Burroughs

B 6700/B 7700
APL/700

USER REFERENCE MANUAL

(RELATIVE TO MARK 1.7 RELEASE)

| »
»
$6.00

Printed in U.S. America 17 February 1975 5000813
/

Total pages in this manual is 232,

Page Issue

5-70 Blank N Original
6-1 thru 6-22 ,........ Original
7-1 thru 7-11 Original
7-12 Blank Original
8-1 thru 8-21 Original
8-22 Blank Original
9-1 thru 9-8 Original
A-1 thru A-7 Original
A-8 Blank Original
B-1 thru B-4 Original
C-1 thru C-16 Original
Index—1 thru Index—12 Original

COPYRIGHT (c) 1974, 1975 BURROUGHS CORPORATION

Burroughs believes that the information described in this
manual is accurate and reliable, and much care has been
taken in its preparation. However, no responsibility, financial
or otherwise, is accepted for any consequences arising out of
the use of this material. The information contained herein is
subject to change. Revisions may be issued to advise of such

Page Issue
Title Original
A e e Original
i thru vii Original
viii Blank Original
1-1 thru 1-9 Original
1-10 Blank Original
2-1 thru 2-12 Original
3-1 thru 3-12 Original
4-1 thru 4-13 Original
4-14 Blank Original
5-1 thru 5-69 Original
changes and/or additions.

A

5000813

Section

Table of Contents

Title

INTRODUCTION . o ¢ o ¢ o o =

OVE RV I EW L] L] L] L] [) [L] . .

APL/700 SYSTEM DESCRIPTION e o e

General . . .« o o o e e
Properties and Features o o
Use Requirements . . .« .« o
APL/700 Interactive Environment
Data Elements and Objects . .
Constituents of APL Language .
Constants and Variables .
Functions « o s« s
Primitive Functions and Ope
Defined Functions . . .
Control Structures o e
EXPressions « « .« o o
User Account N
Workspaces, Library and Flles
Self Protection ¢« o
Security and Sharing . .

at

e o o o o o o M e o e ¢ 0o 0 0 o
o o o ¢ o o o (e s e ¢ o o o o

INTERACTING WITH APL/700 . . .+ .

General « .. .+ +« o e e o o
APL Terminal Keyboard Configurations
APL Character Set . . .+ .+ =
Typing Conventions o« . .
Connection with the APL/700 System .
Slgn-On
Transaction Entries
Transaction Editing
Correcting Typing Errors within
Editing Prior Transaction . .
Sign-Off S . . -
Recovery Operations . . .«

rs

® & & * & ¢ o »

¢ & o & @ & © o & & &6 & o b » o

[] . [L] - * .

. * * [L] L[] *
¢ e o » & o & o

td
o o o

(04
e o

L * L] L] L] L E L] L J L] [] L] . L] L] L]

L] * * [] L L] L) L d L 4 L] * o

L () L] [) [L] [] L] L L] »]

. L] * L] L] . ® [] [] L [) .

¢ & o @ @& S o 5 e °* P B o ¢ o o

Page

vi

vii

—y
!
N

B S S T N i i S N S
!
WOONN-"NANTTUINNEWNDN -

[\
'
Ry

NNNNNN?NNNNM
- =2\ D0 VO NAUNININ -
N =

Section

ii

3

Table of Contents (Cont)

Title

SYSTEM COMMANDS . &« ¢ o o o

General « . « « o .

System Command Categories
Session Controls .
Terminal Controls .
Clear Workspace Contr
Library Controls
Name Displays
Erase Names .
Group Commands
Run State .

1s

¢ o 9 s o Oe s o o

¢ o & @
[] * L] L] L]

THE APL/700 LANGUAGE e o o e

General« .
Data Objects . . .
Names L] L] - * L

Expressions, Lists and Order of Execution

Expression Formats
Expression Lists .
Brackets
Expression Entry .
Comment . . « e o«
Input/Output Communicators

PRIMITIVE FUNCTIONS AND OPERATORS

General . . e o o e o
Selection Function e e
Assignment Functions . .

Scalar Primitive Functions .

Integer Part, Extreme Value Function

Arithmetic Functions . . .
Power, Logarithm Functions .
Relational Functions . . .
Logical Functions
Circular Functions e e e

Factorial, Combinatorial Functions .

Extension to Arrays of Scalar
Primitive Operators . . .
Outer Product Operator
Reduction Operator .
Scan Operator . . .
Inner Product . . .

L] L] * *
L] L] * *
e o o e
i *
L] L] [] ®
L] L] L] L]
L] L] L] L]
e e e e
[) - L 2 *
L] [] [] *
® [] * L]
L] L] * -*
L] L] *® *
L] L] [] []
e o e e
ions .
* * [] *
L] L] L] L]
* [] L] *
L] L] L] ®
® L] * L]
.
Functions
e o e s
L] ® [] -*
* * * L]
*® L] L] o
L] L] L] L]

L] L[] L] . L [) * L) * *

Page

4=10
4=13

5«1
5=2
5=14
5-6
5=7
5-8
5-10
5-12
5-13
5-14
5-16
5-17
5=-19
5-20
5-22
5-24
5-26

Table of Contents (Cont)

Section Title

Page

5 Identities for Scalar Dyadic Primitive Functions

Mixed Primitive Functions . . .
Shape, Reshape Functions .
Integers, Index of Functions

Ravel, Catenate, Laminate Functions

Reverse, Rotate Functions .
Transpose, Permute Functions
Compress, Expand Functions .
Take, Drop Functions . .
Set Functions . . .
Grade Functions o o
Random Functions . .
Base Value Function .
Represent Function .
Matrix Inverse, Divide Func
Evaluate Function . . .
Format Functions
Format Syntax Diagrams .

Default Format Function
Numeric Format Function
Character Format Function

6 SYSTEM VARIABLES, SYSTEM FUNCTIONS
SHARED VARIABLES . « « o o

General « .« =« o o o o o
System Variables« .
System Functions e« o e e
Function Transformations
Name Functions . . .
Debugging Aids . . .
Execution Controls .
Special Character Sets
Status Inquiries . .
Shared Variables
Shared Variable Functions .
SV Offer, Coupling Functlons
SV Access Controls Functions
SV Query, Retract Functions
I-Bar Primitive Functions . . .

e e o o o o

L[] [] [[] [] [] rf. [] [] [] [] L]
[
(o]

3 e o o ¢ 0o 0 o o

0]

AND

® © @ 8 6 6 6 @ 6 & o & 6 0 o 0 0 ° 0 o

5-28
5-29
5-30
5-31
5-32
5=34
5-36
5-38
5=-40
5-42
5-44
5-45
5=46
5-48
5-50
5~54
5-55
5-56
5-58
5-60
5-62

iii

Section

iv

7

Table of Contents (Cont)

Title

FILE SYSTEM FUNCTIONS s« o e e e e =

General .
File
File
File
File
File

Name . * L] * L) * * L d
Components . . « e o
Limits .+ .+ .+ =« « o
Opening, Active and Inactive Stat
Integrity . =« o o o o o e

File System Primitive Functions

File
File
File
File
File
File
File
File
File

Create, Change Password, Rename, Destroy

Component Null, Write, Read . .
Component First In, Out; Last In,
Component Order Reverse, Rotate .
Components Take, Drop . .« =«
Components Compress, Expand .
Hold, Free, Release
Component Existence . . .+ .
System Interrogate, Status, Query

FUNCTION DEFINITION, EDITING AND EXECUTION

General .

Function Content . . .« .
Branch, Terminate, Label .
Function Editing Actions o .

L L L 2 L3 L] L] *

Function Define, Open, Close Actions .
Function Line Replace, Insert Actions
Function Line Edit Actions
Function Multiline Group Specifier .
Diagnostic Function Line Group Actions

Display Function Line Group Actions
Delete Function Line Group Action
Defined Function Execution . . .
Scope of Names . .+ .« =« o
Execution Control Sequence .
Multiple Instances « . .« .
Recursive Functions e o e e e
Suspension of Defined Function Execution
Defined Function Editing Using APL Functio
Defined Function Documentation e o o

o M e o 0o 0 o o o o

us

Out

. L] L

L)
L]
L)
.

Page

- O

Section

9

APPENDIX

Table of Contents (Cont)
Title
ERROR REPORTS AND THEIR INTERPRETATION e s o
General « =« ¢ o« o o« o o o o o o o

Error Reports . . . e o o e » e e .
Unimplemented Constructs . « « ¢ o o o o«

Glossary L] L L] L) L4 L [L] - -» L2 * L]
Workspace Content Space Considerations o e e

Reference Charts « e ¢ o ¢ o o o o o

List of Illustrations
Title
Transaction Cycle e o & e e e s & e o
APL Terminal, Typical 88~Character Keyboard . .

APL Terminal, Typical 94-Character Keyboard . .

List of Tables
Title
Examples of Data Object Forms e e s e e e
Tests for Properties of Data Objects
Identities for Scalar Dyadic Primitive Functions
Character Representation Order in Atomic Vector

Error Reports ¢« =« =« o« o o o o o o o o«

Page

. 9-1
. 9-1
. 9-1
. 9-8
. A-1
. B-1
. C-1
Index-1
Page

. 1-3
. 2=3
. 2=3
Page

. Uu-3
. U=5
. 5-28
. 6-11
. 9=U

INTRODUCTION

APL/700 is comprised of A Programming Language (APL) and the inter-
active environment in which the language 1is used. APL is a general
purpose language for describing procedures concisely and consistently.
These procedures are then used to process information. Capabilities
common to APL systems include:

Terminal transaction-oriented processing
Many built-in primitive functions

Array data-objects as arguments

Direct expression entry and evaluation
User defined functions

APL/700 incorporates these capabilities, and in addition includes many
exclusive features for more power and versatility:

Extended function capabilities
Improved terminal interaction
Comprehensive formatting capabilities
Enhanced function editing

Integrated file system

Explicit error reporting
Inter-process variable sharing

This APL/700 User Reference Manual, Form 5000813, contains complete
information for the user.

The APL/700 Reference Card, Form 1079936, provides a syntactic summary
of the material in this manual.

The B6700/B7700 APL/700 Installation Manual, Form 5000805, addresses
the internal details necessary for a site to install, run, and manage
APL/700 for its users. It contains no information for the APL/700
user.

Documentation for specific APL/700 applications is released with the
applications.

Documentation of the APL/700 system has been prepared and is

maintained using TEXTEDIT (c¢) 1974 Burroughs Corporation. TEXTEDIT is
an APL/700 application.

vi

OVERVIEW

The intent of this manual is to provide sufficient reference data
(definitions, instructions, and examples) to help the user to
understand and apply APL/700. The manual is organized into 9
sections, 3 appendices and an index. Each section covers an
independent aspect of APL/700.

Section 1 summarizes from the user viewpoint APL and its
environment.

Section 2 explains user interaction through a suitable
terminal for APL.

Section 3 describes the system commands provided to express
the user's control over the APL environment.

Section 4 introduces the general properties of the APL
language: its array data objects, names and expressions.

Section 5 details the primitive functions and gives exam-
ples of their application to data objects.

Section 6 shows the system variables to specialize the
processing; system functions to query or alter the

environment of the account; and shared variables for inter-
process communication.

Section 7 defines the file system functions for workspace
extension.

Section 8 illustrates the actions provided for function
definition and editing, and also their execution.

Section 9 1lists the error reports displayed as they are
detected for immediate repair and resumption of processing.

Appendix A is a glossary.
Appendix B gives techniques for control of memory space.

Appendix C contains a set of summary reference charts for
the material detailed in Sections 1 through 8.

The Index includes terms and concepts used in this manual.
It also includes terms used in other APL books and manuals.

The reader is encouraged to become a user from the start; the

interactive environment allows problem formulation and solution at the
user's pace.

vii

SECTION 1

APL/700 SYSTEM DESCRIPTION

GENERAL,

APL/700 is an interactive tool for problem solvers. One purpose is to
provide a means for the person formulating a problem solution to
obtain desired results quickly. The user works through a terminal.
Solution formulation and data entry can be intermixed. Entered
information and returned results may be displayed for immediate
review, APL is especially appropriate where user insight is important
during solution development. APL encourages experimentation, the
asking of "what if..." questions, and focusing upon immediate needs.
This contrasts with traditional bulk data processing, where massive
outputs are prepared in hope that somewhere therein can be extracted
the answers to any potential questions.

Problem formulation can often be in terms of an immediately executed
APL expression for which direct response is provided. APL/700 has
many powerful built-in functions available for this use. These apply
consistently to either simple data or array structured data. Uniform,
parallel processing of all elements in a data structure permits
significant algorithms to be concisely expressed, with irrelevant
detail suppressed.

A problem solution can be developed in a logically structured manner
(top down). It can be saved for later use. Progressive refinements
can be easily incorporated. The data required can be kept in
variables and the calculation sequence required can be retained in one
or more user defined functions. Further, a file system is available
to allow a problem solution to be easily extended to handle an
unlimited quantity of data.

A second purpose of APL and 1its interactive environment is to provide
a hospitable host for applications. The users of these in many cases
need not know APL in detail. Many successful APL applications exist:

Financial analysis Text processing and documentation
Inventory control Report generation

Manufacturing scheduling Message processing and distribution
Forecasting Statistical analysis

Manpower management Mathematical analysis

Resource control Simulation and optimization

PERT Computer aided instruction

Reservation control Data base search and retrieval

The common property of these applications is their use of direct input
and immediate display response, Traditional computation-bound
applications may often be re-cast into APL to provide a more
satisfactory solution for the user with the proklem.

PROPERTIES AND FEATURES.

APL/700 may be characterized as:

accessible immediate response for "trivial" requests
unobtrusive problems quickly solved at user's pace

concise powerful primitive functions on data structures
simple consistent, few rules

readable define functions in few lines

forgivina easy error correction, good recovery

secure protection for private or shared work

Features that make APL/700 an effective interactive system include:

built-in APL functions for processing data

expression entry and immediate execution

proaressive expression development by augmentina prior entry
data entry in execution or input modes

user function creation in definition and editinao mode

file system for accessing auxiliary data

shared variables for interuser or interprocess communication
formattina functions for report preparation

system functions and commands to query and alter environment
keyboard input and display controls

USE REQUIREMENTS.

To use APL one needs only:

a terminal with APL characters
an account on an APL/700 system

Note that typing skill is not on the above list. APL is so concise
that lack of typinag skill ~1is not a significant barrier. Since the
reader is encouraged to learn APL on a terminal, keyboard familiarity
develops with use.

The APL/700 system cannot be damaged by user entries. The user
quickly learns to experiment: when in doubt, try it.

1-2

APL/700 INTERACTIVE ENVIRONMENT.

The user seems to have exclusive use of the APL/700 processor. This
illusion can be maintained for many users concurrently since the
amount of computer resources required for servicing any one user is
usually a small fraction of the total resources available. Peak
requirements are spread in time.

A transaction 1is the alternating cycle starting with a user phase
followed by a processor phase. The user phase starts with the
terminal ready for user typing, continues through user typing an entry
requiring service and completes with the return (RETN). Then the
processor phase starts by receiving the RETN, provides the service
required by the entry, possibly generating output, and finally makes
the terminal ready for next user entry.

,/’ Request
RETN APL/700

Terminal Processor
Response
Unlock Keyboard

User Phase Processor Phase
Action Type Entry RETN Process (Output)
Keyboard Unlocked Locked
Typical Time 1 to 30 0 to 1 0 to 6

Span, Seconds
FIGURE 1-1 TRANSACTION CYCLE

The user sets the work pace; the processor rarely slows the thought
process. When the time consumed during the user phase and during
output from the processor phase constitutes a large fraction of the
transaction cycle, the wuser has the illusion of a dedicated computer
system. APL/700 achieves this by scheduling "short" requests (taking
no more than a fraction of a second of processing to complete) for
almost immediate service. "Involved" requests (that a user might
expect to take a while) are scheduled for processing that can be
interrupted as necessary to service short requests from other users.
Most requests are short.

The benefits from sharing the API, processor among many users
concurrently include:

immediate response for short transactions

work smoothing among many irregular demands for service
powerful processor available when needed

cost spread across users as resources are used

"think time" need not be penalized

data files for data accumulation and shared access

USAGE _MOD:LS .

The user o7 APL may select one of three modes for use at any time.
Each mode 133 recognizable by the prompt or appearance on the display
whaen the kevpoard is unlocked.

Ex=cution {or Calculator) Mode.

immediate execution of entered expressions

progreissive expression development by altering prior entry
assignnent of values to variables

call on defined functions for execution

prompt: five space indent

Data Entry llode.

evainated, in response to the prompt [J:
charac:er, in response to a user established prompt

Function Delinition and Editing Mode.
creation and editing of defined functions

establ_shrnent of automatic debugging aids
prompt - [n] at left margin for line n of the open function

DATA ELEMENTS AND OBJECTS.

