vector at a time starting from the
last. It can also be used for key sorts, moving only
the key indices rather than the entire related recorQs.

Duplicate components in A return indices in increasing
order for either function.

The results are origin sensitive, the examples are for
origin 1: 1 +~ 11 +~ ,OIO.

45 8 4- 4 2 '5 8 4 4 2
5 3 4 1 2 2 1 3 4 5

5 844 2[45 8 4 4 2JA SORT 5 8 4 4 2[V5 8 4 4 2]
2 4 4 5 8 8 5 4 4 2

42.1 3.2 4.3 3.2 '2.1 3.2 '4-. 3 3.2
1 2 4 3 3 2 4 1

A
1 1 0 0 1 0 1 1 a A IF X IS A PERMUTATION VECTOR

O+B+'ABCD','12345' A THEN X +-+ 4~X
ABCD12345 X

4A 2 1 5 3 4
3 4 6 9 1 2 5 7 8 4~X

44A 2 1 5 3 4
5 6 1 2 7 3 8 9 4

B[4~A] A ~1ERGF: B['4A] A REVERSE MERGE
12AR3C45D D54C3BA21

5-44

Forms:

? N
A ? B

Where:

Results:

Conditions:

RANDOM
FUNCTIONS

?

Roll, random choice from N
Deal, random choice of A from B

N is a positive integer vector or single
A is a non-negative integer single, A~B

B is a non-negative integer single

Roll: For single N, a pseudo-random integer is
returned in the range IN. Each of the possible values
from the population of size N has equal likelihood of
occurring as the result; thus, sampling is done with
replacement. The shape of the result is the shape of
N. If N is a vector, element I is chosen from tN[I].

Deal: A vector of length A is returned, with elements
chosen randomly without replacement from lB. If A=B,
the result is a random permutation of lB.

Roll and Deal results are origin sensitive.

Roll and Deal use a common pseudo-random number
generator. A side-effect of execution of either of
these functions is to change the current random link
used to determine the next value. The random link
value can be preset using the DRL system variable. It
can also be initialized to a specified default value in
a clear workspace by using the)SEED system command.

Examples:

?10000 4?5
301 1 5 4 3

?6 6 6?6
2 1 4 3 5 1 6 2

?6 6 6 6 6 6 6?6
6 2 6 4 2 2 5 1 2 4 6 3

?2 2 2 2 100 100 O?10
1 2 1 1 36 87

5-45

J.

Form:

A .L B

Where:

Results:

Base A value of B

A is a numeric data object
B is a numeric data object

The numeric result is the conversion to decimal of B
expressed in positional number base with radices the
rows of A. This base can be a constant (such as 10
meaning powers of 10) or a vector of mixed values.

The result is the inner product of W (a weighting of A
having the same shape as A) with B.

W+.xB

The shape is (-1~pA),1~pB. Each vector along the last
dimension of W is the positional weighting to be
applied to corresponding vectors along the first
dimension of B, where the most significant elements
have the smallest index numbers. Each weighting vector
is formed from the reversal of the product scan of the
reversal of the vector along the last dimension of A
having the first element eliminated and 1 catenated at
the end. (I and K are scalars):

W[I; ••• ;K;J + q,x\cP11-A[I; ••• ;KiJ,1

If neither A nor B are singles, then A and B must be
conformable. The length of the last dimension of A
must equal tIle length of the first dimension of B.

The coercion of a single is by replication along the
appropriate dimension to the length of the other.
Scalars are treated as vectors.

If either A or B is the empty vector and the other is a
single or empty vector, then the result is 0, the
identity element for +/\0.

Base value can be used to pack vectors of
prec1s1on numbers into a single number.
space saving technique.

many small
This is a

5-46

The numeric range for integers (-1+8*13) is a limit
for the results of base value that can be reconverted
subsequently using the represent function 'T'.

BASE VALUE
FUNCTION (2)

.1

Examples:

10 10 10.1.3 7 1
371

10.13 7 1
371

1001.3 7 1
30701

2 2 2 2.11 1 0 1
13

4 3 2J.l 3 2
2

a 3 4.L2
30

3.5 2.5 1.5.L4 3 2
21.5

o 0 4J.-3 2 5
13

A
123
456

A~3 2 1
25 103

o 3.1A
7 11 15

A1.3 2pt6
20 30
53 90

HEX
0123456789ABCDEF

-1+HEXt'D9F'
13 9 15

16 16 16.1.13 9 15
3487

16l. -l+[iEXl 'D9F'
3487

A WEIGHTING COMPUTATION

A 100 10 1+.x3 7 1

A 100 10 1+.x3 7 1

A 10000 100 1+.x3 7 1

A 8 4 2 l+.xl 1 a 1

A 6 2 l+.xt 3 2

A 12 4 1+.x2 2 2

A 3.75 1.5 1+.x4 3 2

A 0 4 l+.x 3 2 5

A ARRAY

A (2 3p6 3 1 30 6 1)+.x3 2 1

A 3 l+. x A

A (2 3p6 3 1 30 6 1)+.X3 2p\6

A HEXADECIMAL VECTOR

A HEXADECIMAL TO DECIMAL

A FUTURE VALUE OF CASH FLOWS AT 10 0 / 0

(1+.10)il00 200 50 A 1.21 1.1 1+.xl00 200 50
391

o
4.11 2 8

A POLYNOMIAL (X*2)+(2 x X*1)+-e AT X=-4
A (-4*2 1 O)+.xl 2 -8

5-47

REPRESENT
FUNCTION (1)

T

Form:

A T B

Where:

Result:

Base A representation of B

A is a numeric data object
B is a numeric data object

The result is the representation of B in the number
systeM having as base(s) the vectors along the last
dimension of A. The rank of the result is (ppA)+ppB.
The shape of the result is (pA).pB.

If B is a scalar and A is a scalar, the result is AlB.

If B is a scalar and A is a vector, the result is the
representation of B in the number system having
(possibly mixed) base A.

For example:

R+ 5 3 4 T 117
R[3] + ..

R[2]
R[1] + ..

R IS 4- 2 1

1 +-+ 41117
2 +-+ 3129
4 +-+ 519

QUOTIENT IS 29
QUOTIENT IS 9
QUOTIENT IS 1

This result is the same as if 117 had been 57 + 60 x J
for any integer J.

If A is an array, each vector along the last di~ension

of A is a separate base for determining the
corresponding element of the result. Thus, if A is a
matrix, each coluron is a separate base vector.

5-48

If B is an array, each
base vector(s) of A.
outer product.

element is represented in the
This process is analogous to

REPRESENT
FUNCTION (2)

T

Conditions:

The highest index 0 in a base vector returns the entire
remaining quotient in that position of the result. All
index values with smaller indices are O.

Note that A values can be general numerics. Thus,
fractional or negative base systems can be used.

Represent and base value are related by the following
relation for vectors A and B:

If (fB)<lx/A then B +~ A~ATB

10T234
6

10 10 10T234 234
8 3
4 7
6 4

2 2 2 2T5
0 1 0 1

2.5 0.4 O.STO.52
2 0.2 0.12

2 2 lT3.2 3 • 2
1 0
1 0
0.2 a •8

2 2 2T2 3
1 1
1 0
0 1

(2 3p16)T7 15
0 0
1 1
1 2

2 2T2 13 1

10 10T23!~ 234

10 10T234

10T234 234

A HOUR MINUTE SECOND
24 60 60T3723

123
A INTEGER, FRACTION
o lT3.75

3 0.75
o 1T3.75 3.75

3 -4
0.75 0.25

R 0 GETS REST OF QUOTIENT 3 3
5 5 0 2T5 2 0

002 1 1 3
10 10 10 Tl0~2 3 4

234
HEX

01234567891BCDEF
HEX[1+16 16 16T3487J A DECIMAL TO HEXADECIMAL

Examples:

10
2 3 4

10
2 7
3 6
4 6

2 2
0 1 1
0 1 1
1 0 1
0 1 1

10
3 6
4 6

D9F

5-49

MATRIX INVERSE,
DIVIDE
FUNCTIONS (1)

m

Forms:

m B
A mB

Where:

Results:

Matrix inverse of B
Matrix divide .A by B

A is either a vector or a matrix with at least as many
rows as columns

B is a matrix with at least as many rows as columns

If B is singular, i.e., having fewer linearly inde­
pendent rows than columns, a domain error results.
Otherwise, B is non-singular and the following apply.

Inverse: The shape of the result is ~pB and the rank
is 2. The result is the generalized inverse of B. If
B is square, then

Identity matrix +~ (11~pB)o.=11~pB

+~ <mB)+.xB
+~ B+.x(ffiB)

If B is non-square, then the result is the generalized
inverse.

Identity matrix (11~pB)o.=\1~pB +~ (ffiB)+.xB

Matrix Divide: A and B must be conformable, i. e.,

(l+pA)=ltpB

Conditions:

The result is formally the same as
rank of the result is the rank of A.
result is (l~pB)tl~pA.

(mB)+.xA. The
The shape of the

5-50

The finite precision of computation results in only the
approximate inverse: the magnitudes of off-diagonal
terms should be 0 but normally are small compared to
the main diagonal terms of (OOB)+.xB or B+.xffiB. The
matrix is ill-conditioned to the degree that the
largest magnitude of the off-diagonal term approaches
1•

The comparison tolerance is used to determine singu­
larity: with large comparison tolerance most coef­
ficient matrices are "singular"; with the comparison
tolerance ~lE-12, few matrices are considered singular.

MATRIX INVERSE,
DIVIDE
FU1~CTIONS (2)

Ii]

The method used is Householder's orthogonal decom­
position. It is chosen over the more efficient
Gaussian elimination for the following reasons:

complete stability unless the coefficient
matrix is essentially singular

readily detectable singularity

single precision computations suffice

generalizable to overdetermined systems of
equations.

Although A~B is formally equivalent to (~B)+.xA, the
former matrix divide is preferable as it only requires
about half the computation and is more accurate.

A detailed discussion of these functions and som~ of
the following examples are adapted from the article:

Jenkins, 1'1. A., "DOr·1II'10-an APL Primitive Function
for Matrix Inversion--Its Implementation and
Applications", APL Quote Quad, Vol III, No.4,
February 10, 1972

Examples:

0.219
0.07619
0.1619

0.1048
0.181
0.009524

3
1
2

18
3
4

~B33

0.1524
0.009524
0.1048

~ffiB33

2 5
5 1
1 3
([EB33)+.xA3

2.181 0.6762 2.562
A3ffiB33 A MATRIX DIVIDE

2.181 0.6762 2.562
B33+. x A3ffiB33 A CHECK

18 3 4
A32~B33 A TWO SETS

2.181 0.01905
0.6762 0.8762
2.562 0.6381

B33+.xA32~B33 A CHECK
-5

5
1

B22
2 1
5 3

B33
325
151
213

A3
18 3 4

A32
18 -5

3 5
4 1

ffiB22 A INVERSE
3 1
5 2

B22+.xffiB22 RCllECKS
i.OOOEO 1.455E-l1
2.328E-l0 1.000ED

([t)B22)+.xB22
1.000EO -5.821E-l1
1.164E-l0 1.000EO

5-51

~1ATRIX IWIERSE,
DIVIDE
FUNCTIONS (3)

ft1

Linear Equations:

Find X, the solutions to the equation (B +.x X) = A,
arrays A and B.

given

B
3 2 5
1 3 1
2 1 3

A
18 1+ 5

Af}lB
3 2 1

B+. xAt!]B
18 4 5

AA
18 31-

L~
- 5

5 1
AA t}1B

3 4
2 2
1 3

A COEFFICIENT MATRIX

~ VECTOR OF RIGHT HAND SIDES

A Lc;OLUTION

A CHECK

A SEVERAL SETS OF RIGHT HAND SIDES

A SOLUTI01JS

Interpolation:

Find coefficients of approximating polynomial
that X is a vector of independent values and
corresponding values.

Y = F (X) given
Y is a vector of

Approximate F by polynomial of order n with coefficients

A = A[O] ,A['], ••• ,A[n]

Y[I] = A+.xX[I]*~-1+1PX

Solution for coefficients through the n+1 points in X, F (X)

Interpolation at XX not necessarily in X

XX .1 A

For example, if F (X) is SIN X, find SIN 0.223 given SIN O.l X l10.

5-52

X+O.1 X ll0
Y+l0X
O.223~Y~Xo.*$-1+1PX

0.221156329002
100.223

0.221156329006

A INDEPENDENT VARIABLE
A DEPENDENT VARIABLEs SIN (X)
A INTERPOLATED VALUE

A ACTUAL COMPUTED SIN 0.223

MATRIX INVERSE,
DIVIDE
FUNCTIONS (4)

~

Linear Least Squares:

Estimate parameters A[I] occurring in a model to be fitted to
data of the form:

Y = (A[1]xF1 X) + (A[2]xF2 X) + ••• + (A[n]xFn X)

where F1, F2, ••• , Fn are functions of a single variable or of
several independent variables.

The maximum likelihood estimator for the A[i] are given by the
least squares solution to the overdetermined equations

(F +. x A) = Y

where F [; i) has the values Fi X:
(more than n points).

The solution for 'P4 is

A + Y 00 F

Linear curve fit

y = (A [1] x X) + (A [2] x 1)

and Yare the observed data

F+Xo.*l 0
A+yftlF
YP+F+. xA
R-+-YP-Y

R COEFFICIENT MATRIX
A PARAMETERS OF BEST LINEAR FIT
A PREDICTED VALUES
PI RESID1JALS

Nth degree polynomial curve fit

F + X 0 • * <f> 0 , t Iv

Multiple linear regression: If F is a matrix of the form:

F = 1,X

where X is the matrix of observations:

X[i;j]

is the value of variable j at observation i. Then the parameters
of the linear regression model

Y = A[1]+(A[2]xX[1])+ ••• +(A[m+1]xX[m])

are

A -+- Y f!:l F

5-53

EVALUATE
FUNCTION

.t

Form:

Evaluate string S

Where:

Results:

Conditions:

Examples:

S is character string representing an APL expression

The result is the same as if S were an input entry for
evaluation. S is generally the result of expression
elaboration. Computed strings can be developed and
then evaluated.

S may not be a system command or any function
definition and editing action.

.1'3+4'
7

.1'3' t '+-'[1]. '4'

5-54

7

7

DAD

INDEX+l
.1'3','+-'[INDEXJ,'4'

WORD-+-tADD'
~(.INDEX),'~',WORD

A SAMPLE VALUE
A FUNCTION SELECTION

A A SAMPLE STRING
A USING DEFAULT FORMAT ~

FO~1AT

FUNCTIONS (1)
y

FOP~AT FUNCTIONS.

Formatted character data structures can be produced using the format
primitive functions. The monadic form provides an implicit format.
The dyadic forms permit explicit specification of the desired for~at.

The discussion cornmon to all forms or comparing forms is contained
here; detailed differences are descrihed on subsequent pages.

Forms:

• E
V • N
C • E
C .(L)

Where:

Results:

Conditions:

Implicit format
Numeric explicit format
Character explicit format
Character explicit formatted list

E is a data object of numeric or character type
N is a numeric data object
V is a numeric vector defining the edit format
C is a character string defining the edit format
L is a list of components, separated by se~icolons:

each component is either a null, or a data object of
any type.

The result is a character data object that represents
the data objects(s) of the right argument, formatted as
specified.

The implicit and numeric explicit forms preserve the
lengths of all dimensions except the last dimension
which is altered if F is numeric. E May be a vector,
matrix or general array.

Each character explicit form accepts as right argument
(or list components) only scalar, vector, or matrix
data objects. The result is a character matrix having
at least one row, and generally the maximum number of
rows of any matrix in the list.

The numeric explicit form is More efficient where
appropriate than the character explicit format. The
character explicit format has many more capabilities.

5-55

FOPJ.1AT
F!J~!CTIO!'lS (2)

...

FOR~ffiT SYNTAX DI~GRAMS.

Syntax diaqrams are directed graphs used to show the syntax clearly
and concisely. The allowable constructs, defaults, alternatives, and
iterations are recognized as encountered along any path. The diagrams
are ri~orous without heing cUMberso~e.

The rules for interpreting these diaqraMs are simple:

syntactic units are either literal APL characters or descriptive
names or underscored mnemonics

syntactic units are set off by spaces and separated by lines and
nodes

any path traced along a forward direction of the arrows will
produce a syntactically valid format

lines terminate at nodes: o arrows indicate entrance directions

iteration is achieved by a leftward path 0+

limited nUMber of occurrences is shown by a "bridge" /2\ covering
a number indicating the maximum number of crossings (here 2)

Porrrat Function:

--~o----------------------------• --- Data Object -----~o-~
~ t
0- Numeric Format Vector ---- • -- Numeric Array ----~o

~ +
0- Character Format Vector -- • --0------- E --------~o

~ is character or numeric
data ol)j ect

1- +
1- 0+ -0 +
~ i- t t
0- (-+-o----~o-) - --+0

i- t
o- f!. ~o

FLOATI!lG POINT

Nurreric Format Vector:

0+------------------------------0
~ t

- --+0 - l\7id th -+0 - - Decimal Digits - - ~o --+ FIXED POIlvT
1- t
0--------- 0 --------~o INTFCER
~ t
0- - Decimal Digits --+0

5-56

FORMAT
FUNCTIONS (3)

•

Character Format Vector: Clause:

0+----------- ----------0 --+0-----------------+0--+
~ t

~ 0+--------- , --------0 t
~ ~ t +

--~o~o~o----- Clause ---~o~o~o--~

~ t
0- H (Clause) -~o

0+------- . -------0
~ t
0-----+0- Phrase -+0
.., t
0- l1. - 0

Phrase:

t
X -- 0- Ii

A --+0 - !i
~

o------------------+o-----~o~o-- ------------------+0
~ ~ t -t t
+ 0- L -+0 ~ 0----+0----------------+0
1- ... t t +
~ 0-- E --+0- ~ +0- .~ -----------+0
~ t
0-------+0+0-----+0+0-----+0+0-- F --+0- ~ +0- .Q -~o t
~ t ~ t ~ + ~ 4- ~ .,. +
0- *<~> ~o 0- ~~ ~o 0- QQ ~o .,. o----~o------+o+o------+o

~ t + .,. t

--+0------------------------------ <~> -------------------------+0--+
~ t

0------------------------------- T --+0- Q ------------------~o
~ ~ t

~ 0----------------------+0
~ t

0-- I --+0- ff +0 0- §.!i. -+0

~~ is sign selector:

0+-/2\----0+--------0
• + t

-~~o- - /1\-+0-- <~> -+0--+
4- +
0- 0 /1\-+0
.,. +
0- + /1\-+0

QY. is qualifier:

0+--------0
oj, t

--+0 - L /1\-+0--+
~ +
0- B /1\-+0
~ t
0- C /1\-+0
+ +
0- Z /1\-+0

11. is replicator

1i is string

Q is column

f;l is width of field

Q. is decimal digits 5-57

IMPLICIT
FOR~AT

FUNCTION (1)
•

Form:

• E

Where:

Pesults:

Conditions:

Format E using implicit format

R is a data object

The result is a character data object.

If E is of character type, the result is identically E.

If E is of numeric type, the result is formed by
application of the rules:

Every element of E is rounded according to the
current print precision to get the specified
number of siqnificant digits (inteqers are not
truncated and trailing fractional zeros are
ignored) and then converted to characters.

If E is scalar, one blank is prefixed.

If E is vector, the result is also a vector. This
result is the ravel of an array formed containing
the character representation of each element.
Sufficient columns are provided that at least one
blank precedes each non-blank, and all decimal
points are alined.

If E is an array, the result is also an array
except that the last dimension is expan~ed in the
sa~e ~anner as if the array were raveled.

The lenqth of the last dimension of the result is an
integer multiple of the length of the last dimension of
F, since the same width applies to each clement.

For some
blank.

elemcnt(s) there will be only one preceding
Other ~ay have more than one blank.

5-58

Print precision also controls the printed numbers.

Exponential notation is used for all output if any
element has either an integer part too big to be
exactly expressed, or only a fractional part and the
exponential notation would be shorter by 3 or more
characters than the numeric notation.

•

IMPLICIT
FORMAT
FUNCTION (2)

•

Examples:

OFP+-6
D+-Y+12345

12345
"y

12345
p.,12345

6

A 6 DIGITS PRINT PRECISION
A NORMAL DISPLAY

A SCALAR IMPLICIT FORMAT

A CHARACTER VECTOR

A ARRAY NORMAL DISPLAY
o 22
0.44 -0.5

1 0 1 2 A E NOTATION ONLY WHERE REQUIRED
1 1000 1000000

2 1 0 1 2 A E NOTATION IF ANY DOES NOT FIT
lEO 1E3 lE6

X
12.34 0 11

.x
12.34

.tQX
12.34

o
11

222
333

0.44
1000*-2

lE-6 0.001
.1000*

lE-6 1E-3
A

12.34
333

o

222 333

11

A

0.44
A

222
A

NORMAL DISPLAY

+~ ,,,~X VECTOR IMPLICIT FORMAT
-333 0.44

COLUMN MATRIX IMPLICIT FORMAT

'fA
12.34 0 22

333 0.44 -0.5
OPF-+-2
.A

1.2El 0 2.2El
3.3E2 4.4E 1 5.0E-l

.. 'APL '
APL

p.'APL'
3

'TEMP=',(.99.2),'o F'
TEI,JP= 9 9 • 2 0 F

A ARRAY IMPLICIT FORMAT

A 2 DIGITS PRINT PRECISION
A AFFECTS IMPLICIT PORMAT

A CHARACTER IMPLICIT FORMAT

A NO CHANGE

A ONE SPACE TO LEFT, NONE TO RIGHT

5-59

NUMERIC
FORMAT
FUNCTION (1)

•

Form:

v • N

Where:

Results:

Conditions:

5-60

Numeric explicit format of N according to V

V is numeric format vector
N is the numeric data object to be formatted

The numeric data object N is represented as a character
data object. The shape of the result is the same as N,
except that the last dimension is determined by the
format v.

The format V must be an integer vector of length 2xM
where M is a positive integer. Successive pairs of
elements from V specify how successive planes across
the last dimension of N are to be formatted.

If W is the first and D is the second member of a pair,
all elements of the corresponding plane across the last
dimension of N are formatted in a field W wide with D
decimal places. The character format equivalent is
also shown.

D > 0 +~ F W . D fixed point
D = a ++ I W integer
D < 0 +~ E W . D exponential

If M is less than the length of the last dimension of
N, then the format V is cyclically reused.

A field width inadequate to allow representation of the
number is filled with 1*1.

In fixed point representation this fill occurs if the
integer part requires more than W-D+2 digits.

The exponential result is left justified with leftmost
column for negative mantissa sign (otherwise blank).
The next column is the mantissa integer part N, 1sN<10,
then the decimal point, then D decimal part digits.
Next is E , then exponent negative sign only if needed,
then finally exponent (one digit if sufficient). Thus,
W must be at least 0+4 and may need to be as much as
D+6 to allow representation.

NUMERIC
FORMAT
FUNCTION (2)

•

Examples:

10 3.0 123 0.0125 1234.5678 A VECTOR, FORMAT CYCLIC
0.000 123.000 0.012 -1234.568
10 3.~0 123 0.0125 1234.5678 A ARRAY
0.000

123.000
0.012

1234.568
5 0 5 0 8 4 12 3.0 123 0.0125 12345.678 A VECTOR

o 123 O.012S-1.235E4
5 0 8 3.100 200 0 .+10 20 0 .+1 2 3 A ARRAY

111 112.000 113
121 122.000 123

211 212.000 213
221 222.000 223

5052.35.12827.3 1l56 5
3 5.12 827.35 -5

7 -1.~-53.8 -0.0000345 0 12345678 2.35El0 4.0E-15 0.25
5.4El
3.4E-S
O.OEO
1.2E7
2.4El0

2.5E-l

7 1 • ~-53.8 -0.0000345 0 12345678 2.35El0 4.0E-15 0.25
53.8
0.0
0.0

0.0
0.3

5-61

ClIARACTER
FO~1AT

FUNCTION (1).,

Forms:

C • E
C " (L)

\lhere:

Results:

Conditions:

Character explicit format
Character explicit formatted list

C is a character string specifying the format
E is a data object of rank at most 2
L is a list of components separated by semicolons.

The result is character data matrix representing the
right argument or list components according to the
format specification. The number of rows in the result
is the maximum of the number of rows in the matrices
that comprise the right argument. If only scalars or
vectors appear in the right argument, then a matrix
with one row results.

A scalar component is replicated in all rows. Each
element along the last dimension of a shaped component
is formatted according to the corresponding format
phrase.

Each list component is either E or null.
type or shape conformability requirement
components.

There is no
between list

A character matrix is created of appropriate shape
filled with blanks. Then, non-blank characters are
inserted according to the format string applied to
corresponding portions of the right argument. Separate.
format interpretation occurs for each row in increasing
order. Only the top fields in the result have values
for any matrices with less rows than the maximum.

A null list component may be used to allow replication
in all rows of the format specifier.

Character Format Syntax Chart:

The format character string C has many opt.ions. It should conform to
the following syntax. The leftmost entry is the syntactic unit being
defined in terms of one of the alternatives, if any, to the right of
'is'. Upper or lower case letters in this type font represent
syntactic units further defined. Letters or characters in the APL
font represent themselves. 'text' represents any APL string excluding
, > ' Blanks are ignored except within I t.ext' • Character represen-
tations of integers are used for r, M, Wand D.

5-62

CHARACTER
FORl·1AT
FUNCTION (2)

•

f is s or SiS; • • · is format
s is g or g,g, • · • ,g or empty segment
g is c or r(e) group
r is optional clause replicator, replicator

default is infinite
c is p or p,p, · • · ,p clause
p is one of: phrase

M J A W
1-1 J E \v.D

M L Q F t~ .D R
M L Q I W R

M X vl
t-1 T N

<text>

character object formatting
floating point numeric formatting
fixed point numeric formatting
integer numeric formatting
skip W characters forward, M times
tab to N characters from start of format;
(may be used to back up for replacement)
literal text for each row;

M is

vl is
D is

L is
B is
R is
C is

S is

optional phrase replicator
default is 1
total columns for field
optional number of places to right
of decimal point, default is 0
B or C or B C or empty
*<text>
C or empty
S<text> or S<text> S<text>
or S<text> S<text> S<text>
one or more of:

phrase replicator

field vlidth
decimal places

left decorator
background for fiel,
right decorator
conditional text

sign selector

insert 'text' in field if negative
o insert 'text' in field if zero
+ insert 'text' in field if positive

J is L or empty, default is right
justify in field

Q is zero or more of:

L left justify in field
B skip if zero
C insert commas
Z leading zero insert

N is columns to right of start of format

justifier left

qualifier

next column

5-63

ClIARACTER
FORr-1AT
FUt~CTION (3)...

The prior syntax chart provides named syntactic elements for semantic
description only. The terminal forms as used in Q (shown in APL font)
are the same as in the syntax diagram.

In general, a right argument data object is treated as a matrix. A
vector or scalar is treated as a matrix with only one row.

The form using a parenthesized list containing component data objects
separated by semicolons imposes no--conformability or type restriction
on adjacent components. The formatted result will have as many rows
as there are in the data object having the most rows. The
corresponding fields for objects with less rows will be blank. Each
semicolon represents a synchronizing point with a semicolon in the
corresponding format.

Each format segment applies in order to the corresponding data list
component. The format segments are cyclically reused if necessary,
until the entire data list has been formatted. If the format segment
is empty, default formatting is used to format that data object.

Each format group applies in order to the corresponding columns of any
one data list member. The format group is cyclically reused if
necessary, until all columns of the data list member are formatted.

\"li'thin the format group an integer clause replicator can be used to
limit replication. Without the replicator the clause is assumed to
replicate cyclically as often as necessary.

A format clause is a series of phrases separated by commas.

Each phrase specifies the field width, and the content for that field
resulting from either conversion of a data object or a literal text.

A TIle character object formatting phrase permits expansion
the columns of the object if vI is greater than 1. It
explicitly justified left, or right by default.

between
can be

E The floating point numeric formatting phrase provides results in
scientific notation: mantissa E exponent, e.g., 3.2E-2 or 9.73E21.
Default columns for non-negative signs are elided. This format can be
explicitly justified left, or right by default.

F The fixed point numeric formatting phrase provides fixed, aligned
format with a specified number of decimal places. This phrase permits
qualifiers and left or right decorators.