Data objects «are the units for processing. A data object has the
properties of type, shape, and value.

The tvpe of a data object is either:

character any APL characters
numneric any value representable as a number

The shape of a data object 1is a vector of non~-negative integers
indicating the lengths along each dimension of the object. A data
object may be a scalar, in which it has a single element with an empty
shape {a geometric point). A data object may be an array of some
number of dimensions with a shape vector. If there 1is only one

dimension, the array 1is referred to as a vector. The right most
element of the shape vector is the number of columns in the object. A
two dimensional array is referred to as a matrix. The shape of a

matrix is the number of rows, followed by the number of columns. The
rank of an object is the number of dimensions.

The value of a data object may consist of a single scalar element or
zero or mcre elements arrayed in some rectangular manner.

CONSTITUENTS OF APL LANGUAGE,

The APL language includes four kinds of entities:

constants and variables
functions

control structures
expressions

CONSTANTS AND VARIABLES.

A constant is a data object without a name. Constants can appear as
part of defined functions or can be entered as part of execution mode
expressions.

A variable has a name that is attached to a data object by assignment.
The name 1s used in APL expressions as a reference for the associated
value of an APL data object. Each successive assignment to a variable
name attaches a new data object to it. Special system variables
provide access or control over variables relating to the APL
environment. Shared variables permit interprocess communication.

Constants and variables can be used as arguments to functions in APL
expressions.

FUNCTIONS.

Functions perform processing according to particular, defined rules.
Many primitive functions of general utility are built-in to APL.
Other functions can be created by the user to solve problems. These
are called defined functions. They are defined in terms of other
language constituents.

A function accepts arguments and generally returns a value, as a
result of following the processing rule for that function as applied
to its argument values.

A function is defined for a domain of values for each of its arguments
and produces a result in the allowable result range of values. For
example, the relational function "less than", as used in:

A "less than" B

has numeric domain for arguments A and B and the values true and false
as the range of values for the result.

In APL, "less than" is expressed by the character '<', and the values
true and false are expressed by the Boolean numeric values 1 and 0
respectively:

3<5 an entry (made following the 5 space indent prompt)
1 the result response (the relation is true)

Primitive Functions and Operators.

Complete families of primitive functions are provided for numeric type
data objects:

arithmetic functions
relational functions
logical functions
higher functions

random number functions

A gqgroup of operators exist which act upon primitive functions to
produce new functions which then apply to data.

Additional function families exist that apply to both numeric or
character data types:

structure building and changing functions
nixed type functions

set functions

selection functions

assignment functions

formatting functions

input output communicators

A file system provides convenient access to extensive data using a set
of file functions.

A set of system functions permits querying and altering the
environment within which APL is used. There also exists a similar set
of system commands that can bhe used only in execution mode.

Shared variable functions are provided for controlled interprocess
communication between a user and one other process, either another
user or a shared variable utility.

Defined Functions,

A defined function performs more complex processing than can be done
by single primitive functions. It contains one or more lines. Each
line combines primitive functions, operators, constants, variables,
references to defined functions, 1labels, punctuation, and control
structures.

A defined function can have arguments. Arguments provide the values
to use during its execution.

A defined function may optionally return a result from execution. If
so, the defined function can be used to compose expressions in a
similar manner to how primitive functions are used.

CONTROL STRUCTURES.

The APL control structures determine the order of execution. A
primitive function generally applies "in parallel" to all elements of
the data objects that are its arguments, A function is elaborated
after its argument values are determined. Elaboration order is right
to left within an expression. Lines within user defined functions are
normally executed in sequence. Non-sequential execution mav be
achieved by explicit transfer to a line number, which may be computed.

If a user~-defined function is called within an expression, control is
passed to the called function. Subsequently, control is returned to
the calling expression after the point of call. 2 function may be
called recursively.

There are no formal conditional or iterative control structures for
user defined functions. When required, these control structures are
synthesized by explicit control transfers. The need for these may be
generally avoided by mutually exclusive processing logic on elements
of data structures.

EXPRESSIONS.

An expression is the syntactically correct composition of one or more
APL language constituents. The results of elaborating an expression
include change to the state of processing, or display to the user, or
both., The constituents of APL expressions may include:

data objects (constants or variables)
primitive functions and operators
calls on functions defined by the user
file functions

system functions

system variables

control structure delimiters

USER ACCOUNT.

Each user must be assigned a valid account by the installation. This
account collects usage information. The attributes of an account
include:

account name and optional user=-supplied password
workspace quota

file number quota

file space quota

computer use quota

shared variable quota

1=7

WORKSPACES, LIBRARY AND FILES.

Each user account has an active workspace. The active workspace is
the fixed size area of storage 1in which a user conducts transactions.
At first sign-on, this workspace is unnamed and clear. At this time,
only the default values for system variables exist as previously
established for the account. After some transactions, the workspace
may contain some variables having values, some groups, some altered
values for system variables, and some defined functions having
continuing use.

A user can name the active workspace and save a copy of it 1in the
account librar of inactive workspaces for subsequent reactivation.
The number of workspaces in the user library is limited to the quota
established by the installation for that account. All workspaces have
the same size, determined by the installation.

Within a workspace are all retained variables, defined functions, and
temporary storage required during processing. The conciseness of APL
defined functions permits a large processing capability within a
workspace.

Each account may also have a quota of files. Each file has a name and
a set of numbered components. Each component is either null (having
no content) or contains an APL data object. Data objects can readily
be exchanged with the active workspace. Defined functions can be
represented as data objects and stored in file components. They can
be accessed as needed and reconverted into function form, This
increases the amount of data that can be processed by functions in a
workspace,

SELF PROTECTION.

The active workspace contains current work. Whenever desired in
execution mode, a copy of that workspace can be saved in the library
for subsequent resumption with the processing state the same as at the
point of saving.

Changes to function definition or experimental computation can be
done, then either kept if good, or discarded by returning to the
formerly saved version of the workspace.

The active workspace is retained in the event of unexpected
disconnection caused by either the terminal, the communications link,
or the main system. Upon next sign-on for the account, recover
occurs automatically to within the 1last entered transaction if in
entry phase, or to the last line processed if in processor phase.

The commands having irrecoverable effects tend to be separated and
protected against accidental misuse. For example, the user can ERASE
names of variables, functions or groups, but must DROP a workspace.

SECURITY AND SHARING,

Protecting an account, its workspaces and files from other users is
important. Locks and passwords provide these capabilities. Selective
sharing of workspaces and files among accounts is often desirable. A
user can grant access privileges to those he wishes, and deny
privileges to all others.

A defined function can be locked so that it can only be opened for
examination in the account and workspace in which it was locked.

A user account name is unique to the installation that assigns it. It
is not considered private, but only a means for identifying the
account when signed on the system, and for other users to reference
the inactive workspaces and files retained for it.

The account user can add a distinct password for the account, and to
any of its workspaces or files. Password use can provide a degree of
security, since the assigner of that password controls its
dissemination. A password can be entered or changed at any time
through the terminal. A blot can be requested to obscure by
overprinting the area in which password entry will appear. Of course,
no security is provided against someone tapping the communications
line connecting the terminal with the APL system, or against failure
to blot display of password.

A user cannot alter a workspace saved in another account library; only
a copy of it can be obtained (assuming that the account owner has
divulged the account name and workspace name, and password if any).

A user can alter any file in the APL file system, given knowledge of
the owning account/file name (and password if any). To control
accesses to shared files, the owner should provide a locked file
access function through which all accesses to the file are made. 1In
this function, the file password can be secured from disclosure and
necessary access conditions can be checked. Thus, the file name and
password need never appear in visible form to the user.

When a file is shared among several users, each user can make
conflict-free component updates by requesting exclusive use during the
update operation.,

If a user "forgets" a password, a request to the privileged terminal,
if convincing, can result in administrative granting of one action by
the user without the password. This action should replace the
forgotten password. The privileged user does not know either the
forgotten or new password. Administrative abuse of this privilege
will be detected by the user, as the next attempt to use an old
password will not work.

1-9/1-10

SECTION 2

INTERACTING WITH APL/700

GENERAL.

The APL/700 system communicates with the wuser in an interactive
manner. The user can direct the system to execute, (or edit)
expressions or defined functions. The user, through the keyboard,

supplies data and instructions for processing that data. The order in
which the characters in an entry are typed is irrelevant; the final
image of that entry is used by the system. This property 1is called
visual fidelity.

Typing errors can be easily corrected at any time before the end of a
transaction entry. Further the most recent expression entry can be
retrieved for editing and reentry.

During expression or function execution, the user may halt processing
and examine and possibly modify the current execution state (all of
the variables and the environment). APL provides debugging tools to
allow the user to follow the execution process in as much detail as
desired.

The APL wuser environment consists of an available library of
workspaces and files, accounting information, and account parameters
(print line width, tab interval, print precision, and index origin).
The user can establish, query and alter this environment at any time.

Interaction with APL requires a terminal which should have the special
APL typeface and keyboard configuration. Such a terminal must have
provisions for communicating with the system Data Communications
Processor. The DCP can be programmed to communicate with any standard
printing and video APL-type terminals.

This section describes procedures for sign-on, sign-off, and
transaction entry editing. The procedural instructions presented
assume the particular terminal confiquration described in this
section.

Instructions for using an acoustically coupled telephone interface
with the Data Communication Processor are given; procedures for other
connection means are generally simpler.

APL TERMINAL KEYBOARD CONFIGURATIONS.

Figure 2-1 shows the configuration of the most commonly available APL
terminal keyboard. The terminal has 44 keys, each containing two
characters (shifted and wunshifted), 10 special keys/bars, and an on-
off switch. Recently produced APL terminals contain 47 character keys
as shown in figure 2-2,

APL CHARACTER SET.

The APL character set consists of the 26 uppercase letters, digits 0
through 9, standard punctuation and special APL characters. Some of
the conventional characters are not in normal typewriter keyboard
locations, but are more logically grouped. All keys contain unique
characters. Since APL uses more characters than there are keys and
cases, some characters are formed by overstriking.

The APL character set used throughout this manual, is the one provided
for typical (standard) APL terminals. Character appearance for other
terminals varies somewhat in form. For example upright block letters
are used on some terminals.

Letters have uppercase, italic form:
ABCDEVFGHIJKLMUNOPQRSTUVWXY?Z
A full set of underscored letters may also be used; those letters are

formed with a non-underscored letter, a backspace, and an underscore
(shifted 'F').

Mumerals have upright form:
012 3456 7839

Other characters are included that are generally upright:

)
mLT ..&
all 8).
2z m z
"
oo X P
34—
|+ ~*
*P e -
0w .
<oll 5o .
——— - N 7 i
>0 ~ N -2
LY | S °n =
g
A=
— Dy
>:b_ ? & o N
"ol §p B co
vie _uLD n
w Ry —rl ™
V) -4 uN
wWTJ
" Aﬁlli s)
I o o Ol
&
C el g3
{ J
e

APL Terminal, Typical 88-Character Keyboard

Figure 2-1,

> {
L5 8 3
x¥ a g |
|| &
x i
- ¥
vt £
“o .qh'ﬁuu“)
sle X - P
+4
|+ —*
*P .0 *
<O T
0 Q| p—<
>0 IIHIM
>l .J
L | S =
Q%
AN fYTl;LB
J
- Do
Al© 2 & o
TIIL |
0o an Fwnuc
-2all
Vi eETlLDX
V) =t uN
3x|—
<)
I afle. ol
SR
-/ -
: [
CJjellgfia
]
J_. A\ k
e e]
¥ {lo 5

Y

APL Terminal, Typical 94-Character Keyboard

Figure 2-2.

Additional characters defined in APL are formed by overstriking:

I S AnM F O bR e e ! AV ¥ oa

NEBRRARMBREBERGBBEELBND

The order in which characters are overstruck is not important.

Overstruck (#) is not necessary on those #7-key configurations having

the dollar ($%$) sign.

The essential special keys and the result of pressing them are:

Return or RETN

Shift or SHIFT

Space or SPACE

Backspace or BKSP

Attention or ATTN

Local/Communicate

The return key signals the system that a user
entry is complete and ready for processing. The
cursor returns to the left margin and the keyboard
is locked initiating the processor phase.

Any character key normally produces the lower
character for that key. While SHIFT is depressed,
the upper character for the key is produced. The
shift lock can be wused to keep the shift key
depressed.

The space bar positions the cursor one space to
the right; holding the space bar on some terminals
causes repetitive spacing.

The backspace key positions the cursor one space
to the left. On some terminals repetitive
backspacing is accomplished by pressing and
holding backspace key.

The attention (interrupt or break on some
terminals) key provides for initiation of special
processing. Its uses include:

correction of transaction entry error
display and adjustment of the previous 1line
output termination

execution suspension

The terminal must be in the remote or communicate
position to use the APL system. Local may be used
for off-line typing, without disconnecting the APL
use. (Switching between local and communicate may
transmit a spurious character that can be
eliminated by BKSP, ATTN).

Other convenience keys available on some terminals include:

Linefeed or LF

Repeat or REPT

Tabs or TAB

Tab SET/CLR

Margin

TYPING CONVENTIONS,

The linefeed (index on some terminals) key
provides line advance and in-line edit correction
similar to ATTN without the displayed caret.

The repeat key provides repeated, automatic typing
for any character.

The tab key positions the cursor rightward to the
next tab stop. To take advantage of the APL/700
tab conventions, the tabs should be set at
constant intervals (such as every five
characters).

The appropriate end of this key sets/clears a tab
at the current cursor position. On some
terminals, tabs may be cleared by positioning the
cursor all the way to the right, holding the
clear, and pressing RETN.,

The margin key allows escape beyond mechanical
cursor limits for display.

Except for different character key locations and certain special
rules, the APL keyboard can be used in the same way as any other

typewriter keyboard.

The following conventions apply:

User Entry

Visual Fidelity

Entry Length

A user can type only when the keyboard is unlocked
(the APL system locks the keyboard, preventing
further entry when processing a user input or

displaying response). Display of user entry is
normally preceded by a prompt (5 character
indentation in execution mode). The prompt helps

to differentiate user entry from system responses
(which normally start at the left margin).

It is not necessary to type characters from left
to right; an entry is interpreted by the system
only after RETN. Backspacing allows the typing
order to be arbitrary. That is, the time sequence
in which the various keys are typed doesn't
matter; the system interprets the entry as it
appears on the terminal.

Each user entry should fit on a single display
line to preserve visual fidelity. Some terminals
with limited length buffers for character assembly
may lose excess characters.

CONNECTION WITH THE APL/700 SYSTEM.

The elementary steps to use APL include sign-on, a sequence of
transactions, and sign-off.

SIGN-ON.

The following procedure assumes the use of an acoustic-coupler for the
telephone communications interface. Minor variations to the procedure
may be required for other means of terminal connection.

1. Turn on the terminal and the acoustic coupler.

2. Lift the handset from the telephone cradle, dial a valid computer
telephone number, and listen for a high-pitched tone.

3. When high-pitched tone is heard from computer, place the handset
in the acoustic coupler so that the cord end of the handset is on
the end of the coupler marked CORD.

4, Wait for a connection response from the computer. A typical
response is:

ON-LINE TO APL/700, YOU ARE: 1234567 (LSN:6).

Where: 1234567 and (LSN:6) are station name and logical
station number, respectively.

If necessary, press the ATTN key several times, a second or so
apart until a response is received.

Se Specify the APL Message Control System (MCS) by entering:

\APL

The backslash in the leftmost column signifies a message to the
MCS which hosts APL,

6. Wait for the APL system prompt (cursor indents five-spaces) then
enter the system command:

JON Acct [Password]
Where: Acct is user account identification.
The Password is an optional entry. It is required

for a previously locked account; omit the Password
and enclosing brackets if the account is unlocked.

Examgle:
JON TERRY[HAPPY]

7.

Press RETN and wait for the system sign-on response, which has
the typical format:

FRIDAY 74/08/30 11.51 AM [V27000 W00120 TO0O S006]
Where: V27000 is the version of APL/700 being used.

W00120 is the terminal width (maximum number of
character positions per line) assumed for the user
account before automatic display 1line folding
occurs.

TOO0 is the terminal tab interval assumed for the
account.

S006 is the number of the station to which the
terminal is connected (used for communication
purposes) .

An optional news line may be displayed as determined by the APL
system management. A typical instance might be:

SYSTEM OPERATION TODAY 8.00 AM TO 12.00 MIDNIGHT

Observe the system prompt (five-space indention) and keyboard
unlock indicating completion of connection and readiness for
transaction entry in execution mode. A light may exist that
gives visual indication of keyboard unlocked condition.

The entire sign-on sequence appears on the display as:

ON-LINE TO APL/700, YOU ARE: 123u567 (LSN:6).
\APL

JON TERRY[HAPPY]
FRIDAY 74/08/30 11.51 AM [V27000 W0O0120 T00 S5006]
SYSTEM OPERATION TODAY 8,00 AM TO 12.00 MIDNIGHT

TRANSACTION ENTRIE

When the system s n-on process is completed, transactions (cycles
consisting of user ntry and system response) may be initiated:

1. Make certaii that the APL system has initiated the transaction
cycle (by unlocking the keyboard).

2, Using the character keys, TAB, BKSP, and SPACE, type the desired
entry. For example, to set the active workspace identification
to CINDY, type:

JWSID CINDY

3. After the transaction is completely typed, press RETN to complete
the entry and initiate processing.

4, Wait for the system to provide any required display response.
Such a response will generally start at the left margin. The
response can be a transaction result, an error report, or a
special prompt.

After any displayed response, a prompt is given and the keyboard is
unlocked to complete the transaction and enable the next transaction
entry. Repeat steps 2 through 4 for each subsequent transaction.

If an error message is received, make the appropriate correction and
re-enter the transaction. (Refer to Section 9 for error—-message
descriptions and to the paragraphs describing editing and recovery
procedures in this section.)

TRANSACTION EDITING.

There are a number of variations in performing transaction editing in
the APL/700 system. The procedures required for editing depend on the
mode of operation, on the state of the keyboard (locked or unlocked),
on whether an ATTN entry is initial or non-initial, and on the type of
editing required.

CORRECTING TYPING ERRORS WITHIN ENTRY,

A typing error may be corrected if it 1is noticed before the
transaction text entry is completed:

1. Using BKSP and SPACE, position the cursor at the left-most
character that is in error.

2. Press ATTN. The system will display the down caret (v) under the
character backspaced to in step 1 and then advance the display
one line. (This action eliminates from the entry the characters
above and to the right of the caret.) The INDEX key (if
available) can be used instead of ATTN, however, the 1line with
the down caret is not displayed.

3. When system response is completed, (keyboard unlocked), type the
remainder of the transaction entry.

Example:
YON MYACCT TKEYLOAD] backspace under A, ATTN
y correction mark
CK] entry correction, then RETN

The corrected entry)ON MYACCT [KEYLOCK] is now entered by the
RETN.

EDITING PRIOR TRANSACTION.

APL/700 has provisions for retrieving the most recently entered
transaction and modifying it. This may be used to develop a
computational expression, or in response to an error message Or Wrong
result. The procedure for applying transaction editing is:

1. Without entering anything else, and with the cursor at the prompt
position, press ATTM.

2. The previously entered transaction entry is displayed and the
cursor returns to left margin.

3. Type edit characters below the displayed characters (spacing the
cursor accordingly):

"/" ©Each slash causes deletion of character above it.

"." Each period segments display into another phrase,
starting with the character above the period. (The
first phrase starts at the left of the 1line, the last
terminates at the end of the line.)

o, Terminate edit line by pressinc RETN.

5. A phrase will be displayed with slashed characters deleted (up to
the next period of the edit 1line, or the entire remaining phrase
if no period is used).

6. Alter or augment the displayed phrase.

7. Enter another ATTN at the right-most position of the (possibly
altered) phrase to display the next phrase (an ATTN not at the

right-most position is used for intra-phrase error correction).

8. Repeat steps 6 to 7 until the entry is complete. A transaction
entry is completed by entering RILTN.

Any character entered but not recognized by APL/700 results in a
"CHARACTER ERROR" report. An example of this and subsequent editing
that also includes revision is:

'THIS X% A BAD LINE.' invalid characters
*x*x CHARACTER ERROR **%x* error message
'THIS 00 A BOD LINE.' display with invalids marked
/e 1117 ATTN, enter edit characters
'"THIS IS NOW A LINE.' ATTN after typing "NOW"
v backspace to "L", ATTN
FIXED LINE.' completed entry - RETN
THIS IS NOW A FIXED LINE. display of entry

All invalid characters are replaced by the "squish-quad"™ [display
character., Entry of ATTN exdents to the left margin. Editing can now
be started at step 3 of the transaction editing procedure.

If RETN is pressed during the above sequence while one or more of the
phrase delimited by the '.' in the immediate edit line have not been
displayed, those phrases are lost. RETN completes the entry.

Entering any character other than a slash or period below the
characters of a line re-displayed for editing results in the following
error message:

*x%x EDIT ERROR *%x*
Pressing ATTN reinitiates the transaction editing sequence.

The use of ATTN for in-process typing corrections does not conflict
with the applications described above. That is, for within-entry
typing, the cursor is not at the right-most entry position when ATTN
is pressed.

An ATTN can be used to interrupt the display of a line for immediate
edit (step 2). This display is frequently already present, so an ATTN
can save time. The result is a cursor return to the left margin,
ready for step 3.

If a character error occurred as part of an entry given in response to
prompted character input, the system will first display the error
message, then the erroneous line, and exdent to the left margin ready
for step 2. Entry of ATTN there causes a "twitch" prompt (3 spaces
and 3 Dbackspaces) to be returned, again ready for step 2. Another
ATTN moves the cursor to the right end of the erroneous line.

SIGN-OFF,

When all user transactions are completed, or when it is necessary to
temporarily interrupt operations at the terminal, sign-off from the
system:

1.

2.

Make certain that an execute mode (5 blanks) prompt has been
displayed and that the keyboard is unlocked.

Type one of the following sign-off system command entries,
followed by RETN to terminate the work session:

JOFF discards the active workspace

JCOFF preserves the active workspace
to continue later

The usage record for the account will then be displayed:

JOFF
THURSDAY 74/02/01 12.47 PM
CONNECTED 00.55.48 TO DATE 02.06.20
CPU TIME 00.00.22 TO DATE 00.01.089
IN APL-MCS

This response indicates the type, time and date of sign-off; the
four other numeric responses indicate time (hours, minutes, and
seconds) spent on the current session, plus the total time to
date for connection and CPU usage.

Another account can be signed on at this point. Start with step
5 of the sign-on actions.

Otherwise, remove the telephone handset from the acoustic coupler
and return to the telephone cradle.

Turn off terminal and coupler power as required.

2-11

RECOVERY OPERATIONS.

The APL/700 system provides automatic recovery from temporary work
session interruptions, accidental disconnections, or system
malfunctions. For any of these, or when a user signs-off from the
system for a temporary work session interruption by wusing)COFF, the
active workspace 1is retained for use when the next session is
initiated on that account.

When the active workspace is preserved from a session and the account
is signed=-on, the system responds with the normal sign-on display. An
additional statement may include the name of a preserved workspace
WS Mame and the time and date from which it was continued.

YON TERRY [HAPPY]
WEDNESDAY 74/01/30 11.18 AM [V2700 KW00130 T05 S018]
Ws CINDY CONTINUED FROM 74/02/30 11.02.33

It is possible that an accidental disconnection or system malfunction
will occur during a work session., In either case, the system will
automatically preserve the active workspace and provide a CONTINUED
message when the account is again signed-on.

If execution was interrupted, then the word EXECUTION will appear
between the active workspace name and CONTINUED The execution will
continue until the line being executed is completed; then if in a
defined function the function name and 1line number are printed,
followed by an asterisk '*' ¢to indicate that the function is
suspended. The system then types an input prompt and waits for a
transaction entry.

If a function was being defined when a work session was interrupted,
the word DEFINITION appears between the workspace name and the
word CONTINUED in the message. A function definition prompt is then
returned to enable continuation of the function definition. An
accidental interruption that occurs while an entry 1is being composed
results in the loss of that entry.

If the continued active workspace had not been named, the WS Name is
omitted.

SECTION 3

SYSTEM COMMANDS

GENERAL.

APL/700 has a set of special instructions called system commands.
These commands deal with such practical matters as signing onto and
off of the system, saving workspaces, setting default control values,
copying workspaces, functions, or variables, and controlling terminal
functions. These operations are only initiated in execution mode;
they can not appear as part of a user defined function. A system
command is executed immediately after being entered (if possible).

SYSTEM COMMAND FORMAT,

The conventions used to describe the system commands are chosen to
allow ready recognition of the fixed and variable; required and
optional parts.

Convention Meaning

) system command prefix

[1) / separators -- matching pairs for [] and ()
COMMAND upper-case is required literal word

Name initial capitals is technical term

Optional underscore is optional part

n number

Optional parts (names, numbers, separators) change the meaning of the
basic command. A command without an optional part is often an
inquiry. The optional part provides a value or a name for more
detailed specification.

SYSTEM COMMAND CATEGORIES.

The system commands are grouped according to categories:

session controls
terminal controls

clear workspace controls
library controls

name displays

erase names

group commands

run state

YON
YCOFF
YOFF
SESSION CONTROLS.

Session controls are used to initiate and terminate a work session.

JON Accountname [Password] signs on account
)COFF [Oldpassword/Newpassword] signs off to continue
YJOFF [Oldpassword/Newpassword] siaons off

JON logs the account on the APL/700 system and initiates work. If any
continuation worksnace exists, it is reactivated at the point at which
it was interrupted.

JCOFF loags the account off, retaining the active workspace for
reactivation at next)ON for that account.

JOFF logs the account off and discards the active workspace, so at
next)ON for that account, the user will have a clear workspace.

Roth)OFF and)COFF return date and time, then the amount of CPU
(processor) time and elapsed time used. These amounts are given both
for the session and cumulative for the installation accounting period.
Units are hours, minutes, and seconds.

The Accountname is assiagned by the installation. It is considered to
be public knowledge.

The optional Password allows protection of a user's own account from

unauthorized \use. The Password can be initially set by the
installation, or by the wuser at any sion-off. Once set and until
removed, the proper Password must be used for any successful sign-on.
Either Oldpassword or Newpassword may be empty. The forms for
adjustinag the password at sian-off are:
[/Newpassword] establishes password
[Oldpassword/Newpassword] changes password
[Cldpassword/] removes password

An Accountname may have 1 to 6 characters; a Password 1 to 12. These
characters are alphanumeric (excludinoc the APL underscore alphabet).
A Password must begin with a letter.

YON DOREEN

JCOFFT /SESAME]

YOI DOREEN[SESAME]
YOFF [SESAME/NEWKEY3]

JBLOT
YWIDTH
)TABS

) BLOT obscure an area

JBLOT provides multiple overprinting of a 17 character area, then
backspaces to the prompt position to obscure subseqguent display of a
sensitive entry such as the Password on the account. It can be used
before)ON or during a normal use session.

YBLOT
AARNARAARHARARARA

TERMINAL CONTROLS.

An account can be used from any terminal. The 1line width and tab
settina are «aiven default values. The sucgested defaults are
indicated in the initial WAS n display response in the examples. If
these are unsatisfactory, alternatives may be specified and retained
with the account (which is assumed to be normally used from the same
terrminal).

JWIDTE n maximum characters in display line

The numher of characters n is in the inclusive range 30 to 32767. If
n 1is not specified, the result is the current width. The width
settinc affects the maximum characters that can be disprlayed on one
line. Data objects recuiring more characters are autoratically folded
onto several output lines.

JWIDTI 65
WAS 120

)WIDTH
IS 65

)TALS n physical tab interval

The intecer n is the number of characters between the physical tab
settings. This single interval should match the tabs as actually set
on the terminal. If n is not 0, then output with "white space" will
antomatically use tabhs to minimize the time to reach a position on the
display. Thus the tabs should be used if available on the terminal.
The tabh kev can also be used for entry if tabs are set. The maximum
value for n is 30,

YTABS s
WAS 0

YTABS
IS 5

w
!
w

YCLEAR
)SYHS
JORIGIN

CLEAR WORKSPACE CONTROLS.

Vlorkspace controls provide the default SYMS, ORIGIN, DIGITS, SEED, and
FUZZ7 for a clear workspace that is suited to the normal desires of the
account user.

)CLEAR n clears the workspace

The clear cormmand without n destroys the prior active workspace and
replaces it with a clear workspace having no names in it and the
default attributes hereafter described. If n is specified, it refers
to the number of symbols reserved for the symbol table. This number
must be in the domain 16 through 1024,

)CLEAR
CLEAR WS

JCLEAR 300
WAS 256

The response indicates the number of symbols in the prior active
workspace. It does not change the default number, which is controlled
by)S8YMS.

The following commands return current values or specify new default
values for controls applicable only to an initially clear workspace.
The examrples illustrate typical installation-provided default values
and samples of changes to them.

) SYMS n default symbol table size

The default svmbol table size for a clear workspace is set to n, in
the domain 16 through 1024,

)SYMS
IS 256

)SYMS 400
VAS 256

)JORIGIN n default ordinal index origin

Origin affects primitive functions that use ordinal numbering. The
default index origin can be overridden by the index origin system
variable [I0.

JORIGIN
IS 1

JORIGIN O
WAS 1

YDIGITS
YSEED
YFUZZ

)DIGITS n default print precision

The default maximum number of significant digits displayed in either
fractional or exponential form is established in a clear workspace by
the value of n. This must be an integer from 1 through 12 inclusive.
This number has no effect on the internal precision of representation.
The default digits can be overridden by the system variable 0OPP, print

precision.

J)DIGITS
IS 10

)DIGITS b4
WAS 10

) SEED n default random number seed

The pseudo-random number generator used in the roll and deal primitive
functions is pre-set to the default value of Seed. This permits
repeated execution of an algorithm to receive the same supplied random
values if desired. The wvalue of n is a non-negative integer: 0
through 549755813887 (the largest integer). The seed is the starting
value for the random 1link. The random link changes with each use of
roll or deal and can be changed by the svstem variable [OFL, random

link.

YSEED
IS 0

YSEED 37752963
WAS 0

)JFUZZ n default comparison tolerance

The comparison tolerance by which two approximate representations of a
number are considered equal 1is established in a clear workspace by
YJFUZZ n. The allowable range for n is 0 <n < 1. The default fuzz
may be overridden by the system variable [JCT, comparison tolerance.
See that description for details.

YFUZZ
IS 1E710

YFUZZ 0.1
WAS 1E~ 10

)FILES
)LIB

LIBRARY CONTROLS.

The 1library of an account includes named files and workspaces.
Commands to interrogate the names and to totally or selectively access
workspaces are provided. File access is done through primitive file
system functions.

JFILES display file names of account

The names of files owned by the account are displayed. Only the
public part of the name is displayed; any password on a file is
onitted.

JFILES
DATAFILE
DOCUMENT

)LIB display library names of account

The identifiers of workspaces in the account library (but not their
passwords) are displaved.

JLIB

NEW
TEXTEDIT

The form for referencing workspaces in the following)LOAD,)COPY, and
YPCOPY commands is:

Workspacename is (Account) Wsid [Password]

The Wsid is the identifier by which the workspace is known. It must
start with a letter followed by 0 to 11 letters or digits.

The Account portion is the owning account name of the library in which
the workspace resides. It may bhe elided if it is in the user's own
account.

The Password is used only if the workspace is locked. The password is
also a name starting with a letter and followed by 0 to 11 letters or
digits.

YLOAD
)COPY
YPCOPY
VSAVE

) LOAD Workspacename load copy of workspace

The prior active workspace is eliminated. A copy of the specified
workspace becomes the active workspace. The Wsid of the loaded
workspace (not the Account or Password) becomes the name of the active
workspace.

JLOAD TEXTEDIT
JLOAD JOANNE[KOLOHE]
JLOAD (LIB) NEWS

) COPY Workspacename Namelist replace copy

Copy into the present active workspace from the library workspace
identified by Workspacename. If Namelist is present, copy only the
items attached to names in it that are present in that workspace. If
Namelist is absent, copy all functions, variables and groups in the
workspace. A copied item will replace a prior item of the same name
in the active workspace.

) COPY TEXTEDIT
) COPY JOANNE[UKOLOHE] FORECAST SCHEDULE
) PCOPY workspacename Namelist protect copy

Same as)COPY except that any name in Namelist already existing in the
active workspace will not be copied.

YPCOPY (LIB)NEWS SCHEDULE INDEX
NOT SCHEDULE

)COPY and)PCOPY are more complex commands using more resources than
JLOAD, so should only be used when)LOAD is inadequate.

)SAVE Wsid [Oldpassword/Newpassword] save workspace

A copy of the active workspace can be saved in the account library of
the user. If Wsid 1is present, that name is the one wused for
subsequent library reference; if absent, the prior active workspace
identifier is used. This will replace a former like-named workspace.
The forms for establishing, changing or removing the workspace
password are the same as for the account. See)OFF and)COFF for
details., If the Newpassword is present, subsequent)LOAD or)COPY of
that library workspace must supply the password.