I The integer numeric formatting phrase provides integer results with
qualifiers and left or right decorators.

5-64

CHARACTER
FORMAT
FUNCTION (4)

•

Any numeric formatting phrase for which the field width is too small
gives '*' replicated for the entire field in the row in which the data
element was out of range.

X The skip formatting phrase provides rightward skip over the
indicated number of columns. The replicator is not needed. Instead,
using the default replicator of 1, the width can be the product of
replicator times width. The columns are skipped, not blanked, to
allow any prior content to remain.

T The tab formatting phrase allows absolute repositioning to any
result column starting from the leftmost as column O. Any subsequent
formatting phrase will overwrite any prior contents.

A <text> phrase unconditionally includes the text string in every row
of the result. The text cannot contain the '>' character.

R The integer phrase replicator specifies the number of uses of the
phrase before moving to the next phrase in the clause.

W The total field width for character or numeric
should include sufficient columns for the entire
ranqe of values including signs and decorations.

phrase formatting
anticipated result

D The decimal places for fixed point and floating point numeric
formatting permit specified precision result. Rounding occurs as part
of formatting.

Left and/or right decorators
forrnattinq.

apply to fixed point or integer

- 0 + The sign selectors alter the result depending on the sign of
each individual data element. These prefixes to explicit text can be
applied separately, or in combinations. At most one of each sign
selector should occur on each side of a formatting phrase. The same
sign selector may appear in the left and right decorators. A ,_,
selector removes the negative sign from any negative element.

*<text> A field background can be specified. The text, replicated if
necessary, is initially placed in the field, then partially replaced.

L The default justification of phrases that do not require the
specified width is to the right. Unless background is specified,
excess columns to the left are blanked. Left justification can be
explicitly specified instead, blanking excess columns to the right.

L B C Z qualifiers alter the field content for integer and fixed
point formatting. They include left justification; blanking (the
numeric result) if the element value is zero; insertion of cowmas to
set off positive powers of 1000 for large numeric results; and
insertion of leading zeros to fill the field.

5-65

CIIARACTER
FORl·1AT
FUNCTION (5)..

Character Vector Formatting Examples:

Numeric data objects

D+NV+-1230 4.55 0 0.765 60.525
1230 4.55 0 -0.765 60.525

D+NM+-O.OS 25°.x410 1 0.025
2.050E1 -S.OOOE-2 -1.250E-3
1.025E4 2.500El 602S0E-l

Floating Point

'El0.2'.NV
1.23E3 4.55EO O.OOED

'El0.4,E6.0.El0.2'.NM
2.0500El -S.E-2 -1.25E-3
1.0250E4 3.El 6.253-1

'E6.1'.-0.12 0.12

'E7.1'.-0.12 0.12

1.2E-l 1.2E-l

Fixed Point

'Fl0.2'"QNV
1230.00

4.55
0.00
0.47

60.53
'F10.2'./tIV

1230.00 4.55 0.00
'F7.2,F6.1,F8.4'.NM

20.50 0.0 -0.0013
******* 25.0 0.6250

Integer

0.76

6.0SEl

60.53

5-66

'I6'.NV
1230 5 0

, IS, I 2 ' • Nf;J

21 a a
1025025 1

1 61

Phrase Replicator

'2I3.2IS,3I2'. 1 2 3 4 5 6 7 8 9
1 2 3 456 7 8 9

Justify Left

'LI5'.~-1 2 34 567
1

2
34
567

Background

'*<o>I5'.-1 0 2
000-10000000002

'*</f\>I5'.1 23456
/1\/1/1\23/1456

Sign Selectors

'+<P>O<Z>-<N>IS'.-1 0 2
Ml ZO P2

'+0< >-«>IS+O< >-<»'.~-1 a 2 A (NEGATIVE)
(1)
o
2

CHARACTER
FORMAT
FUNCTION (6)

"

32

541
a

,-<
-1

-35

->0<

Blank Zero Field

tBI5'~-1 0 5
1 5
'BLI5'.~-1 0 5

1

5

5-67

CIIARACTER
FORMAT
FlJ1JCTION (7)

...

COmMa Insert

'CI10'.1234567
1,234,567

'CF12.4'~1234.5678

1,234.5678

Zero Insert Left

'ZI3'~~1 23 456
001
023
456

Combined

'*<o>ZBI5'.~1 23 456 0 987
00001
00023
-0456
o 0 0 0 0

00987
'ZBCI7'.1 0 2345 1

000,001 002,345 00,001
'RCI5'.~-1 0 234 5678

1

234
5,678

5-68

CHARACTER
FORMAT
FUNCTION. (8).,

Character

'A2'Y2 4p'GOODWORK'
GOO D
W 0 R K

'Al,A2,A3.A4'.'OPEN'
OPE N

'LA2 t .,'LEFT'
L EFT

Tab and Skip

'I15.TO.I5.X20.I5'.25 50 75
50 25 75

'I15,TO.I5,I25'.25 50 75
50 75

Text

11 0

101 0

-2510

Combined

'I5;X4,2Al'~(5 6;'AB')
5 6 AB

'I5;X4,A2'.(100;~'AB')

100 A
100 B

'I5;Xq,Al'''(,100;~'AB')

100 A
B

'I5;A5;F5.1t.(~1 10 100;~'FINEt;2 3pl.1 x l 2 3 4 5 6)
1 F 1.1 2.2 3.3

10 I 4.4 5.5 6.6
100 N

E

3
'LI5.2(LI3.F7.2.X4),I3'.3 5 15.72 17 23.15 3
5 15.72 17 23.15 -3 5-69/5-70

SECTION 6

SYSTEM VARIABLES, SYSTEM FUNCTIONS AND SHARED VARIABLES

GENERAL.

The system variables provided within each workspace of the APL
processor specialty tailor the processing to the application of that
workspace.

The ~stem functions are provided to permit the user to perform many
functions that query or alter the run environment of the account or to
query the total environment of the APL system.

The shared variables and the system functions that handle them permit
the user to communicate with other processes concurrently running with
APL/100 or with other APL users.

The classes of system functions include:

Function transformations
Name functions'
Debugging aids
Execution controls
Special characters
Status inquiries
Shared variable handlers
I-bar primitive functions

6-1

SYSTEM
VARIABLES (1)
OCT DIG Opp DRL

System variables always have values. They are provided in a workspace
by default. They are used by the APL processor to specialize its
behavior for the current needs of the user of that workspace. Only
values (N) in limited domains may be assigned to these variables.

System
Variable

Name/
System
Command

Purpose Suggested Domain
Default Value for N
for new account

OCT Comparison
Tolerance
)FUZZ

relative tolerance used in
comparison with Boolean
and integer domains and the
primitive functions:

< ~ = ~ > ~ € c ~ nUl

o ~N< 1

DID

OFF

Index
Origin
)ORIGIN

Print
Precision
)DIGITS

origin for ordinal counting, 1
applies to the primitive
functions:

t 4 , ? [] ~

number of significant digits 10
used to round and display or
default format fractional or
scientific notation numbers

o or 1

integer
1 thru 12

DRL Random Link
)SEED

starting value for random
number generator

131131704506 integer
o thru -1+2*39

Any of these system variables may be included in the local names list
of a defined function. In contrast to other identifiers in the local
names list, the global value of a system variable is retained within
the function until first an assignment is made to that local instance
of it. This permits the function to remain sensitive to the calling
environment. For example, assume a result must depend on the callers
origin. The global origin value can be retained in another local
variable. Then the function is executed in the desired local origin
to develop the desired local result. Finally the result adjusted for
the global environment origin value before return to the calling
function.

In a clear workspace the suggested default values for the system
variables will result. These can be overridden by the user of the
account with the system commands corresponding to the system
variables. The system variables do not alter the defaults, and
changes to the defaults only affect clear workspaces, they do not
alter the values of the system variables in a non-clear workspace.

6-2

SYSTEM
VARIABLES (2)
OCT OIO OPF DEL

The comparison tolerance is a relative tolerance used in comparisons.
It helps resolve the problem of the finite precision with which
numbers are represented within the computer. In a dyadic function the
comparison tolerance is relative to the left argument. For example:

A=B +~ DCT~I(A-B)fA

A<B +~ DCT~(B-A)fIA

The comparison tolerance is also used for domain checking
domain of the function is non-continuous, e.g., integer
domain. In this case the test is:

(r(I X) x 1-OCT) =l (I X) x 1 +OCT

where the
or Boolean

The index origin affects the denumeration of elements and the
dimensions in an array.

Origin

o
1

Denumeration begins with

o
1

The index origin affects the first number for ordinal numbering:

~ per~ute dimensions (dyadic left argument)
1 integers, index of
4t grade up, grade down
? roll (monadic), deal (dyadic)
[] subscripts on arrays [bracketed]

dimension selector [bracketed]
laminator [bracketed]
file component selector [bracketed]

The print precision affects the result of all numeric outputs in
fractional or exponential form. No more than OPP significant digits
are displayed. Rounding is invoked first. Integers are displayed
with full precision if their magnitude is less than 2*39. Also, print
precision affects the character object result of default formatting
using Y.

The random link affects the result of the roll and deal functions.
The random link is used as the seed to the random number generator.
Each time the random number generator is called, the seed provides the
starting value to determine the next value(s) delivered. Each use
delivers a result and changes the seed. Given the same seed and the
same range, the random number generator will generate the same random
numbers (and return the same new seed).

SYSTEM FUNCTIONS.

System functions allow the user to affect the run environment.

6-3

FUNCTION
TRANSFORMATIONS

OCR OVR OFX

System Name
Function

OCR N Canonic
Representation

OVR N Vector
Representation

OFX C Fix

Results

Character matrix. N is the character string
name of an unlocked defined function. If
not, result has shape 0 o. Otherwise each
row is a line of function N. The first row
is the function header. Line numbers and
opening and closing dels are omitted.

Character vector. N is the character string
name of an unlocked defined function. If
not, result is an empty vector. Otherwise
each line of function N is terminated by the
return character DR after the last non-blank.
Line numbers and opening and closing dels are
omitted.

Defined function. C is either a character
vector or matrix in the form from the vector
or canonic representation. The function name
will be from the first line of C. If that
name is local to the function in which the
fix is executed, the fixed function is also
local. If an explicit result is required, it
is the name of the fixed function.

Canonic Representation of a function is useful for user-written
function editing routines where line rearrangement, function merging
or separation is desired. Note that the shape of the result is the
number of lines (including header) by the length of the longest line.
Thus, this form generally takes more space than vector representation,
particularly if the line lengths differ.

The Vector Representation is usually the more compact representation,.
and is the preferred form for storing functions as file components.

A Fix of a character representation returns the function in unexecuted
form. This form takes slightly more space than after first execution.

The defined function name resulting from a Fix must not have prior
meaning. If the function name is local to some function in the
calling sequence resulting from executing the Fix, then the fixed
function is local to that function. The definition of the fixed
function disappears upon exit from the function to which the fixed
function is local.

6-4

NAME FUNCTIONS
DNL ONe DEX

Name system functions work with a string or matrix of names.

System Name Result
Function

DNL N Name List Matrix of names of objects of specified kinds in
the current environment. Names are alphabetized,
left justified, one per row. N is a numeric
scalar or vector selecting object kinds:

o no associated meaning
1 labels
2 variables
3 functions
4 other (groups)

A DNL N

ONe c

OEX C

Selective
Name List

N~e

Classi­
fication

Expunge

Like Name List, but only includes names starting
with a character in the string A. A is chosen
from letters, underscored letters, ~ and ~.

Vector of integers indicating name use in the cur­
"rent environment for corresponding name in charac­
ter or matrix C. Result values:

o no associated object
1 label
2 variable
3 function
4 other (group)

Objects corresponding to names in character vector
or matrix C are expunged. The objects must not be
labels, groups, or active functions. If required,
the result is a Boolean vector with ones
everyplace the corresponding name from C was
expunged.

A character string argument to Name Classification or Expunge must
contain only one name. A character matrix argument must contain one
name per row.

The most local occurrence of a name in the current environment
determines its kind. A more global occurrence may be shielded by an
occurrence as a local name in an active function. A more global
meaning (if any) is restored upon exit from the function to which the
name is local.

Expunge may be used to eliminate current meanings for objects from the
current environment so long as they are not names of active functions
or labels. Unlike)ERASE, other local names can be expunged.

6-5

DEBUGGING AIDS (1)
DST DSS OSM
DRT DRS ORM
DQT OQS DQM OMV

The following system functions are oriented to lines of unlocked user­
defined functions.

Monadic
(all lines)

OST F

OSS F

DSM F

ORT F

DRS F

DRM F

DQT F

OQS F

OQM F

DMV F

Where:

F is
N is
L is

B is

V is

Name Dyadic Result
(specified lines)

Set Trace N DST F L

Set Stop N OSS F L

Set Monitor N DSM F L

Reset Trace N DRT F L

Reset Stop N DRS F L

Reset Monitor N ORM F L

Query Trace B

Query Stop B

Query Monitor B

Monitor Values N OMV F V

character vector name of unlocked defined function
numeric vector of line numbers
numeric vector of lines with property (set, reset)
returned only if required
Boolean vector, 1 if property set, 0 if reset; one
element per line including header
vector of numeric monitored values accumulated during
executions since set.

6-6

DEBUGGING AIDS (2)
OST OSS DSM
ORT DRS ORM
DQT OQS OQM OMV

The monadic forms apply to all lines including the header line O. The
dyadic forms apply only to altering the current setting for line
numbers in the left argument.

During function execution, the effects are as follows on encountering
a line on which one or more aids are set:

Aid

Trace

Stop

Monitor

IIeader Line Body Line

result returned by function result

suspend prior to return suspend before execution

increment number of calls increment CPU time in
line execution

The Trace result forms are:

Function-Name [Line-Number]

Function-Name [Line-Number] Type (Shape) Value

The first form occurs if the line has no result, otherwise, the second
form occurs (including a leftmost control transfer value or
assignment).

The Type is B for Boolean, C for character or ~J for numeric. The
Shape is a numeric vector; the Value is the normal displayed value.

The Stop result form is:

Function-Name [Line-Number].

After a Suspend on the header after function completion, the local
names are still defined.

The Monitor values are internally accumulated more precisely than they
are displayed. The ceiling of the accumulated number of milliseconds
is displayed. A time of 0 is shown only for unmonitored lines or
monitored lines that have not been executed. Thus, monitoring all
lines over a period of execution is an effective way to determine if
some program path has reached each line, and also the time spent in
each line.

If a line contains a call on another function, any time spent in that
function would be accumulated there, instead of in the calling line.

6-7

EXECUTION COttTROLS
DDL OED LJER

Normal execution can be altered using the following system functions.

System Name
Function

ODL D Delay

Result

optional actual delay D in seconds

OED S Edit edited line after editing with normal
within-line editing marks 'I', I.' or '

entry of,

B OED S Phrase Edit edited line after editing string S according to
Boolean vector B with ones meaning phrase
terminators '.'

DER S Error simulates
execution.

an error occurring at the point of
S is displayed as the error message.

TIle specified Delay amount D is an integer indicating minimum desired
execution pause before resumption. The actual delay, returned if
required, also includes time awaiting an APL processor once the
specified delay has occurred.

~ach Edit function accepts a character string as the right argument.
This string may not include any of the following characters:
linefeed, return, backspace, tab or null. The monadic form displays
the string and returns to the left margin for entry of a line of edit
characters applied to the characters above: 'I' for delete, '.' for
~lrase end before, and spaces for no change. The next line displays
the first phrase for editing. The ATTN causes entry of the next
phrase, etc.

The Phrase Edit dyadic form uses the Boolean left argument (of the
same length as the string) with each one indicating a phrase end.
This avoids the line of entered edit characters.

The Error message is displayed, an error indication prompt is given,
and execution 18 suspended. This is principally useful in a locked
function, where the error message results in the suspension point
indicator being in the line of the calling function containing the
call, rather than in the line containing the DER. The last line
executed in the function is the one containing the DERi no other
explicit control transfer out of the function is required.

6-0

SPECIAL CHARACTER
SETS (1)
DB OL DR DT
ON OA DD DAV

The single characters or character vectors below are the values
returned by niladic system functions.

System Name
Function

Result

DB

DL

DR

DT

ON

DA

DD

Backspace

Linefeed

Return

T~

Null

Alph~et

Digits

scalar backspace character

scalar linefeed character

scalar carrier return character

scalar tab character

scalar null character

character vector 'ABC ••• Z'

character vector, '0123456789'

DAV Atomic Vector all APL characters

These characters are processed internally to APL just as any other
elements of a character data object. The only special properties of
the first five are associated with output processing for terminal
display. Some terminals may not adequately accept these characters.

The Backspace character can be used to display overstruck output
characters not in the allowed character set. It can not be used to
move to the left of the start of the display line.

The Return character causes completion of an output line, just as the
RETN key does for input. It includes both line feed and cursor return
to the left margin.

The Linefeed character can be used for advancing the display line
while the cursor is positioned into a line without return.

In cases where the cursor is at the left margin, Linefeed and Return
have the same external effect.

The Tab character can be used to prepare output with irregular
terminal physical t~ settings. In. this use, the normal APL editing
to insert tabs in output for display should be dis~led. The tab
interval should be set to 0 by)TABS O. The print width may be
exceeded.

6-9

SPECIAL CHARACTER
SETS (2)
DB OL DR DT
ON OA OD DAV

The Null character takes one unit of transmission time when sent to
the display, but has no visual effect on the normal static display.
Its principal use is with non-standard display devices such as
plotters that may require time to complete a prior command.

The alphabet and digits are often useful in text processing.

The atomic vector includes all characters defined for APL. The
displayable characters are shown in table 6-1. The index position
numeric location of each character is shown in the last line below
each character. The hexadecimal equivalent is shown in the middle
line.

The shape of the atomic vector is 256. Only the printing and special
characters are shown in the table. The entries shown as ??? and the
others above 175 are non-printing. Any attempt to display one of
these results in the squish-quad D. Since these are not displayable,
their use should be carefully considered. The principal application
of atomic vector is for communication with external processes through
shared variables.

The left tack (77), right tack (78), diamond (133), left brace (134),
right brace (135), and currency symbol (143) are not available on all
terminals. Printing conventions for these are uncertain on 88
character terminals. Note that these 6 extra characters are not part
of the necessary APL character set.

6-10

SPECIAL CIIARACTER
SET, ATOMIC VECTOR

DAV

Table 6-1

Character Representation Order in Atomic Vector

A B C D E F G H I J K L M N 0
00 01 02 03 04 05 06 07 08 09 OA OB oC OD OE OF

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

P Q R S T U V W X Y Z 0 1 2 3 4
10 11 12 13 14 15 16 17 18 19 lA 1B lC tD 1E IF
16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

5 6 7 8 9 + x . r l * • I
20 21 22 23 24 25 26 27 28 29 2A 2B 2C 2D 2E 2F
32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47

? 0 A V ~ ¥ < S = ~ > ;t p • 1

30 31 32 33 34 35 36 37 38 39 3A 3B 3C 3D 3E 3F
48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63

t .J. ~ t / \ 4> ~ € l. T U n t- -4 C

40 41 42 43 44 45 46 47 48 49 4A 4B 4C 4D 4E 4F
64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79

ON ~ ~ f! + 0 () [] I 0

50 51 52 53 54 55 56 57 58 59 SA 5B SC 5D SE SF
80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95

V \1' - d ~ ~ fd. ~ c:. Q li. I.. i. K It.
60 61 62 63 64 65 66 67 68 69 6A 6B 6C 6D 6E 6F
96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111

M li. Q E. Q 11. §. L Jl r &! l. r ~ [!] A

70 71 72 73 74 75 76 77 78 79 7A 7B 7C 7D 7E 7F
112 113 114- 115 116 117 118 119 120 121 122 123 124 125 126 127

a lJJ $ m 0 { } DB OL DR ??? ??? ??? OT $
80 81 82 83 84 85 86 87 88 89 SA 88 8e aD 8E 8F

128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143

.l ., f \ e C 8 ~ ~ ~ § ~ ~ (fJ m [lJ
90 91 92 93 94 95 96 97 98 99 9A 9B 9C 9D 9E 9F

144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159

lSI ~ HI ffi ~ f2J ??? ??? ??? ??? ??? ??? ??? ??? ??? ???
AO Ai A2 A3 A4 AS A6 A7 A8 A9 AA AB AC AD AE AF

160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175

6-11

STATUS INQUIRIES
OPT OPW DWI DAN DAI
ONEWS OLe OTS DUL
DWA DNA DLA OFA DBA

Status inquiries are niladic, value returning system functions:

maximum characters/display line set by)WIDTH n

uniform physical tab interval set by)TABS n
assumed for terminal

System Name
Function

OPT Print Tabs

DPW Print Width

DWI Workspace ID

DAN Account Name

DAI Accounting
Information

DNEWS News

Result

character vector: identifier

character vector: identifier

computer time, connect
time this session

system news sign-on message

Remarks

)WSID

I29 +--+ DAN

in milliseconds

OLe

DTS

Line Count

Time Stamp

numeric vector: includes line
on which line count occurs,
then other line numbers of
functions in state indicator

numeric vector: year,
month, day, hour, minute,
second, millisecond

I27 +-+ OLe
I26 +--+ (to)pOLC

Example
1974 12 31
23 59 59 999

DUL User Load

DWA Workinq
Availability

DNA Name
Availability

OLA Library
Availability

DFA File
Availability

DSA Shares
Availability

number of user accounts on APL

bytes remaining,
bytes in use in workspace

slots remaining, slots
assigned in symbol table

workspace slots remaining,
workspaces in)LIB

file slots remaining,
files in)FILES

shared variable slots
remaining, in use

I23 +-+ DUL

r22 +-+ 1 tDWA

Use of the above status inquiries is preferred to the redundant I-bar
primitives. The sum reductions of the last two area inquiries provide
the quotas established by the installation for the account. The number
of symbols in the name table is +/DNA, set by)SYMS n for the clear
workspace default, or)CLEAR n for a particular workspace. Space in a
workspace is measured in bytes. See Appendix B.

6-12

SHARED
VARIABLES (')

SHARED VARIABLES.

A shared variable permits coordinated data exchange between the user
process and one other partner process external to it. A Arocess is
either an active workspace of an APL user or an APL share variable
utility. APL user processes are referred to by their account names.
APL utility processes have account names that are character
representations of integers from 1 to 999.

Sharing means that either process can use or set the shared variable
value. Sharing is bilateral; no more than two processes can share a
variable at one time. Neither process is dominant.

A shared variable has a name used internal to the workspace. It also
has an external name,--or surro~ate, used in common by sharing
processes. The surrogate may be t e same as the name, in which case,
only the name is needed. Several shared variables may be in use at
one time. The same surrogate may be used with more than one internal
name, each shared with possibly different processes. An internal name
of a shared variable may have only one surrogate associated with it.

Use of a shared variable is initiated by this typical sequence:

Process A

tenders an offer to share

Process B

accepts the offer

Thereafter either process can access the variable being shared. The
degree of coupling is the number of processes that currently agree to
share a:particular variable, as viewed by ones own process:

o if the name is currently not in use as a shared variable
1 if an offer has been made but not been accepted; or after

sharing, an offer is retracted by the other process
2 if an offer has been made and accepted

When the degree of coupling is 2, either process may access the common
value. Access includes both setting (assigning a value to) and using
(once assigned, then referencing the present value of) the variable.

The coordination of data exchange between the two processes is based
on a Boolean access control matrix (ACM), whose elements control the
allowable sequence of accesses. Each shared variable has an ACM.

The access control matrix CACM) .has shape 2 2 and has Boolean
elements:

1 access is constrained
o access is not so constrained

6-13

SHARED
VARIABLES (2)

In summary form, ACM elements have meaning:

Set A
Use A

Where:

Set B
Use B

A represents one's own process
B represents the sharing partner process.

In more detail:

ACM Element Constraint if value is 1

two successive requires intervening

Set A 1 1t ACM sets by A access by B
Set B 1 it ACM sets by B access by A
Use A -1 1t ACM uses by A set by B
Use B 1 - it ACM uses by B set by A

Note the symmetry of the above. For elements with value 1 in:

Top row Two successive sets by one process requires an
intervening access by the other. This may be used to assure that
the second process has an opportunity to accept the value set by
the first.

Bottom row - Two successive uses by one process requires an
intervening set by the other. This may be used to assure that
(at least one) new value has been set prior to use.

First column - Individual controls on one's own process setting
and use.

Last column - Individual controls on partner's process setting
and use.

If a constraint is 1 and the required intervening event by the second
process has not occurred, the first process is delayed.

Each process sees the access control matrix with one's own process as
the first column and the partner process as the second column.

The four Boolean element access control vector (ACV) used to restrict
the ACM is established from one's own process as 2 2pOWNACV and the
effect of the setting by the partner process as viewed by one's own
process is ~2 2p PARTNERACV.

The resulting ACM++(2 2p OWNACV)v~ 2 2p PARTNERACV describes the total
restriction imposed by both processes. The defaults are 0 for OWNACV,
OTHERACV and hence ACM. Thus unrestricted access is the default.
Restrictions must be explicitly established. One partner can only
increase restrictions set by the other. Upon retraction by one
partner, the explicit access controls set by the other remain.

6-14

SHARED
VARIABLE S (3)

A set of surrogate lists is maintained between two particular
processes. Each such list has the record of offers to share using
one particular surrogate. A surrogate list is ordered in time of
offering to share a variabale using that surrogate. Acceptance of an
offer initiates sharing with the oldest outstanding offer.
Termination of sharing occurs when one partner retracts the offer.
Then the other partner still has a valid offer and will commence
sllaring with the oldest remaining offer having the same surrogate (if
any) •

An offer to share a variable can be made explicitly to another
process, or can be made general, to any process that may desire
sharing. The first capability permits inter-process communication,
typically between APL users. Queries are provided to determine if any
processes have explicit sharing requests outstanding to the querier,
and also what the surrogate names are. No queries are provided for
general offers. They are typically used by utilities ready to accept
an offer when made.

The shared variable does not provide additional space to the user
beyond that in the active workspace. There must be sufficient space
to use whatever size object the partner sets. The workspace contains
the data object that was most recently used or set by the user.
Using a value set by the partner changes the value in the workspace.

A workspace may be saved while a shared variable is offered or
accepted. If there had been no value assigned to that variable, the
name only will be saved as a name without meaning. If a value had
been assigned when saved, the last value either set or used by the
user will be saved as a non-shared variable. Loadinq or copying does
not reinitiate the shared variable. -

SIIARED VARIABLE FU1~CTIONS.

Tllere is provided a family of functions for handling shared variables.
These include:

shared variable offer and degree of coupling
shared variable access controls query and augment
shared variable offers query and retract

6-15

SV OFFER,
COUPLING (1)

OSVO

Forms:

DSVO N
p OSVO N

Where:

Determine degree of coupling of N
Offer N to P

N is a character vector or matrix. Each row contains a
name possibly followed by a surrogate separated by at
least one space.

P is a vector (if N is a vector) or a matrix with as
many rows as N. Each row contains either the specific
name of an external process (an APL account or external
process name) with which sharing is desired, or an
empty vector or row of blanks indicating a general
offer to share with any process.

Actions/Results:

Coupling: The current degree of coupling of the name
or names in N is returned as viewed by the own process.
Each element of the vector result in corresponding
order as N may be:

o if not currently offered as a shared variable
, if offered by own process but not accepted
2 if both offered and accepted

Offer: Each offer by a different process of a shared
variable increases the degree of coupling of that
variable by one up to a maximum of 2. If an offer is
made to a specific process, only that process can
accept it. If a general offer is made, any process can
accept it by an explicit offer for that name.

An offer made by another process for a shared variable.
already having degree of coupling 1, binds that
variable to the two processes involved (and makes the
general offer, if any, specific) so long as the degree
of coupling remains 2. Once a general offer is
accepted, it becomes and remains specific even if the
acceptor retracts the share.

The returned result, if required, is the attained
degree of coupling.

Conditions:

6-16

An attempt to make a second offer of the
ignored and returns the present degree of
required.

same name is
coupling if

SV OFFER,
COUPLING.. (2)

OSVO

Examples:

Time sequence is downward for both columns in parallel.
Entries on the same line could occur in either order.