)SAVE WORK
YSAVE NEW [/VERSIOHN]

)DROP
YWSID

JDROP Wsid [Password] drop account library workspace

A workspace 1in the account library can be destroyed by using)DROP,
The password is required if the workspace is locked. A workspace in
one account library cannot be dropped from any other account.)DROP
does not destroy the active workspace, even if it has the same name as
the command)WSID returns.

YDROP NEW[VERSION]
The normal response from the)LOAD,)COPY,)PCOPY,)SAVE and)DROP
commands is typically:
SAVED 74/10/01 8.00.01
A suffix identifying the account and workspace name is appended for
) SAVE.
YWSID Name workspace name

The workspace name provides a reference for the workspace when saved
in the account library. The clear workspace is unnamed.

YWSID

IS UNNAMED WS
YWSID NEW

WAS UNNAMED WS
YWSID

I5 NEW

YFNS
YVARS
YGRPS
YERASE

NAME DISPLAYS.

The following system commands display classes of primary names
currently in the symbol table:

YFNS Name display primary function names

) VARS Name display primary variable names

) GRPS Name display group names
The primary names are those existing in a workspace when the state
indicator 1s empty. Thus no local names are displayed for these
commands. If Name is absent, the entire <class is displayed in

alphabetical order. If Name is present, only the members of the class
starting with (or after) Name are displayed. The display result can
not be used as an APL data object. The system function [ONL, name
list, should be used for that purpose.

YFNS
FINDER FORMAT
YVARS
¥V Z CONVERT
)GRPS

DISPLAY

ERASE NAMES.
) ERASE Nameset erase set of names

Names of functions, variables and primary names of groups named in

Nameset are erased from the workspace. The names in Nameset are
entered, separated by spaces. Function names can not be erased while
in the state indicator. Motice is given for non-existent or non-

erasable members of its nameset. See discussion in Group commands
following:

JERASE W X Y Z FINDER
yor x
NoT Y

JATTACH
)DETACH

GROUP COMMANDS.

A group of names can be formed and named for collective reference
including)ERASE or)COPY.

JATTACH Groupname Nameset group association

The Groupname is the identifier for the group. The Nameset provides
the names that are associated with the group, and thereby, with each
other. Normally, names in a Nameset match names of variables,
functions or other groups. Names in the Nameset need not have any
current meaning.

If Nameset is not present, the effect is to reserve Groupname, as a
group, for subsequent attachment of a nameset. If the group Groupname
already exists, the effect is to unite Nameset with the nameset
already associated with Groupname (no name will be duplicated).

A group name included in Nameset causes the elements of that group's
nameset to be implicitly included in the group.

If the Groupname is included in its own Nameset, then actions on the
group apply also to the Groupname.

JATTACH GROUP1 FNAME VNAME GROUP1
JATTACH GROUP2 GROUP1 GROUP2 HOW

JDETACH Groupname Nameset group disassociation
The names in Nameset are detached from the group Groupname. 1f

Nameset is absent, then the group CGroupname ceases to exist.

Detach doesn't affect the existence of the names (other than
Groupname). This is contrasted with)ERASE which eliminates the named
objects.

JDETACH GROUP2

3-10

)GRP

)GRP Groupname display group association

The names directly attached to Groupname are displayed in the order
they were attached.

A group can contain in its Nameset its own name. If so, an acticn on
the group nameset affects the group as well. A group (say G) can
contain names of other groups. If so, an action on group G will
replace each named group in its Nameset by that group's nameset. Any
one group will only be replaced once. A second occurrence of a group
name signifies the name itself rather than a replacement. Thus the
primary definitions of names in a Nameset are the unique names
remaining after applying the following for each name:

substituting for first occurrence of any Groupname its Nameset
retaining the Groupname on its second occurrence
ignoring any additional occurrences, giving warning: NOT Name
An example of this process illustrates these steps:
YJCLEAR
CLEAR WS
JATTACH A B

YJATTACH B C B
JATTACH C D A A

NOT A
n THIS WAS FOR THE SECOND OCCURRENCE
JGRPS
A B ¢
YJERASE A
NOT D
R D HAD NEVER BEEN GIVEN MEANING
)GRPS
c
JGRP C
D A
The illustrations at the right show A A
the nameset tree for group A after | VAR
substitution of group namesets; and B DARB
the resulting primary definitions. I\
Note that the primary definition CB
includes groups A and B (but not C) I\
and undefined name D. This was D A
done while the 3 groups existed.
Nameset Primary

Tree Definitions

3-11

)SI
JRESET

RUN STATE.

The run state is the record of user defined functions in process,
suspended, or pending completion of other called functions.

)SI state indicator query

The result 1is the stack indicating the run state of suspended and
pending functions. The first 1line (if non-empty), 1is the most
recently suspended function. Below are pendant functions (awaiting
completion of functions above) and earlier suspended function.

Each 1line gives function name, bracketed 1line number at which
execution is pendant or suspended, and an asterisk for suspended
functions only.

)SI
RUNL 1]~
MAINLS]
RUN[u]*

A function can appear more than once in the state indicator. 1In line
5, MAIN called RUN. MAIN is pending completion of RUN. More than one
suspended function can appear. A function can reappear (independent
restarts, or recursive calls are permitted).

Usually the state indicator should be emptied of unnecessary entries,
as space is consumed and global names may be shielded by local names.
The state indicator may also include suspensions with evaluate
functions or evaluated input requests are incompleted. In each such
case, the appropriate symbol & or [J appears prior to the function line
causing suspension.

The suspended function at the top of the state indicator may be
restarted by entering +V where N is a 1line number. The suspended
function and any pending on it may be aborted by entering ». Response
is a line showing the next suspended function if any.

->

RUN[4]=*
)SI

RUN[u4]x

) RESET state indicator reset

The entire run state can be cleared using)RESET. The resulting state
indicator is reset:

JRESET
)SI

SECTION 4

THE APL/700 LANGUAGE

GENERAL.

The APL/700 language contains many powerful primitive functions that
apply to data objects.

A data object may be:

an element of either character or numeric type,

an array structure formed of these elements,

named, forming a variable by assignment, not declaration.
Each primitive function:

is represented by a single character,

applies to one or two arquments that are data objects,

returns a data ohject result.

An APL expression is the syntactically correct composition of one or
more APL language constituents.

data objects

primitive functions and operators
calls on defined functions

file functions

system variables

shared variables

system functions

input-output cormmunicators
control structures

The results of executing an expression include change to the state of
processing, or display to the user, or both.

This section describes data objects, names, expression composition and

order of elaboration, input-output communicators, and the convention
for comments. The other constituents are subsequently described.

N 1

DATA OBJECTS.

A data object is defined in terms of its type, rank, shape, and value.

The type is either numeric or character (any of the APL characters
literally representing themselves).

The rank is the number of dimensions. Allowable ranks are 0 through
16. An array is a data object with positive rank. Rank can be viewed
in geometric terms: a scalar (rank 0) as a point, a vector (rank 1)
as a line segment, a matrix (rank 2) as a rectangle, a rank 3 object
as a rectangular solid, etc.

The shape is the vector of dimension lengths, from first to last.

The value of each element of a data structure must be within the
allowable domain for that type.

In general, an array is characterized as follows:
homogeneous (single type for all elements)
N-dimensional Cartesian (rank N, independent dimensions)
rectangular (all planes across a dimension have the same shape)
dense (all elements have values, as contrasted with sparse in
which some means 1is provided to indicate the 1locations of

elements having significant values)

A plane is a slice of an array that is orthogonal (at "right angles")

to a given dimension of that object. A plane across the K-th
dimension of an N dimensional object has N-1 dimensions. It retains
all but the K-th dimension. Thus, a plane across a vector is a

scalar. A plane across a matrix is a vector (either from a row or a
column, depending on K).

A vector along dimension K is parallel to the axis for dimension K.
The axis for dimension X is the vector along K formed by holding all
the other dimensions at their first (origin) values.

A corner element of an array has for each dimension either the origin
or anti-origin (or last value for that dimension) as index value. An
N-dimensional array thus has 2*N corner elements.

A corner of an array is another array of the same rank containing at
least one corner element that is also a corner element of the original
array.

The size of a data object is the number of elements it contains,
independent of shape.

Table 4-1

Examples of Data Object Forms

Numeric Type Data Character Type
Structure
Value Rank Shape Value Rank Shape
100,341 0 (empty) SCALAR A 0 (empty)
2.5 0 3 1 3 VECTOR ABCDEF 1 6
11 12 13 2 2 3 MATRIX ABCD 2 2 4
21 22 23 EFGH
111 112 3 3 3 2 ARRAY ABCD L 2 3 1 4
121 122
131 132 EFGH
211 212 IJKL
221 222
231 232
MNOP
311 312
321 322 QRST
331 332
UVWX

Table 4-1 shows examples of data objects. For both numeric and
character type, various values are shown as if displayed, and their
rank and shape are indicated. The default display of numeric vectors
has 2 spaces between successive elements in a row., The column spacing
for numeric objects with rank 2 or more 1is uniform based on the
largest space required between elements in a row. The display of rank
3 arrays has one blank 1line separating planes across the first
dimension; display of rank 4 arrays has two blank lines separating (3
dimensional) planes across the first dimension, etc.

Character data can include any of the 256 allowable APL characters of
the atomic vector as literal elements. Only displayable and
designated special characters (see Section 6) should be entered or
used for output to the display. Entry of a character string is
enclosed in quotes. An embedded quote pair is entered if the quote
literal is required. Thus, entry of 'DON''T' results in the data
object DON'T.

The display of negative numeric data uses the " " character (read as
negative) to the upper left of the number. This character is distinct
from the subtract character "-" (read as minus or negate) in primitive
functions. For example:

T23 negative 17-5 minus

Fixed point number entry for decimal fractions need not be preceded by
0; display (or constant representation in a defined function) does
have the leading 0.

.3125 7.2
0.3125 0.2

If fixed point representation is excessively 1long, or if numbers have
very large or small magnitude, an exponential or "scientific"
representation 1is provided. Default output in this representation
takes the form of a signed number with magnitudes between one and ten
times a power of 10, Fractional parts are only displayed if
necessary. Input using this notation can be any real integer or fixed
point number with an exponent.

equivalent canonic form
T387E3 ~387000 “3.87E5
12E7 4 0.0012 1.2E°3
200 2.0E2 2E2

The domains for numeric type data elements are:

Sub type Domain

Boolean 0 AND 1

Integer magnitude 0 THRU 549755813887 <> ~1+8%13

Real magnitude 0 AND 8.75811540203E 47 <> 8% 51
(normalized) THRU 4.31359146674E68 <«->(1+48%x13)x8%63

Integers are the subset of reals having 0 exponent., (Almost 12 digits
are available for precision for either).

Booleans are a subset of integers (and reals).

Some data objects have special properties that are not always evident
from their display.

A scalar is a data object with one element but having empty shape
(rank 0).

A shaped data object is one with positive rank.

A single (element data object) of any rank has size one and is
displayed on a single line. Any dimension must have a length of 1.

An empty data object has no elements. It does have type, resulting
from the way it was generated. Its rank must be greater than 0 as the
length of at least one dimension must bhe zero.

A string is a character type data object that is either a scalar or a
vector. If the content appears as a valid numeric value, there may be
no distinction in the display.

Table 4-2

Tests for Properties of Data Objects

Property Holds if result is true (1)
Scalar O=ppD

Vector i1=ppD

Matrix 2=ppD

Shaped object O0<ppD

Single 1=x/pD

Empty 0=x/pD

Numeric type 0=0\0pD

Character type ' '=0\0pD

String (' '=0\0pD)A2>ppD

Integer ((T142%39)A.2|,D)A(,D)A,=[,D
Boolean 0 1>D

Table 4-2 provides tests for these properties of a data object (D) in
terms of primitive functions that will subsequently be defined.

Data objects are used 1in expressions and are the results of
elaboration. A data object may receive its value by several means:

inclusion as a constant in an expression

entry in response to an input prompt

direct result of function elaboration

reference to a variable name

reference to a file component

default (for initial values of system variables)

acceptance of a variable shared with another process
A constant is either a number (or vector of numbers) or a literal (a
quoted string) entered as part of an expression. The linear entry
mode restricts constants to rank 0 or 1.
A data object that is a direct result of function elaboration and that
is only used as an argument to another function (other than

replacement) disappears after that second function has been
elaborated.

NAMES,

Names are used as identifiers of items that may change during the life
of the workspace or account.

A name begins with a letter, underscored letter, A or A . The rest
(if any) of the name consists of additional characters chosen from
these characters, the digits and the underscore.

Most names may be of any practical length: 1 to 69 characters. Names
of restricted 1length are used as identifiers of workspaces (12
characters), files (12 characters), accounts (6 characters), or
passwords (12 characters). As well, these restricted names may
include only 1letters and digits (an account name may begin with a
digit as well), Names are used in the following ways.

Variables: A name can be associated with a data object through
assignment, Thereafter, until some other meaning is given to that
name, it is called a variable. Subsequent references to that name
yield that data object until some other assignment of that same name,
or the name becomes undefined (see user-defined functions, ERASE
system command or EXPUNGE system function). There is no need to
explicitly declare a name or its type or shape as these attributes are
part of the data object being assigned.

User defined functions: A function name provides a reference to the
processing algorithm thereby described.

Labels: Local to the user defined function in which it appears, a
Tabel is a named constant having value the number of the line on which
it occurs.

File names: Each file created or referenced by a user is identified
by its account name (if owned by another account), its file name, and
its password (if locked).

Shared variable names: Variables shared with some other process have
external names or surrogates known to both processes.

Group names: For purposes of copving and erasing, a group of names
may be named. One of the group members may be the group name itself,
A group member may be a function name, variable name, shared variable
name, Or group name., A group may also serve as documentation.

Workspace names: A workspace may be named and saved. Thereafter it
can be loaded or copied by name, or names within it may be copied.

Account names: Each user account has a name supplied by the system
and used for sign-on and accounting purposes.

Passwords: Each user account, workspace name or file name may have
appended a password established by the user and used to control
access.

-6

EXPRESSIONS, LISTS AND ORDER OF EXECUTION.

An expression is formed from APL language constituents. Proper
formation of an expression requires understanding of the order of
elaboration of its constituents. Elaboration is the process of
determining the value of an expression. Three general rules apply:

A function is elaborated only when the values of its arguments
(the quantities it requires for its elaboration) are known.

The order of elaborating functions in an expression is from right
to left.

Parentheses are used in the conventional mathematical way to
alter the order of execution.

Thus, a monadic function is elaborated when the value of its (right)
argument 1s determined. A dyadic function is elaborated when both of
its arguments (left and right) are determined. An argument can itself
be an expression. A niladic function is elaborated when its result is
required in the expression 1n which it is the rightmost constituent.

The order of argument elaboration for a dyadic function is undefined,
and is generally unimportant (both arguments could be elaborated in
parallel if independent). The order is usually right-to-left. An
exception to this is where the right argument is a variable name. If
elaboration of the left argument changes the meaning of that right
argument name, the right argument is changed to conform.

EXPRESSION FORMATS.

In the following samples of expression formats, "V" represents a data
object value being used as an argqument, "m" represents a monadic
value-returning function, and "d" represents a dyadic value-returning
function. Each elaboration of a function replaces the function and
its argument(s) with a value. Each elaboration of an expression
within parentheses replaces it with a value. Note that there is no
ambiguity in determining whether a function is monadic or dyadic; a
function is dyadic if it has an argument to its left; otherwise, it is
monadic.

vavayv expression
vV d(v 4 v) equivalent expression
2 1 order of elaboration
VdmyV expression
V d(m V) equivalent expression
2 1 order of elaboration
(vdavyav expression
1 2 order of elaboration
mm(Vd4avidmvid vdmyV expression
8 6 4 53 7 2 1 order of elaboration

4-7

It is not necessary to enclose right arguments within parentheses.
Redundant parentheses will be ignored. In defined functions,
redundant parentheses are eliminated once the expression containing
them has been elaborated.

The following examples include both the entered expression (shown
indented) and the result of its elaboration (on the next line). This
is the typical appearance of the examples entered and displayed on a
terminal. The equivalent columns could also have been entered (they
would actually also be indented for entry, no indenting for result
display).

Expression Equivalent Equivalent

3x5+2 3x(5+2) 3x7
21 21 21

1-2-3 1-(2-3) 1-71
2 2 2

(1-2)-3 T1-3
Ty Ty

5%=2 5x(=2) 5x72
“10 10 “10

EXPRESSION LISTS.

A list 1is either an expression, or has components separated by
delimiters. A delimiter is either a semicolon, or one of matching
parentheses or brackets. Each component is either an expression or
null (two adjacent delimiters). Components are elaborated right-~to-
left. The value of a component that is only a variable name will be
affected by any change in its meaning from subsequent component
elaboration in the list. If the list is used for display purpose, the
display order is left to right after all the components have been
elaborated. No type requirements exist between successive components.

mV; vdvV; mV; V expression list
6 5 4 3 2 1 order of elaboration
BRACKETS.

Bracketing is used to bound an expression list wused for subarray
selection from an array, or for qualification to identify the
dimension about which a function 1is to be applied. A bracketed
expression or expression list is elaborated before the related
expression that is its left argument. Matching brackets are treated
as a single function.

VIimV; mv]ayv index expression list
4 3 21 5 order of elaboration

vd[mVv]v dimension selector
321 order of elaboration

4-8

EXPRESSION ENTRY.

Expression constituents are entered in free form: the oxder of
character entry is immaterial. The visual fidelity as displayed (and
as in-line corrected) is what is accepted as the entry.

One blank must appear as a separator between two names or numbers.
Extra blanks are ignored. The only context in which an exact number
of blanks is preserved as significant is in character strings or
comments. Extra matching pairs of parentheses in an entered
expression may help to clarify it and do no harm. In defined function
representations once elaborated, both extraneous parentheses and
blanks are removed from subsequent display of the defined function.

The last entered expression is available for further editing. This is
normally the last expression elaborated in exeéution mode. This can
be used for progressive expression development. Entering a correct
system command or entering function definition and editing mode has no
effect on the last entered expression (unless an immediate edit is
done to replace it by a line of a function as described in Section 8).
It is also possible to capture the last entered expression in a
function by editing it to include opening of the function and
specifying the line in which the expression is to be placed.

UeX+3 4 5 display after assignment to X
3 4 5
+/X sum over X
12
+/X ATTN redisplays
. edit mark
(+/X)2p0X add '(', ATTN for +/X, then rest
L
VAVE XV create defined function header, close
(+/X):pX ATTN recovers last entered expression
. edit mark
VAVEL1]l (+/X)3pXV reopen function for insert in line 1
AVE 1 2 3 execute AVE with new argument
2
AVE 1 2 3 ATTN recovers

RETN cancels

The entry of an expression must be syntactically wvalid in its
composition, or an appropriate error message is given. This is true
in either execution mode or function definition and editing mode. An
errored entry 1is available for recall using ATTN. It can be then
repaired by editing. See Section 9 for error reports.

A syntactically correct expression may still contain errors sensed
during elaboration, such as an undefined, improperly shaped or typed
variable. Again after the error message, the errored entry is
available for correction.

It is permissible to use as part of an expression up to five
characters typed in the indent space of the execution mode prompt.

COMMENT
A

Forms:
a C
EanC

Where:

Results:

Conditions:

Examgles:

12

4-10

comment text C
comment text C after expression E

C is any string of valid APL characters.
E is any APL expression, label or branch

A comment is uninterpreted text. It has no effect on
execution of E to its left.

In a defined function each comment does take space for
storage.

Locating a comment in a defined function on an

unexecuted line is slightly advantageous (if no extra
control transfer must be introduced to achieve this).

3x8-2 A RIGHT TO LEFT FUNCTION EXECUTION

n A COMMENT BY ITSELF

Forms:

00

O« E

M

I« E

E
E1;E2...;En

Where:

Results:

INPUT/OUTPUT
COMMUNICATORS (1)
oo

Evaluated input

Explicit output

Character input

Set character input prompt
Implicit output

Mixed type output

E, E1, E2, En are APL expressions

The terminal keyboard is the input source; the display
is the output destination.

Evaluated Input: The prompt [O: is displayed, followed
by an indent on the next line and keyboard unlock.
Input from the user of any value-producing expression
is then accepted for evaluation as if in execution
mode. Evaluated input occurs when [] appears in an
expression where a value is required. The resulting
value replaces the [in that expression evaluation.

Character input: The character input prompt is
displayed and the keyboard is unlocked. A character
string including that prompt as prefix is accepted as
input.

Explicit output: Assignment to the pseudo-variable O
causes display of the value. Each such assignment
causes display of the appropriate value. Several such
assignments in one line result in display in the order
that the values are determined.

Set character input prompt: Assignment of a character
string to the variable I establishes the character
input prompt which is thereafter shared with the APL
processor. That prompt subsequently will be displayed
prior to character input. The [can be a 1local
variable. The default for I prompt is the empty
character vector ''. Once set, a prompt is retained
until changed (or cancelled by exit from the function
to which it is local).

Implicit output: The value resulting from expression
evaluation is displayed if it is not assigned to a
variable name (the last function executed was not an
assignment primitive), or the last primitive executed
was not done primarily for side effect (e.g., create a
function, expunge a name, offer to share variable).
This is the common result of expression evaluation in
execution mode. It is equivalent to placing U« at the
left of the expression.

4=11

i

INPUT/OUTPUT

COMMUNICATORS (2)

g 0O

Conditions:

Mixed type output: this is a redundant means for
producing output with mixed type. This form is a list
of expressions of possibly different types separated by
semicolons. The expressions are evaluated right to
left (En then En-1,...E1), then the results are
displayed left to right and without extra space between
for each scalar or vector result. Each array result of
rank at least 2 starts on a new line, as does any
following sequence of scalar or vector objects.
Formatted 'conversion of numeric output with ¥ is
preferable.

Output to the display is also constrained by the print
width established for the terminal. Automatic folding
of output that 1is too 1long for the available print
width occurs. For numeric vector output, folded lines
are indented and a fixed number of blanks are inserted
between each element. Numeric array output is put in
fixed width columns.

Failure to enter a value producing expression for
evaluated input results in another [: prompt. Escape
from this can be achieved by terminate entry: '-',

Escape from character input equivalent to the terminate
entry above can not be by '»' as that is an acceptable
character. Instead, escape is by entering the double
overstrike (the only one allowed), and only in this
context:

g (0, backspace, U, backspace, T)
Note that combinations are meaningful:

M« Request character input to estab-
lish new character input prompt

0«0 Display prompt, accept input and
echo it back including prompt

0«0 Accept and evalute input and
display value

M« 0 Accept and evaluate input and use
character result to set prompt

Examgles:

0+5
0:

3 4 5
8 9 10

O«X+1+3
4

2+[0«Xx2
8
10

Met 2!

X+
?ENTRY

X
?ENTRY

1+0
?NEW
NEW

1 2 3
4 5 6

A

A
]

INPUT/OUTPUT
COMMUNICATORS (3)
0O o

REQUEST EVALUATED INPUT

INPUT IN RESPONSE, IMPLICIT OUTPUT
EXPLICIT OUTPUT

EXPLICIT WITHIN EXPRESSION, THEN IMPLICIT
SET CHARACTER INPUT PROMPT

DISPLAY PROMPT FOR CHARACTER INPUT
INCLUDES PROMPT AND 'ENTRY'

DROPS PROMPT, KEEPS REST INCLUDING COMMENT
SOME TEXT ENTRY

A SOME TEXT ENTRY
YRANK="'";ppX;"'" SHAPE="'";pX;"'" VALUE="'";X«2 3p16
RANK=2 SHAPE=2 3 VALUE=

A NOTE ARRAY STARTS ON NEW LINE OF MIXED OUTPUT

4-13/4-14

SECTION 5

PRIMITIVE FUNCTIONS AND OPERATORS

GENERAL,

APL/700 provides a set of standard functions referred to as primitive
functions because they are immediately available as part of the APL
lanquage to the user for application. These primitive functions are
discussed under the following categories:

Selection function
Assignment functions
Scalar functions
Compound operators
Mixed functions
Format functions

The primitive functions and operators are represented by single APL
characters. The same character is often used to represent both a
monadic (having only right argument) and a related dyadic (having both
right and left arguments) function. The descriptions of such related
uses are located together.

The following notation conventions are used to describe the APL
primitive functions and operators. They are not part of APL,

° any monadic scalar primitive function
® any dyadic scalar primitive function
® any dyadic scalar primitive function
X «»> Y formal equivalence of expressions X and Y

Formally equivalent expressions may not vyield computationally
identical results. Numeric precision restrictions in computation may
cause differences in the allowable extreme domains that can be
accepted by the formally equivalent expressions. As in any
computations using finite precision numeric representations, algorithm
differences may cause small differences in the results obtained. The
implementation of the APL primitive functions has been done using
algorithms that in general provide stable computation with accuracy of
about 12 decimal digits.

Examples of function application are given to illustrate their use,
often with shaped data objects as arguments. This is done to provide
a variety of significant results in a minimum of space. Numeric
precision for display of fractional numbers is typically 5 digits.
The results are rounded. Up to 12 digits of precision can be

displayed per number if desired.
5-1

SELECTION
FUNCTION (1)

[1]

Form:

A[L]

Where:

Result:

Conditions:

5-2

Select elements of A indicated by L
L is a index list of the form E1;...;Ei;...;Ek

A is an array name (or parenthesized value producing
expression) having positive rank K.

Selection accesses a rectangular subarray of A. The
index list (also called subscript 1list) L identifies
the members of each dimension of A being selected. The
typical subscript 1list component Ei refers to indices
along dimension I of A. Ei may be omitted ~ (null)
meaning the ordered vector of all indices (the domain)
for dimension I <+ 1(pV)[I]. Otherwise Ei may be any
integer value-producing expression of any rank with all
values in that domain.

The result shape is the catenation of the shapes of the
Ei. The result rank is the sum of the ranks of the Ei.
If all Ei are scalars, so is the result.

Each element of the result has the same value as a
single element of A selected with one dimension value
from each dimension of A. Each element from any Ei is
used with all members from each of the other
dimensions. This 1is similar to the outer product
applied between each of the Ei to develop the product
set of possible indices.

Selection may appear to the left of the assignment
arrow, in which case only the selected elements are
inserted or modified. Either the data object to the
right of the assignment is a single or it has the same
shape as that of the selection.

If the same elements are selected more than once for
insertion, the results are ill-defined.

Selection is origin sensitive.

Selection 1is a general function with attendent
complexity. Simpler functions should be used for
regular, contiguous subarray access. Selection should
be reserved for accesses to irregular subarrays of
shaped data objects.

Examgles:

11
21
31

22

22

1

31

12

1

A

12 13 1y
22 23 24
32 33 3y
Al2;2]
pAL2;2]
AlL,2;,2]
pdl,2;,21]
AL3;1]

32 33 3y
Al 21

22 32

A

pJ

SCALAR

ARRAY
ALL ROW 3

ALL COLUMN 2

SELECTION
FUNCTION (2)

L1
Al1 3;2 4]
12 14
32 34
Af2 2 1;1 3 1]
21 23 21
21 23 21
11 13 11
14
ABCDE
V[1 3 5]
ACE
V(3 5 u4 5]
CEDE

V{2 3p2 1 4 3 1 2]
BAD
CAB

ASSIGNMENT
FUNCTIONS (1)

<

Forms:

N « E
ALl « E

M e« E
A[L] e« E

Where:

Results:

Replace the data object identified by N (if any) with
the object resulting from E

Insert the value of E into locations from index list L
of the previously existing array A

Modify M, short for M<«MeFE

Modified Insert, short for A[LJ<«A[LJeE

M is name for which current meaning is not a label,
function, or group (M is a variable name)

N is M, O, M, shared variable, system variable, or has
no current meaning

E is result of evaluating an expression
A is name of a variable with shape, i.e., an array
L is index list valid for A

© is any scalar dyadic primitive function

L T + - x ¢+ | @ << = 25> 2 AV nxw¥ O !

Assignment functions give value to or alter the value
of the left argument.

Results are only explicitly returned if required for
further expression elaboration. If the assignment
function is the last to be elaborated on a 1line, no
explicit result is returned for display unless the
leftmost argqument is [J.

Replace: The value returned is E. This value is
displayed if N is 1. If N is M the returned value is
ignored unless required as an argument to a function.

Insert: The value returned if required is the same as
the value inserted: E.

Modify: The result is the value assigned to M: MeE.

Modified Insert: The result is the value inserted:
AlL]eE.

Conditions:

ASSIGNMENT
FUNCTIONS (2)

P

Replace: The value and all attributes of E are given
to N, destroying any prior associated meaning for the
name N. If N 1is M and no prior occurrence of N
existed, N is added to the symbol table.

Insert: The shape of E must conform to the shape of
the array selected by L, and the types of A and E must
be the same.

Modify: The shape of E must conform to the shape of M.
The types must be the same.

Modified Insert: Saves computer time if determination
of L. involves expression evaluation. The shape of E
must conform to the shape of the array selected by L,
and the types of A and E must be the same.

For Insert or Modified Insert, if any element from L is
repeated, the result is ill-defined.

Examgles:
X<«'APL! p REPLACE X BY CHARACTER VECTOR 'APL'
X
APL
_ O«x«"1 0 1 p REPLACE OLD VALUE WITH NEW AND DISPLAY
1 0 1
Z<Y+X A MULTIPLE REPLACEMENTS
Y
10 1
7
"1 0 1
A p EXISTING ARRAY NAMED A WITH SHAPE 2 3
1 2 3
4 5 8
_ O0«Al2;]«x p INSERT X INTO ROW 2 AND DISPLAY
1 0 1
O<«A[;3]+«u a COERCE AND INSERT TO COLUMN 3 AND DISPLAY
y
A
1 2 y
1 0 i
O<«A x<«2 p MODIFY ALL ELEMENTS OF A AND DISPLAY
2 y 8
"2 0 8
O<«Al 31 3]3+2 n MODIFIED INSERT COLUMNS 1 AND 3 AND DISPLAY
1 y
1 u
A
1 y N
1 0 y

5-5

SCALAR PRIMITIVE FUNCTIONS.

The scalar primitive functions include both monadic and related dyadic
functions that apply element by element to the values of their

arguments.,

The scalar attribute indicates that scalar arguments return scalar
results. An array argument to a monadic function returns a result of
the same shape. Array arguments to dyadic functions of the same shape
return results of that shape. Coercions are defined for single
element arguments of any rank, and for one argument having shape that
is a plane across the other argument when the function is qualified to

apply to that dimension.
The scalar primitive functions include:

integer part and extreme value functions
arithmetic functions

power and logarithm functions

relational functions

logical functions

circular functions

combinatorial and factorial functions

Scalar primitive functions are used individually. The dyadic scalar

primitive functions are also wused as the function arguments to the
primitive operators and to assignments including modify.

5-6

INTEGER PART,
EXTREME VALUE
FUNCTIONS

L r

Forms:

Floor of B
Ceiling of B
Minimum of A or B
Maximum of A or B

» P
—-r--e
Wnww

Where: A and B are numeric
Results:
Floor: Return the greatest integer not greater than B.
Ceiling: Return the least integer not less than B.

Minimum: Return the lesser (more negative) value of A
or B,

Maximum: Return the greater (more positive) value of A
or B.

Examgles:

L™3 71.3 0 1.3 3
3 "2 o0 1 3

f¥s "1.3 0 1.3 3
3 "1 0 2 3

2.1 3 "3L4.3 3 76
2.1 3 76

2.1 3 "3[4.3 3 76
4.3 3 3

5=7

ARITHMETIC
FUNCTIONS (1)

+ - x 3%

Forms:

B B b
— e X 1 4+ — e X 1 +

WowWwwwwww

Where:

Results:

5-8

Identity

Negate

Signum
Reciprocate
Magnitude

Add A to B
Subtract B from A
Multiply A by B
Divide A by B

A residue of B

A and B are numeric

Identity: Return the argument value. +B <+ 0+3B

Negate: Return the negative of B (unless B is 0, in
which case the sign remains non-negative). -B «» 0-B

Signum: Return the integers 1, 0, 1 if B is negative,
zero or positive. xB «» (B>0)-B<0

Reciprocate: Return the reciprocal of B for non-zero
B. 3B ++ 1:B

Magnitude: Return the absolute value of B (a non-
negative number). |B <> BxxB

The expected arithmetic results occur for add,
subtract, multiply and divide when B 1is non-zero.
Divide, if both A and B are 0, returns a 1, (the
limiting value of X:X as X approaches 0). Otherwise,
division by 0 is a domain error.

Residue: Return a remainder on division by non-zero A
having sign of A and magnitude less than A. If A is
0, the result is B. If A<0 (>0), the result R is the
least non=-positive (non-negative) remainder for some
integer G such that B <+ R+Gx4.

Conditions:

Examples:

ARITHMETIC
FUNCTIONS (2)

+ - x 3 |

Note the argument order for divide and residue appear
to conflict. For residue the divisor is A, whereas for
divide, the divisor is B.

The identity may be used for a numeric variable to
avoid the side-effect of subsequent assignment to the
same name in the same expression respecifying the new
value in place of the old. See Expressions, Lists, and
Order of Execution in Section 3.