A PROCESS eLF

O+'TSG'OSVO'Y Z'
1

DSVO'I'
1

DSVO'Z'
0

1
7700

Y+'HI TSG'
y

HI PSG

BB+'CABBAGE'
B+'PATCH'
OSVO' BB B'

2
BB

123
B

PATCH

DSVO'C'
0

0+' , OS vo ' C'
2

C
*** VALUE ERROR ***v

C
C+'HELLO'
[)+' 'DSVO'C'

2

A PROCESS TSG

0+ t eLF' DSvo' A Z '
2

A+7700
A

7700

A
HI TSG

0+' 'OSVO 'B '
1

8+1 2 3

B
1 2 3

OSVO'B'
2

C+32
[)+'CLP'OSVO'C'

1

c
32

C
HELLO

6-17

SV ACCESS
CONTROLS (1)

OSVC

Forms:

Dsvc N
C OSVC N

Where:

Query access controls for N
Augment access controls for N by C

N is a character vector or matrix.
one name and is possibly followed
separated by at least one space.

Each row contains
by a surrogate

C is a Boolean access control vector or matrix with a
row of 4 elements for each row of N.

Actions/Results:

Query Controls: For each row of N, the current access
control vector is returned.

Augment Controls: For each row of N, the corresponding
row of C is used to augment the access control matrix
for that variable:

ACM+ (2 2pCO)v~2 2pCP

Where: co is the control vector specified by own process
CP is the control vector specified by partner process

The effect by anyone process on the access control
matrix of a shared variable is to only alter elements
not restricted by the partner (since the 'or' function
on C by one process can not remove any restriction
already placed by the other process).

Note the symmetry in specifying or querying ACM. For
each process, the first column refers to the controls
applied to it; the second refers to the controls
applied to the sharing partner process. The total
access control vectors can be determined:

6-18

For own process

For partner process

If an explicit result is
access control vector;
control vectors as rows.

CO+, ACM

CP+. <l>ACM

required, it is the resulting
or the matrix of the access

SV ACCESS
CONTROLS (2)

OSVC

Conditions:

If N is a scalar, it is coerced to a one element
vector.

C is coerced to the necessary shape if it is a Boolean
single, or 4 element Boolean vector:

C+4pC
C+ ((1 t PN) • 4) p c

if N is a vector
if N is a matrix

l~en an offer to share a variable is initially made,
the access control matrix is all zeros.

When a prior offer to share is withdrawn, the access
control matrix returns to only those restrictions
established by the remaining process still offering to
share.

Examples:

Time sequence is downward for both columns in parallel.
Entries on the same line cduld occur in either order.

FIt PROCESS eLF

D+'TSG'DSVO'X'
1

DSVC'X'
o 0 0 0

08VO 1 XI
1

0+1 0 1 OOSVC' X'
1 0 1 0

OSVC'x'
1 1 1 0

O+ODSVC'X'
1 1 0 0

D+"DSVO'C B '
2

OSVC~'CX'

0 1 1 0
1 1 0 0

A PROCESS 'I'SG

0+ , eLF t Os VOl X '
2

OSVC'X'
a a 0 0

OSVC'X'
0 1 0 1

0+1 1 0 ODSVC' X'
1 1 0 1

D+'CLF'DSVO'A B'
1

0+1 0 0 10SVC'A'
1 0 0 1

6-19

SV QUERY,
RETRACT (1)
OSVQ DSVR

Forms:

DSVQ P
DSVR N

\fuere:

Shared variable query about offers P
Shared variable retract offer for N

P is a character vector, either empty, or containing an
external process name

N is a character vector or matrix. Each row contains a
name possibly followed by a surrogate separated by at
least one space

Actions/Results:

Query: If P is empty, it returns a matrix of processor
names having unaccepted specific offers to the
inquiring process. The names are left justified in a
six character row with trailing blanks.

If P is the name of a process, it returns a character
matrix of the surrogates for names of variables being
offered for sharing by that process specific to the
querying process, but not yet accepted. There is no
means to query general offers.

Retract: The result if required is the degree of
coupling existing prior to the retraction.

A previously made offer to share names in N is
retracted and the degree of coupling reduced to 0 by
the retractor and reduced by 1 for the partner (but not
below 0).

A retract with prior degree of coupling =2 terminates
sharing. Any access control restrictions from the.
retracting process are relaxed on that shared variable.

There is no effect on the sharing partner's
contribution to restricting the access control matrix.

If the sharing had resulted
general offer, retraction by
restore the general offer, but
offer to that acceptor.

from acceptance of a
the acceptor does not
leaves it as a specific

Erasing or expunging a shared variable retracts the
share.

6-20

SV QUERY,
RETRACT (2)

DSVQ OSVR

Examples:

Time sequence is downward for both columns in parallel.
Entries on the same line could occur in either order.

A PROCESS eLF

O+'TSG'OSVO'X I'
1

X+5
0+1 0 0 ODSVC'X'

100 0

O+OSVR t X'
2

X
5

DSVQ' ,

TSG
OSVQ I TSG t

1
0+' 'DSVO t A B'

1
D+DSVQ "

PSG

A PROCESS PSG

DSVQ t t

eLF
DSVQ' eLF'

y
0+' eLF t OSVO ' Z yt

2
Z

5
OSVC'Z'

0 1 0 0

DSVC' Z '
0 0 0 0

DSVQ't

Z
5

DSVO'Z'
1

C]SVQ t ,

6-21

I-BAR
FUNCTION

:r

The primitive monadic function defined in early APL systems for
querying the environment has the form:

I N I-bar primitive selected by N

Where: N is an integer between 20 and 29, excluding 28.

This primitive is included but is redundant, having been replaced by
the system functions. Since it may exist in old APL programs, it is
described here. Deimplementation is expected in some future release.

Time units below are sixtieths of a second for I-bar results. Note
that replacements naturally have different units (hours, minutes,
seconds, milliseconds; or milliseconds). Conversion to the earlier
(sixtieth second) time base causes the bulk of the computation below.
Some results are vector instead of scalar.

Primitive Result Approximate Replacement

720 scalar time of day

I21 scalar CPU time used this session

LO.06 X O 60 60 1000~3~DTS

0.06 x ltDAI

I22 scalar bytes remaining unused in the workspace

I23 scalar number of users currently signed on

ltOWA

DUL

r24 scalar time of day at start of the work session
lO.06 x (O 60 60 1000i3~DTS)-1~DAI

725 scalar date in form
digits representing
respectively

lI'~IDDYY

month,
where M,D,Y
day, and

are
year

100.l10011<1>3t[JTS

726 scalar first element of I27 ltDLC

I27 vector of line numbers in state indicator: OLC
first element is line being executed, or the
one last suspended; the next element is the
line which called the first, or the prior
suspension, etc.

I29 character vector containing 6 character left DAN
justified user account identification

There is no I-bar 28 (meaning terminal type
implementations). The terminal type is implicit
the terminal is connected.

6-22

on some other APL
in the line to which

SECTION 7

FILE SYSTEM FUNCTIONS

GENERAL.

The APL/700 System includes a filing system and a set of file
functions that together provide a user with effective and convenient
means to retain and access APL data objects outside the workspace.
Defined functions can be represented as data objects and subsequently
can be fixed back into the functions. Thus, a user can work with more
data or functions than will fit in a workspace at one time.

FILE NAME.

Each file has a name unique among the file names of the account.

File Name is (Acct) Name [Password]

where File Name and optional Password are strings of 1 to 12
alphanumeric characters starting with a letter.

The optional Acct is the account name required if the file is owned by
another account. The Acct is a string of 1 to 6 alphanumeric
characters.

FILE COr~ONENTS.

At any time a file has a number of components. These are numbered
starting with the index origin. Any component may be null, or may
contain a value. A component can contain any APL data object created
in a workspace and subsequently assigned to the file component. Each
component is independent, and can have any type, rank or size. In
particular, some components can be user created directories to the
file. A null component is one that has no value (this is different
from containing an empty array as a value).

FILE LIMITS.

Any file has a maximum of 1000 component slots. The installation
allocates to an account a max~mum number of files, which can be
determined as +/DFA. Also there is a maximum number of bytes per file
which can be determined as 2~ File Name. There are system-imposed
maximum numbers of files that can be concurrently opened by anyone
user (12), or by all accounts ~4, and number of accounts concurrently
using files ~3.

7-1

FILE OPENING, ACTIVE AND INACTIVE STATUS.

A file may be open in one or more accounts. A file has active status
if any account has the file open; otherwise, the file is inactive.

A file is opened for an account when first any file operation is
executed other than create, rename, destroy, or file status test. A
file remains open until either explicit release, or account sign-off.

FILE INTEGRITY.

File integrity is automatically maintained by retaining a master file
and an up-date file so long as a file is active. All transactions
that alter the file components are made to the up-date file. All file
component reads are from the most recent value. When there are no
active users of the file, it becomes inactive and any up-date file is
merged with the old master file into a new master file. Any user
attempt to access the file is deferred during this period when the APL
file system is closing the file. Only after the closing is complete
are the old up-date and master files destroyed. Thus the file will
not be partially updated.

If the user expects several accounts to concurrently access the file,
provision is made for any account to .hold it for exclusive use during
an update. Any transaction entries while the user has the file held
are provisional. They become part of the up-date file only when a
file free is executed by that account, or any return to execution
mode, or terminal disconnect. Any return to execution mode before the
free occurs removes the provisional transaction. This capability
protects the file from being partially updated.

File updating integrity over interruption or system failure is
achieved by assuring that an undisturbed backup is available until any
updating is complete.

All file functions that do not explicitly return a value implicitly
return the file name if required. This permits a sequence of file
operations to be executed in the same line of a defined function.
TllUS, even user interruption using a single ATTN (for which the line
is completed) can have an update transaction completed in a single.
line. Of course, a user-entered double ATTN can violate this
integrity.

FILE SYSTEM PRDIITlVE FUl~CTIONS.

A group of file functions is provided for file management. Each is
denoted by overstriking the quad (box) symbol with another symbol.
The resulting file function has generally similar meaning to the APL
primitive function using the same second symbol.

Many of the file functions have both monadic and dyadic forms. The
right argument of each is the File Name, symbolically represented as
• F' •

7-2

FILE CREATE,
CliANGE PASSWORD,
RENAME, DESTROY

~ FlJ

Forms:

~F

IB F [O/N]
N ~ F
~F

~lhere :

create file F
Change password on file F
Rename file F to become N
Destroy file F

F is own account File Name, may include password
N is new File Name for file of own account
o is old password for file F, empty if none previously
P is new password for file F, empty if none desired

Actions/Results:

The File Name F is returned if required.

Create: A file F is created with no components.

Change Password: New password P replaces old password
o of existing file F. Variants include:

add password if 0 is empty,
change password if both 0 and P are not empty,
delete password if P is empty.

Rename File: The file F is renamed to become N.

Conditions:

Destroy: The file
destroyed.

F owned by this account is

Examples:

Create: The file Name must not already exist.

Change Password: Tllis can only be done by the file
owner when the file is inactive.

Rename File: A file can only be renamed if inactive.

Destroy: The File Name (including lock if any) of a
file owned by this account and not currently held by
any other user must be provided. No file of another
account can be destroyed.

~'NEWFILENAME'

~tLOCKEDFILE[KEY]'

~'NEWFILENAME[/KEY1]'

'CHANGENAME[NEWLOCK]'~'NEWFILENAME[KEY1]'

~'LOCKEDPILE[KEY]'

7-3

FILE COMPONENT
~~ULL, WRITE,
READ

ffi Ej

Forms:

itI[!{] F
A ffi[K] F

!j[!{] F

Where:

Null component K of file F
Write A to component K of file F
Read component K of file F

F is File Name
K is component number
A is any APL data object

Actions/Results:

l~ull: Destroy any prior content of component K. If
required, return the file name.

Write: Replace prior value of component K by value A,
or append to end of F is 1 + largest component number.
If required, return the file name.

Read: Return the non-null value of component K.

Conditions:

r~ull: K must be an existing component number.

lvri te: K must be either an existing component number
or 1 + the largest component number.

Read: The component must be non-null.

Examples:

fE[3] 'FILE/JAME'
2 5~[2J'FILENAME'

O+'SMITH'S[3] 'FILENAME'
FILENAME

~[2J 'FILENAIJE'
2 5

t!3[3] 'FILElvA1JE'
S14ITII

7-4

FILE COMPONENT
FIRST IN, OUT;
LAST IN, OUT

F;! l?J

Forms:

~ F
~ F

A ~ F
A ~ F

Where:

Read and pop first component out of file F
Read and pop last component out of file F
Append component before components already in file F
Append component after components already in file F

F is File Name
A is any APL data object

Actions/Results:

The file components may be treated as a stack or a
queue. The component at either end may be read and
removed (out). A component may be appended to either
end (in).

Out: The result returned is the indicated first (last)
component. That component must be non-null. That
component is taken out of (popped from) the file. If
first, the component numbers of the old components are
decreased by 1.

In: The data object is put in the file (pushed into).
It is appended before (after) the existing file
components. If before, the component numbers of the
old components are increased by 1. If required, the
File Name is returned.

Examples:

'JONES'~ 'PERSONS'
'SMITH'~'PERSONS'

(2 2 p 1 1 4 7) ~'FILENAME'

~ 'PERSOflS'
JONES

@'FILENJ1ME'
1 1
4 7

7-5

FILE COMPONENT
ORDER REVERSE,
ROTATE

fi

Forms:

f:J F
I CI F

Where:

Reverse component order in file F
Rotate circularly the components in file F

F is File Name
I is integer

Actions/Results:

If required, the file name is returned.

Reverse: The component order of file F is reversed;
i.e., the first changes with the last, the second
changes with the second last, etc. Reverse is
analogous to the primitive reverse function on a
vector. If required, the File Name is returned.

Rotate: The components of file F are rotated
circularly by an amount I. File rotate is analogous to
the primitive rotate function on a vector. If I is
negative, this is effectively a right rotate. If
required, the file name is returned.

Conditions:

Rotate: I is effectively the (number of components)
residue of I. 1=1 causes the first component to become
the last, the second component to become the first,
etc.

Examples:
~'FILENAME'

2fi' FILE[LOCK] ,
-3fj'FILENAME'

7-6

FILE
COMPONENTS
TAKE, DROP

ffI m

Forms:

I ffi F
I m F

Where:

Take I components from file F
Drop I components from file F

F is File Name
I is integer magnitude in 11000

1>0 applies to components from start of file
1<0 applies to components from end of file

Actions/Results:

These are similar to the primitive take and drop
functions in the components chosen. However, they are
destructive of components dropped or not taken.

Take: The resulting file F has I components. If
required, the file name is returned.

Drop: The resulting file F has I components dropped.
If required, the file name is returned.

Conditions/Options:

Take: If the magnitude of I exceeds the number of
components previously in the file, sufficient null
components are appended to the file at the appropriate
end:

before if 1<0
after if I>O

Drop: A minimum of 0 components remain.

Examples:

5ffi 'FILENAME ,
-23(E'PILENAME'
2QJ'FILENAME'

7-7

FILE COMPONENTS
COMPRESS, EXPAND

o ~

Forms:

B 0 F
B ~ F

Where:

Compress components from file F where B is 0
Expand components of file F where B is 0

F is File Name
B is Boolean vector

Actions/Results:

The ordered set of file components can be compressed or
expanded. These file functions are similar to the
primitive expand and compress functions.

Compress: The result is a new component set selected
in order from the components previously in P, wherever
a 1 exists in the Boolean B. The components of the
original file are destroyed wherever a 0 exists in B.
If required, the file name is returned.

Expand: The result is an expanded, ordered component
set preserving the order of the original components
within which null components are inserted wherever
zeros exist in Boolean B. If required, the file name
is returned.

Conditions:

Compress: The length of B must be the same as the
number of components in the original file F: (pB)=3~F.

Expand: The number of ones in B must be the same as
the number of components in the original file F:
(+/B)=3~F.

Examples:

1 1 0 1 o'FILENAME'
1 0 1 a 1 ~'FILENAME'

7-8

Fanus:

~ F
~ F
mF

Where:

FILE HOLD,
FREE, RELEASE

~ ~ £II

Hold file F for exclusive use
Free own hold on file F
Release own use of file F

F is File Name

Actions/Results:

If required, the file name if returned.

In file use shared among several accounts, exclusive
use can be achieved for critical up-dates.

Hold: If the file is not currently being held (even if
it is active), a hold is placed on the file which
prevents any other account from accessing it. If
already held by another account, hold causes a wait
until freed by that account. If required, the file
name is returned.

Free: A held file is freed from exclusive use. If
required, the file name is returned.

Release: The account's active use of file F ceases.

Conditions:

Hold: A hold only persists while execution continues
in a defined function (including input requests) or
single entry from execution mode. Any return to
execution mode (or file destroy while held) breaks the
hold.

Free: The actual file up-dates to a held file take
place provisionally into the up-date file. They are
accepted as up-dates to that file all at once when the
free occurs. Any interruption before the free voids
the provisional entries.

Release: When no users have a file active, and a up­
date file exists, it is merged with the master file.
During this period when the file is being closed by the
system, it is unavailable to any user. A file is also
released by any sign-off or involuntary termination.

Examples:

~'(OTHER)FILE'

~'(OTHER)FILE'

[IJ' FILENAME[KEYJ'

7-9

FILE COMPONENT
EXISTENCE

r3 ~

Form:

Map of non-null components of file F
11ap of null components of file F

Where: F is File Name

Actions/Results:

The results are Boolean vectors with length the number
of components.

Non null: In component order, each resulting element
is 0 if the corresponding component is null; 1 if the
corresponding component is non-null.

Null: The result is the not (logical negation) of the
non-null map: 1 if the corresponding component is
null; 0 if the component is non- null.

Example:

~'FILE'

1 2 3 4 ~'FILE'

3 ffi'FILE'
§'FILE'

1 0 0
~'FILE'

011

7-10

Forms:

(!) I
~ F

I f!J F

Where:

FILE SYSTEM
INTERROGATE,
STATUS, QUERY

I!I

Interrogate file system
Test status of file F
Query attribute of file F

F is File Name
I is integer single

Actions/Results:

Interrogate: Usage properties across the file system
can be determined for each valid value of I:

1 current number of accounts using files
2 current total number of files that are active
3 maximum number of accounts using files
q maximum number of active files

Status: The availability status of file F is returned:

0 file F does not exist in this account
1 file exists and is not active
2 file is active
4 file is unavailable
5 file is held by some account

Query: The result for each valid value of I is:

1 current size of file in bytes
2 maximum size of file in bytes as established by

the installation
3 number of components in file (not more than 1000),

including nulls
4 Boolean, 1 if any modification since file was last

organized
5 number of accounts with file open
6 cycle number of last reorganization
7 last update time stamp: year, month, day, hour,

minute, second, millisecond as 7 element vector

Examples:

[!]1
7

re 'FILENAME ,
1

3J!J'FILENAME'
14

7l!1 'FILENAME ,
1974 12 31 23 59 59 999

7-11/7-12

~ I

SECTION 8

FUNCTION DEFINITION, EDITING AND EXECUTION

GENERAL.

A defined function provides an algorithm for specialized processing.
The algorithm, or solution method, is expressed in APL terms by the
user in function definition and editing mode. This mode allows
actions to be performed that define or edit the algorithm. The
definition of the function is thus captured for subsequent execution
or editing. Many different defined functions can coexist, recognized
by their unique function names.

Execution of a defined function is similar to execution of a primitive
function: it can be elaborated when the values for its actual
arguments are determined. A defined function that returns an explicit
result can be used similarly to APL primitive functions in composition
of APL expressions.

FUNCTION CONTENT.

A defined function has a header line
begins with a template and optionally
names, each preceded by a semicolon.

and a body.
may include

The header line
a list of local

A function template determines the syntax required for its execution.
A defined function may have any of the six templates:

Returns explicit result:

Returns no explicit result:

niladic

R+F

F

monadic

R+F B

F B

dyadic

R+A F B

A F B

Where: R is the local name for the function result
F is the function name
A is left local argument name
B is right local argument name

The names R, F, A and B must all be distinct. F must not have any
current global meaning.

When the function is called to be executed, the argument local names A
and B are established initially to have the argument data objects as
values. Thereafter within the function the names A and B can be used
like any local name. When the function execution is completed the
meaning of the result local name R (a data object or undefined) is
the function explicit result.

8-1

A local name is a name that can be attached to a data object (or fixed
function) without affecting any use of that name outside (at a more
global level than) the function. This dete~ination is made for each
instance of execution of a function. A name in the local name list
has no meaning until given one during execution of the function.

System variables and the character input prompt communicator may also
appear in a local name list. Until assignment to a system variable is
made within the function, the global value is retained. This permits
the calling environment to affect the returned result.

A function ~Oit has zero or more
one of the 0 owing, in left to
more than one:

lines. Each line must have at least
right sequence-!n the order given if

labels, each terminated by colon
branch transfer of control
APL expression
conunent

L1:
~L2

,X+3+4
A NOTE

For example, a line containing all parts is:

L1:+L2,X+3+4A NOTE

Each line of the body has a line number: The first line is line 1,
the next line 2, and so on. when displayed in function definition and
editing mode, each line is preceded by a bracketed prompt including
the line number.

Sample Function

V AVE+AVERAGE VALUES.SUM.SIZE
[1] SUft1++/VALUESA SUM OF VALUES
[2] SIZE+p,VALUESA SAMPLE SIZE
[3] AVE+SU/!+SIZE
[4] LABEL:A AVE+(+/VALUES)+p, VALUES

V

The header line here defines a monadic, value returning function named.
AVERAGE with five local names: argument VALUES and explicit result
AVE; local names SUM and SIZE, and label LABEL. Line q illustrates a
labeled line containing as a comment an alternative and generally
preferable algorithm that could be used to determine the average, if
the comment character were removed. The initial and final V 'Del'
characters bracket the function.

8-2

Forms:

-+ E
-+
L:

BRANCH,
TERMINATE,
LABEL (1)

Branch to line E
Terminate
Label

Where:

Results:

E

L

is a line specifier expression yielding a non­
negative integer scalar or vector value
is a named local constant

Branching and terminating are the means to alter line
control flow from the normal next line in sequence in
defined functions. Labels provide names for lines.

Branch: After the line containing the branch is
elaborated, the path of control transfers to the next
line to be executed as determined by the non-negative
integer value of the first element of E:

Value of first element of E

a line number
empty numeric vector
o or greater than last line

Next execution

that line
next line in sequence
exit to caller

Conditions:

Terminate: Stop execution of this function and all
functions pending its completion.

Label: A label is a local constant name used as a
destination for branching. A label has as its value
the number of the line in which it appears followed by
a colon. One or more labels, each followed by a colon,
may occur on any line. All labels must precede any
branch, expression or comment on a line. No assignment
of value to a label is permitted. Each label name must
differ from the function name or any other local name
in the function. Because function editing may cause
line numbers to change, labels may be used to identify
targets for branching. Labels are attached to line
contents and so automatically change their values as
function lines are renumbered through editing.

Branching and terminating apply to the function on top
of the state indicator. That function is either being
executed or suspended. If suspended, entry of a branch

8-3

BRANCH,
TERMINATE,
LABEL (2)

+ :

applies to
execution.
function and
completion.

relieve the suspension and continue
Terminate abandons execution of the

any other functions pending its

The comparison
first element
integer.

tolerance applies
of the value of

to determine
non-empty E

if the
is an

Examples:

Branching in execution mode is ignored if there is no
state indicator, otherwise it applies to the most
recently suspended function.

In a user defined function, the branch or terminate
function may only appear as the leftmost function on a
line. Only labels may appear to their left.

No branch to any line in any pending function, other
than the return to the point of call, is automatically
provided. To achieve this the returned value may be
used to select the desired line as target of a control
transfer in the pending function when it is
reactivated.

The constant value of a label may be referenced as a
global value in a function called from the function in
which the label is defined.

Typical branching expressions include:

+L
-+0
-+E/L
-+-(L1,L2,L3)[N]
-+N~LO,L1,L2

-+(xE)cPL2,L3,Ll

-+N+DLC
+BxL

A GO TO L
A EXIT THE FUNCTION
A IF B=1 THEN GO TO L ELSE CONTINUE (8=0)
A BRANCH TO £1 IF N=1, £2 IF N=2, L3 IF N=3
A BRANCH TO LO IF N€-2 -1 0, TO L1 IF N=1, TO
R £2 IF N=2, ELSE CONTINUE
A BRANCH ON SIGN OF E: TO £1 IF E<O, TO
A £2 IF E=O, TO L3 IF E>O
A BRANCH TO CURRENT LINE + N
A EXIT IF B=O ELSE TO L IF B=l

R TERMINATE

8-4

Where: L, LO, L1, L2, L3 are line number specifiers
B is Boolean
E is expression yielding numeric single
N is integer

FUNCTION EDITING ACTIONS.

A defined function is created and edited in function definition mode.
This mode is entered using the character V, followed by the £unction
header if this is a new definition. If the function already exists,
the V is followed by only the function name (and an optional action
specification to be described).

The function definition mode may be recognized by the display of a
bracketed prompt starting at the left margin. This prompt is the
default action specifier indicating a line number where the next entry
will appear unless overridden by an alternative action. This prompt
is generally to a non-existent line (the next line in sequence), so no
current line will accidentally be replaced.

To begin defining a defined function, the initial line entered is the
header. The prompt returned is [1], the default action specifier for
the next entry. An entry following the default action specifier not
commencing with a v, ~ or a [causes the line referred to by the
prompt to receive the entered string of text, and then a new prompt to
be returned (if the text string is syntactically valid).

If the last character entered after the prompt is a V or ~, function
definition terminates and the five character indent prompt is received
indicating the return to execution mode.

Six classes of function editing actions will be described:

Function definition, open and close
Line replace, append or insert
Line content edit
Line group diagnostic aids
Line group display
Line group delete

Each action is recognized by its unique form. The action specifier
encloses this form in brackets.

If an action is entered at the start of an entry, it overrides the
displayed prompt for that line.

The numbers associated with (but not part of) lines of the function
body are always the continous set of integers starting with 1 for the
number of body lines. The header is referenced as line O. If lines
are inserted or deleted, line numbers larger than the smallest line
affected by the action will be renumbered.

Most action specifiers identify the line(s) to which they apply by
inclusion of one or two line number specifiers. A line number
specifier has an integer value of an existing line or sometimes 1 +
the last line number. This value may have any of the forms:

integer
label
label + integer
label - integer

absolute line number
existing in function
relative to and following label
relative to and preceding label

8-5

FUNCTION
DEFINE, OPEN,
CLOSE ACTIONS (1)

V .,

Forms: next prompt

V H
V F

" FV

"
Where:

Actions:

Define function header H
Open defined function with name F
Open own locked defined function F
Close open function
Close and lock open function

H is function header for new function
F is existing function name
Z is 1 + the last line number

[1]
[Z]
[Z]

indent 5
indent 5

Function define or open changes system mode from
execution to function definition and editing. Function
close returns to execution mode.

Define: Create a new function with header H. H has
the form of one of the templates, possibly followed by
a list of local names each preceded by a semicolon.
The function name in the template must not already have
current global meaning.

Open: Reopen an existing defined function. The open
entry can include an action specifier and text if
desired.

In either case the prompt displayed is the bracketed
line number of the next unused line, unless the open
with action overrides.

Close: The close symbol (only entered as the last non­
blank character of a line) closes the function and
returns to execution mode. It can follow a prompt, or
any command except full edit.

In place of the V character if ~ is used with close,
the function is locked. Subsequent opening using
the 9 can only be done by the workspace owner loading
(not copying) the workspace in which the function was
created. A locked function cannot be opened if it is
copied into another workspace or loaded into the
workspace of a another account.

8-6

FUNCTION
DEFINE, OPEN
CLOSE ACTtONS (2)

V •

During execution of a locked function, user initiated
ATTN or any error encountered causes function exit, and
passes any error message to the caller environment.
Line trace and suspend within a locked function are
iqnored, even though their settings are retained should
the function be subsequently unlocked.

Examples:

VR+F X;YV

VF
[1] LABEL1:Y+LINE XA LINE IS A FUNCTION
[2] •

9F
[2] LABEL2:R+G X+IA G IS A PUNCTIONV

VF
[3] V

The first example creates a function header and then
immediately closes, effectively reserving a name for
subsequent function editing which will provide the
function body.

The next open returns the prompt [1].
line 1 is then entered. After the
function is locked.