+7.2 3.42E76+2.537E°5
7.2 0.00002879

+0 5 ~10 15 140 5 ~10 15
0 5 710 15 1 6 ~9 16

-1,2E3 175-225
T1200 50

-0 -5 10 15 5-0 5 10 15
5 ~10 15 5 0 15 10

x5 05 31 "4x"5 2 °3
1 1 15 2 12

$2 75 10 5 ~12 T415%4
0.5 ~0.2 0.1 1.25 ~3 T3.75

|5 0 75 33 73 "3|4 "4 4 "y
5 0 5§ 1 2 T2 "1

5-9

POWER,

LOGARITHM

FUNCTIONS (1)
* @

Forms:

® * @ %
Wt w

B

Where:

Results:

Conditions:

Base e to the power B
Base e logarithm of B
Base A to the power B
Base A logarithm of B

A and B are numeric (see domain restrictions).

The results are numeric, The monadic forms are
equivalent to the dyadic forms with A being e, the base
of the natural logarithms:

2.,7182818284.,, ++ e

Power: Domain restrictions depend on the sign of A,

If A>0 then B can have any value.

If A=0 then B must be non-negative.

If A<0 then B must be either an integer or an expres-
sion whose value is N+D where N is an integer and D
is an odd integer. The comparison tolerance effects
this determination whether N and D could be in the
proper domains. (These cases yield a negative real
root or an even power thereof).

Logarithm: The domain restrictions are:

A and B must he greater than zero.

A can only be 1 if B is 1.

Examgles:

*1 A BASE F
2.71828
*x 10 3
0.367879 1 20.0855
2% 2 1.0 1 10 13
0.25 0.5 1 2 1024 8192
T2 710 1 2%2
4 1 0 1 4
1 2 3 4*0.5 A SQUARE ROOT
1 1.41421 1.73205 2
16x+1 2 3 4
16 4 2.51984 2
T8 T27 T32%%#3 3 5
T2 T3 T2

2

2

7

7

POWER,

LOGARITHM
FUNCTIONS (2)

ex2 7 "3
"3

*x©2 7 1
1

®20 8192

2,99573 9,010

1

5

6

1

2

2€0.5 1 2
6 1 2 3
12 3 4e1
3 0.5

3@3x%5

3% 36

* @

91
4 8

b 27 2

5-11

RELATIONAL

FUNCTIONS
< § = 2 > &
Forms:

QPX»apw
R VIV HUIANA
Dwnuww

Where:
Results:
Conditions:
Examples:

0
1
0
0
0
0
0

[

=Y

Is A less than B

Is A not greater than (less than or equal to) B
Is C equal to D

Is A not less than (greater than or equal to) B
Is A greater than B

Is C unequal to D

A and B are numeric
C and D are either numeric or character type

Each Boolean result is 1 if the relation is true, 0 if
false.

The equal and unequal relations having one or both
character arguments are defined but they do not extend
to the scan and reduction operators.

The relational functions with Boolean arguments apply
also as logical functions.

The comparison tolerance applies to the results for
numeric arguments. If the relation is true, to within
the relative comparison tolerance based on the left
argument, the result 1 is returned. See the discussion
of 0¢T for details.

3<2 3 &4 'CAB'='TAB!
1 o 1 1

3 4 555 4 3 3=14!

0 0

5=2 7 5 12 3=2'C!

1 1 1 1

1#2 3p1 0 1 11 0 'RETN'2'"RATE"
0 0 1 o0 1

1

3>5 3 1

1

325 3 1

1

Forms:
~ B
A AB
A Vv B
A~ B
A~ B
Where:
Results:

Conditions:

Examgles:

LOGICAL
FUNCTIONS

~ AV AN

Not B
and B
or B
nand B
nor B

PP PP

and B are Boolean numerics

Not: The result is the Boolean complement of B.

The dyadic logical functions, when extended by the six
relational functions restricted to Boolean arguments,
provide the ten non-trivial dyadic Boolean logical
functions., The examples indicate their truth tables
and their Boolean results.

The dyadic use of ~ as set difference is described with
the set functions.

The comparison tolerance affects the determination
whether a possibly non-integral numeric value is 1.

With this complete family of logical functions, it is
rare that the not function is required. To illustrate:

A>B <«+> AA~B
A<B <=+ (~A)VB

~1 0

0011A0101 0011~0101
0 1 11 1 0
0011>0101 0011=<0101
1 0 1 1 0 1

0011 <0101 001120101
0 0 1 0 1 1
0011~»0101 0011vo0101
0 0 o 1 1 1
0011=0101 0011 =0101
0 1 o 1 1 O

5-13

CIRCULAR
FUNCTIONS

o

Forms:

A

o0

B
B

Where:

Results:

Direct

OON <~
10R <+~
20R +->
30R «->
LON «>
SON «-»
6ON <+~
TON +->

Where:

Conditions:

14

(1)

Pi function: (pi times
Circular function A of

A selects the specific
B is argument

OB «++ Bx3,14159265...

Functions Arc (Inverse) Functions
domain

(1-N%2)%x0.5 12|N

sin R 10N <+ arcsin N 1> |N

cos R “20N «» arccos N 12|N

tan R “30N ++ arctan N

(1+N%x2)%0.5 T4ON «+> (T14N=*2)*0.5 1<|N

sinh ¥ “S50N +-+> arcsinh N

cosh N “60N <«-+ arccosh ¥ 1<N

tanh ¥ 70N ++ arctanh ¥ 1>1|N

R is argument measured
N is any numeric value
X is numeric result in

The domains indicated above
arc function arguments are the ranges

corresponding direct
ranges for the cyclic

B)
B

circular function

in radians
in indicated domain
indicated range

function results.

arctan) are the principal ranges.

Memory Aids: The positive left
direct functions with unlimited domains for their right
arguments. The negative left

functions with indicated right argument

result range.

arguments

range

121X
(00.5)2|X
(0<X)AX<o1
(00.5)>1X
o<X

0sX

(where restricted) for the

for the
The result
arc functions (arcsin, arccos,

arguments apply to arc
domain and

apply to

CIRCULAR
FUNCTIONS (2)
o

The even left arguments are associated with even
functions (£(B))=f(-B); The odd 1left arguments are
associated with odd functions (f£(B))=-f(-B).

Both the trigonometric and hyperbolic forms are ordered
sin (sinh), cos (cosh) and tan (tanh) with increasing
magnitude of A.

The functions with square roots must yield real surds.
Thus they all require non-negative radicands. The
three forms shown are the only ones possible. The sign
of A determines the sign of the constant (1 or 1) for
the two forms that add the squared term. A=0 subtracts
the squared term,

Examples: :
01 2 °3 A MULTIPLFES OF PI

3.14159 6,28319 ~9.42478

1 2 3000.5 0 0.25 a SIN 90e, COS 0o, TAN u5o
1 1 1

L 0 40 0 0.8 1 A SQUARE ROOT FUNCTIONS
1 0.6 0

5 6 700 a SINH, COSH, TANH

0 1 o
1 T2 T301 a ARCSIN, ARCCOS, ARCTAN IN RADIANS

1.5708_ 0_ 0.785398
(71 T2 T301)x180:01 a PRINCIPAL ANGLE IN DEGREES

90 0 45

5-15

FACTORIAL,

COMBINATORIAL
FUNCTIONS
1
Forms:
!B Factorial B
A!B Combinatorial A of B
Where: B is numeric
A is numeric
Results:

Examples:

5-16

Factorial: For non-negative integer B the result is
Bx!B-1 <«» !B where 1 «» !0 (alternatively x/1B «-> !B in
one origin).

For non-integer B the result is the generalization of
the factorial, the Gamma function of B+1:

Gamma (B+1) <= !B

Factorial is sinqular (undefined) for negative integer
B.

Combinatorial: The result is (!B):(!4)x(!B-A) so long
as all the indicated factorials are defined.

For non-negative integer A, B and A < B, the result is
the number of combinations of B things taken A at a
time.

For A > B, the result is identically 0.

For non-integer A or B, the result is a generalization
of combinations., It is related to the complete Beta
function of A and B:

Beta (A,B) <> :Bx(A-1)!4+4B-1
«> (!A-1)x(!B-1):!A+B-1

!01 2 3 4 5 6 a FACTORIALS

1 1 2
!7o.
1.772u45
172,
5.56345
01
1 4 6
1.1
1.98713

6 24 120 720
5 A «> GAMMA (0.5) <> (01)*x0.5

9 1.9 0.9 0.1 1.1 2.1

“40.5706 9.51351 0.951351 1.04649 2.19762

2 3 4!y n COMBINATIONS OF 4 TAKEN 0 1 2 3 4 AT A TIME
4 o1

2 345

3.13758 4.3277 5.54833

EXTENSION TO
ARRAYS OF SCALAR
FUNCTIONS (1)

Each scalar primitive function applies element by element to its
arguments.

Monadic B where o 1is any monadic scalar primitive function

The result of a monadic scalar primitive applied to an array B is an
array of the same shape as B. Each element of the result is
determined by applying the function © to the corresponding element of
B the argument.

Dyadic 4®B where ® is any dyadic scalar primitive function

If A and B are arrays of the same shape, the result alsoc has that
shape. Each element of the result is determined by applying © to the
corresponding elements of A and B.

Coercion is the process of making two data objects conformable for the
dyadic function to which they both are arguments. Conforming
arguments have the same shape. Coercion generally replicates the
smaller size object to the rank and shape of the other.

If either A or B is a single, it is effectively coerced by replication
to the shape of the other array and the result is as above. The
single element is one argument for @ applied with each element of the
array as the other argument.

If both A and B are singles, the result is a single element object
with rank that of the larger rank of A or B.

A®[X1B qualified application of ® along dimension K

If the ranks of A and B differ by one and the shapes are the same when
dimension K is elided from the one with larger rank, then the result
has the same rank and shape as the larger rank array. Elements of the
result are formed after first effectively coercing the smaller rank
array to have the same shape as the larger rank array. This coercion
is by replication of the entire smaller rank array as a plane for each
position on dimension K of the larger. If K refers to the last
dimension of the larger rank array, it may be elided. K is a single.

Without loss of generality, 1let A be the larger rank array, then the
coercion condition may be expressed as:

(K=(1ppA))/pA +> pB

For J each scalar value in 1(p4)[Kk] the plane of the result R so
determined is:

Rl.eeeidieesslVN] «> Al e 3d 30043108

EXTENSION TO
ARRAYS OF SCALAR
FUNCTIONS (2)

Examples:

5-18

N

101
104

11
14

-3
-"2 0
3
A
3
6
-4
T2 73
5 76
10+4
12 13
15 16
A-4
2071
1 2
A+4
Y 6
10 12
A+1 1 1p100
102 103
105 106
A+[1]10 20 30
22 33
25 36
A+0 10
2 3
15 16
B
17 12 11
5 29 4
16 6 19
[/B
29 19
B=[/B
0 0
1 0
0 1

MONADIC SCALAR
MONADIC VECTOR

ARRAY (MATRIX)

MONADIC ARRAY

SCALAR + ARRAY

ARRAY - SCALAR

ARRAY + ARRAY WITH SAME SHAPE

ARRAY + SINGLE OF RANK 3

ARRAY + VECTOR ALONG FIRST DIMENSION

ARRAY + VECTOR ALONG LAST DIMENSION

RANDOM ARRAY

MAXIMA OVER ROWS

LOCATION OF ROW MAXIMA OF B

PRIMITIVE OPERATORS.

Operators are provided that have one or two function arguments and
produce a new function from them. This function is then applied to
the data object arguments.

The 21 scalar dyadic functions are the only primitive functions that
are used with the operators.

The following primitive operators are provided:

Operator Possible functions
outer product 21
reduction 21
scan 21
inner product 441

The examples given include some of the more useful operators. The
user should be aware of the many opportunities to use these and other
operators as well,

Reduction and scan have a dimension selector appearing to the right of
the function character and indicating 1in brackets the index number or
dimension of function application. The index number is a single and
is origin sensitive.

Assignments achieved by modification or modified insertion may be
viewed as primitive operators, even though they are actually only a
brief notation for the corresponding replace and insert functions.

5-19

OUTER

PRODUCT

OPERATOR (1)
°.®

Form:

A o, B

Where:

Results:

Conditions:

5-20

Generalized outer product of A with B using function e

A is a data object
B is a data object
® is any primitive dyadic scalar function:
Ll + - x | *x ® < <= 25> 2 AV ~» 0!

The result is a data object with rank (pp4)+ppB and
shape (p4),pB formed by applying & between all pairs of
elements; the first from A and the second from B.

If both A and B are vectors, the matrix result may be
considered to be a table of values formed with A as the
left argument and B as the right argument. The
elements of A form the row headings; the elements for B
form the column headings. If desired, the headings may
be catenated onto the matrix result.

Outer product generates a data object with size that is
the product of the sizes of its arguments. This may
give a space limit error report. See Appendix B for
suggestions on controlling space.

If reduction is the next operator to be applied after
an outer product, they sometimes can be combined. This
will avoid generating the large object, only to
immediately reduce it again.

Examglesz

1 2 30,41 2 3 4

2 3 4 5
3 4 5 &
4y 5 6 7
1 2 30,1 2 34
1 2 3 4
2 2 3 u
3 3 3 4
1 2 30,21 2 3 4
i 0 0 O
1 1 0 O
1 1 1 0

' *'[1+6 5 4 3 2

*
* %
* %%
%k **%
* % % & %
%k k k k Kk
"ABC'o,
0o 1 0 1
1 0 0 O
0 0 0 O
1 20,00%6
5.00000E 1
8.66025E 1

'B

OO Ol

A
1
0
0
3
8
5

NANA'

n ADDITION TABLE

A MAXIMUM TABLE

a NUMERIC COMPARE

10,1 3 4 2 5 6]

OUTER
PRODUCT

OPERATOR (2)

°,®

A AHISTOGRAM

A CHARACTER COMPARE

21 ~n SIN COS 30 60 90 180 DEGREES

66025E 1
00000EF" 1

1.00000F0
2.56334E 12

_5.12669E‘12
1.00000F0

REDUCTION
OPERATOR (1)

/ #

Forms:
®/[K] A
®/ A
®/[K] A
®f A

Where:

Results:

Conditions:

Reduction of A along dimension K from the first
Reduction of A along last dimension

Reduction of A along dimension K from the last
Reduction of A along first dimension

L)

is a numeric data object
is a dimension selector (origin sensitive); Keipp4
is any dyadic scalar primitive function:

LT 4+ -x 2| *x ® << =2325>2 AV N®¥w¥O!

® R>

The reduction operator applies the indicated function
to all planes across the indicated dimension. The
forms with [X] indicate the dimension K explicitly; the
other two forms implicitly specify the dimension.

The rank of the result for shaped data object A is one
less than the rank of A. K is the dimension
eliminated. The shape of the result is (X=zi1ppd)/pA.

For scalar A, the result is A.

For vector A, the result is as if @ were placed between
the last two elements of the vector and then the
resulting expression executed between that pair. The
scalar result replaces the pair. This sequence is
repeated along the entire vector until the last scalar
result is returned. This sequence is equivalent to
placing @ between each element of the vector and
executing the resulting expression.

For array A, each vector along the indicated dimension
is treated as above.

Each partial result must match in type and be in the
right argument domain for the next occurrence of .

The only exception to the simpler explanation to
reduction of a vector given above is that =/ and =#/ are
undefined for character data objects even though these
primitive dyadic scalar functions are defined for mixed
type data.

Examgles:

+/1 2 3
6
p+/1 2 3
+/01]2 3p16
5 7 g
+#42 3p16
5 7 9

+#01]2 3p16
6 15

+/02]2 2 2p18
y 6

12 14

-/16
-3

x/1 2 3
6

/16
0.3125

+/%x43 2p16
0.3125

REDUCTION
OPERATOR (2)
®/

|/3 5.5 17
0.5

f/71 325 717
5

L/"4 7 380
=7

*/4 3 2
262144

©/2%x1 4 32
3

!'/73 4 5
10

</1 3 5 a LEFTMOST 1s1
1

</2 4 6 a LEFTMOST 251
0

v/0 1 1 a LEFTMOST Ovi
1

~v/0 1 1
0

/0 1 1 A LEFTMOST 0%0
1

SCAN

OPERATOR (1)

e\

Forms:

o\[K] A
e\ A
ex[K] A
ex A

Where:

Results:

Conditions:

wn
1

24

Scan of A along dimension K from the first
Scan of A along last dimension
Scan of A along dimension K from the last
Scan of A along first dimension

o0 0O

is a numeric data structure
is a dimension selector, KXe 1pp4
is any primitive dyadic scalar function:
L T + - %x 3| * ® < £ =2>2 AV axw» 0!

® =

The rank and the shape of the result are the same as A,

The dimension selector K determines the dimension
vectors along which scan is applied.

For scalar A, the result is scalar A provided A is in
the domain of a valid right argument of e.

For vector A, element I of the result R is formed from
© reduction of the first I elements of the vector
R[I] «» ®/I+4 (in one origin).