The content of
prompt [2], the

The next open of the locked function must use~. The
prompt is now [2], the first unused line. That line is
given content and the function unlocked by the close
with v, here done at the last character of the entered
line.

The final
unlocked.
closed.

open demonstrates that the function is now
After the prompt [3] the function is again

8-7

FUNCTION LINE
REPLACE, INSERT
ACTIONS (1)

.. t

Forms:
next prompt if T is
empty non-empty

[A]T
[t] T
[tB]T
[.,,] T
[+C]T

Text of line A is replaced by T
Insert text T before prior line 1
Insert text T before prior line B
Insert text T at end
Insert text T after line C

[A]
[.. 1]
[tB]
[Z]
[.Joe]

[Z]
[+2]
[+ B+ 1]
[Z]
[."C+ 1]

Where:

Actions:

A is existing line specifier or Z
B is existing line specifier except 0
C is existing line specifier
T is text string or empty
Z is 1 + last line specifier

If T is empty, the entered action specifier becomes the
next prompt, otherwise the text of T becomes a line.

Replace: Replace
exists) by T.
numbering.

the prior content of line A
Replace causes no change to

(if A
line

Insert before: Create a new line B with content T and
increase by one the line specifiers of the former
lines starting with B (or Z). The next prompt allows
continued insertion before the same old line, whose
number increases by 1 for each insertion.

Insert at end: Create a new last line with content T
wi thout af'fecting any prior line. Same as replace
entry to line Z.

Insert after: Creates a new line with content T, and
increases all former line specifiers larger than C by
one. The next prompt allows continued insertion before
the original line C + 1, whose number increases by 1
for each insertion.

Conditions:

If C has value Z-1 then the action is the same as
insert at end, and the next prompt is z.

8-8

FUNCTION LINE
REPLACE, INSERT
ACTIONS -(2)

+ +

If the text T is empty (the entry contains only one of
these action prompts) this prompt becomes the next
prompt instead of the one indicated above (a line
wi~hout content is not allowed). By this means, using
the replace action it is possible to have the default
prompt refer to an existing line. Subsequent entry of
text only (without another action) destroys the prior
content of the line.

Examples:

VF(2)R+l+3
[tJA NEW LINE 1
[+]A LAS'!' LINE
[+3].- NEW LINE 3
A AFTER 3
[O]V
R+F X;1
A NEW LINE 1

LABEL1:1+LINE XA LINE IS A FUNCTION
A NEW LINE 3
A AFTE.R 3
R+I+3
A LAST LINE

[3]
[t2J
[5]
[+4]
[+5]

v
[1J
[2]
[3]
[4]
[5]
[6]

v

8-9

FUNCTION LINE
EDIT ACTIONS (1)

€ a tAl \

Forms: next prompt

[€A]
[cAl
[CIA] T
[t&JA]
[talA] T
[tAl

Where:

Actions:

Full edit line A
Prefix edit line A after line number
Prefix text T before text of line A
Suffix edit line A
Suffix edit text T after text of line A
Inject text of line A to last executed

APL expression

A is a specifier of an existing line
T is text string
Z is 1 + the last line number

[Z]
[Z]
[Z]
[Z]
[Z]
[Z]

Full Edit: Display line A, and return carrier to left
margin awaiting edit position controls entry under any
characters of line A. These controls may only include
spaces, periods and slashes: space indicates no
change, I. I indicates phrase terminator before
character above, 'I' indicates delete character above.
Upon next RETN, the first phrase is displayed ready for
normal entry typing. Each subsequent ATTN with cursor
to the right of the current display brings the next
phrase. Any RETN causes entry of the line as it
appears. If there are no more phrases left, an ATTN
acts like a RETN. During any phrase, ATTN not at the
rightmost attained display position acts to delete
display characters above and to right, but not
undisplayed phrases. The entire line (including
prompt, labels, APL expressions, and comments) may be
edited. There must be at least an action specifier
remaining when the entry is made.

Prefix Edit: This edit bypasses the edit position
controls entry and assumes a single I.' was entered
after the bracketed line number. This command displays
the prompt, then awaits entry. This is useful either
to change the line number within the prompt (and thus
make a second copy of the original line) or to place a
label or further expression at the start of the
existing line.

Prefix Edit with string T causes the string to become
the leftmost part of the line following the prompt,
without displaying the line.

8-10

FUNCTION LINE
EDIT ACTIONS (2)

€ a w \

Suffix Edit: This edit displays line A and awaits text
entry at the end. A change near the end of a line may
often be made more quickly using this action (by
backspaces, ATTN, then correction) than using full
edit.

Suffix Edit with string T appends T to the end of line
A, without displaying it first.

Inject: Place a copy of the content of line A into
-the last executed APL expression", available for
examination, alteration and execution in execution
mode. Only the last inject done in function definition
and editing mode applies at function close. If no
inject is done, then the most recently executed APL
expression is unchanged by function mode actions.

Conditions:

An edit that removes all non-blanks from the line is
the same as a new action. No edit can remove the
action. Changing the line number relocates a (possibly
edited) copy of the line. The original line remains:
if it is labeled, the line copy will only be permitted
if the label is changed.

Text insertion as part of prefix or suffix edit actions
does not provide visual fidelity since only the change
to the line is shown.

Examples:

VF[€l]
[1] A NEW LINE 1

III.
[1] A EDITED PHRASE IN LINE 1
[7] [w2]
[2] LABEL1:Y+LINE XA LINE IS A FUNCTION

v
MONADIC FUNCTION

[7] [a1]
[1] XA EDITED PHRASE IN LINE 1
[7] [12Jv

LABEL1:Y+LINE XA LINE IS A MONADIC FUNCTION
III/III
Y+LINE XA LINE IS A MONADIC FUNCTION

8-11

FllNCTION
MULTILINE GROUP
SPECIFIER (1)

Actions having potential effect on more than one line use the
following forms for indicating the lines in the group. The
character 0 is used to indicate anyone of the allowable actions.

Unqualified: applies to all lines in the range.

Form Line Range

[0] 0 thru y

foAl A only
[Ao] A thru y

[AcB] A thru B

Name Qualified: applies to only those lines within the inclusive
range that contain the name X.

Form

[(oX)]
[(oX)A]
[A(oX)]
[A(oX)B]

Line Ranae

0 thru Y
A
A thru y

A thru B

lvhere: 0 is any multiline function editing action, one of

T 1- r L n u 0 ? I'OoJ

A is line number specifier: A€ o, lY
B is line number specifier not less than A:

B €A, A+1Y-A

X is name of label, function or variable
y is number of the last line defined for function

8-12

FUNCTION
MULTILINE GROUP
SPECIFIER (2)

Examples:

To illustrate line specifier use, the action character 0 (display
lines) is used.

VF[OJ
V R+F X;I

[1] A NEW LINE 1
[2] LABEL1:Y+LINE XA LINE IS A FUNCTION
[3] A NEW LINE 3
[4] A AFTER 3
[5] R+Y+3
[6] A LAST LINE

[7] [LABEL1+1D4]
[3] A NEW LINE 3
[4] A AFTER 3
[7] [50]
[5] R+Y+3
[6] A LAST LINE
[7] [01]
[1] A NEW LINE 1
[7] [(OLINE)]
[2] LABEL1:Y+LINE XA LINE IS A FUNCTION
[7] [3(01)]
[5] R....Y+3
[7] 'V

Note the initial display action VF[OJ, does not include a close, v, at
its end. Therefore, after the display of the entire function, V is
shown to indicate that line 6 was the last defined line: then [7]
prompt is given. This indication only occurs if the entire function
is displayed. The 7 in [7] is 1 + the last line, and appears after
each of these examples and serves as a default for entry of a next
line unless a new action is specified. In each of the above cases, a
new display action is specified following the [7]. All other lines
above are the result of these display actions.

The qualified use of the name LINE does not recognize occurrence of
LINE in comments, in quotes, or as part of-another name.

8-13

DIAGNOSTIC
FUNCTION LINE
GROUP ACTIONS (1)

T .1 r L n u

Forms: system function next prompt

[T]
[.1]
[f]
[L]
En]
[u]

Set trace
Reset trace
Set stop
Reset stop
Set monitor
Reset monitor

DST
DRT
DSS
DRS
DSM
DRM

[Z]
[Z]
[Z]
[Z]
[z]
[Z]

Where: Z is 1 + last line number.

Actions:

These actions are analogous to the system functions by
the same names, except that they are entered in
function definition mode, and may only refer to a group
of contiguous lines, possibly name qualified (the
principal advantage). Both these actions and the
system functions have the same execution effects.

Trace: Upon completion of execution of a line on which
trace is set, the function name and bracketed line
number is printed followed by the type (N numeric, B
Boolean, C character), shape in parentheses, and value.
Trace of line 0 refers to the returned value (if any)
on function exit.

Stop: Upon transfer to a line on which stop is set,
the function suspends there, the function name and
bracketed line number are displayed followed by an
asterisk. Control returns to execution mode for user
examination or alteration of the current state. Stop
on line 1 causes suspension after actual arguments are
assigned but before any processing in the body. Stop
on line 0 causes suspension before actual return to the
caller, so all local names still have values.

Monitor: Upon completion of execution of each
~onitored body line, the computer time there consumed
18 accumulated in a counter for that line. The
precision of this time is 2.4 microseconds. This time
excludes time spent within any user defined functions
called in that line. (Such time may be separately
monitored in their own body lines). Monitor of line 0
provides a count of the number of calls on the
function. The display unit for these times is
milliseconds and the result is rounded, (OMV gives the
ceiling of the time instead).

8-14

DIAGNOSTIC
FUNCTION LINE
GROUP ACTIONS (2)

T J. r L n u

Conditions:

The forms for the range of lines specified resulting
from inclusion of left and/or right line specifiers and
parenthesized name qualifier apply.

Examples:

VP[OJ
V R+F X;.Y

[1] A NEW LINE 1
[2] LABEL1:Y+LINE XR LINE IS A FUNCTION
[3] R NEW LINE 3
[4] A AFTER 3
[5] R+Y+ 3
[6] A LAST LINE

v
VF[TJ

[7] [(rR)]
[7J [(nY)]
[7] V

DQT'F'
1 1 1 1 1 1 1

OQS'P'
1 0 0 0 0 1 0

OQM'F'
1 0 1 0 0 1 0

VF[LABEL1(uY)]9
DQM'P'

1 0 0 0 0 0 0
VF[(nLINE)JV
OQM'F' A ADDITIVE, NOT IN COMMENTS

1 0 1 0 0 0 0

8-15

DISPLAY
FUNCTION LINE
GROUP ACTIONS

o ?

Forms: next prompt

[0]
[?]

Where:

Actions:

Display lines
Display vector of line numbers

Z is 1 + last line number

[Z]
[Z]

Lines: display lines causes display with bracketed
line numbers followed by text of all indicated lines.

Numbers: display numbers causes display of the numbers
of all lines in the indicated range. This is useful
where name qualified.

Conditions:

The forms for the range of lines specified resulting
from inclusion of left and/or right line specifiers and
parenthesized name qualifier apply.

Name qualification displays the line number but not the
header line content, should the name occur rn- the
header, line O.

Examples:

VF[OJ
'V R+F XiY

[1] A NEW LINE 1
[2] LABEL1:Y+LINE XA LINE IS A FUNCTION
[3] A NEW LINE 3
[4] A AFTER 3
[5] R+.Y+3
[6J A LAST LINE

V
VP[1(OY)]

[2] LABEL1:Y+LINE XA LINE IS A FUNCTION
[5] R+Y+3
[7] [(?Y)]
2 5
[7] [(OLINE)]
[2] LABEL1:Y+LINE XA LINE IS A FUNCTION
[7] v

8-16

Form:

DELETE
FUNCTION·· LINE
GROUP ACTION

next prompt

Where:

Action:

Delete lines in indicated range

Z is 1 + last line number remaining

[Z]

The lines in the indicated range are
qualified, only those lines containing
name are deleted.

deleted. If
the qualifying

Conditions:

Example:

Deleting lines causes renumbering of lines after the
first deleted.

The effect of [~O] is only to eliminate the local names
list from the header; the template cannot be deleted,
and thus the line remains.

The forms for the range of lines resulting from
inclusion of left and/or right line specifiers and
parenthesized name qualifier apply.

If a sequence of deletions (or line insertions) is to
be done, they should be done from the bottom up so that
renumbering will not effect the previously known line
numbers.

VF
[7] [""6]
[6] [3~4]

[4] [0""-1]
[3] [D]V

V R+F X
[1] LABEL1:Y+LINE XA LINE IS A FUNCTION
[2] R+Y+3

V

8-17

DEFINED FUNCTION EXECUTION.

The execution of an instance of a defined function begins when the
function is called (appears in an expression being executed) either
from execution mode or by another function. From the instant
execution of an instance of a function begins until the execution of
the instance of the function is completed, the function is active. An
active function is either in process of being executed, or may be
suspended or pendant. A pendant function is one which is awaiting
completion of a function it called. A ~ended function is one whose
execution was stopped for some reason-otlier than a call to another
function.

SCOPE OF NAMES.

A name can be global, having existence in the workspace independent of
an execution of a defined function. It can also be specified as
local in a defined function. The existence (score> of a local name
is then no longer (in time) than the instance 0 the function is
active to which it is local. A local name to one defined function
becoroes global to any function called from that function. A global
name becomes inaccessible while an instance of a local use of the same
name exists.

A local variable or function can be dynamically expunged from within
the function to which it is local. The name is still local, so a more
global instance does not become accessible.

The importance of scope is its aid to structured programming. Names
that are of no consequence outside the function to which they are
local need only be contained (and thus known) therein. Understanding
at the global level is not confused by these extraneous names.

EXECUTION COL,,!TPOT.J SFQUENCF.

At function call, the values of arguments are bound to their
equivalent local arguments. All local names are established. If any
of these names already had more global meaning, that meaning is
shielded while that instance of the function is active.

Execution begins with control at line 1 of the function. Within each
line order is right-to-left elaboration of primitive or other defined
functions. When a line is completed, control moves to the next line
in sequence unless explicitly altered by a control transfer.

Function completion occurs when control transfers to line 0 or some
other non-existent line (including implicit last line plus 1). If an
explicit result variable is included in the function header and is
required by the call, a value must have been assigned to it prior to
completion. The last such executed assignment is the value returned
by the function.

8-18

MULTIPLE INSTANCES.

More than one instance of execution of a function may be active" at the
same time. This can result from unrelated calls on the same function
name (directly or indirectly via call from some other function) while
the earlier instance is pending or suspended. This is generally to be
avoided as extra space is consumed. Recursive function calls are
permitted, which also causes multiple instances.

RECURSIVE FUNCTIONS.

A function is recursive if completion of one instance of its call can
require another calIon another instance of the same function.
Recursive functions are the natural means to formulate some
algorithms. A directlf recursive function includes a calIon itself.
An indirectly recurS1ve function includes a calIon some other
function that either itself calls the first, or includes in its call
sequence one that does. The number of instances is limited by the
amount of space required for each instance and the amount of space
available in the workspace.

Determination whether or not a function is potentially recursive is
generally not possible. Recursion is a dynamic property of an
instance of a function, determined by data values. The appearance of
more than one instance of a function in the state indicator without
intervening suspensions does indicate recursion. An intervening
suspension does not necessarily indicate whether a reappearing
function is recursive.

Static function content examination may detect potential recursion.
Since dynamic control flow is generally not known, actual recursion is
even less readily recognized. If the evaluate primitive and function
fixing are excluded, it is possible to detect potentially recursive
functions by recognizing the reappearance of the function name within
itself, or in a function in any potential static call sequence of
other functions from it. This process is complicated since a name may
be in some contexts either a variable or a function, only known
dynamically. If the source data object for function fixing is known
and examinable, it can be handled as above. The source may not be
known; it may be any expression. Since evaluation or fixing of a
general expression is permitted, in general no static examination will
suffice to detect all potentially recursive functions.

8-19

SUSPENSION OF DEFINED FUNCTION EXECUTION.

The normal line-to-line path of control resulting from defined
function execution may be interrupted by execution suspension.
Suspension occurs in three ways:

The path of control reaches a line with a stop set on it.

The user enters one or two ATTN during function execution or
output. The first kills output and suspends after completing any
line in progress. The second may interrupt mid-line.

An error occurs in the line recognizable only during execution.

The result of suspension is a return to execution mode after
displaying the suspension prompt, typically for line 3 of the function
named RUN as

RUN[3] *

While execution of a function is suspended, it is still active. The
user may do most of the things normally available in execution mode,
but in the environment defined by that instance of the function:

examine or alter values of local or unshielded global variables
create new variables or define new functions
enter expressions or system commands for evaluation
alter the most recent suspended function by edit actions

No pendant or suspended function other than the most immediately
suspended one can be altered. (They can be displayed and diagnostic
aids changed). The header line cannot be changed in the suspended
function. No pending or suspended function may be expunged.

Execution of the suspended function may be resumed. To resume on the
line specified by expression N (which need not be the same as the line
where suspension occurred), enter:

~N

Termination of the execution of the suspended function (and any
pending its completion) may be achieved by entering

The response to termination is a reminder of the suspension prompt for
the immediately prior suspended function if any; followed by the
execution mode prompt.

It is good practice to eliminate all suspensions soon after they
occur, as suspended and pendant functions take up space in the
workspace. The user should usually avoid a second execution of a
function from the beginning after execution is suspended.

The)RESET system command may be used to remove all suspended
functions at once, rather than entering a sequence of terminates.

8-20

DEFINED FUNCTION EDITING USING APL FUNCTIONS.

An alternative to line-at-a-time function
data object that represents a function,
function again.

editing exists:
then fix it back

edit a
into a

The canonic representation OCR is a convenient means to create a
data array from a function with one row per line. In this form,
user defined functions can be used to select or rearrange lines.
Simple defined functions permit merging separate function bodies or
selecting line groups to become the body of a new function.

The alternative vector representation DVR of a function is
convenient for name replacement or other contextual editing.

After completion of editing on these APL variables, they may be
refixed into functions by DFX. If the function name in the header
is unchanged, the old version must be purged using DEX or)ERASE
first.

DEFINED FUNCTION DOCUMENTATION.

One approach to documentation is to have function pairs: one
executable, the other containing the documentation (each line a
quoted string). A common way to relate the pair is to suffix the
executable function name by 'HOW'. This method sacrifices the
proximity of the functions to their descriptions. The space saving
results from erasing or excising all the 'HOW' functions before
execution. An alternative is to save the 'HOW' as a variable. The
vector representation is useful in that it can readily be fixed for
changes.

A second approach is to maintain two equivalent workspaces: one for
documentation, the other for execution. The documented functions
can have copious comments and descriptive names. Then this
documented workspace is saved and a copy of it edited to shorten
these names and eliminate comments. This condensed workspace
becomes the working version.

A third approach is to maintain vector representations of functions
as file components. Vector representation is preferable to canonic
representation for this purpose as it is generally more compact.
Selective fixing of needed functions and expunging of extraneous
functions can be used to save much space. The documentation can
normally be left in the file components. Either of the previous
approaches can be used in conjunction with this to minimize the size
of the vector representation that is used as the basis for function
fixing. If the name of a function to be fixed is in the local names
list of a small "cover" function which fixes it then automatic
expunging occurs upon exit from the cover function.

8-21/8-22

SECTION 9

ERROR REPORTS AND THEIR INTERPRETATION

GENERAL.

The APL/700 system includes a comprehensive error-reporting capability
that helps to determine the cause of error, the specific location, and
the corrective action. This section provides descriptions of the
various error reports and sufficient information to aid the user to
interpret and correct errors. A complete listing of error reports is
contained in Table 9-1.

ERROR REPORTS.

An error message line displayed on the
margin. It indicates the error message
asterisks.

*** SYNTAX ERROR ***

terminal starts at the left
text and is surrounded by

Additional lines may be displayed, depending on the particular error.

If the error is detected in an execution mode entry the second line
indicates the point(s) at which the error is detected. The third line
is the entry in error. An ATTN entered here recalls this entry for
inline editing. (See Section 2.)

8 6 7-5 3
*** LENGTH ERROR ***

v
8 6 7-5 3

An error detected during attempted execution of a line of a user
defined function results in the error report, then a line containing
the function name and bracketed line number, asterisk indicating
suspension on that line, then the line content. The next line
indicates the error position(s).

TEST
*** LENGTH ERROR ***
TEST[1]* 3 4+4 5 6

A

The return to execution mode allows examination of the process state
and adjustment if desired. The suspended function can be opened or
altered as desired. Execution may be resumed.

9-1

Note the down-caret v indicates that the error is in the last entered
expression and is available for error correction. The up-caret A is
displayed otherwise.

Two additional lines may appear if the error is detected during an
attempted evaluation. These lines indicate the errored position in
the string being evaluated. They occur after the error message.

fo'l 2 3+4 5 '

*** LENGTH ERROR ***
v

1 2 3+4 5
v
,l'l 2 3+4 5 '

A similar indication occurs
execution of a function line.

TRY
*** LENGTH ERROR ***

v
1 2 3+4 5
TRY[lJ* .l'l 2 3+4 5'

A

for an error in evaluation during
Note the difference in caret use.

complete an
found to be

If any characters other than •• , 'I' or '.' appear in the edit
specifier of a line edit, the one line error message appears.

1 2 3+4 5
2

*** EDIT ERROR ***

The REPORT column of Table 9-1 lists in alphabetical order the error
report texts. The DEFINITION column provides the corresponding system
interpretati ~ of the cause for each error report. Where applicable,
corrective a\'~tion is indicated.

The basis for error reports is system inability to
indicated transaction. The report identifies what is
wrong; it does not try to prejUdge a correction.

If the user types a parenthesis in the wrong location, or omits a
required en-t·'~y, the system can only report what problem it encountered
as it tried to execute the instruction, it can't tell the user what
should have been typed. This has to be determined by the user alone.

Normally, when the error occurs, the expression has to be edited or
reentered. The value of an intermediate expression within the
instruction is not saved, unless the instruction specifically directs
that it should be assigned to a name. This arises only when a
specification arrow was executed earlier than the caret that indicates
where the trouble is. If the result of an intermediate step has been
assigned only the unexecuted part of the entry has to be reentered.

9-2

The following paragraphs give samples of how some of the more common
errors may occur.

tVhen the user attempts to enter an expression whose syntax is invalid,
the "SYNTAX ERROR" message is reported. Examples causing this error
include: two variable names appearing without an intervening
function, a missing function argument, or unmatched or mispaired
parentheses or brackets (several caret marks may result).

Incorrect usages of the definition mode include: embedding the del (v)
not within quotes in a line entry, attempting to alter the definition
of any active function not on top of the state indicator, or to alter
the header line of the suspended function on top of the state
indicator, attempting to start a new definition for an existing
function whose header contains a result, an arqument, or a local names
list, and entry of an incorrect action request.

When an argument to a function contains an element outside the domain
for which the function is defined, a "DOMAIN ERROR" message is
reported, for example, an attempt to divide a non-zero value by zero.

A "TYPE ERROR" message is reported if the type is incorrect for the
function. Examples are attempts to perform arithmetic on character
objects, catenation of character with numeric objects, or character
Object insertion into a numeric array.

A ·VALUE ERROR" message indicates that the expression being elaborated
references a name for which no value has been assigned. Causes are
failure to assign a value to that name to make it a variable,
misspelling the name, or failure to define a function of that name. A
value error will also arise if the result of a defined function is
required but the function definition or execution fails to provide
one.

A "IDUlK ERROR" message indicates that the arguments to a dyadic
function are non-conformable or an argument has improper rank for the
particular function. Some functions (such as the left arguments
of \ or~) can take arguments only of rank 1 or rank O. Grades
require a rank 1 argument.

Any error report on any system command indicates failure to process.
There are no side effects of partial processing.

Any system response not enclosed in asterisks is information only, it
does not indicate an error. For example

)ERASE X
NOT X

9-3

'l'able 9-1

Error Reports (1)

••• Report •••

ACCOUNT ACTIVE

ACCT-NAME ERROR

BUFFER LIMIT

CHARACTER ERROR

CONTEXT ERROR

C01~TROL ERROR

DEFINITION ERROR

DIMENSION ERROR

DOMAIl~ ERROR

DUP-t~AME ERROR

EDIT ERROR

FILE ACTIVE LIMIT

Cause

An attempt was made to sign on an account that is
already signed on to APL.

A reference was made to a nonexistent account, or
the name was improperly formed.

An attempt was made to execute a string lonqer
than the buffer, or an attempt was made to set the
prompt to be a string longer than the buffer. The
buffer length is 1620 characters.

An invalid overstrike was entered. The locations
of the invalid overstrikes are indicated by the
squish quad (0) symbol.

A name was used out of context with its current
definition.

A parameter to a command was incorrect.

An attempt was made to define a new function with
a name that already exists, or the function header
was improperly formed. (Refer to Section 8.)

The dimension specified does not exist. (This
occurs with a function that can be applied on one
of several dimensions.)

The argument of a function (or any element of it)
was outside the acceptable values for that
argument to the function.

An attempt was made to give a local name multiple
definitions, or to repeat a label.

Something other than a ' " '/', or I.' editing
control symbol was typed beneath a line when using
the full edit action.

The user has the maximum number of files
permitted; no more requests to make more files
active can be accepted.

FILE ALREADY EXISTS An attempt was made to create a file that already
exists.

9-4

. Report •••

FILE ERROR

FILE INDEX ERROR

FILE LOCKED

FILE NAME ERROR

FILE NONCE ERROR

FILE NONEXISTENT

FILE QUOTA LIMIT

Table 9-1 Error Reports (2)

Cause

Either execution of APL was halted or a line-drop
occurred while a file operation was in process.
The file operation mayor may not have been
completed.

An attempt was made to read or write a component
of a file with index value more than one larger
than exists in the file.

Either no password when required or an incorrect
password was used in a file reference.

An attempt was made to use an improperly formed
name as a file name.

The file operation referenced is not presently
implemented.

The referenced file does not exist.

An attempt was made to create more files than the
account is permitted.

FILE SPACE LI~1IT The space
exhausted.

reserved for the file has been

FILE SYSTEM ERROR

FILE SYSTEM LIMIT

FILE UNAVAILABLE

An unexpected execution error occurred in the file
system. (This should be reported to the system
manager; all relevant output should be saved.)

The maximum number of files allowed to be active
are currently active; no more requests that
activate a new file can be accepted at present.

The referenced file is unavailable at this time.

file users
no more

FILE USERS Llf·1IT The maximum allowable number of
currently using the file system;
users can be accepted at this time.

are
file

FILE VALUE ERROR

FORMAT ERROR

GRP-NAME ERROR

INDEX ERROR

An attempt was made to access a null component of
a file.

The left argument to the format function is not a
valid format.

A reference was made to a nonexistent group.

An index into an array was out of the array
bounds.

9-5

••• Report •••

INTEGER LIMIT

INTERRUPT ERROR

LENGTH ERROR

NAME ERROR

NOI~CE ERROR

NUMBER LIMIT

PASSWORD ERROR

RANK ERROR

RANK LIMIT

SHAPE ERROR

SIGN-ON ERROR

SIZE ERROR

SPACE LIMIT

STATE ERROR

9-6

Table 9-1 Error Reports (3)

Cause

A number larger than the largest integer that may
be represented by the machine was used where an
integer was needed. The magnitude of the largest
integer is 549755813887 +~ -1+8*13.

An error was forced at a non-sllspendable point by
striking the attention key twice.

The length of a vector is incorrect for a function
using one or more vector arguments.

An ar~ument to a system function requiring a name
was g1ven an improperly formed name, or a name
with incorrect meaning was given.

An attempt was made to use a feature that is not
presently implemented.

The result of a computation is a number with
magnitude greater than the largest number that the
machine can represent. The magnitude of this
number is 4.31359146674E68 +~ (-1+8*13)x8*63.

An incorrect password was used.

The rank of an object is incorrect for the
function to which it is an argument.

An attempt was made to create a structure whose
rank was greater than 16, the maximum allowable.

The shapes of objects are incompatible for the
function to which they are arguments.

An incorrect sign-on entry was made.

A one-element object was needed as an argument to
a function, but it was not found.

An attempt was made to use more space than is
available in the active workspace.

A edit request was made on a function which could
cause the state indicator to be incorrect if the
edit were performed.

.*. Report •••

SV - QUOTA LIMIT

SV - SPACE LIMIT

Table 9-1 Error Reports (4)

Cause

An attempt was made to share more variables than
the processor is permitted to share.

An attempt was made to use more shared variable
space than the processor is permitted.

SV - UTILITY ERROR An attempt was made to offer a variable to an
undefined utility.

SYMBOLS LIMIT An attempt was made to create more symbols than
there is space for in the symbol table. (Unless
otherwise specified by the user, there is space
for 256 symbols.)

SYNTAX ERROR The syntax
incorrect.

of the APL expression entry is

SYSTEM LIMIT

TIME-QUOTA LIMIT

TYPE ERROR

VALUE ERROR

~~S-NAME ERROR

WS-QUOTA LIMIT

APL encountered an unexpected error during
execution. (This problem should be reported to
the system manager; all relevant output should be
saved.)

This error occurs once an account has exceeded its
computer usage quota. The user session is then
terminated, and the quota must be increased before
the account may use APL again.

The type of an argument is incorrect for the
function being done.

An attempt was made to use a name as an argument
for which no value has been specified.

A reference was made to a nonexistent workspace,
or the name was improperly formed.

A)SAVE could not be executed because the account
has used all available workspace slots. Some
workspace must be dropped, or the workspace quota
for the account must be increased.

9-7

UNIMPLEMENTED CONSTRUCTS.

Some constructs previously described are not implemented in the 2.7
release of APL/700.

results from an
anti-origin for

1 • A "SYNTAX ERROR"
selection from the
primitive functions:

attempted dimension
the structure mixed

e[K]B
Ae[K]B
At [K]B
A~[K]B

reverse
rotate
compress
expand.

2. An empty segment in the character format string gives a
It FORMAT ERROR".

3. The dyadic form of the edit system function B OED F gives
"SYNTAX ERROR".

4. The result of monitoring line 0 of a defined function does
not provide a count of the number of calls on the function,
but gives 0 invariably.

5. The Name List system function DNL does not permit specifying
the value 0, meaning objects with no associated meaning. A
"DOMAIN ERROR" is given instead.

6. The Shares Availability system function DSA gives a "SYNTAX
ERROR" •

7. Prefix and suffix edit actions with following text give
"EDIT ERROR":

9-8

CaL]T
[wL]T

prefix
suffix.

Term

Account tiame

Across

Active \'lorkspace

Along

APL

APL/700

Argument

Array

Assignment

Boolean

Calculator ~1ode

Character Type

Coercion

APPENDIX A

GLOSSARY

~ieaning

The identification which the APL system records
resources consumed by a user.

An orientation of a "plane" orthogonal (at ri~ht

angles) to a specified dimension of an array.

The working area within which all transactions are
performed.

An orientation of a vector, relative to a
specified dimension of an array. Vectors can be
considered to be "along" a dimension when they are
parallel to the axis of that dimension.

A Programming Language. A language for describing
procedures in an interactive environment.
Originally developed by K. Iverson.

APL enhanced for the Burroughs 700 series of
computers.

A data object (or list) supplied to a function or
operator.

A data object having shape. An array may be a
vector, a matrix, or an n-dimensional object and
may have zero or more elements.

Replace, insert into, or modify the value attached
to a variable name.

Subtype of numeric data type, having values 0
(false) and 1 (true).

See Execution Mode.

Data object containing literal character elements.

Replication of a data object to a conforming shape
for the function being applied to it.

A-1

Term

Comment (APL)

ileaning

Any text prefixed by the lamp symbol CA) and
terMinated by RETum1 or a new line.

Component Any member of a
data object or
Component.)

list.
ma'.l be

A component may be any
null. (Also see File

Constant A data object without name.

Control Structures The rules for determining order of execution.

Corner Any n-dimensional sub-array having for each
dimension at least one face that is a sub-face of
an n-dimensional array.

Data Object A unit of data for processing, with properties:
type, rank, and possibly shape and value.

Defined Function A procedure or program defined by a user,
containing lines of APL expressions and used to
perform a discrete function, such as averaging.

Definition flode 110de of APL system in which defined functions are
created or altered.

Dimension One of the independent axes of a shaped data
object. Dimensions are numbered from 1 to n for
an n-dimensional object (origin 1).

Dimension Qualifier A single indicating the dimension for coercion or
application of a function or operator.

Domain Allowable set of values for function argument.

Dyadic Function

Elaboration

Element

:empty

I~xecution r'1ode

A function having two (explicit) arguments (left
and right).

The process of applying functions to arguments in
an expression to determine its value.

A scalar object; for an array, located by a set
of scalar indices for each dimension.

A size-zero datum of any rank with shape and
type.

I'Jornal mode of ,\PL/700 terminal in which entries
are directly executed.

Expression

1\-2

A constant, variable, a
dyadic function, or
combination of these.

niladic, monadic, or
syntactically valid

Term

File

File Component

File Library

Fill

Format

Function

Meaning

A named workspace extension with file components
containing data objects.

An APL data object referenced by file name and
either file component number or end of component
queue.

The files owned by an account.

Objects used to expand the size of a datum.
Blanks (spaces) are used for character objects;
zeroes (D's) are used for numeric objects.

Specifier for mapping of a list of data objects
of various types into a character type data
object.

A transformation on zero, one, or two arguments
that generally produces a value.

Function Definition Mode in which functions are defined or changed.
and Editing Mode

Global Definition of a name outside (in the calling
environment of) a defined function. See local.

Group A name to which other related
associated for reference.

names are

Identifier

Inactive Workspace

Index Number

Index Or ig in

Instance

Integer

A string starting with a letter of the alphabet,
an underscored letter, or a delta (~) or
underscored delta (~) and followed by zero or
more of the above characters, the digits, or
underscore.

A workspace in a user library.

An integer specifying the position of a plane
across a dimension of an array, starting with the
origin.

Tile first ordinal number, either 0 or 1.

A single occurrence of the environment resulting
from execution of a defined function, commencing
with its call and completing either by return to
the calling environment or termination. The
environment of local names shields any more
global uses of the same names.

Subtype of numeric having no fractional part; in
inclusive range 1-2*39 to (2*39)-1.

A-3

Term

Iteration

Label

Lamp Character

Last Executed
Expression

Library

List

Local

Lock

Loop

Matrix

MCS

Mode

Monadic Function

N-Dimensional

Niladic Function

Null

A-4

Meaning

A single execution of repetitive function lines,
returning to common point in a loop.

Local name for line of defined function, always
followed by':', having constant value the line
number on which it occurs.

A A prefix to denote comment text following in entry
or on a line of a defined function.

The retained string last entered, available for
recall by ATTN for further editing.

Inactive works paces of an account stored for later
use. Also works paces from other accounts to which
access has been granted.

Expression, or sequence of component expressions
separated by semicolons.

Definition of a name within (local to) a defined
function, possibly shielding a more global
instance of meaning of that name.

A user access control to protect an account,
workspace, file, or function.

Failure to find a parallel solution, resulting in
a path in a function that can lead to iteration.

A rank-2 datum (two dimensions).

Message Control System (data communications
control system, one-of which is APL).

System interpretation of transaction entry:
execution, function definition and editing, eval­
uated, or character input. Recognized by prompt.

A function having only one (explicit) argument
(always right argument).

A rank-N array--see vector, matrix.

An identifier used to denote a variable, defined
function, group, local name, or a label.

A function having no (explicit) argument.

File component or list element without value
(contrast with empty).

Term..............

Numeric

operator

Orthogonal

Password

Pendant Function

Plane

Meaning

Type of datum consisting of only numbe~s, has
subtypes integer and Boolean; in inclusive range
for mantissa magnitude 0 to (2*39)-1 and exponent
(8*-63) to 8*63.

On defined functions to produce a new ~unction

that applies to arguments.

Mutually perpendicular, or independent; referring
to different dimensions of an array.

User selected name for access control of account,
workspace, or file.

A function that is awaiting completion of another
function that it called.

Any "slice" of a shaped object that is orthogonal
to a given dimension of that object. A plane
"across" the K-th dimension of an N-dimensional
object is a (N-1)-dirnensional object with all but
the K-th dimension of the original retained.
Thus a "plane" of a vector is a scalar element,
and a "plane" of a matrix is a vector from a row
or column.

Primitive Function Any of the functions supplied as part of the APL
language.

Prompt (system)

Qualification

Range

Recovery

Scalar

A displayed response (from APL) that identifies
the mode. The terminal is unlocked to accept user
entry following a prompt.

Specification of dimension for application of
function, or name for function editing.

Allowable set of values for result of applying a
function.

The number of dimension of a data object. Scalars
are rank 0, vectors are rank 1, matrices are rank
2, and n-dimensional arrays are rank n.

Restoration of the work in progress after an
interrupted work session.

A data object without shape; that is, a rank-O
data object; may be either a number or character.

Scalar Primitive Function applied
argument(s).

element by element to its

Selection

Set

Specify a subarray by providing a list of indices.

Unique values in data object independent of shape
or order.

A-5

Term

Shape

Shared Variable

Single

Size

State Indicator

String

Subscript List

Meaning

A vector specifying the number of planes across
each dimension of a data object with positive
rank. Arrays have shape, scalars do not.

A system variable that is ~hared between a user
and another user or process external to APL.

A data object of any rank with only one element.

The scalar number of elements in an array.

Record of user defined functions in process,
suspended, or pending completion of other called
functions.

A character type data object that may be either a
scalar or vector.

List of expressions or nulls, one for each
dimension of an array data object.

Surrogate A substitute, or external
variable reference.

name, for shared-

Suspended Function A function whose execution was stopped for some
reason other than a call to another function.

Symbol Table Entry Any of the set of distinct names and numeric
constants occurring in a workspace.

System Commands Execution Mode commands with
provide environment controls
facilities.

,) ,
and

prefix that
interrogation

System Functions

System Variables

Template

Text

Transaction

Type

A-6

Functions with 0 prefix that provide executable
controls and inquiry capabilities regarding the
environment.

Variables shared with APL/700 to specialize
processing within a workspace (index origin, print
precision, comparison tolerance, and random link).

Specification of name and call syntax of defined
function.

Any string of characters.

Cycle consisting of user entry, APL processing
(and display of output and prompt as required),
and unlock of keyboard.

Either character or numeric, of data object.

Term

Value

Variable

Vector

Workspace

Meaning

The scalar element or array of elements of a data
object, each in the domain for the type of the
data object.

Data object attached to a name by assignment and
used for reference.

A rank-1 datum.

The maximum space made available by the APL
installation for direct access by an application.
See Active Workspace, Inactive Workspace.

A-7/A-8

APPENDIX B

WORKSPACE CONTENT SPACE CONSIDERATIONS

USE OF SPACE.

The user workspace size is limited to the maximum number of bytes
established by the installation. The system function OWA provides the
amount of space remaining and the amount in use. In a clear
workspace, there is some space in use for workspace management and for
the user symbol table. As functions, variables and groups are
created, the space remaining decreases. The space remaining is used
also for temporary results of computations. The available space is
augmented by release of unneeded objects: automatically for temporary
results, local names, or a prior data object attached to a name on
replacement; explicitly for other named objects. Since the total
available space is limited, some consideration of space consumption
may be required in large applications.

SYMBOL TABLE.

The symbol table is used to provide convenient reference to names, and
to literal constants and comments in user-defined functions. Each
symbol table entry requires 6 bytes, whether or not the entry actually
refers to anything. The user can control the maximum symbol table
size in a clear workspace using either:

)SYMS N
)CLEAR N

establish default as N symbols
override default to become N symbols

The user can interrogate the current symbol table size by: DNA.

NAMES.

Each entry in the symbol table referring to a name contains the means
to recover the corresponding name supplied by the user. The space
required (once per name) depends on the number of characters in the
name:

Characters in name

1, 2 or 3
X, more than 3

Extra bytes

o (stored in entry)
12+6xfXf6

B-1

VARIABLES.

Each data object has an overhead of 12 bytes. Also, each requires
space to describe the structure and to contain the values of its
elements. The space for structure description depends on the rank.

Rank R

Scalar 0
Vector 1
Matrix 2
Array 3 or more

Extra Bytes

o
o
6

6+6xR

The space for N elements, regardless of shape, depends on the type:

Boolean
Numeric, not Boolean
Character

FUNCTION DEFINITION.

Bytes

6xrN+32
6xN
6xrN+6

The space for function definition occurs only once in a workspace.

Each line of a user-defined function requires 18 bytes overhead. Each
local name, argument or label requires 6 bytes.

Upon initial definition, line editing, or upon fixing a variable to
become a function, the internal representation of the function is a
token stream. Each name, constant primitive function or operator,
file operator, system command or variable, punctuation, literal or
comment is a token. Each token requires 2 bytes. Each constant also
requires the space for the corresponding data object. Each comment
requires space for the text string.

Upon first execution of any line of a function, the internal
representation of that line is converted into a process stream that
provides a parenthesis-free reordering suitable for direct
elaboration. The process stream is generally more compact than the
token stream. The process stream representation is maintained until
the line is edited.

DEFINED FUNCTION CALL.

Each dynamic instance of a function call (appearing in the state
indicator) requires space for all instances of locals:

Local name
Result
Label
Argument

12 bytes
12 bytes
18 bytes
enou9h for copy of data object if a

variable name

Thus, significant space consumption can result from having earlier
instances of functions suspended or pending in the state indicator.
B-2

Reassignment to an argument changes the initial space allocation, just
as with any other variable.

The space indicated for local names is the minimum requirement at
function entry when they have no meaning. As they gain value as
variables by assignment, or as functions by fixing, more space is
required. The amount is determinable as the sum of the individual
space requirements as indicated before for the various kinds of names.

FUNCTION REPRESENTATION SPACE COMPARISON.

Typical relative space requirements are indicated below, assuming most
names are 3 characters or less, and few comments are included.

Representation Typical size ratio

vector
canonic
token stream
process stream

data
data
executable function
executed function

1.0
2.7
2.4
2.3

The overhead per line for the function forms is more than the fully
expanded names of the vector data representation. The appended
blanks in the canonic representation become a major part; particularly
if a function has a large local names list, or lines of greatly
varying length.

Note that fixing a vector representation may require more space than
the original, and that some space is reclaimed by first execution.
The space for a comment (a string of characters) is constant in all
representations (except canonic where comments that do not increase
the length of the longest line take no extra space).

LOCAL AND GLOBAL NAMES.

Any name local to a defined function shields any global meaning of
that name. The space the global object is also required, even though
inaccessible until exit from the function shielding it.

GROUPS.

Each group name takes 12 bytes. In addition, a group with N names
attached requires 6xrNf4 bytes.

SHARED VARIABLES.

If there
required.

are any shared variable offers outstanding,
In addition each shared name takes 6 bytes.

12 bytes are

TEMPORARY RESULTS.

Any data object created as a result of expression elaboration requires
space for its elements and description as indicated for a variable
above. This space is relinquished when the function for which it is
an argument has been executed.

B-3

SPACE SAVING TECHNIQUES.

Clear the state indicator of unnecessary pending functions.

Expunge or erase unnecessary variables or functions.

Limit the space for unnecessary positions in the symbol table by
copying into a clear workspace having only the necessary positions.

Recover the space for local variables or local functions fixed therein
by exiting the function to which they are local.

Call common defined functions rather than repeat expressions contained
therein.

Attach a scalar to a variable name, replacing a large named data
object that is no longer needed.

Hold large inactive data objects in file components. Enough space
must exist in the workspace to accept a component. After a file write
of a large variable, it may be necessary to assign a scalar to that
variable name to free enough space before another file component can
be read, even to the same name.

Keep functions not immediately required in vector form as file
components. Use a cover function that reads and fixes necessary
functions from file components as needed, and expunges them when no
longer needed. Exit from the cover function automatically recovers
the space for such functions if their names are local.

Minimize the number of lines in a function at the expense of writing
more complex expressions.

Use Boolean data objects where appropriate instead of numerics.
Arithmetic functions applied to Booleans cause conversion to numeric
representation. A numeric data object N known to have only values 0
and 1 can be converted to Boolean by N+1=N.

Pack several numeric values with limited domains into a single number.

Adapt processing algorithm to space available. Trade iterative
processing on sub-arrays for space required for parallel processing on
the entire arrays.

Avoid reduction of the result of an outer product operator where inner
product will suffice.

Consider using a global variable rather
function to avoid creating a copy of
using the same variable name.

than an argument to a defined
the argument if always called

Develop parallel functions for documentation. All comments can be
placed therein. A frequently used convention is to put the
documentation in another function with "HOW" as a suffix to the
executable function name. The documentation can be erased easily if
all such names are included in a group.

B-4

APPENDIX C

REFERENCE CHARTS

Much of the material detailed in the body of this report is presented
here in the form of summary reference charts. These charts are
intended for review, once the complete development has been absorbed.
They may also be used as a quick indication of the power of APL/700
constructs.

The subjects covered in these charts are:

dyadic and monadic scalar primitive functions
primitive operators on dyadic scalar primitive functions
mixed functions
primitive file functions
function definition and editing actions

Also, four APL syntax summary pages are provided for quick reference.

Finally, a condensation is included of the transaction cycle, editing,
and the attention conventions.

C-1

• a.MONADIC SCALAR PRIMITIVE FUNCTIONS

BASE E
LOGARITHM

BASE E
I POWER

e

*POWER

LOGARITHM

~ + 12+3

1 ++ -417

9 ++ 3*2
-3 ++ -27*(+3)

51-11

5 ++ 10+-2

4 ++

~-dxla+4 ++ 41a FOR 4;1fO
a ++ 41~ FOR &=0

1.76 ++ 3.52+2

A RAISED TO THE POWER a:
1024 ++ 2*10 2 ++ 4*.5

3 ++ 5113
5 + 015
5 ++ 1415
.14 ++ 113.14

(ea)+e4 ++ LOGARITHM OF a FOR BASE 4 ++ A-a
1.87506 ••• ++ 10e75 3 + 2e8

1===
I I - I
I DYADIC SCALAR PRIMITIVE FUNCTIONS A - 11. I 1
I I • I
1===1===1===
1 DEFINITION OR EXAMPLE 1 NAME I I NANE I DEFINITION OR EXAMPLE
1==1============I===I============I===========~===================================

LARGER OF A AND ~ ++ 4r~ I MAXIMUM I r I CEILING I SMALLEST INTEGER NOT LESS THAN a ++ r~

7 ++ ar7 6.01 ++ 6.01[6.01 -3 ++ -3r-7 I 1 I I 4 ++ [3.141 -3 ++ r-3.141 101 ++ fl01

--1------------1---1------------1--
SMALLER OF d AND ~ ++ 4La I MINIMUM III FLOOR I LARGEST INTEGER NOT GREATER THAN ~ ++ La
3 ++ 317 6.01 ++ 6.01l6.01 -7 ++ -3l-7 1 I I I 3 ++ l3.141 -4 ++ l-3.141 101 ++ L1Cl-- - 1 -------I---I------------I-----i--
1.5 ++ -2+3.5 5.5 ++ 2+3.5 -1.5 ++ 2+-3.5 1 ADD I + I IDENTITY I o+a. ++ +~ 3.5 ++ +3.5 -3.5 ++ +-3.5

--1------------1---1------------1--1
1.5 ++ 2-3.5 1.5 + 3.5-2 5.5 ++ 2--3.5 I SUBTRACT I - I NEGATE 1 o-~ ++ -a -3.5 ++ -3.5 3.5 ++ --3.5 I

--1------------1---1------------1--1
5 ++ 4 xl.25 -3 + 6x-.5 0 ++ OX-.09 I MULTIPLY I x I SIGNUM I SIGN OF a: 1 ++ x7.2 0 ++ xO -1 + X-3 I---_-_1- - 1 1 1 -------------------1

DIVIDE 1 + I RECIPROCATE I 1+~ ++ +a .5 ++ +2 -2 ++ +-.5 I--1- __ -- 1 1 1 -------------------1
RESIDUE I 1 I MAGNITUDE I ABSOLUTE VALUE OF a ++ I~ I

9.5 + 19.5 9.5 ++ 1-9.5 0 ++ 10 I
I
I--1----- 1 1 1 - 1

(2.71828 •••)*~ I
4 ++ *1.386294361... 20.0855 ••• ++ *3 1

------------I----------------------~-------------------------1
(2.71828 •••).a M++ *-1 ++ .*1 I
1.386294361 ••• ++.4 -.693147 ••• ++ e.5 I

------------1--1
oeo 1.0 0-1 1-1 3.4 3e3 4.3 I I I I
o 0 1 0 1 0 0 I LESS < I 1 1
1 0 1 1 1 1 0 'NOT GREATER s 1 I I
1 0 0 1 0 1 0 1 EQUAL = I I f

1 1 0 1 0 1 1 1 NOT LESS ~ I 1 I
o 1 0 0 0 0 1 I GREA'lER > 1 I 1
o 1 1 0 1 0 1 I NOT EQUAL ;If I 1 I

--1------------ ---1------------1--
oeo oel leo lel BOOLEAN DOMAIN (0 OR 1)1 - I NOT I 0 ++ -1 1 ++ -0 BOOLEAN DOMAIN (0 OR 1)
o 0 0 1 AND All
o 1 1 1 OR v I 1
1 1 1 0 NAND ~ I I
1 0 0 0 NOR ttl I 1

1-- ------------1---1------------1--
(1-~*2)*.5 ++ ooa CIRCULAR 1 0 I PI TIMES I ax 3.14159 ••• ++ oa 6.283185 ••• ++ 02

ARCSIN ~ ++ -lo~ SIN a ++ lOa I 1 1
ARCCOS a ++ -2 oa COS a ++ 20 a I 1 1
ARCTAN ~ + -30B TAN ~ ++ 30a I I I

(-1+~*2) * . 5 ++ - 4oa (1+a*2) *•5 ++ 4 0 a til
ARCSINH a ++ -soa SINH a ++ 50a I I 1
ARCCOSB a + -6 oa COSH a ++ soB 1 I 1
ARCTANH a ++ -7oa TANH a ++ 7o~ I I I

-- ------------1---1------------1--
6 ++ 2!4 (!~)+<!4)x!a-4 FOR 4sa ICOMBINA- I! I FACTORIAL I aX!~-1 ++ :a FOR a~1. a AN INTEGERi 1 ++ :0
o + 9!3 1 ++ 5:5 0 ++ ..i!a FOR A>a I TORIAL I I I GAMMA<a,+l) ++ :a FOR NON-IN'TEGER a 6 ++ !3
-10 ++ 3!-3 4.9346 ••• ++ 1.114.5 I I I I 39916800 ++ !11 2.68344 ••• ++ !2.3

J I I 1 I 3 • 3 2 8 3 • •• ++ ! - 2 • 3

1=======================================%===:=============================

(J
I

l\.J

===
PRIMITIVE OPERATORS OR DYADIC SCALAR PRIMITIVE FUNCTIONS

===

r/tO++

++ f\3 3pt9

4.31 ••• E6 8

EXAMPLES

123
0.25 0.4 0.5 ++ +\[1]3 3pt9
1.75 3.2 4.5

123
0.25 0.4 0.5 ++ +~3 3pt9
1.75 3.2 4.5

5 ++ */5

1 ++ x/tO

6 ++ .. /1 2 3
1.4 ++ -/2.3 5.6 4.7

1.5 4.8 7.875 ++ +/3 3P19

1 0.5 1.5
4 0.8 4.8 ++ t~[1]3 3pt9
7 0.875 7.875 I

------------------------------------1
32 ++ 1 2 3... x4 5 6 I
1 ++ 1 0 lV.Ai 1 0 I
5 6 7 8 ++ (2 3pt6)-.ra 4Pli2
8 8 8 8

r l + - x + 1*. < s = ~ > ~ A V ~ • 0 !• AND. ARE ANY DYADIC SCALAR PRIMITIVE FUNCTIONS:
K IS A DIMENSION NUMBER OF~: K~\PP~

e~[K]a ++e\(l+(ppa)-K]Q:
SCAN ON THE K TH FROM LAST DIMENSION.

ea, ++ .\(1)Q:
SCAN ON THE FIRST DIMENSION.

THE RESULT IS THE OPERATOR ~ APPLIED BETWEEN ALL
PAIRS OF ELEMENTS SELECTED FROM A AND a. THE RESULT HAS
SHAPE (pd>,pQ:.

ELEMENTS OF THE RESULT ARE FORMED BY TAKING CONFORMING VECTORS
ON THE LAST DIMENSION OF d AND THE FIRST DIMENSION OF ~ APPLYING
• BETWEEN THEM AND REDUCING THE RESULT BY •• Ml+. x M2 IS THE
LINEAR ALGEBRA MATRIX PRODUCT FOR MATRICES M1 AND M2.