For array A, each vector along the dimension K of A is
developed as in the case of vector A.

The corresponding reduction must be defined for scan to
be defined.

SCAN
OPERATOR (2)

@\
+\1 2 3 4 A TRIANGULAR NUMBERS
1 3 6 10
A A ARRAY
1 2 3
4 5 6
+\4 A SCAN ALONG ROWS
1 3 6
4 g 15
+\[114 A SCAN DOWN COLUMNS
1 2 3
5 7 9
+XA n SCAN ALONG FIRST DIMENSION
1 2 3
5 7 9
+x[114 A SCAN ALONG LAST DIMENSION
1 3 6
4 g 15
x\16 A FACTORIALS
1 2 6 24 120 720
-\16 p DIFFERENCES
1 "1 2 T2 3 73
-\6p4 3
4 1 5 2 6 3
#\16 A QUOTIENTS OF ALTERNATING PRODUCTS
1 0.5 1.5 0.375 1.875 0.3125
\3 2 40 6 n SEQUENCE OF ENCOUNTERED MAXIMA
3 3 4 4 6
A\1 100 1 a LEADING ONES
11 0 0 O°
vio 0 1 0 1 A LEADING ZEROS
0 0 1 1 1
<\0 0101 a FIRST ONE
0 0 1 0 O
s\1 0110 n FIRST ZERO
10 1 1 1
X R AN EXPRESSION STRING OF CHARACTERS

A+((IxJ)pK)sB
+\(X='(')-X=")"
0 0 1 2 2 2 2

PARENTHESIS DEPTH IN STRING X
11 0 0 O

- D

Y A RAGGED ARRAY
ALIGN
ALL
LEFT
(+/A\Y=" ")o¢Y A LEFT JUSTIFY Y
ALIGN
ALL
LEFT

5-25

INNER
PRODUCT

OPERATOR (1)
e,

Form:

A 9,2 B

Where:

Results:

Conditions:

5-26

Generalized inner product of A with B using functions
® and ®,

A and B are conforming data objects

@ ® are any primitive scalar dyadic functions:
L + - x ¢] ~x ® < <= 2> 2 AV~ »oO!

Elements of the result are formed by taking conforming
vectors along the last dimension of A and along the
first dimension of B, applying ® between them, and then
reducing the result by e.

The rank of the result is (0l 1+ppA)+0[1+ppB.

The shape of the result is (1+p4d),1+4pB.

For vector or scalar arguments: the result is scalar
®/A®B.

For A vector (or scalar), B matrix the wvector result R
has element R[Il«®/A®B[;I].

For A matrix, B vector (or scalar) the vector result R
has element R[I]<«®/A[I;]leB.

Generally for A and B arrays, the array result R has
element RI[I;...3K3L;...3N]«®/A(I;...3K;1@B[:L;...:30].

Conformability requires that after allowed coercions,
(T14pA)=14pB The valid coercions are:

Scalar A becomes (14pB)pd.

If 1="14pA then the plane across that last
dimension is replicated (14pB) times:

A«(10d1ppA)RR((14pB), 1+pA)pA
Scalar B becomes (14p4d)pB.

If 1=14pB then the plane across that first
dimension is replicated (14p4) times:

B«((14pA),pB)pB

Examgles:

11
18

9

1 5
6 2
1 7
b 2
5 6
36
34

1 S
b 2
1 1
0 1
0o 1
1 0
1 1
1 0
1 0
1 0
0 O
1 0
0 1

1 2+.x3 4
2+.x2 3 4
5 3-.%x3 2

A23

3

N
B3y

5 4

3 5

2 1
A23+.%XB34

35 26 32
70 4y 38

A23L.[B3u4
3 3
3y

A22

B22

A22v,AB22

A22A,.=1
1 0A.=422
A22A,.=B22

'ON'A.=2 3p'FORANY'
0

A

INNER
PRODUCT

OPERATOR (2)

.9

(1x3)+2xh4 +> +/1 2x3 4
+/2 2 2x2 3 4

-/5 3x3 2

CONVENTIONAL INNER PRODUCT

MINIMAX

MINTERM

SINGLE COERCED T0 1 1

CHARACTER MATCH ROW WITH COLUMN

IDENTITIES FOR
SCALAR DYADIC
PRIMITIVE
FUNCTIONS

An identity argument for a dyadic scalar primitive function is that
value which when the function 1is applied with any other argument
returns that other argqument. Let I be the identity argument, A the
other argument and e a scalar dyadic primitive function:

Left identity: A <> T e A
Right identity: A «> A e T
Two-sided identity: A <> /A © I «>T © A

The result of the reduction operator (using a primitive dyadic scalar
function) on an empty vector or a length zero coordinate of an array
is the identity (if it exists) for that function. If the indicated
dimension is the only one with length 0, the result is replication of
the identity element in the entire plane across that dimension, so
long as some identity element exists.

Inner product and base value are both based on reduction, so they also
have this property when applied to a zero length coordinate.

Table 5-1 shows for each primitive scalar dyadic function the identity

element if it exists, and whether it is left, right or two-sided
(both).

Table 5-1 Identities for Scalar Dyadic Primitive Functions

For numeric arguments For Boolean arguments only
® identity side ® identity side
L MAX * both < 0 left
[~-MAX * both < 1 left
+ 0 both = 1 both
- 0 right > 1 right
X 1 both > 0 right
3 1 right # 0 both
| 0 left A 1 both
* 1 right v 0 both
® none * none

o none » none

! 1 left

*MAX is the largest numeric value directly representable:
4,31359146674FE68 <> MAX <> | /10

5-28

MIXED PRIMITIVE FUNCTIONS.

The mixed primitive functions include both monadic and related dyadic
functions that apply to shaped data objects as arguments.

The functions generally use structure properties instead of the
element values.

Rules for conformability, coercions, and extension from vector
arguments to higher rank objects are more complex than for the scalar
primitive functions.

The mixed or structure primitives may be classified as:

shape, reshape functions
integers, index of functions
ravel, catenate, laminate functions
reverse, rotate functions
transpose, permute functions
compress, expand functions

take, drop functions

set functions

grade functions

random roll, deal functions

base value function

represent functions

matrix inverse, divide functions

Many of these functions have a dimension selector appearing to the
right of the function character and indicating in brackets the index
number or dimension of function application. The index number 1s a
ge—— . . . " .

single and is origin sensitive.

Some of the mixed primitive functions augment an existing data object
with fill elements. The value of a fill element is 0 if the type of
the object is numeric; or is a blank space if the type of the object
is character.

5-29

SHAPE,

RESHAPE

FUNCTIONS

p

Results:

Examples:

3

1

11
21

1

2

1

Shape of B
A reshape of B

A is a non-negative irteger vector or single
B is a data object, either numeric or character

Shape: The result is an integer vector indicating the
length of each dimension of the data object B. In ori-
gin one, pB indicates the largest index value for each
dimension. In either origin the index domain for
dimension I of B is 1(pB)[I].

Reshape: The result is an array whose shape is A, and
whose elements are taken in raveled order from B and
are repeated as often as necessary. Fill of the type
of B is used if B is empty.

If A is an empty numeric vector, the result is scalar.
Single A is coerced to a one element vector. If A con-
tains any zero element, the result is an empty array.

pl1 2 3 p'APL CAN DO!
10
7p1 2 3 10p 'o!
3 1 2 3 i 0000000000
2 3p11 12 13 21 22 23 2 3p'ADDONE*®
12 13 ADD
22 23 ONE
3p1 p2 3 up'A?
1 2 3 4
pl12345 n SCALAR p'12345" p VECTOR
5
pp12345 A RANK O p'A? A SCALAR
p,12345 a VECTOR pp A" p RANK O
0
Op O a NUMERIC p,'A" A VECTOR
1
pCp0 na EMPTY VECTOR pp,'A" p RANK 1
1
(0p0)p2 3p16 a SCALAR L n CHARACTER
p(0p0)p2 3p16 p'" n EMPTY VECTOR
0

Forms:

Where:

Results:

Conditions:

Examples:

INTEGERS,

INDEX OF

FUNCTIONS
1

Integers to A
Index of C in B

A is a non-negative integer single
B is a vector
C is a data object

Integers: The result is a vector containing the first
A integers in ascending order, starting with the index
origin. ,4 «+ p1,A. Also called index generator.

Index of: The result is a data object with the same
shape as C with integer elements. Fach element of the
result indicates the index position (of the first
occurrence) in B of the corresponding element of C.
The result range is 11+pB. For any element of C nct
occurring in B, the corresponding result element is
110+pB.

Both functions are index origin dependent: 111 <+ ,[lI0.

The comparison tolerance applies to determine if A is
an integer and if an element of C is in B,

0I0+«1a ORIGIN 1 [NI0«0a ORIGIN O
15 15
3 4 5 0 1 2 3 4
10n EMPTY NUMERIC VECTOR 10
11an ORIGIN SINGLE VECTOR 11m ORIGIN VECTOR
0
311 211 2 3 4 5 311211 2 3 45
1 5§ 5 i 3 0 4 4y
'"ABCDE'+1'BEAR' 'ABCDE'1'BEAR'
i 6 1 4 0 5
(0D1'301'a [1D«+'01,..9" 1413 up'APL DOESWELL!
2 0 15 11 26
'4-x2"1'A+BxCD"! 3 14 4 18
5 3 5 5 22 y 11 11

RAVEL,
CATENATE,
LAMINATE

FUNCTIONS

Results:

(1)

Ravel B into a vector

Catenate B to the last dimension of 2

Catenate B to dimension K of A

Laminate A as the firsgst plane and B as the last plane
of a new dimension between dimensions LD and D

A and B are data objects of the same type
K is an index number of A or B
D is a non-integer dimension injector

Ravel: Form a vector from the elements of B in row
major order: first (leftmost) to 1last along 1last

dimension, then first (topmost) to last along second
last dimension, etc. Ravel of a scalar returns a one
element vector.

Catenate: Join two conformable data structures of the
same type, B after A (elements from B will then have
larger indices along the joined dimension). The rank
of the result is 17 (ppA)lppB. If both A and B are
scalars or vectors, the result is a vector formed by
appending B after A.

Catenate to dimension K: If either A or B is an array,
and the other is an object of rank one smaller and
shape the same as a plane across dimension K of the
larger rank object (the same shape as when dimension K
of the larger rank argument is omitted), then
catenation increases the length of dimension K by one
and the smaller rank object A (or B) becomes the first
(or last) plane across the kth dimension of the result.
A scalar is coerced by replication to have the shape of
all but dimension K and the above catenation is
performed.

If both 2 and B have the same rank and the same shape
except for dimension K, then the result of catenate is
an array with shape the same as A and B except that the
length of that dimension K becomes the sum of the
lengths of that dimension in A and B with the first
planes across dimension K from A and the last planes
from B.

Examgles:

11
21

11

11
21

11
21

RAVEL,
CATENATE,
LAMINATE
FUNCTIONS (2)

The [K] may be omitted if it refers to the last
dimension of the larger rank object.

Laminate: Create a structure with a new dimension of
length two. Laminate may be recognized distinct from
catenate by the arbitrary fractional part of D,
identifying the new dimension being injected (either
before the first, between two existing, or after the
last dimension). Elements from A are placed in the
first plane across the new dimension and elements from
B are placed in the second plane across that new
dimension.

The possible values for the integer part D are from one
less than the first dimension number to the last
dimension number. The fractional part of D must be
non-zero. Note that in 0 origin D may be negative.

Either the shapes of A and B must match, or one of A or
B must be a scalar. A scalar is coerced by replication
to the shape of the other argument.

The rank of the result is 1+(ppd)lppB. The shape of
the result is the larger shape of A or B, augmented by
the new dimension of length two.

»3 A VECTOR ,'C!
o
P,3 p,'C'
1
A n ARRAY CA
12 13 ABCDEF
22 23 ,3 2pCA
,A A ROW MAJOR ORDER ABCDEF
12 13 21 22 23 CA,[0.5]'2"
p,A A VECTOR ABCDEF
222222
4,2 4p 1 0 1 2 0,[1.5]1 3
12 13 1 0 1 2 0 1
22 23 1 0 1 2 0 3
0,[1]4 A FIRST DIMENSION
0 0
12 13
22 23

REVERSE,

ROTATE

FUNCTIONS
¢ e

o

Results:

5-34

(1)

Reverse along last dimension of B

Reverse along first dimension of B

Reverse along Kth dimension from front of B
Reverse along Kth dimension from end of B
rotate along last dimension of B

rotate along first dimension of B

rotate along Kth dimension from front of B
rotate along Kth dimension from end of B

is a data object with shape
is a dimension selector single with integer value
in 1ppB

Rw Py

A is an integer data object, scalar or with shape the
same as the planes across the dimension of B about
which rotation is performed

The type, shape and rank of the result are the same as
B. Each element of B occurs, generally in a different
position in the result.

Reverse: The general form is ¢[X]B. The order of the
planes across dimension K is reversed. Thus, plane J
of the result is plane ((pB)[K]1)-J+00I0 of B.

If K= [/1ppB, referring to the last dimension, the (X1
may be elided, resulting in ¢B.

Equivalent to the general form but referenced to the
end or anti-origin rather the front of the shape is
e[KJB. Thus, o¢[KIB «»> e[(ppB)+(2xOI0)-K+11].

If K= |/1ppB or [JIO referring to the first dimension,
the [X] may be elided, resulting in eB.

If B is a matrix, lines through the forms without [X]
indicate the axes of symmetry about which reversing
takes place.

Conditions:

Examgles:

REVERSE,

ROTATE

FUNCTIONS (2)
$ e

Rotate: The general form here described is A¢[KX1B.
The other forms for determining the dimension for
rotation are equivalently developed as above. A has
shape a plane across the Kth dimension of B, i.e.,

(pA) <+ (K#1ppB)/pB

Each element in A determines the amount that the
corresponding elements of all planes across dimension K
are rotated cyclically (or end around). For an element
of 420, the direction 1is toward decreasing indices.
For an element of A4<0, the direction is toward
increasing indices.

The amount rotated is ((pB)[k])|A. Thus, there is a
non-negative equivalent for any negative element of A.

If A is a scalar it is coerced to a plane with all
elements the same:

A « ((K=1ppB)/pB)pA

1 2 3 u 191 2 3 4
y 3 2 1 2 3 u 1
$'LIVED' n REVERSED 5¢1 2 3 4
DEVIL 2 3 4 1
A “3¢1 2 3 4
11 12 13 2 3 4 1
21 22 23 1 2604
A 12 13 11
13 12 11 23 21 22
23 22 21 0 1 2¢[114
$[114 11 22 13
21 22 23 21 12 23
11 12 13 B
=Y TAKE OUT EXTRAS
21 22 23 (Xvix«Bz' ')/B
11 12 13 TAXE OUT EXTRAS

5-35

TRANSPOSE,

PERMUTE

FUNCTIONS (1)
®

Forms:

& B
A ¥ B

Where:

Results:

Transpose dimensions
Permute dimensions

A is an integer numeric vector of index numbers
B is a data structure

Transpose: The result 1is an array with rank at least
2. The elements are the same as the elements of B with
the order of the dimensions reversed.

If B is a scalar, the single result has shape 1 1.

If B is a vector with shape S, the result is a column
matrix having shape S,1. If B is a matrix having
shape S,T, the result R is a matrix having shape T,S
such that element R[I;J] is the same as B[J;I].

Analogously, if B is an array, the shape of the result
is ¢pB and element R[I;J;...3N] <> BIN;...;J3I].

Permute dimensions: Each element of the result R is an
element from B as specified by A. A must be a vector
with shape the rank of B, A must contain the index
origin and possibly successive integers referring to
index numbers of the result 1 <> A/(1[/4)€A.
Index numbers may reoccur, The number of
different integers determines the rank of the result:
ppR <~ pAuir0.

If A is a permutation of 1ppB (no repeated dimensions)
then the result shape 1is the A permutation of B:
pR <> (pB)[A] and element R[I;J;...3M] is:
BLACL1];A02];...;A[M]].

If any element of A is repeated, the rank of R will be

smaller. In that case, the principal diagonal
selection across the dimensions of B 1is taken where
elements of A are repeated. The length of the result

dimension is the minimum of the lengths of the
dimensions on which the diagonal is being taken.

($1pB)RB <« §B
(1pB)®RB «> B

Conditions:

Examples:

= O

APL
HIE
APT

111
121

211
221

111
121
131

211
221
231

[y

o FWw

Elements of A are origin sensitive.

TRANSPOSE,

PERMUTE

FUNCTIONS (2)
®

Examples are given

in origin 1; they would be one smaller in origin 0.