4 5
8 10 ++ 1 2 3 o .x4 5

12 15
101
I 1 1 ++ 0 1 0 .VO 1

===1====================================

·~[K]~

NAME 1 FORM I DEFINITION
==============1=========1===1====================================

REDUCTION I ./~ I a l~aXQH: SCALAR RESULT IS FORMED BY ELABORATING THE APL
I I EXPRESSION FORMED B1 PLACING • BETWEEN THE ELEMENTS OF THE
1 I VECTOR.
1 1 IF ~ IS AN EMPTY VECTOR THE RESULT IS THE IDENTITY ELEMENT FOR
I I • IF IT EXISTS.
I I ~ 4BH&I: RESULT IS FORMED BY REDUCING VECTORS ON THE LAST
I I DIMENSION OF THE ARRAY. THE RESULT HAS RANK 1 LESS THAN THE
I I RANK OF THE ARGUMENT. THE SHAPE OF THE RESULT IS THE SAME AS THE
1 I SHAPE OF THE ARGUMENT LESS THE LAST DIMENSION.
I I ~ ~'dL4H: THE RESULT IS THE SCALAR ~. a MUST BE IN THE DOMAIN
I I OF e.
1---------,---1------------------------------------1
I ./[K]~ I LIKE e BUT VECTORS ON THE K TH DIMENSION ARE REDUCED. I 1.75 3.2 4.5 ++ +/[1]3 3pt9 I
1---------1---,------------------------------------1
1 .f~ I .~~ ++ ./[l)a I 1.75 3.2 4.5 ++ +~3 3pt9 I
, I REDUCTION ON THE FIRST DIMENSION. I 6 ++ +f1 2 3 I
1---------1---1------------------------------------1
t .f[K]~ I .f[KJa ++ ./[l+(pp~>-KJa REDUCTION ON K TH FROM LAST DIMENSION. I 1.5 4.8 7.875 ++ ft[1]3 3pt9 I

--------------1---------1---1------------------------------------1
SCAN I .\~ I ~ l~'XQB: RESULT IS A VECTOR OF THE SAME LENGTH WHOSE I 1 3 6 ++ +\1 2 3 I

I I I TH ELEMENT IS ellt~. I 2.3 -3.3 1.4 ++ -\2.3 5.6 4.7 I
t I a 4HBAl: RESULT IS FORMED BY REPLACING VECTORS ON I 1 0.5 1.5
1 I THE LAST DIMENSION OF ~ BY THE. SCAN OF THE VECTOR I 4 0.8 4.8
I I IN a. I 7 0.875 7.875
I I a ~k4LdB: THE RESULT IS THE SCALAR ~. ~ MUST BE IN THE DOMAIN I 1 ++ A\1
I I OF e.
1---------1---1------------------------------------1 e\[K]~ I LIKE e, BUT VECTORS ON THE K TH DIMENSION
I 1 ARE SCANNED.
I
,---------
I .~a

I
I

I
I
I
I
I,
I
1
1
I
I
1
I,
I
I
I
\--------------1--------- 1

---I INNER PRODUCT I 4e ••~
f
I
f

1--------------,---------1---1------------------------------------I OUTER PRODUCT I do ••a
I
I
I
I I
1==============1=========
I
I
I
1
1===

()
I

IN

'1 2 3' ++ .1 2 3
'APL' ++ Y'APL'

()
I

+::

1===1
I I
I MIXED PRIMITIVE FUNCTIONS- 1 1
1 I
1===1
1 NAME I FORM I DEFINITION I EXAMPLE I
1===============1======1==1===11 SHAPE 1 p~ 1 SHAPE PRODUCES A VECTOR WHICH IS THE SHAPE OF THE 1 .5 ++ p-2 -1 0 1 2 I
1 1 I ARGUMENT. I 234 ++ p2 3 4p\2~ 1
1 1 I .4 ++ pd,P.2 I \0 ++ p' A ' 1
1---------------1------1--1---1

INTEGERS IN I \a I ~ MUST BE A NON-NEGATIVE INTEGER SCALAR. THE RESULT I 1 2 3 ~ 5 ++ \5
I 1 IS A VECTOR OF LENGTH a OF THE FIRST a INTEGERS I .1 ++ \1
t I STARTING AT THE INDEX ORIGIN. 1 OpO ++ \0
I I \0 ++ THE EMPTY NUMERIC VECTOR. tN ++ (IN-i).N IN ORIGIN 1. I

---------------1------1--1---
INDEX I 4\a I d, MUST BE A VECTOR. THE RESULT IS A DATA OBJECT WITH THE I 3 +~ 4 7 10 22\10

I I SAME SHAPE AS ~. EACH ELEMENT OF THE RESULT IS THE 1 1 2 1 3 ++ 'ABCABCDE'\'ABAC'
I I INDEX IN d OF THE THE FIRST OCCURENCE OF THE 1
I 1 CORRESPONDING ELEMENT IN ~. IF THE ELEMENT DOES NOT OCCUR 1 4 2 4 1 ++ 1 0 1\10 0 16 1
I I IN 4 THE RESULT IS 1+pdCIN ORIGIN 1. p4 IN ORIGIN 0). 1 4 4 4 ++ 'ABC'll 2 3

---------------1------1--1---
DEFAULT FORMAT I .~ 'THE RESULT IS A CHARACTER DATA OBJECT WITH THE SAME

I 1 SHAPE AS ~ EXCEPT THE LAST DIMENSION IS EXPANDED.
I liTHE RESULT IS A CHARACTER REPRESENTATION OF a.
1---------------1------1--1---
1 FORMAT I 4Y~ I SEE FORMAT CHART.
1---------------1------1--1---
I EVALUATE I ~~ 1 a MUST BE A CHARACTER STRING WHICH IS A VALID APL EXPRESSION.' 4 ++ ~'2+21

I liTHE RESULT OF EVALUATE IS THE RESULT PRODUCED FROM THE I 1 2 3 4 5 ++ ~'\5'

I I I EVALUATION OF THE EXPRESSION IF IT PRODUCES A RESULT. 1 'APL' ++ ~" 'APL" I

I 1 I IF ~HE EXPRESSION DOES NOT PRODUCE A RESULT EVALUATEMUST t -2 -1 0 1 2 ++ ~.-2 -1 0 1 2
I I I BE THE LEFTMOST FUNCTION IN THE EXPRESSION.
1---------------1------1--1---
1 MEMBERSHIP I d£~ I d DETERMINES THE SHAPE OF THE BOOLEAN RESULT. EACH ELEMENT I 1 0 1 1 ++ 1 2 3 1£1 3 5
I I I IS 1 IF PRESENT IN ~. 0 OTHERWISE. 4€~ +~ v/4°.=.B I 0 1 1 1 0 ++ 'LEARN'€'TEACHER'
1---------------1------1-- ---
1 SUBSET 1 dca I THE BOOLEAN SCALAR RESULT IS 1 IF ALL UNIQUE ELEMENTS 1 ++ 1 2c3 2 1 0 ++ 'A'c3
I I 1 OF 4 ALSO APPEAR IN B. 0 OTHERWISE. 4c~ ++ A/.4€~ 0 ++ 1 2c 3 1 ++ 'PAOLI'c'PLATONIC'
1---------------1------1-- ---
I SUPERSET I A~~ I THE BOOLEAN SCALAR RESULT IS 1 IF ALL UNIQUE 0 ++ 1 2~4 3 2 1 0 ++ 'A'~3

I I I ELEMENTS OF ~ ALSO APPEAR IN A. P OTHERWISE. 4~a ++ A/.a€4 0 ++ 'PAOLI'~'PLATONIC'

1---------------1------1-- ---
I UNION I dua I THE VECTOR RESULT IS THE UNIQUE ELEMENTS FROM 4 OR a IN THE 1 4 ++ 1 lu4 1 1 3 ++ 1 1 3 lu\O
I I I ORDER OF FIRST OCCURRENCE IN (.4) ••a. 'MARGET' ++ 'MANAGEMENT'u' ,
1---------------1------1-- ---
1 INTERSECTION I Ana I THE VECTOR RESULT IS THE UNIQUE ELEMENTS OCCURRING IN BOTH 2 3 ++ 1 2 3n2 3 4
I I I(.&,> AND (.a.) IN THE ORDER THEY FIRST OCCUR IN &. 'HAR' ++ 'HARRY'n'MARTHA'
1---------------1------1-- ---
1 EXCLUSION I 4-a. 1 THE VECTOR RESULT IS THE UNIQUE ELEMENTS OCCURRING IN 4 BUT .1 ++ 1 2 3- 2 3 4 I
I I 1 ROT IN ~. IN THE ORDER THE! FIRST OCCUR IN 4. 'SET' ++ 'SETTLED'-'LAND' 1
1---------------1------1-- ---1

===:======================================::===================

MIXED PRIMITIVE FUNCTIONS - 2

===
NANE 1 PORM I DEFINITION 1 EXAMPLE

===============1======1==1===
REPRESENT I 4T~ I ~ ~kAL4B: IF 4 IS A VECTOR THE RESULT IS A VECTOR THE 1 1 0 1 ++ 2 2 2T5

SAME LENGTH AS 4. THE RESULT CON~AINS THE REPRESENTATION OF I 0 26 23 ++ 24 60 60T1583
~ IN THE NUMBER SYSTEM 4. IF d IS AN ARRAY THEN THE RESULT I 1 0
IS THE REPRESENTATION OF ~ IN THE NUMBER SYSTEMS I 0 3 ++(3 2p4 5)T17
SPECIFIED BY VECTORS ALONG THE FIRST DIMENSION OF 4. 1 1 2
a dHB4l: THE RESULT WILL BE A DATA OBJECT WITH SHAPE (p4).pa I 1 1 0 0 I
WHERE VECTORS ALONG THE FIRST DIMENSION OF THE RESULT ARE THE 0 1 1 0 ++ 2 2 2T4 7 3 0 1
REPRESENTATION OF A SCALAR IN a IN THE NUMBER SYSTEM 0 1 1 0 I
SPECIFIED BY A VECTOR ALONG THE FIRST DIMENSION OF d. I
FUNCTIONS IN A MARNER SIMILAR TO OUTER PRODUCT. I

---------------1------1-- ---1
BASE VALUE I 4~~ I a l~kfQH: IF 4 IS A VECTOR THEN THE RESULT IS A SCALAR 5 ++ 2 2 2~1 0 1 1

WHICH IS THE BASE 10 VALUE OF THE VECTOR IN THE NUMBER SYSTEM 1583 ++ 24 60 60~0 26 23 1
SPECIFIED BY 4. 4 MAY BE A SCALAR IN WHICH CASE IT IS 15 ++ 2~1 1 1 1 1
EXTENDED TO THE LENGTH OF a. IF ~ IS AN ARRAY THE RESULT HAS 22 30 38 ++ (3 2p5 5 7 7 9 9)~4 2 I
SHAPE -1+pd AND CONTAINS THE REPRESENTATION IN BASE 10 l
OF ~ IN THE NUMBER SYSTEM SPECIFIED BY A VECTOR ALONG THE 1
LAST DIMENSION OF 4. I
~ 4BB4l: THE RESULT IS AN ARRAY WITH SHAPE (-1~p4).1+pa. 4 6 ++ 2 2 2~3 2p1 1 0 1 0 0 I
THE RESULT IS SCALARS WHICH ARE THE BASE 10 REPRESENTATION I
OF VECTORS ALONG THE FIRST DIMENSION OF ~ IN THE NUMBER I
SYSTEMS SPECIFIED BY VECTORS ALONG THE LAST DIMENSION OF 4. 1
FUNCTIONS IN A MANNER SIMILAR TO INNER PRODUCT. 1

---------------1------1-- ---1
MATRIX INVERSE I m~ I a MUST BE A MATRIX WITH NO 3.5 -1.5 0.5 1

I MORE COLUMNS THAN ROWS. THE RESULT IS THE INVERSE OR -4 2 -1 ++ ffi3 3p(4pl).2 3 -2 -1 21
1 GENERALIZED INVERSE OF THE MATRIX IF IT EXISTS. 1.5 -0.5 0.5 I

---------------1------1--1---1
MATRIX DIVIDE I Am~ I ~ MUST BE A MATRIX WITH NO I -1 1 ++ 0 -1m2 2pl 1 2 I

I MORE COLUMNS THAN ROWS. & IS EITHER A VECTOR WITH LENGTH I
I EQUAL TO THE NUMBER OF ROWS IN a OR A MATRIX WITH THE SAME I

NUMBER OF ROWS AS a. THE RESULT IS THE SOLUTION TO THE SYSTEM I
OF LINEAR EQUATIONS WITH COEFFICIENT MATRIX ~ AND RIGHT HAND 1
SIDE(S) 4 IF IT EXISTS. WHEN a HAS MORE ROWS THAN COLUMNS 1
THE RESULT IS A LEAST SQUARES FIT FOR THE SYSTEM. I

--------------- ------ --1---
GRADE-UP .~ a MUST BE A NUMERIC VECTOR. THE RESULT IS A SET OF INDICES I 2 5 4 1 3 ++ 48 0 9 5 0

I THAT CAN BE USED TO ORDER ~ IN ASCENDING ORDER. 1 0 0 5 8 9 ++ 8 0 9 5 0[48 0 9 5 0]

1--------------- ------ --1---
1 GRADE-DOWN 'a ~ MUST BE A NUMERIC VECTOR. THE RESULT IS A SET OF INDICES I 3 1 4 2 5 ++ '8 0 9 5 0
1 THAT CAN BE USED TO ORDER a IN DESCENDING ORDER. 1 9 8 5 0 0 ++ 8 0 9 5 0['8 0 9 5 0]

1--------------- ------ --1---
I ROLL ?~ a MUST CONTAIN POSITIVE INTEGERS. THE RESULT IS A DATA 1 1 1 ++ ?1 1
I OBJECT LIKE a WITH EACH ELEMENT A RANDOM CHOICE FROM 1

I \S WHERE S IS THE CORRESPONDING ELEMENT OF a. 1

1--------------- ------ --1------------------------------"-----------1
J DEAL A7a d AND ~ MUST BE NON-NEGATIVE INTEGERS WITH 4 NOT GREATER 1.1 ++ 1?1 I
1 THAN a. THE RESULT IS A VECTOR OF LENGTH 4 THE ELEMENTS I \0 ++ 0710 I

(") I OF THE RESULT ARE A RANDOM SELECTION WITHOUT REPLACEMENT I I
I 1 FROM \a. I 1

Ln 1=============== ====== ==1===1

()
I

m

==:==1
I

MIXED PRIMITIVE FUNCTIONS FOR STRUCTURING - 1 1- - 1
==:::==:=:::=======:==:==:==::=:==::::=========:=:===1

THE RIGHT ARGUMENT OF ANY STRUCTURE MIXED PRIMITIVE FUNCTIONS MAY BE A THE FOLLOWING VARIABLES ARE USED IN THE EXAMPLES: I
CHARACTER DATA OBJECT. -SINCE CATENATE AND LAMINATE JOIN TWO DATA OBJECTS. 111 112 113 114 1
IF THE RIGHT ARGUMENT IS A CHARACTER DATA OBJECT THE LEFT ARGUMENT MUST 1 2 3 4 5 ++ V 121 122 123 124 I
ALSO BE ONE. ALL OTHER STRUCTURE MIXED PRIMITIVE FUNCTIONS 131 132 133 134 1
FUNCTION IN THE SAME MANNER ON CHARACTER DATA OBJECTS AS ON NUMERIC ~+ T 1
DATA OBJECTS. F~LL POR TAKE AND EXPAND IS BLANKS IF THE RIGHT ARGUMENT 11 12 13 14 211 212 213 214 I
IS A CHARACTER DATA OBJECT. 21 22 23 24 ++ M 221 222 223 224 I

31 32 33 34 231 232 233 234 I
===================-===1

NAME I FORM DEFINITION I EXAMPLES I
==:=======1======== ===1===1
RESHAPE I 4pa THE DATA OBJECT a IS MADE INTO THE SHAPE SPECIFIED BY 4. 1 5 5 5 +~ 3p5 I

I IF a BAS LESS ELEMENTS THAN ARE NEEDED THE ELEMENTS OF 6. 1.1 + lp V I
I ARE REUSED UNTIL ENOUGH ELEMENTS ARE OBTAINED. IF ~ HAS MOREl 2.5 + (lO)p2.5 8.6 -3.1 1
1 ELEMENTS THAN ARE NEEDED THE EXCESS ARE IGNORED. I 1 2 I

J I .4 ++ p4p~ I 3 4 ++ 3 2p V I
I I I 5 1 1
1----------1-------- ---1---1
I RAVEL I .6. THE DATA OBJECT a IS RESHAPED INTO A VECTOR. I 11 12 13 14 21 22 23 24 31 32 33 34 ++.M I
I I .8. ++ (x / p1J.) pa I 1 p8 • 6 ++ • 8 • 6 I
1----------1-------- ---1---1
I CATENATE I 4.a THE DATA OBJECTS 4 AND ~ ARE JOINED TOGETHER I 1 2 3 4 5 1 2 3 4 5 + V,V 1
I I TO FORM A NEW DATA OBJECT. THE DATA OBJECTS ARE 1 7 1 2 3 4 5 +~ 7.V I
I , JOINED ALONG THE LAST DIMENSION. A SCALAR IS I 7 11 12 13 1~ I
1 EXTENDED TO FORM A PLANE ACROSS THE DIMENSION IT IS I 8 21 22 23 24 ++ 7 8 9,M 1
1 BEING JOINED TO. I 9 21 22 23 24
I I 11 12 13 14 1
I 1 21 22 23 24 1 +~ M.l
I I I 31 32 33 34 1
1 --------1---1---1 d.[KJa I LIKE A.a BUT THE DATA OBJECTS ARE JOINED ON THE I 11 12 13 14
I I K TH DIMENSION. I 21 22 23 2~ ++ M,[1]7 8 9 10
I I 1 31 32 33 34
1 I I 7 8 9 10

1---------- --------1---1---
I LAMINATE d.[K]~ I THE DATA OBJECTS & AND a ARE JOINED ALONG A NEW , 1 100
I I DIMENSION. K MUST BE NON-INTEGRAL AND BETWEEN THE NUMBERS I 2 200 ++ 1 2 3,[1.5Jl00 200 300
I I I OF THE DIMENSIONS BETWEEN WHICH THE NEW DIMENSION IS I 3 300
I 1 I FORMED~ A SCALAR IS EXTENDED TO THE SHAPE OF THE OTHER I 1 2 3 4 5
I I , OBJECT. 1 8 B 8 8 8 +~ V. [.476] 8

1----------1--------1---1---
1 REVERSE I ~~ 1 ~ 1~~XQB: THE ORDER OF THE ELEMENTS IN ~ IS REVERSED. I 5 4 3 2 1 ++ ~V

I I I ~ 4RBdl: THE VECTORS ON THE LAST DIMENSION OF a I 14 13 12 11 1
I 1 I ARE REVERSED. J 24 23 22 21 ++ 'M I
I I I 1 3~ 33 32 31 I

I I a ~'4L4B: NO ACTION OCCURS WHEN a IS A SCALAR. I 1.5 +~ ti.S I
1--------1---1---1
I .[KJ~ I SAME AS fa BUT VECTORS ON THE K T8 DIMENSION I 31 32 33 34
I I ARE REVERSED. J 21 22 23 24 ++ ~[1]M

J I I 11 12 13 14

,--------1---------------------,---------------------------------------1---
I 8~ I e~ +~ 4>[1].2 1 31 32 33 34
I I REVERSAL ALONG THE FIRST DIMENSION. I 21 22 23 24 ++ 83 3pM
lit11 12 13 14

1--------1---1---1 9[KJa 1 e[KJa ++ '[l+(ppa)-~Ja I 14 13 12 11
1 I REVERSAL ALONG THE K TH FROM LAST DIMENSION. 1 24 23 22 21 +~ 8[l]M
I I I 34 33 32 31

----------1--------1-- --------------1---

===

MIXED PRIMITIVE FUNCTIONS FOR STRUCTURING - 2

====================:=:==

1
o + ~-1 0 1
1

1 2 3 4 5 ++ 1~V

~M

~-6.3

12 13 14 11
23 24 21 22 ++ 1 2 -18[1]M
34 31 32 33

1 1p-6.3 ++

11 21 31
12 22 32 ++

13 23 33
14 24 34

11 21 31
12 22 32 ++ 2 l~M

13 23 33 ++ ~M

14 24 34 11 22 33 ++ 1 l~M

111 121 131 ++ 1 2 l~T

212 222 232

---1
1 2 4 ++ 1 1 0 1 O/V 1
2 3 5 ++ 0 1 1 0 1/V I
to ++ O/v I
1 2 3 4 5 ++ 1/V I
12 13 1
22 23 +~ 0 1 1 a/M I
32 33 1
5 5 5 5 ++ 1 0 1 1 a 0 1/5 I
-4.5 -4.5 ++ 0 1 0 0 1 0 0 0/-4.5 I

---1
11 12 13 14 I
31 32 33 34 ++ 1 0 l/[l]M I

---1
21 22 23 24 I
31 32 33 34 ++ 0 1 1fM I

---1
11 12 1
21 22 ++ 1 1 0 Of[1]M I
31 32 I

---1

LIKE d/~ BUT VECTORS ON THE K TH DIMENSION
ARE COMPRESSED.

dr~ +~ d/[l]~

COMPRESS ON THE FIRST DIMENSION.

df[KJa ++ 4/[1+(ppa)-K]~

COMPRESS ON THE K TH FROM LAST DIMENSION.

4e[K]ll ++ 4~[1+{ppa)-K]a

ROTATION ON THE K TH FROM LAST DIMENSION.

~ rSkXQH: d MUST BE A LOGICAL VECTOR WHOSE LENGTH IS
IS THE SAME AS THE LENGTH OF ~. THE RESULT HAS LENGTH
+/4. THE ELEMENTS OF THE RESULT ARE TAKEN FROM ~ EVERYWHERE
A 1 APPEARS IN 4. d MAY BE A SCALAR IN WHICH CASE THE RESULT
IS a IF 4 IS 1 AND THE EMPTY VECTOR IF d IS o.
~ dBBdl: VECTORS ON THE LAST DIMENSION OF ~ ARE COMPRESSED
BY d.
a ~QdL4B: ~ IS EXTENDED TO THE LENGTH OF TRE VECTOR 4 AND
THEN COMPRESSED BY d.

THE DIMENSIONS OF a ARE PERMUTED AS SPECIFIED
BY 4. THE I TH DIMENSION OF a IS THE 4[1] DIMENSION
OF THE RESULT. SEVERAL DIMENSIONS OF ~ MAY BE MAPPED
INTO A SINGLE DIMENSION OF THE RESULT TO OBTAIN A
DIAGONAL CROSS SECTION OF ~. IF d IS THE SAME AS
lppa THEN THE RESULT WILL BE ~.

DEFINITION 1 EXAMPLES
---t---
~ f~~XQB: THE ELEMENTS OF THE VECTOR ARE ROTATED TO THE 1 3 4 5 1 2 ++ 2'V 4 5 1 2 3 ++ -2.V
LEFT CYCLICALLY (pa>IA POSITIONS. 1 14 11 12 13
a 4BBAl: VECTORS ON THE LAST DIMENSION OF ~ ARE ROTATED BY I 21 22 23 24 ++ -1 0 l~M

ARE THE AMOUNT SPECIFIED Bl THE CORRESPONDING ELEMENT IN 4. I 32 33 34 31
4 MUST BE AN ARRAY OF RANK ONE LESS THAN THE RANK OF ~ AND I 12 13 14 11
SHAPE SAME AS a LESS THE LAST ELEMENT. 4 MAY BE A SCALAR IN I 22 23 24 21 ++ 5~M

WHICH CASE IT SPECIFIES THE ROTATION FOR ALL VECTORS. I 32 33 34 31
~ ~k4L4H: NO OPERATION IS PERFORMED IF ~ IS A SCALAR. 1 5 ++ -a,s I

---1---1
LIKE d'a BUT VECTORS ON THE K TH DIMENSION ARE 1 31 12 23 34
ROTATED. I 11 22 33 14 ++ -4 -3 -2 -1~[1]M

, 21 32 13 24

---1---
48~ ++ d,[1Ja I 21 22 23 24
ROTATION ON THE FIRST DIMENSION. I 31 32 33 34 ++ 1eM

I 11 12 13 14

41'0.

4e~

tif[K]Zl

d/[K]~

de[K]ll

4f[K]1l

--------1---
~a I a ~'4LdB: THE RESULT IS a AS A 1 x 1 MATRIX.

a l~krQH: THE RESULT IS a AS A COLUMN MATRIX (SHAPE p~ x 1).
a ABEdI: THE RESULT IS ~ WITH THE DIMENSIONS REVERSED.
(~lPP~)~~ ++ ~~ FOR 2Sppat

~~-~~--~~~ ~~~~~-~~

PERMUTE 4~~

~~~~~~~--~ ~-~~~-~~

COMPRESS A/D.

RAME 1 FORM
----------1--------
ROTATE 1 4~~

I
I

t
I
I
I
I
I
1----------
I TRANSPOSE
J

I
1----------

(')
I

.....,J



n 1===============================================================================================================================1
I I l

(X) 1 MIXED PRIMITIVE FUNCTIONS FOR STRUCTURING - 3 I
1 I
1===============================================================================================================================1
1 NAME I FORM I DEFINITION I EXAMPLES I
t========== ========1=============================================================1=============================================1
1 EXPAND 4\~ 1 ~ rSaXQH: A MUST BE A LOGICAL· VECTOR SUCH THAT +/& IS THE 1 0 1 2 0 3 4 5 0 ++ 0 1 1 0 1 1 1 O\V I
1 I SAME AS THE LENGTH OF lie THE RESULT HAS THE SAME LENGTH AS I '1
I 1 4 WHERE SUCCESSIVE ELEMENTS OF ~ ARE USED WHERE EACH 1 1 I
I I APPEARS IN &AND FILL IS INSERTED WHERE EACH 0 APPEARS. 1 I
I t ~ 4HBAI: VECTORS ON THE LAST DIMENSION OF 4 ARE 1 11 0 12 13 0 14 I
I 1 EXPANDED B1 d. I 21 0 22 23 0 24 ++ 1 0 1 1 0 l\M I
I 1 31 0 32 33 0 34 I
1 I a ~k4L4H: ~ IS EXTENDED TO LENGTH +/4 AND THEN I
1 I EXPANDED BY d. 0 0 0 0 7 7 7 0 + .. 0 0 0 d 1 1 1 0 \ 7 1
1 --------1------------------------------------------------------------- ---------------------------------------------1
1 A\[K]~ I LIKE d\B BUT VECTORS ON THE K TH DIMENSION 11 12 13 14 I
I I ARE EXPANDED. 0 0 0 0 I
I 1 21 2 2 2 3 24 ++ 1 0 1 0 1 \ [ 1 ] M I

I 000 0 1
t 31 32 33 34 I

--------1------------------------------------------------------------- ---------------------------------------------1
d~~ I d~a + .. 4\[1]a 0 0 0 0 I

I EXPANSION ON THE FIRST DIMENSION. 11 12 13 14
I 21 22 23 24 ++ 0 1 1 0 l~M

I 0 0 0 0
I 1 31 32 33 34

1--------1-------------------------------------------------------------1---------------------------------------------
I 4~[K]~ 1 4~[K]a ++ 4\[1+(ppB)-KJB I 0 11 0 12 0 13 14
I I EXPANSION ON THE K TH FROM LAST DIMENSION. 1 0 21 0 22 0 23 24 ++ 0 1 0 1 0 1 l~[l]M

1 I 1 0 31 0 32 0 33 34

----------1--------1-------------------------------------------------------------1---------------------------------------------
TAKE I 4+~ I a l~'XQB: THE RESULT IS THE FIRST(LAST) 14 ELEMENTS OF 1 1 2 3 + .. 3tV

I B IF A IS POSITIVE(NEGATIVE). IF 14 IS GREATER I 3 4 5 ++ -3tV
I THAN THE LENGTH OF a THEN FILL IS ADDED AT THE 1 1 2 3 4 5 0 0 ++ 7tV
I END(BEGINNING) OF a. 1 0 0 1 2 ~ 4 5 ++ -7tV
I B ~BBAI: 4 MUST BE A VECTOR WHOSE LENGTH IS EQUAL TO THE I 11 12 13
I RANK OF a. THE RESULT OF TAKE IS A CORNER OF THE ARRAY. I 21 22 23 ++ 33tH
I I 31 32 33
I 100000
100000
I 11 12 13 14 0 ++ 55tH
I 21 22 23 24 0
I 31 32 33 34 0
1 B ~k4L4B: a WILL BE MADE INTO A ONE ELEMENT OBJECT WITH RANK 0-3
I THE SAME AS THE LENGTH OF 4 THEN THE TAKE IS DONE ON IT. 0 0 ++ 2 -2+-3

----------,--------1------------------------------------------------------------- ---------------------------------------------1
DROP I A~a I a r!~XQH:THE RESULT IS ~ WITH THE FIRST(LAST) 14 4 5 ++ 3~V I

I ELEMENTS OF a REMOVED IF 4 IS POSITIVE(NEGATIVE). 1 2 ++ -3~V I
1 IF 14 IS GREATER OR EQUAL TO THE LENGTH OF ~ THE \0 ++ 7~V I
I RESULT IS AN EMPTY VECTOR. \0 ++ -7+V I
I ~ 4BRdl: d MUST BE A VECTOR WHOSE LENGTH IS EQUAL TO THE 11 12 1
I RANK OF a. THE RESULT OF DROP IS A CORNER OF THE ARRAY. 21 22 ++ 0 -2+M I
1 I 31 32 I
I a ~'4L4a: a WILL BE MADE INTO A ONE ELEMENT OBJECT WITH RANK 1 1 1 1pS +~ 0 0 0+8 I

I liTHE SAME AS THE LENGTH OF A THEN THE DROP IS DONE ON IT. I 0 1 0 lp-1.75 ++ 5 0 1 0+-1.75 I
1================================================================================================:==============================1



1===========================================================================~=====~~~:==:=;~=~======================~~ft====~=~~=1
1 I
1 PRIMITIVE FILE FUNCTIONS 1

1
========================-======================================================================================================1

NAME FORM I DEFINITION 1

======================== ==============1=======================================================================================1
CREATE FILE ~l I CREATES THE FILE WITH THE NAME f. CHANGES THE PASSWORD ON l. 1
RENAME FILE ~~E 1 RENAMES FILE l TO BECOME ~. 1
DESTROY FILE ~f I DESTROYS THE FILE £. I

------------------------ --------------1---------------------------------------------------------------------------------------1
COMPONENT WRITE A~[K]E 1 INSERTS d AS THE K TH COMPONENT OF f.
COMPONENT READ 8[KJE I RETURNS THE K TH COMPONENT OF E.
COMPONENT NULL ~[K]l I REPLACES THE K TH COMPONENT OF £ WITH A NULL COMPONENT (DESTROYS K TH COMPONENT).

------------------------ --------------1---------------------------------------------------------------------------------------
COMPONENT FIRST OUT ~E 1 IF NON-NULL. RETURNS THE FIRST COMPONENT OF E AND REMOVES IT FROM l.
COMPONENT LAST OUT ~f l IF NON-NULL, RETURNS THE LAST COMPONENT OF f AND REMOVES IT FROM l.
COMPONENT FIRST IN A~l 1 APPENDS 4 AS NEW COMPONENT BEFORE COMPONENT POSITIONS ALREAD IN l.
COMPONENT LAST IN d~f I APPENDS d AS NEW COMPONENT AFTER COMPONENT POSITIONS ALREADY IN f.

1------------------------ --------------1---------------------------------------------------------------------------------------
VALUE MAP ~l I RETURNS A BOOLEAN VECTOR WITH LENGTH THE NUMBER OF COMPONENTS IN C.
NULL MAP ~r 1 VALUE MAP RETURNS 1 IF NON-NULL. NULL NAP RETURNS 1 IF NULL.

------------------------ --------------1---------------------------------------------------------------------------------------
COMPONENT TAKE dffil 1 MODIFIES l TO BE THE 4 TAKE OF l. SIMILAR TO THE TAKE FUNCTION. TAKING MORE

I COMPONENTS THAN ARE IN THE FILE APPENDS NULL COMPONENTS TO THE FRONT OR END OF £.
COMPONENT DROP I 4mr 1 MODIFIES f TO BE THE 4 DROP OF f. LIKE THE DROP FUNCTION.

------------------------1--------------1---------------------------------------------------------------------------------------
REVERSE COMPONENTS I CE I REVERSES FILE COMPONENT ORDER IN E. LIKE THE REVERSE FUNCTION.
ROTATE COMPONENTS· I dDf I MODIFIES E TO BE THE 4 ROTATE OF f. LIKE THE ROTATE FUNCTION

------------------------1--------------1---------------------------------------------------------------------------------------
COMPRESS COMPONENTS I d~r 1MODIFIES f TO BE THE A COMPRESS OF £. LIKE THE COMPRESS FUNCTION.
EXPAND COMPONENTS I &~f I MODIFIES f TO BE THE & EXPAND OF f. LIKE THE EXPAND FUNCTION.

------------------------1--------------1---------------------------------------------------------------------------------------1
HOLD FILE I ~f I PLACES A HOLD ON f (PREVENTS OTHER USERS FROM USING f). I

t FREE PILE I ~l I REMOVES HOLD ON f (ALLOWS OTHER USERS TO USE E). I
RELEASE FILE I ~£ I RELEASE FILE FROM THIS USE. I

------------------------1--------------1------------------------_.--------------------------------------------------------------1
QUERl FILE I d~r I RETURNS INFORMATION ABOUT l: I

I I 4=1 - CURRENT SIZE OF FILE IN BYTES. 4=5 - TIMES FILE REORGANIZED. 1
I I 4=2 - MAXIMUM SIZE OF FILE IN BYTES. A=6 - ACCOUNTS CURRENTLY USING £. I
I I 4=3 - CURRENT NUMBER OF COMPONENTS. 4=7 - TIME OF LAST MODIFICATION. 1
I I 4=4 - BOOLEAN 1 IF MODIFIED SINCE BECAME ACTIVE. 1

------------------------1--------------)---------------------------------------------------------------------------------------
PILE USE STATUS I ~l I RETURNS USAGE STATUS OF FILE f:

I I 0 = FILE l DOES NOT EXIST.
I 1 1 = FILE EXISTS AND IS NOT ACTIVE. 4 = FILE IS BEING CLOSED.
1 I 2 = FILE IS ACTIVE. 5 = FILE IS HELD BY SOME ACCOUNT.

------------------------1--------------1---------------------------------------------------------------------------------------
SYSTEM INTERROGATE t ~a I RETURNS INFORMATION ABOUT THE FILE SYSTEM:

I I ~=1 - CURRENT NUMBER OF PILE USERS. a=3 - MAXIMUM RUMBER OF FILE USERS.
I I ~=2 - CURRENT NUMBER OF ACTIVE FILES. ~=4 - MAXIMUM NUMBER OF ACTIVE FILES.

1========================1==============1=======================================================================================
I l IS A CHARACTER STRING CONTAINING THE NAME OF THE FILE. THE NAME NAl BE COMPOSED OF FROM 1 TO 12
I ALPHANUMERIC CHARACTERS (NO UNDERSCORES) STARTING WITH A LETTER. A LOCK IN BRACKETS MAY FOLLOW THE NAME.

n 1 IP A PILE ASSOCIATED WITH ANOTHER ACCOUNT IS TO BE ACCESSED THE ACCOUNT NAME IN PARENTHESIS SHOULD PREFIX THE FILE NAME.
I I INDIVIDUAL COMPONENTS MAY HAVE ANY TYPE (CHARACTER OR NUMERIC) AND ANY SHAPE THAT FITS IN THE WORKSPACE.
~ 1===============================================================================================================================



1=================================================================================1
I I
I FUNCTION DEFINITION AND EDITING ACTIONS I
I I
1========================== ======= ==============================================1
I I ACTION I NEXT I
I COMMAND I SYMBOL FORM ACTION 1 PROMPT
1================= ======== ======= =====~===============================1========
I V V~ DEFINE NEW FUNCTION, WITH HEADER H; I [1]
J INITIATE EDITING THEREON. 1

1----------------- -------- ------- -------------------------------------1--------
OPEN V Vf INITIATE EDITING OF PREVIOUSLY I [Z]

DEFINED FUNCTION, E. I
OPEN (LOCKED) 9 ~r ONLY IF OWNER OF WS AND NOT COPIED J

----------------- -------- ------- -------------------------------------1
CLOSE V V TERMINATE FUNCTION EDITING. I

(MAY FOLLOW ANY COMMAND EXCEPT EDIT»)
CLOSE (LOCKED) 9 9 SO NO COpy OF WS CAN OPEN FUNCTION
~----~-----~--~~~ ~~-~-~-~~~~~--~~~~~-~-~~~ -~~-~--~

REPLACE
===================================== ========
TEXT OF LINE 4 IS REPLACED BY ~.

(IF d = Z. SAME AS APPEND-AFTER)

[~d]~ THE TEXT f IS INSERTED AFTER THE
TEXT OF LINE 4

[w4] SIMILAR TO FULL-EDIT EXCEPT SINGLE
INSERTION AFTER TEXT OF LINE 4 IS
ASSUMED.

[+]x I TEXT OF NEW LINE 1 IS ~.

-------1-------------------------------------
[+]x I TEXT OF NEW LAST LINE IS X.

-------1------------------------------------- --------
I [t4]f I TEXT OF NEW LINE, TO BE INSERTED [+4+1]

I BEFORE LINE &, IS X-
-------1------------------------------------- --------

[+&]f 1 TEXT OF NEW LINE, TO BE INSERTED [+4+1]
I AFTER LINE d, IS X.

=======1===================================== ========1
[Ed] I INITIATE EDIT OF LINE 4. RULES SANE I [~]

I AS FOR TRANSACTION EDIT.
-------1-------------------------------------
[ad] I SIMILAR TO FULL-EDIT EXCEPT SINGLE

I INSERTION BEFORE TEXT OF LINE 4 IS
I ASSUMED.

-------1-------------------------------------[ad]X I THE TEXT f IS INSERTED BEFORE THE
TEXT OF LINE 4.

-~-~~~-~-~~~~~~~=====================================

[\4J UPON TERMINATION OF DEFINITION MODE,
TEXT OF 4 BECOMES THE 'MOST RECENT
APL EXPRESSION' AVAILABLE FOR EDIT.

APPEND-AFTER +

APPEND-BEFORE t

INSERT-BEFORE t
1
1----------------- --------
I INSERT-AFTER +
I
1================= ========
I FULL-EDIT E

I
1----------------- --------
I PREFIX-EDIT a
I
1
1----------------- --------
I DIRECT-PREFIX a
I
1----------------- --------
I SUFFIX-EDIT ~

I
I I
1-----------------1--------
I DIRECT-SUFFIX I ~

1 I

1-----------------1--------
I IMMEDIATE-EDIT t
I I
J I
1=================1========

C-10



=================================================================================

FUNCTION DEFINITION AND EDITING LINE GROUP ACTIONS

=================================================================================
UNQUALIFIED: QUALIFIED:

ALL LINES IN DOMAIN LINES CONTAINING NAME 1 IN DOMAIN

FORM LINE DOMAIN FORM LINE DOMAIN

[0] 0 THRU Z [ (o.{) ] 0 THRU l. CONTAINING l.
[ad] 4 ONLY [(ol)d] 4 ONLY IF CONTAINING l
[40] 4 THRU r [4(01)] 4 THRY I CONTAINING l.
[AO~] 4 THRU ~ [&(0.I)~] 4 THRU a. CONTAINING l.

o IS ANY MULTILINE FUNCTION EDITING ACTION
d. ~ ARE LINE NUMBER SPECIFIERS: INTEGER, LABEL

OR LABEL+INTEGER; 4s~

X IS NAME OF LABEL, FUNCTION OR VARIABLE
r IS NUMBER OF PRESENT LAST LINE

I
========1

NEXT 1
PROMPT I

========1
[Z:] I

I
I
I

ACTION

FORM OF DISPLAY (DURING EXECUTION):
f[H]K(~)E E = FUNCTION NAME

li. = LINE NUMBER
K = VALUE TYPE

N - NUMERIC
B - BOOLEAN
C - CHARACTER

~ = VALUE SHAPE
f = VALUE

LINE [0] STOPS
BEFORE RETURN.

FORM OF DISPLAY (DURING EXECUTION):
l[I]* f = FUNCTION NAME

lJ. = LINE NUMBER

LINE [0] TRACES
FUNCTION RETURN.
OTHER LINES TRACE
LEFTMOST VALUE.
IF ANY.

INITIATE COLLECTION OF STATISTICS.

=====================================

L

.lCLEAR-TRACE

CLEAR-STOP

CLEAR-MONITOR

==================================
I ACTION

COMMAND I SYMBOL
=================1================ =====================================
SET-TRACE I T

I
1

I
1

I
I
1

1

-----------------1---------------- -------------------------------------
SET-STOP 1 r

I
I
I
I

-----------------1---------------- ----------~--------------------------
SET-MONITOR I n

I
I U LINE [0] COUNTS THE NUMBER OF TIMES
I THE FUNCTION IS EXECUTED.

-----------------1---------------- -------------------------------------
DISPLAY-LINES I 0 I FORM OF DISPLAY:

I 1 HEAD - V~ ~ = HEADER
I I BODY - [I] X ! = LINE NUMBER
1 I TAIL - V X = LINE TEXT

-----------------1----------------1-------------------------------------
DISPLAY-NUMBERS I? 1 FORM OF DISPLAY: VECTOR OF NUMBERS

=================1================1===================================== ========1
DELETE I I DELETE THE a SELECTED LINES WITHIN I [~-Q]

I I DOMAIN H (DELETE ON LINE ZERO I
I I I DELETES LOCAL NAMES LIST ONLY). I I
1=================================================================================1

C-11



argument legend

system commands

BURROUGHS B 6700/B 7700

APL/700 SYNTAX SUMMARY

header for defined function n

template
template local-names-Zist

A any type
B Boolean
C character
D decimal, numeric
F character 'name'
I K integer
L 'list
M N name
P Q line specifier
R result
T text

templateresul,tno result

session control
acct [pa8Bword]~

[oZdp~ord/ne~p~ord]*

[oldpword/ne~pword]~

terminal contro'L
30 thru 3276'1*
o thru 30*

) WIDTH
)TABS

)ON
)OFF
)COFF
)BLOT

control stpuatures

)CLEAR
)SYMS
)ORIGIN
)DIGITS
)SEED
)FUZZ

clear-~ork8pace control
16 thpu 1024*
16 thl'u 1024*
o 01" 1*
1 thru 12*
o to nit
o to 1*

n
n N

M n N

R -+- n
R -+- n N
R -+- M n N

niladic
monadic
dyadic

system variabl,es

call defined function n
n niladic
n A monadic

A n A dyadic

sequence of execution
.. I branch
-+ terminate
N: label,

(. ) function precedence
7,is t separator

A comment

)FILES
)LIB
)LOAD
)COpy
)PCOpy
)SAVE
)DROP
)WSID

)ATTACH
)DETACH
)GRP

lSI
)RESET

)FNS
)VARS
)GRPS
) ERA SE

library control

",sid
~sid nameset*
1J}sid nameset*
wsid lt

own-zuBid
name It

group control
groupname nameset*
groupname nameset lt

groupname

run state

name display
name*
name It

name It

nameset

OCT
DIO
Opp
DRL
o
[!J

comparison toZerance
inde% origin
print precision
l'andom Zink
evaluated in, expZicit out
character in, Bet prompt

shaped variable functions
~8id is (account)1t name [pass~ord]*

* optional fieZd
c OSVO C

OSVO C
B OSVC C

OSVC C
OSVQ C
OSVR C

shared variabZe offer
degree of coup Zing
shared variabZe controZ
control vector
shared variable query
shared variable retract

C-12



system functions

function representations
OCR F canonic represent
OVR F vector represent
DFX C fi~

transaction editing

meaning of attention
initial: enter edit cycZe
embedded: correct' typing error
terminal: display ne~t ph~ase

name
C ONL I name Zist *

ONe C name classification
OEX C e~punge

/
edit controZ characteps

delete
mark phrase

delete*

replace
append (before)
append (after)
insBr-t (befope)
insert (afts?')

set trace*
reset trace*
set stop*
reset stop"
set monitor*
reset monitor*

display Zines*
display addresses*

define

fuZZ edit
prefix edit
suffix edit
inject edit

open .
open (locked)
close
alose (locked)

unqualified (all lines)
o thru last
P thru last
Q only
P thru Q

multiline gpoup actions 0

V M

T

J.

r
L
n
u

o
?

V M
Ii' M
V
Ii'

qualified (lines ~ith N)
[(oN)] 0 thru last
[P(oN)] P thru last
[(ON)Q] Q -only
[P(ON)Q] P thru Q

[0]
[Po]
COQ]
[PoQ]

[P] T
[t] T
[+] T
[tQ] T
[ofoQ] T

[€Q]
[aQ]
[wQ]
[tQ]

function editing actions

status inquiry
print tabs
print width
UJorkspaae-i. d..
aacount name
aaaount information
line counter
time stamp
user load
working availability
name availability
library availability
file availability
shares availability
sign-on nelUS

OPT
OPW
DWI
DAN
OAI
OLe
DTS
DUL
DWA
DNA
DLA
DFA
DSA
ONEWS

aharaater set
DB backspace
OL linefeed
OR retupn
OT tab
ON null
OA alphabet
DD digits
OAV atomic veator

e%ecution control
ODL D delay
DEn C edit

B OED C phrase edit
DER C error

diagnostic
I OST F set trace *
I DSS F set stop *
I OSM F set monitor *
I ORT F reset trace *
I DRS F reset stop *
I ORM F reset monitor *
I DMV F monitor values *

OQT F query trace
OQS F query stop
DQM F query monitor

* dyadic - selective
monadic - inclusive

constants

'KEN' '5'
-1 1.2 3.4E-7

character "ken's"
num.eric

identifiers

Zetter~ underscored Zettep~ ~ op ~~

followed by 0 or more of above, _~

or digits.

C-13



selection and assignment mized primitive functions - structure

scalar primitive functions

# f is 8cala~ dyadic
primitive function

mixed primitive functions - sets

N[L]
N + A
N[L] -+- A
N f+ A
N[L] f+ A

l D
r D

D l D
D r D

+ D
- D
x D

D
I D

D + D
D - D
D x D
D T D
D t D

* D
• D

D * D
D • D

D < D
D s D
A = A
D ~ D
D > D
A ~ A

- B
B " B
B v B
B 'It B
B Ii' B

o D
I 0 D

D
D D

C-14

select
z-epZace
insert
modify#
modified inSBl't#

!l,oor
oeiling
minimum
maximum

identity
negate
signum
reciprocate
magnitude
add
subtract
multiply
divide
l'esidue

base e pObJer
base e Zogarithm
pObJep
logarithm

less
not greater
equal
not Zess
gr-eatep
unequaZ

not
and
OP
nand
nop

pi times
cipculap

factorial
combinatorial

p A
I p A

\ I
A \ A

, A

A , A
A ,[X] A
A ,[D] A

4> A
e A
<I>[K] A
e[K] A

I <t> A
I 9 A
I 4>[X] A
I e[x] A

~ A
I ~ A

B / A
BrA
B / [X] A
B t[K] A

B \ A
B \ A
B \ [X] A
B ~ [X] A

I t A
I ... A

A E A
A c A
A ::» A
A u A
A n A
A - A

shape
reshape

integers
indez in

ravel

catenate I laminate
'Last dimension
Kth from first dim'n
between dim'ns LD, rD

revepse
last dimension
first dimension
Kth from first dim'n
Kth from Zast dim'n

rotate
Zast dimension
first dimension
Kth from first dim'n
Kth from Zast dim'n

transpose dimensions
permute dimensions

compress
last dimension
first dimension
Kth from first dim'n
Kth from last dim'n

e~pand

'Last dimension
fil'st dimension
Kth from first dim'n
Kth from last dim'n

take
drop

membership
subset
superset
union
intersection
exclusion



m phrase repZicator#
j justifier:

L left justify in field#
~ field width
d decimal places
1, r Zeft, right decorators:

-O+<tezt> sign seZector(s)#
*<tezt> background#

q quaZifiers:
L left justify in field#
B skip if zero#
C insert commas#
Z insert leading aer08#

.. A implicit fopmat
K. .. D numeric format

K. in pairs tU d
w width
d decimal places:

<0 fZoating point
=0 integer
>0 fixed point

~ .. It. character format
11. expression or (list)
Q format: s or s; ••• ; 8

8 segment: g or g, ••• , g
g group: c op !:..(0)
r pepZicatop
c clause: p or p, ••• ,p
p phrase: one of

mized primitive functions - other

4 D grade up, D grade down

? I roll
I ? I deal

D 1 D base value
D T D represent

m D matrix inverse
D IE D matri% divide

• C evaluate

for-mat primitive functions

m j .A tV
m j E w.d

m l q F w.d l'

m Z q I w l'
X l.tJ

T n
<tezt>

character
floating point
fixed point
integep
skip forward
tab to n-th column
aetual te:et

primitive operators

A o.g A outer product#

reduction
fl D last dimension
ff D first dimension
fl[X] D k-th from li'pst dim'n
fr[X] D k-th from last dim'n

scan
f\ D 'last dimension
f\ D first dimension
f\[X] D k-th from first dim'n
f,\[KJ D k-th from last dim'n

d. I.g A inner product#

fI. f, g are scaZar dyadic
primitive functions

liZe functions

~ F create lite
N '3J F rename file

~ F destroy file

HI[K] F nuZl Kth component
A ~[K] F ~rite Kth component

!H[X] F read Kth component

~ F first-out component
I?J F Zast-out component

A ~ F fipst-in component
A ~ F Zast-in component

C F reverse components
I ~ F rotate components
I ffi F take components
I m F dl'op components
B [lJ F compress components
B rsJ F ezpand components

~ F hoZd file
M F fraee file

RI F l'eZease file

E1 F value component map
~ F null component map

~ I interrogate system
~ F test file status

I ~ F quel'Y fi le

#. optional field

C-1S



TRANSACTION EDIT

PROCEEDS AT STEP 3 IF CURSOR TO RIGHT
OF CURRENT TEXT FOR NEXT PHRASE.

1. SYSTEM EITHER (l)~YPES OUT TEXT, RETURNS. AND UNLOCKS
KEYBOARD. OR (2) EXDENTS CURSOR. AND UNLOCKS KEYBOARD.

2. USER TYPES IN EDIT CONTROLS.
INITIAL INPUT OF --
dXX~~flQH SYSTEM ASSUMES MODIFICATION AT END OF

TEXT, POSITIONS CURSOR TO COLUMN
IMMEDIATELY TO RIGHT OF TEXT, UNLOCKS
KEYBOARD AND PROCEEDS AT STEP 4.

OTHERWISE IF INPUT UNDER CHARACTER OF TEXT IS:
'I' DELETE CHARACTER ABOVE.
'.' MARK START OF NEXT PHRASE.

3. SYSTEM TYPES OUT REVISED TEXT, STOPPING BEFORE NEXT
INSERTION POINT. AND UNLOCKS KEYBOARD.

4. USER ADDS TO, MODIFIES. OR TERMINATES CURRENT ENTRY BY
USUAL TYPING RULES.
INPUT OF -­
4XXE~XIQI

TYPING RULES

TRANSACTION CYCLE

================================================================

================================================================

KEY 1 ACTION
==============1=================================================

QUdHd~X~R I INSERT CHARACTER INTO TEXT AT POSITION
I OF CURSOR. THEN MOVE TO RIGHT ONE SPACE.

~fAC~ I POSITION CURSOR ONE SPACE TO RIGHT.
~dQK~f4a~ I POSITION CURSOR ONE SPACE TO LEFT.
X4~ 1 POSITION CURSOR RIGHTWARD TO NEXT TAB STOP.
LII~E~~Q I DISCARD TEXT ABOVE AND TO RIGHT OF CURSOR.
H~XUBI I TERMINATE USER ENTRY PORTION OF TRANSACTION. I 1

===============================================================================================================================1

1===============================================================================================================================
I
I
I
1================================================================1==============================================================1 1. SYSTEM INITIATES CYCLE BY DISPLAYING PROMPT AND
1 UNLOCKING KEYBOARD.
I 2. USER SPECIFIES TRANSACTION BY MAKING TEXT ENTRY.
I 3. SYSTEM COMPLETES TRANSACTION BY INTERPRETING ENTRY,
I DISPLAYING APPROPRIATE DATA OR ERROR MESSAGE,

AND RETURNING TO STEP 1.

()
I....

0'\

=============================================================================================~==================================

ATTENTION CONVENTIONS

===============================================================================================================================
KEYBOARD

STATE
I &XX~liX.lQli I
I INPUT IS ACTION (SEE TRANSACTION EDIT FOR OVERRIDING USES)

============1===========1======================================================================================================
UNLOCKED INITIAL

MODE I PROMPT I AFTER VALID ENTRY I AFTER ERRONEOUS ENTRY
--------------1--------------1----------------------------------------------l-------------------------

EXECUTION I FIVE SPACES I EDIT MOST RECENT APL EXPRESSION THIS LEVEL. I EDIT ERRONEOUS ENTRI.
--------------1--------------1----------------------------------------------1

I I 1 DEFINITION I [ ••• J I EDIT MOST RECENT DEFINITION MODE ENTRY. I

I I 1--------------1--------------1----------------------------------------------1
1 I I 0 I 0: LE 3-~ 1 PROCESS EVALUATED INPUT. 1
I I 1--------------1--------------1----------------------------------------------1
I I 1 ~ I USER DEFINED 1 PROCESS CHARACTER INPUT. 1

I 1-----------1------------------------------------------------------------------------------------------------------
I I NON- I SYSTEM LII~f~~Q~. TIPES 'v'. LII!f~~Q~. AND UNLOCKS KEYBOARD.
I 1 INITIAL I ACTION SAME AS LZ~!fr&Q FOR TYPING RULES.
1------------1-----------1------------------------------------------------------------------------------------------------------
I LOCKED I N.A. I SEQUENTIALLY INPUT 4Xf~IXIQI~ MEAN:
I I I
I I I DURING EXECUTION OF AN APL EXPRESSION I OTHERWISE
I I I -------------------------------------------------------------------I---~---------------------
I I I FIRST: SUSPEND EXECUTION AFTER LINE AND ABORT QUEUED OUTPUT. I ABORT QUEUED OUTPUT.
I I I SECOND: ALSO KILL ACTION. 1
1========================================%======================================================================================



INDEX

Terms indexed belo\~ with section and page numbers are used in sections
1 through 9 of this manual. Cross references are indicated by (see
Primary listing). They are used both for alternative entries and for
some terms used in other APL manual.s and texJcs. Some generic terms
are included to provide different categorizations than are discussed
in detail in t11e manual: in particular, alpllabetic lists of c11u.racter
names, file editing actions, file functions, primitive functions,
system commands, system functions and system variables. For each APL
character, entries are included for both the function or action names
in which it is used, and the character name independent of its use.

A~solute value I 5-8
Account name

for files 7-1
for other workspaces 3-6
for sign-on )ON 3-2
function DAN 6-12

Accounting information DAI 6-12
Acoustic coupler 2-6
Across di~ension 4-2
Action specifier 8-2
Actions, on defined functions

(see Function editing actions)
Active

file 7-2
function 8-18
worJcspace 1-8

Add + 5-8
Along dimension 4-2
Alpha a 8-10
Alphabet DA 6-9
Alternating

product -i-/ 5-23
sum -/ 5"-23

.And A 5-13
APL

character set 2-2
keyboards 2-3
MCS identifier \APL 2-6

Apostrop11e (see Quote) ,
Arccos 5-1 L~

Arccos11 5-14
Arcll cl1aracters

do\Y.n u 5-42 I 8-14
left c 5-42
rigl1t => 5-42
up n 5-42, 8-14

Arcsin 5-14
1\rcsinl1 5-14
Arctan 5-14

Arctanh 5-14
Areas (see Availabilities)
Arguments

definition 1-5
in function header 8-1
left and right 4-7, 8-1

Arrays 4-2
Arro~'l characters

do\·m + 5-40, 7-7
left -<- 5-4
ri"ght + 8-3, 8-20
up t 5-40, 7-7

Assignment + 5-4
AsterisJ( * 5-1 0
Atomic vector OAV 6-9
Attach system CO![Ul1and )ATTACII 3-10
Attention ATT!~

key 2-L~

editing last entered
eXI)ression 2-9

entry typing error
correction 2-8

function suspension 2-10
output termination 2-10

Availability
file DFA 6-12
library OLA 6-12
name OlJA 6-12
,~orkspace orlA 6-12

Average 8-2
Backslash \ 2-6, 2-9, 5-38, 8-10

dash ~ 5-38
quad ~ 7-8

Bac]espace
]{ey BI<SP 2-4
character DB 6-9

Base e logaritlna e 5-10
Base e power * 5-10

INDEX-1





Base value .1. 5-8
Beta function 5-16
Blanks as separator 4-9
Blot system command )B£OT 3-3
Body of function 8-2
Boolean type 4-4
Braces 2-3, 6-10
Braclcets [ ]

dimension selector 4-8
index list 4-8, 5-2
prompt 8-2

Branc11 +

conditions 8-4
described 8-3
examples 8-4
no argument (see Terminate) 8-4

Built-in functions (see Functions,
prinlitive)

Bytes, space measure 6-12
Calculator mode, (see Execution mode)
Call

defined function 8-18
recursive 8-19

Canceling a line 2-8
Canonic representation OCR 6-4
Cap n 5-42, 8-14
Caret characters

. do,V!1 v 5-13
left < 5-12, 5-13
right> 5-12, 5-13
up 1\ 5-13
not do~m ¥ 5-13
not left ~ 5-12, 5-13
not right ~ 5-12, 5-13
not up '/ft. 5-13

Carrier return, (see Return)
Catenate , 5-8
Ceiling r 5-7, 8-14
Cllange pass"\'1ord

account 3-2
file ~ 7-3
workspace 3-7

Cl1aracter
alphabet DA 6-9
atomic vector OAV 6-11
data displayed 4-3
data type L~-3

digits DD 6-9
error 2-"0
fonnat • 5-62
input [!] L~-11

quote ' 4-3
set, APL 2-2, oAV 6-11
strillg l~-4

type mixed 'vith numeric 4-8
vectors Ll-3

INDEX-2

Character names
a1r>ha a 8--1 0
apostrophe (see quote) , 4-3
arcll,

dmvn u 5-42, 8-14
left c 5-42
right :::> 5-42
up n 5-42, 8-14

arrow,
dO'tVIl + 5-40, 7-7
left -<- 5-L~

rigllt + 8-3, 8-20
up t 5-40, 7·-7

asterisJe (see star) *
backslash \ 2-6, 5-38

dasl1 ~ 5-38
braces 6-10
brackets [ ] 4-8, 5-2, 8-2
box (see quad) 0
cap (see arch, up) n
caret,

do~qn v 5-13
left < 5-12, 5-13
right> 5-12, 5-13
up A 5-13
not dO\v11 Jy 5-13
not left ~ 5-12, 5-13
not right ~ 5-12, 5-13
not up 1'< 5-13

ceiling r 5-7, 8-14
circle 0 5-14

bacJ;:slash ~ 5-36
dash a 5-34
star e 5-10
stroJ;:e ¢ 5-34

colon: 4-11, 8-2
conuna , 5-8
cup (see arch, down) u
dasll - 5-8
del 'V 8-6

stJ=oJ.~e t 5-44
til(1e Itt 8-6

delta 11 4-6
stroJ~e 4 5-44
undcr]Jar 11 2-4

diamoncl 6-1 0
dieresis .. 2-3
digits 2-2
divide -} 5-8
dollar $ 6-10
domi11o ffi 5-50
epsilon € 5-42, 8-10
equal = 5-12
exclamation : 5-16
floor L 5-7, 8-14
I-bar I G-22
iota \ 5-31, 8-10





jot 0 5-20
dO~lm tacl{. t. 5-5L~

up arch (see lamp) A
up tack .. 5-55

letter 2-2
underscored 2-2

lamp A 4-10
log" 5-10
negative - 4-3
omega w 8-10
parentheses ( ) 4-7, 8-12

right ) 3-1
period. 2-9, 4-3, 5-20,

5-26, 8-10
plus + 5-8
quad 0 4-11, 8-16

backslasl1 [S) 7-8
circle ~ 7-6
del ~ 7-3
delta flj 7-3
divide (see domino) ~

do\~ arrow ~ 7-7, 7-9
do\·m caret ~ 7-9
eq~al § 7-10
jot ~ 7-11
left arrO\'l 83 7-4
left caret ~ 7-5
quote [!J ll-11
right arrO\1 ffi 7-4
slash rli 7-8
tilde 8 6-10
up arro~·, ffi 7-7
up caret 0 7-9
unequal ~ 7-10

question mark? 5-45, 8-16
quote t 4-3

quad (sec quad quote) ~

rho p 5-30
semicolon; 4-8, 4-11, 5-55, 8-1
slash / 2-9, 5-38, 8-10

dash f 5-38
star * 5-38
stroJ\:e J 5-8
tacJ~,

do\"n .L 5-46
left 2-3, 6-10
right 2-3, 6-10
up T 5-48

tilde ~ 5-13, 5-42, 8-17
tines x 5-8
underscore _

alphabet L~-6

delta !l 4-6
unequal ;t 5-12

Circle 0 5-14
bacJ~slanh ~ 5-36
das11 e 5-34
star. 5-10
stro]~e c.t> 5-34

Circular functions 0 5-14
Clear command )CLEAR 3-4
Close function action ~ 8-6
Close and lock function action ~ 8-6
Coercion 5-17
Colon: 4-11, 8-2
Combinations! 5-15
Combinatorial, generalized! 5-16
Cormna t 5-8
Command, system (see System command)
Comment A 4-10
Comparison tolerance

default )FUZZ 3-5
variable OCT 6-2

Compo l1.Cn t
of file 7-1
of list 4-8

CompFess / f 5-38
Compress compo11c11ts [Zj 7-8
C011forr:la})le ars-umcnts 5-17
Connecting with the APL/700

system 2-6
Constro1t 1-5, 4-5
Continue off cor~nand )COFF 3-2
Control structures 1-7, 4-7, 8-18
Coordinates of an array

(see Dimensiol1s)
Copy command )COPY 3-7
Copy, protect )PCOpy 3-7
Corner element 4-2
Correction of typing error 2-8
Cos11 5-14
Cosine 5-14
Create file ~ 7-3
Cup u 5-42
Curve fitting 5-53
Dasll - 5-8
Data Co~~unications Processor

(DCP) 2-1
Data entry mode 1-4
Data object 4-2

character 4-3
display forms 4-3
numGric 4-4
tests of properties L~-5

Deal ? 5-45
Deblanl: 5-35
Decimal point • 4-4
Default forrnnt ~ 5-58
Define header action ~ 8-6

INDEX-3





Defined function editing actions
action specifier 8-5
define header ~ 8-6
delete"'" 8-17
display line numbers? 8-16
display lines 0 8-16
full edit line € 8-10
function

close 'V 8-6
close and lock ~ 8-8
open V 8-6
open locked ~ 8-6

inject as most recent
expression 1 8-10

insert
before t 8-8
after + 8-8

multiline group specifier 8-12
prefix edit a 8-10
rel)!ace [ ] 8-8
reset

monitor u 8-14
stop T 8-1 L~

trace L 8-14
set

monitor n 8-14
trace. r 8-14
stop T 8-14

suffix edit w 8-10
Defined functions

argurl1ents 8-1
body 8-2
canonic represent OCR 8-4
defi11itiol1 8-1
documentation 8-21
editing actions (see Function

editing actiollS)
editing as data 8-21
eXaml)!e 8-2
execution, (see Execution of

defined functions)
fix DFX 6-4
header 8-1
line numbers 8-5
line renuniliering 8-5
local names 8-1
local names list 8-1
list comraand )FNS 3-9
namB 8-1
name list DNL 6-5
transformations 6-4
vector represent DVR 6-4

Definition and editing mode,
fU11ction 8-1

Del 'V 8-6
stro)~e , 5-44
tilde iii 8-6

INDEX-4

Delay DDL 6-8
Delete action ~ 8-17
Delta fj 4-6

stro]ce ~ 5-44
underbar ~ 2-4

Destroy file ~ 7-3
Detach command )DETACH 3-10
Diagnostics 6-6, 8-14
Diagonal, selecting from

an array 5-36
Diamond 2-3, 6-10
Dieresis .. 2-3, 6-1 0
Digits )DIGITS 3-5
Dimension selector 5-19, 5-29
Dimensions 4-2
Display

array 4-3
defined function 8-16
empty vector 4-3
fractional nu~)er 4-4
line nu~~ers action? 8-16
lines action 0 8-16
matrix 4-3
nuw)cr in E notation 4-4
significant digits

3-5, 4-4 t 6-2
value of expression 4-3
vector 4-3

Divide f 5-8
Documentation 8-21
Dollar sign $ 6-10
Domain

of function argument 1-5
of numbers 4-4

Domino ffi 5-50
Do,'m

arch u 5-42, 8-14
arrow ~ 5-40, 8-8
curet v 5-13
tacJ~ .1. 5-46 I 8-1 L~

E nota"cion for numbers E 4-4
Edit

characters. / 2-9, 8-10
function 8-10, 8-21
most recently entered

eXl)ressio11 2-9
system function OED 6-8

Elaboration of cXllression L~-7

Element of a data object 4-2
El1)l~t:l array l~-4

Entry lCl1gtll 2-5
Epsilon € 5-42, 8-10
Equal = 5-12
Erase

con~and )ERASE 3-9
file (see Destroy)
system function OEX 6-5
typing error 2-8
''lorJ~space (see Drop cortU':\and)





Error reports, table of 9-4
Errors

described 9-1
in a defined function 9-2
in expression entry 4-9
reports, table 9-4
system function OER 6-8

Escape
from character input m 4-12
from evaluated input ~ 4-12

Evaluation of expressions ~-7

Evaluate .t 5-54
Evaluated input 0 4-1'
Exclamation: 5-16
Execution

controls 6-8
mode 1-4
state 2-1

Execution of defined functiol
act~ve function 8-18
call 8-18
diagnostics 6-6, 8-14
dynamic e~·:punging 8-18
global.name 8-18
instance 8-18
local name 8-18
monitor 6-6,8-14
multiplG instances 8-19
pendant 8-18
recursive calls 8-19
result 8-18
scope of local name 8-18
structured progran 8-18
stop 6-6, 8-14
susoended function 8-18, 8-20
trace 6-6, 8-1 L~

Expand \ ~ 5-38
Expand components ~ 7-8
Explicit output 0+ 4-11
Exponential notation E 4-4
Expression

definition 1-7
entry 4-9
list 4-8
order of execution 4-7
'\"i tIl a quad or

quote-quad 0 ~ 4-11
Expunge DEX 6-5
Factorial I 5-16
File

account name 7-1
active status 7-2
availability DFA 6-12
coml")oncnts 7-1
inactive stntus 7-2
integrity 7-2

library names )FILES 3-6
limits 7-1
name 7-1
password 7-1
open 7-2

File functions
cl1ange pass\'Jord fli 7-3
create file ~ 7-3
compress components 0 7-8
destroy file ~ 7-3
expand components ~ 7-7
first component in ~ 7-5
first component out ~ 7-5
free ~ 7-9
hold ~ 7--9
interrogate file system ~ 7-11
last component in ~ 7-5
last component out ~ 7-5
map components non-null § 7-10
map components null ~ 7-10
null component ffi 7-4
query file attribute ~ 7-11
read component @ 7-4
release file ~ 7-9
rename file ~ 7-3
reverse components g 7-6
rotate components ~ 7-6
take conponents rn 7-7
test file status ~ 7-11
write component @ 7-4

Fill 5-38, 5-40
First file component

in 19 7-5
out' ~ 7-5

Fix Dl?X 6-4
Fixed Point number 4-L~

Floor L 5-7, 8-1 L.~

Forgotten password 1-9
Formally equivalent

expressions ++ 5-1
Format " 5-55
Frac.lcional numl)ers 4-4
Free filG ~ 7-9
Full edit action € 8-10
Function definition and editing

mode 8-1
Func~tiol1S

defined (see Defined
functions) 8-1

file (sec File functions) 7-1
primitive (see Primitive

functions) 5-1
system (sec Systam

functions) 6-1
Future value 5-47

INDEX-S





Fuzz
command )FUZZ 3-5
system function OCT 6~2

Gamma function l 5-16
Generalized combination! 5-16
Generalized factorial! 5-16
Global name 8-18
Go·to (see Branch) 8-3
Grade dO\VIl V 5-44
Grade up 4 5-4l~

Graph construction 5-21
Greater than> 5-12
Greater than or equal ~ 5-12
Group commands 3-10

names command )GRPS 3-9
content con~and )GRP 3-11
name of 4-6

Header, function 8-1
Hexadecimal/decimal

conversion 5-47, 5-49
Histogram construction 5-21
Hold File rt.1 7-9
Hyperbolic functions 0 5-14
I-bar functions I 6-22
Identifier ·4-6
Identity + 5-8
Identity elements for scalar

dyadic functions 5-28
Illegal character

display D 2-10, 6-11
Implicit output 4-11
Inactive

file 7-2
~"orkspace 1-8

Index 5-2
generator 1 5-3
list 5-2
number 5-19, 5-29
of (ranking) 1 5-31
sequence (ro\V major

order) 5-32
Index origin

default origin )ORIGIN 3-4
variable DIO 6-2
effect on functions 6-3

Indexing [ ] 5-2
Inject line action \ 8-10
Inner product operator ·$.0 5-26
Input

transaction 2-8
communicators 0 ~ 4-11

Insert
e,ctra bln11]~s 4-9
line action t ~ 8-8
value in array A[LJ+ 5-4

Instance of defined function 8-18

INDEX-6

Integer
fraction separation T 5-49
not greater than l 5-7
not less than r 5-7
subtype of numeric 4-4

Integers to 1 5-31
Internal character

representation OAV 6-9
Interpolation 5-52
Interrognte file systeo ~ 7-11
Intersection n 5-42
Interrupt (see Attention)
Inverse

hyperbolic functions 0 5-14
matrix li1 5-50
trigonolnetric function 0 5-1 L~

Iota 15-31, 8-10
Jot 0 5-20

dovln tacJ~ ~ 5-5L~

qUild ~ 7-11
up arch A 4-10

~ up tacJ~ ., 5-55
Justify ragged" array 5-25
Keyboard 2-3
Label

nar.1e 4-6
use of 8-2, 8-3

Laminate , 5-32
Lamp f.\ 4-10
Last entered expression 4-9
Last file component

in [2 7-5
out ~ 7-5

Least squares estimation 5-53
Leaving function definition

mode 8-8
Left

arch c 5-42
arro\,., + 5-4
brace 6-10
bracJcet [ 4-8, 5-2, 8-5
caret < 5-12
purent11esis ( 4-2, 8-12
tack 2-3, 6-1 0

Length of nnmes L~-6

Less than < 5-12
Less than or equal ~ 5-12
Library

area DLA 6-12
command )LIB 3-6
of files )FILES 3-6
of inactive workspaces 1-8

Line
count OLe 6-12
drops 1-8
editing a € w 8-10
group specifier 8-12





in function definition 8-2
insertion t ~ 8-8
number 8-5
number specifier 8-5
renumbering 8-5
replacing [ ] 8-8

Linear
curve fit 5-53
equations 5-52
least squares estimation 5-53

Linefeed
key 2-5
character DL 6-9

List
component 4-8
delimiter ; 4-8
expression 4-8
local names 8-1

Literal character constant 4-5
Load command )LOAD 3-7
Local

functions 8-2
label constant 8-3
left argument 8-1
name 8-2, 8-18
names list 8-1
right argument 8-1
result 8-1
variables 8-2

Local/communicate switch 2-4
Location in 1 5-31
Loc}~ed

account 3-2
file ~ 7-3
function If 8-6
keyboard 1-3, 2-5
\V'orkspace 3-6

Locks and passwords 1-9
Log e 5-10
Logarithm e 5-10
Logical functions 5-13
Logical station number

LSN 2-6
Looping

by backward branch + 8-3
interrupt by ATT1J 2-1 0

r:lain diagonal 5-37
I\!up file components

null ~ 7-10
non-null § 7-10

1.largin ]~ey 2-5
r.1atch A. = 5-27
I·1atrix

described 1-4, 9-2
dislj!ay of 4-3

Matrix divide ffi 5-50
r-Iatrix inverse rn 5-50

Matrix multiply
inner product ·+.x 5-26
outer product o.x 5-20
scalar x 5-8

Maximum r 5-7
lil~elihood estimator 5-53

Membership € 5-42
Merge 5-4l.~

r·1essage control system MCS 2-6
l1inimax L. r 5-27
!·1inimum L 5-7
z.·1interm v. A 5-27
l·lixed

primitive functions 5-29
radix 5-46 I 5-L~ 8
type list 4-11, 5-55

l;·1odes 1-4
character input 4-11
evaluated input 0: 4-11
execution function

defi11ition and
editing 8-1

lv!odify $+ 5-4
Modified insert []e+ 5-4
l-1onadic function defined l~-7

Monitor execution 6-6, 8-14
Monitor values OUV 6-6
!·Iost recently entcroc1 e~{preSSio11 4-~

Multiline group specifier 8-12
I-luI tiIJlc

spaces 4-9
linear regression 5-55

t'1ultiply x 5-8
N-dimensional data object 4-2
Narae

account 4-6
area DIlA 6-12
classification DnA 6-5
defined function 4-6, 8-1
display 3-9
file LJ-6
group 1+-6
la})el 4-6
list DIlL 6-5
pass\vorc1 4-6
restrictiol1S 4-6
shared variable 4-6
variaJJle L~-6

uses 4-6
worJ;.space 4-6

Name displays
files )FILES 3-6
functions )FNS 3-9
group )GRP 3-11
groups ) GT?PS 3-9
library of 'vorJ~Sr)aces )LIB 3-6
list DIlL 6-5
variables )VARS 3-6

INDEX-7





Nand". 5-13
Natural logarithm e 5-10
Negate - 5-8

, Negative sign for number - 4-3
1'1ews

sign-on message 2-7
system function OREWS 6-12

Niladic function 4-7
No-element array 4-3
Nonscalar arguments used

with scalar functions 5-1.7
liar ¥ 5-13
Not ~ 5-13
l~ot equal ;t 5-12
Not greater ~ 5-12
llot less ~ 5-12
Null

character OIl 6-9
file component ffi 7-4
file map ~ 7-10

Number of users DVL 6-12
l~umeric

data t~rpe 4-3
character representation 6-9
format ., 5-6
vector 4-3

Off comrnands
terminate )OFF 3-2
suspend, continue )COFF 3-2

O~cga w 8-10
011 corrunand ) OIl 3-2
One-element array 4-4
Open

file 7-'2
function action V 8-6
loc]ced fUl1ction action ~ 8-6

Operators, primitive
inner product $.0 5-26
outer product 0.0 5-20
reduction /0 5-22
sea!'l. \0 5-24

Or v 5-13
Order of elaboration 4-7
Origin (see Index origin)
Ortl10gonal 4-2
Outer product operator 0.$ 5-20
Output for display

communicators 0+ ~+ 4-11
display form 4-3
mixed type 4-11

Over (see Reduction)
Overstruc}~ c11aracters 2-4
Overtal~e + 5-ll0
Parallel elaboration 1-7, 4-7

INDEX-8

Parentheses ( )
in an expression 4-7
redundant 4-8
system command prefix ) 3-1

Password
for sign-on 2-6
forgotten 1-9
nalue LJ-6
on account 3-2
on file 7-3
on ~lorJ~space 3-7
security use 1-9

Pendant function 8-18
Period. 2-9, 4-3, 5-20, 5-26, 8-10
Permute dimensions ~ 5-36
pi times 0 5-14
Plane across dimensions 4-2
Plus + 5-8
Polynomial 5-47
Power * 5-10
Precision of numbers 4-4
Prefix edit action a 8-10
Present value 5-47
Primitive Functions

absolute value I 5-8
add + 5-8
a11d A 5-13
base e logaritl~ 0 5-10
base e pOT.1er * 5-1 a
base value i 5-4G
catenate , 5-32
ceiling r 5-7
circular 0 5-14
co~)inatorial : 5-16
compress / f 5-38
deal ? 5-L~5

divide ~- 5-8
drop -t 5-L~O

equal = 5-12
evaluate et 5-5L~

e}~pal1d \ \ 5-38
factorial: 5-16
floor L 5-7
format 'f 5-55
grade ~own , 5-44
gra(.le up t! 5-4l~

greater than > 5-12
greater than or equal ~ 5-12
identit~' + 5-8
index of 1 5-31
integers to \ 5-31
i11tcrGcction n 5-l~2

larni11ate , 5-32
less t11an < 5-12





less e1an or equal ~ 5-12
logarithm 0 5-10
magnitude I 5-8
matrix divide rn 5-50
matri}: inverse ~ 5-50
maximum r 5-7
membership € 5-42
minimum L 5-7
multiply x 5-8
nand * 5-13
natural logarithm e 5-10
negate - 5-8
nor y 5-13
not equal ~ 5-12
not greater s 5-12
not less ~ 5-12
or v 5-13
permute dimensions ~ 5-36
pi tiraes 0 5-14
pO\"ler * 5-1 0
ravel , 5-32
reciprocate f 5-8
represent T 5-48
res11al)e p 5-30
residue I 5-8
reverse cI> e 5-34
roll 5-45
rotate cf> e 5-34
selection [ ] 5-2
set exclusion ~ 5-42
s11ape p 5-30
signum x 5-8
subset c 5-42
supGrset ::> 5-42
sul)tract - 5-8
taJ~e t 5-40
transpose dimensions ~ 5-36
unequal ~ 5-12
union u 5-42

Primitive operators (see
Operntors, primitive)

Principal diagonal of matrix 5-37
Print precision

default )DIGITS 3-5
varinble OPP 6-2

Print tabs
default )TABS 3-3
function OPT 6-12

Print vlid t11 3-3
default )VIDTH 3-3
variable DPW 6-12

Procedures for terminal 2-6
Processor phase 1-3
Progressive expression

developn1Gl1t 4-9

Prompts 1-4
Properties of data objects 4-5
Protect copy )PCOPY 3-7
Protecting functions ~ 8-6
Quad

display lines 0 8-16
evaluated input prompt 0: 4-11
explicit output O~ 4-11
overstriJ:es (see character names)
quitting quad input 4-12

Qualification, line group 8-12
Query

file attribute ~ 7-11
nloni tors OQJ.l 6-6
stop DQS 6-6
trace OQT 6-6

Quention marl~ ? 5-45, 8-16
Quitting (see Sign-off)
Quotas

computer use 1-7
files, number 1-7, +/DFA 6-12

. files, space, 1-7, ~ 7-11
on user account 1-7
shared variables 1-7
~lorJ;:spaces 1-7, +/OLA 6-12

Quote-quad ~ 4-11
Quotes in character data t 4-3
Radians 0 5-14
Radices 5-8
Random number

deal ? 5-45
link default )SEED 3-5
link variable ORL 6-2
roll ? 5-45

Range of a function result 1-5
Ran]~

of a data object 4-2
determined by shupe

function 5-30
RanJ~-n arravs

described L~-2
display of L~-3

Ravel , 5-32
Read component ffi 7-4
Reciprocate f 5-8
Recovery 1-8, 2-12
Redul1dant

blan)~s 4-9
parcntllGSeS 4-9

Recursive function 8-19
Reduction operator $/ 5-22
Relational functions 5-12
Release file ~ 7-90

INDEX-9





Rename
file ~ 7-3
functiorl. 8-10
worJ;.space ) f-ISID 3-8

Reordering a vector 7-3
Repeat ]~ey 2-5
Replace

function -(- 5-4
line action 8-8
multiple 5-5

Represent T 5- ll8
Request for input

c11aracter [!] 4-11
evaluated 0 4-11

prompt O. 4-11
Reset

command )RESET 3-12
monitors DRY 6-6, u 8-14
stop DRS 6-6, L 8-14
trace ORT 6-6, i 8-14

ReshalJe p 5-30
Residuals of curve fit 5-53
Residue I 5-8
Result

explicit 8-1, 8-18
value of expression 4-7

Return
key RETl\l 2-4
character 01? 6-9
completing entry 2-8

Reverse 4> e 5-34
Reverse components ~ 7-6
RI10 p 5-30
Rig11t

arc11 ::> 5-42
arrO\'l -+ 8-3
brace 2-3, 6-10
bracket] 4-8, 5-2, 8-5
caret > 5-12
parenthesis) 4-7, 8-12
tac]c 2-3, 6-10

Rigllt-to-left elaboratio11 L~-7

Roll ? 5-45
Root (see PO~~ler)

Rotate ¢ e 5-34
Rotate components ~ 7-6
RrnJ major order 5-32
Save \"7or}~space conunand )SA VE 3-7
Scalar

single character 4-3
number 1~-3

Scalar prinitive functions
definiti011 5-6
extension arrays 5-17

Scan operator @\ 5-24
Scientific notation 4-4
Scope of locnl name 8-18

INDEX-10

Security 1-9
Seed command )SEED 3-5
Selection [ ] 5-2
Self protections 1-8
Semicolon ;

and indexing 4-8
local names list delimiter 8-1
with fo~atted output 5-55
with mixed output 4-11

Sequence of characters 5-3, 5-32
Set

character input prompt ~+ 4-11
exclusio11 ,..., 5-42
functio11S 5-42
monitors DSU 6-6, n 8-14
stop OSS 6-6, r 8-14
trace OST 6-6, T 8-14

Session controls 3-2
Shape p 5-30
Shape of data object 4-2, 4-4
Shared variables

access control 6-13
availability DBA G-12
control OSVC 6-18
coupling DSVO 6-16
name 4-6
offer DSVO L~-6

query OSVQ 6-20
retract OSVR 6-20
surrogate 6-13

Shares availability DSA 6-12
Sharing 1-9
S11ift J~ey 2-4
Shrie]~' ! 5-16
Sign-off 2-6

continue )COPF 3-2
discard )OFF 3-2

Sign-011 2-6
connect conrnand )OD 3-2
I~S specifier \APL 2-6

Significant digits (seG Print
Prccisj.on)

Signum x 5-8
Si11e 5-14
Single 4-4
Si11h 5-14
Size x/p 4-2
Slash / 2-9, 5-38, 8-10

dash f 5-38
Solidus / (see slash)
Sorting 5-4L~

Space
bar 2-4
\'-Tit11 consta!lt vector L~-9

in formatted data 5-55
redundant 4-9





Special characters 2-2, 2-4
Square root

normalized surds 0 5-14
general (see power) * 5-11

Souish quad 0 2-10, 6-11
Standard functions (see functions,

primitive)
Star * 5-10
State indicator )SI 3-12
Station name 2-6
Stopping

function execution ATTN 2-10
output display ATTN 2-10
terminate -+ 8-3
session (see si~n-off)

suspend 6-6, 8-11
Storaae space availability OWA 6-12
Strin0 l~-4

Stroke f 5-8
Structure of an expression 4-7
Structured prograM 8-18
Structurin0 an array 4-3, 5-30
Subarray 5-2
Subscript list 5-2
Subset c 5-42
Subtract - 5-8
Suoi19S \- (see backslash)
Suffix edit action w 8-10
Superset :> 5-42
Surroqate 6-13
Suspended functions

clearin9 state indicator
)RESET 3-12, 8-20

correctin9 errors in 8-20
detection of 8-20
meaninq of 8-18
termination ~ 8-20

Switches on the terminal 2-4
Symbol tabl.e

availability DNA 6-12
command )SYMS 3-4
entry by replace 5-5

Syntax
defined functions 8-1
expression list 4-8
expressions ll-7
forl11ats 5-5f>
primitive functions 4-7

Systeyn comrnancls
)ATTACH 3-10
)BLOT 3-3
)CLEAR 3-4
)COFF 3-2
)COpy 3-7
)DETACII 3-10

)DIGITS 3-5
)DROP 3-8
)ERASE 3-9, 8-21
)FILES 3-6
)FNS 3-9
)FUZZ 3-5
)GRP 3-11
)GRPS 3-9
)LIB 3-6
)LOAD 3-7
)OFF 3-2
)ON 3-2
)ORIGIN 3-4
)PCOpy 3-7
)RESET 3-12, 8-20
)SA VE 3-7
)SE~'D 3-5
lSI 3-12
)SYI4S 3-4
)TABS 3-3
)VARS 3-9
)WIDTll 3-3
)flSID 3-8

SystcIJl functions
acco'llnting information DAI 6-12
account name CAN 6-12
alp11abet [JA 6-9
atomic vector ~AV 6-9
backspace character DB 6-9
canonic representation OCR 6-4
delay DDL 6-8
di~its DD 6-9
edit OED 6-8
error QER 6-8
expun~e LJEX 6-5
file availability ~FA 6-12
fix []FX 6-4
library availability OLA' 6-12
line count OLC 6-12
linefeed character DL 6-9
monitor values []J1V 6-6
name availability DNA 6-12
name classification UNC 6-5
name list DNL 6-5
news DNEflS 6-12
nl.lll character [IN 6-9
print tabs OPT 6-12
print width ~PW 6-12
qller~' moni tors [lQM 6- 6
oller}' stop OQS 6-6
query trace DOT 6-6
reset monitors [:Rft: 6-G
reset stop QRS 6-6
reset trace DRT 6-6
return character DR 6-9

INDEX-11





set monitors OSU 6-6
set stop DSS 6-6
set trace OST 6-6
shared variable

control OSVC 6-18
offer OSVO 6-16
query OSVQ 6-20
retract DSVR 6-20

shares availability DBA 6-12
tab character DT 6-9
time stamp DTS 6-12
user load DUL 6-12
vector representation DVR 6-L~

working availability DWA 6-12
workspace identity OWI 6-12

System info~ation I 6-20
System variables 6-2

comparison tolerance OCT 6-2
index origin oIO 6-2
print precision OFP 6-2
random lin]c DRL 6-2

Tab
key, SET/CLR 2-5
char.acter DT 6-9
connnand )TABS 3-3
inquiry OPT 6-12
interval 2-7

Tables 5-21
Tack c11aracters

do~m .L 5-46
left 2-3, 6-10
right 2-3, 6-10
up T 5-48

Take t 5-40
Take components ~ 7-7
Tangent 5-14
Tanh 5-14
Telepl10ne 2-6
Template of function 8-1
Terminal

keyboard 2-3
logical station number 2-6
station name 2-6
tab interval 2-7
width of display 2-7

Terminating function execution
after a suspension )RESET 3-12
from function line + 8-3

Test file status ~ 7-11
Text (see string) 4-4, 8-11
Tilde ~ 5-13, 5-42, 8-17
Times x 5-8
Time stamp DTS 6-12
Trace

function execution 6-6, 8-14
of rnatrix 5-37

INDEX-12

Transaction
definition 1-3
entries 2-8
editing 2-8

Transformations, ~function 6-4
Transpose dimensions ~ 5-36

. Triangular nuw)ers 5-25
Trigonornetic functions 5-14
Trutl1 Jcablc 5-12
Type of data object 1-4
Typing errors 2-8
Twitch prompt 2-10
Underscore _ 4-6

delta 6 4-6
Une'qual ;t 5-12
Union u 5-42
Up

arch n 5-42, 8-14
arrow + 5-40, 8-8
caret 1\ 5-13

. tack T 5-48
User

account 1-7
name DAfl 6-12

defll1ed functions (see
defined functions) 8-1

load DUL 6-12
phase 1-3

Value of a data object 4-2
Variable

global 8-18
list OlvL 6-5

command )VARS 3-9
local 8-1, 8-18
name 4-6

Vector
described 4-2
display of 4-3
empty 4-4
represent OVR 6-4

Visual fidelity 2-5, 4-9
t~idth

default command )WIDTH 3-3
print OPf' 6-12

Working space
availability DWA 6-12

t·lorkspace
attributes 3-4
clear )CLEAR 3-4
identity DWI 6-12
library 3-6
locJcing of 3-2
name Ll-6
name co~~and )WSID 3-16

tvr i te COmpOllGllt EB 7- 4