If B is a

scalar, then A must be the

empty numeric

vector and the result is an identity: R <+ B

®3 n SINGLE MATRIX

p&3

®3 4 S a COLUMN MATRIX

p®3 4 5

®3 3p'AHAPIPLET'

B

112

122

212

222

c

112 113 11y
122 123 124
132 133 134
212 213 214
222 223 224
232 233 234

111
112

121
122

111
122
133

111

o Fw

(10)&3 a IDENTITY

p(10)%3 A SCALAR
(,1)R%'ABC' n IDENTITY
(,1)%3 4 5 n IDENTITY
5

2 1894 A «> {4

1 1%4 n DITAGONAL

+/1 184 n TRACE

3 1 2%B

211

212

221

222

A R[I;J;:;X)«»B[K;I;J])
n I,J,K IN 1 2
2 1 1%¢C a MATRIX
211
222
233
A R[I;J)e>ClJ;I;:71]
a I IN 1 2 3«»>1l/3 4
A J IN 1 2212
1 1 1&C a VECTOR
222
f R[(IJea>ClI;I;T]
p I IN 1 2«+1}1/2 3 4

COMPRESS,

EXPAND

FUNCTIONS
/ F N\ X

Forms:

B D b B B
P AP s N S
@ @

CRWWG =W W

ww

5
(0]
Iaj
o

Results:

Conditions:

5-38

(1)

Compress with A the last dimension of B
Compress with A the first dimension of B
Compress with A dimension K of B

Compress with A dimension J from end of B
Expand with A the last dimension of B
Expand with A the first dimension of B
Expand with A dimension K of B

Expand with A dimension J from end of B

is a Boolean single or vector

is an array of any type

is an index number single, in 1ppB

is an index number single, X <+ (¢1ppB)[J]

GRW Y

The rank of the result is the rank of B, with only the
length of the indicated dimension altered.

Compress: The general form is A/[K]B. The Boolean
compression vector A must be the same length as the
dimension K being compressed of B: (pAd)=(pB)[,X]

Planes across dimension K of B are selected in
ascending order wherever the corresponding elements of
A are 1, and planes are ignored wherever the elements
of A are 0. Thus, the length of the Kth dimension of
the result is +/4.

Expand: There must be as many 1's in A as there are
elements along coordinate K of B: +/4 +»> (pB)[,K].

The result is an object with rank the same as A but
having dimension K expanded to size pA. Each 1 in A
indicates the position along K of the planes of B.
Each 0 in A indicates a plane created from fill.
Depending on the type of B, the fill element is 0 for
numeric, blank for character.

If A is a scalar, it is coerced to the length of the
indicated dimension, i.e., (pB)[,X1pA.

COMPRESS,

EXPAND

FUNCTIONS (2)
/ # \ X

Dimension selector J counts dimensions from the end, or
anti-origin whereas K counts from the beginning
J «+ (o1ppB)[K]. For example:

A/[K1B «+ A#[($1ppB)[J]1]B
AFf[JIB <> A/[(drppB)[K]11B

K (or J) may be elided if the desired function applies
to the last (or first) dimension respectively.

Examgles:

1101/1 2 3 4 110 1\1 2 &4
1 2 4 1 2 0 &4
A 1 0 1\[1]4
1 2 3 1 2 3
b 5 6 0 0 O
11 0/4 4 5 6
1 2 1 01 1\1 0 1X4
4 5 1 0 2 3
1/1 2 60 0 0 O
1 2 L 0 S5 6
0/1 2 0\2 Op1
0
10 1/4 0
1 3 ' '=0\0/'AB'n CHARACTER?
4 6 1
1 0/01]4 0=0\0/3 & a NUMERIC?
1 2 3 1
0 144
4 5 6
0 1#[1]4
4 5 6 1 01 0 1\'APL'!
1101 0/'APPLY' AP L
APL 1 0 12 3p'FORALL'
CA FOR
USABLE
APPEAL ALL
11000 1/CA
USE
APL

TAKE, DROP
FUNCTIONS (1)
+ 4

Results:

Conditions:

Take corner with shape A from B
Drop A planes from B

A is integer vector or single (p,A)=ppB
B is data object

Each function returns a shaped data object of the same
type as B having a corner that is also a corner of B.
The rank of the result is ppB.

A[LI] refers to the number of planes across dimension I
of B. Elements A[I]>0 reference the first A[I] suc-
cessive planes in increasing index order starting at
the origin. Flements A[I]l<0 reference the last A[I]
successive planes in increasing index order ending at
the anti-origin, (pB)[I]. A[Il=0 references no planes.

Take: The result has shape A. The planes of the
result across each dimension remain in the original
order as they had in B, The result is strictly a
subarray of B if (]A)<pB.

Overtake: Occurs for all the dimensions XK[I] such that
0<K«(|A)-pB. In this case, XK[I] planes of fill are
appended before (after) the (pB)[I] planes as the sign
of A[LI] is negative (positive). The fill is blank for
character type B and zero for numeric type B.

Drop: The result has shape 0l (pB)-|A. If A[Il>0 then
the first A[I] planes are dropped from the origin of
dimension I of B, TIf A[I]<0 then the last [A[I] planes
are dropped from the anti-origin of dimension I of B,

If A is a single, it is coerced to a vector:
A +,A

If B is a scalar, it is coerced to a single with rank
prh.

B « ((p,4)p1)pB

Examgles:

TAKE, DROP
FUNCTIONS (2)
E R 4
Take and drop both return a "corner" of B. If no
overtake 1is required, then the same corner can be

specified with either take or drop.

Take or drop are origin independent. They often can be
used in place of indexing, possibly in conjunction with
other structure primitive functions such as compress
and rotate to permit processing on a dense array.

341 2 3 4 5 241 2 3 4 5

1 2 3 1 2 3
341 2 3 4 5 241 2 3 4 5
3 4 5 3 4 5
y41 2 n OVERTAKE 441 2 n EMPTY
1 2 0 0
A pLU¥1 2
1 2 3 0
4 5 6
1 T244 T1 1v4
2 3 2 3
p1 ~244 p 1 144
1 2 1 2
T1 T3+4 1 0+4
4 5 6 4 5 6
3 Tut4 A 0O FILL 2 0+A m EMPTY
0 1 2 3
0 4 5 6 p2 0+4
0 0 0 0 0 3
34 '"ABCDE! T24'ABCDE'
ABC ABC
“64'END' a BLANK FILL (,3)+"ABCDE'
END DE
2 347 A COERCED 3+'ABCDE!
7 0 0 DE
0 0 0 T2 Ts4121

511

SET
FUNCTIONS (1)

€ € O UuUn~

Forms:

- NN I
>2cunm
oW w

t
w

Where:

Results:

Conditions:

Membership of A in B

Is A a subset of B

Is A a superset of B

Union of C and D, unique elements in (,C),,D
Intersection of A and B, unique elements in both (,A)
and (,B)

Set exclusion, unique elements in A but not in B

A,B are data objects
C,D are data objects of the same type

Membership: The shape of the Boolean result is the
shape of A. Each element is 1 if the corresponding
element of A occurs anywhere in B; 0 otherwise.

Subset: The Boolean scalar result is 1 if all unique
elements of A also appear in B; 0 otherwise.

Superset: The Boolean scalar result is 1 if all unique
elements of B also appear in A; 0 otherwise.

Union: The result is a vector of the common type of C
and D containing the unique elements in (,C),,D in the
order that they first occur in the catenation.

Intersection: The result is a vector of the same type
as B containing the unique elements of A also occurring
as elements of B. The order is the order that they
first occur in ,A. For non-empty result, the types of
A and B must be the same.

Set exclusion: The result is a vector of the same type
as A containing unique elements of A that are not also
in B in the order of the first occurrence in A. Set
exclusion is also referred to as set difference.

Union with an empty argument provides the unique
elements in the originally non-empty argument.

Examgles:

0
0

12 2 3 4e2 5

1 0

0

(2 3p16)e3 1 9

1
0
1 35

1335
5
5 4
5

135

(10)>1 2 2 3~3 2 1

3c?2
320
3uy
2
3ny

3~y

3p16

1

3 2

1 0
0 1
0 1
1

0
EASY
APL
APL
1

SET
FUNCTIONS (2)
€ ¢c>un ~

YA+4xABC+3'e 'ABCDE"?

0o 0 1 1 1 O 0

(2 4p'GOODWORK"')e'BOOK"
1 0

o 1
YAPL'c'APPLICATIONS!
YBASIC'>'APL!
YEASE'u'SAY!
YAPPLIED'n'PLAN'
YAPPLE'~'"CORE'

'l:,'ABln'CD'

GRADE

FUNCTIONS

AV

Forms:

4 A
Y A

Where:

Results:

Conditions:

Examgles:

Grade up A
Grade down A

A is a numeric vector

Each result is a permutation of the integers in 1p4.
The permutation can be used as a vector of indices to
the selection function which when applied to A will
produce a monotonic sequence.

Grade up: The selection sequence ascendingly sorts the
argument. A[A4]

Grade down: The selection sequence descendingly sorts
the argument. A[V4]

The permutation can be used to construct multi-column
sorts, one column vector at a time starting from the
last. It can also be used for key sorts, moving only
the key indices rather than the entire related records.

Duplicate components in A return indices in increasing
order for either function.

The results are origin sensitive, the examples are for
origin 1: 1 <+ 11 «» ,flI0.

A5 8 u 4 2 ¥5 8 4 u 2
5 3 4 1 2 2 1 3 4 5
5 8 4 4 2[0A5 8 4 4 2]1m SORT 5 8 4 4 2[¥5 8 4 4 2]
2 4 4 5 8 8 5 4 4 2
A2.1 3.2 4,3 3,2 ¥2.1 3.2 4.3 3,2
1 2 4 3 3 2 4 1
A
11 0 0 1 0 1 1 O p IF X IS A PERMUTATION VECTOR
M«B«'ABCD','123u5" A THEN X < AAX
ABCD12345 X
44 2 1 5 3 4y
3 4 & 9 1 2 5 7 8 AAX
4A4 2 1 5 3 4
5 6 1 2 7 3 8 9 4
BLAAA] m MERGE BLYAA) a REVERSE MERGE
124AB3Cu45D D5u4C3BA21

Forms:

? N
A ? B

Where:

Results:

Conditions:

Examgles:
301
2
6
1

RANDOM

FUNCTIONS
?

Roll, random choice from N
Deal, random choice of A from B

N is a positive integer vector or single
A is a non-negative integer single, A<B
B is a non-negative integer single

Roll: For single N, a pseudo-random integer is
returned in the range 1N. Each of the possible values
from the population of size N has equal likelihood of
occurring as the result; thus, sampling is done with
replacement. The shape of the result is the shape of
N. If N is a vector, element I is chosen from WN[I].

Deal: A vector of length A is returned, with elements
chosen randomly without replacement from 1B. If A=B,
the result is a random permutation of 1B.

Roll and Deal results are origin sensitive.

Roll and Deal use a common pseudo-random number
generator., A side-effect of execution of either of
these functions 1is to change the current random link
used to determine the next value. The random 1link
value can be preset using the [JRL system variable. It
can also be initialized to a specified default value in
a clear workspace by using the)SEED system command.

710000 4?5

4 3
’6 6 626

5 1 6 2
’6 6 6 6 6 6 676
6 4 2 2 2 4 6 3
72 2 2 2 100 100 0710

1 1 36 87

Form:

A 1B

Where:

Results:

5-46

Base A value of B

A is a numeric data object
B is a numeric data object

The numeric result is the conversion to decimal of B
expressed in positional number base with radices the
rows of A. This base can be a constant (such as 10
meaning powers of 10) or a vector of mixed values.

The result is the inner product of W (a weighting of A
having the same shape as A) with B.

W+.xB

The shape is (" 1+pd),1+pB. Each vector along the last
dimension of W is the positional weighting to be
applied to corresponding vectors along the first
dimension of B, where the most significant elements
have the smallest index numbers. Each weighting vector
is formed from the reversal of the product scan of the
reversal of the vector along the last dimension of A
having the first element eliminated and 1 catenated at
the end. (I and K are scalars):

WlI;eoo3K3] «» Ox\014A[T;...3K:],1

If neither A nor B are singles, then A and B must be
conformable. The 1length of the last dimension of A
must equal the length of the first dimension of B.

(T14pA4A) = 14pB

The coercion of a single is by replication along the
appropriate dimension to the length of the other.
Scalars are treated as vectors.

If either A or B is the empty vector and the other is a
single or empty vector, then the result is 0, the
identity element for +/10.

Base value can be used to pack vectors of many small
precision numbers into a single number. This is a
space saving technique.

The numeric range for integers (~1+8%13) is a limit
for the results of base value that can be reconverted
subsequently using the represent function '7',

ExamEles:

371

371

30701

13

2
T30
21.5

T13

25
7 1

20
53

0123456789ABCDEF
T1+HEX\'DOF!

13

3487

3487

391

1

1

10 10 1013 7 1

1043 7 1

10043 7

2 22 211101

4y ~3 241 3 2

0 3 412

3.5 2,5 1.514 3 2

0 0 41°3

3

AL3 2 1
03
0 314
15
A13 2p16

30

9

9

0
HEX

15

16 16 16113 9 15

161 1+HEX1'DSF?

(1+.10)1L100 200 50

411 2

1

)

2

5

BASE VALUE
FUNCTION (2)
1

WEIGHTING COMPUTATION
100 10 1+.%x3 7 1

100 10 1+.%x3 7 1
10000 100 1+.%x3 7 1

8 4 2 1+.x1 1 0 1

"6 2 1+.x1 3 2

T12 T4 14.%x2 2 2

3.75 1.5 1+.x4 3 2

0 4 1+.x 3 ~2 °5

ARRAY

(2 3p6 3 1 30 6 1)+.%x3 2 1
3 1+.%x4

(2 3p6 3 1 30 6 1)+.x3 2p16

HEXADECIMAL VECTOR

HEXADECIMAL TO DECIMAL

FUTURE VALUE OF CASH FLOWS AT 10e/o
1.21 1.1 1+.x100 200 50

POLYNOMIAL (X*2)+(2xX*1)+ 8 AT X="u
(Tu4x2 1 0)+.x1 2 78

REPRESENT
FUNCTION (1)
T

Form:

A TB

Where:

Result:

Base A representation of B

A is a numeric data object
B is a numeric data object

The result is the representation of B in the number
system having as base(s) the vectors along the last
dimension of A, The rank of the result is (ppA)+ppB.
The shape of the result is (p4),pB.

If B is a scalar and A is a scalar, the result is 4|B.

If B is a scalar and A is a vector, the result is the
representation of B in the number system having
(possibly mixed) base A.

For example:

R« 5 3 4 71 117

R[3] «-» 1 «> 4117 QUOTIENT IS 29
R[2] «~» 2 <+ 3]29 QUOTIENT IS 9
R[1] «» 4 «> 5|9 QUOTIENT IS 1
RIS & 21

This result is the same as if 117 had been 57 + 60 x J
for any integer J.

If A is an array, each vector along the last dimension
of A is a separate Dbase for determining the
corresponding element of the result. Thus, if A is a
matrix, each column is a separate base vector.

If B is an array, each element is represented in the
base vector(s) of A, This process is analogous to
outer product.

Conditions:

Examgles:

REPRESENT

FUNCTION (2)
T

The highest index 0 in a base vector returns the entire
remaining quotient in that position of the result. All
index values with smaller indices are 0.

Note that A values can be general numerics. Thus,
fractional or negative base systems can be used.

Represent and base value are related by the following
relation for vectors A and B:

If (|B)<|x/4 then B <«-> A1A47TB

10 10 10T234 T10T234
2 3 u 6
10 10 10T234 ~ 234 710 T10 T10T234 23y
2 7 8 "3
3 6 4y 77
4 6 6 4
2 2 2 2712 13 "1 2 2 2 275
0 1 1 0 1 o0 1
0o 1 1 2.5 0.4 0.5T0.62
1 0 1 2 0.2 0.12
0 1 1 2 2 173.2 "3.2
10 107234 ~ 234 1 0
3 6 1 0
4 6 0.2 0.8
n HOUR MINUTE SECOND 2 T2 212 73
24 60 6073723 1 1
1 2 3 1 0
n INTEGER, FRACTION 0 1
0 1T3.75 (2 3p16)T7 15
3 0.75 0 0
0 173.75 ~3.75 1 1
3 Ty 1 2
0.75 0.25
AR 0 GETS REST OF QUOTIENT 3 3
5 5 0 2T5 2 0
0 0 2 1 1 3
10 10 10 T1012 3 4
2 3 4
HEX
01234567891BCDEF
HEX[1+16 16 16734871 A DECIMAL TO HEXADECIMAL
DSF

5-49

MATRIX INVERSE,

DIVIDE
FUNCTIONS (1)
8

Forms:

b
gi 0T §O00]
o w

0
2]
(1]

Results:

Conditions:

5-50

Matrix inverse of B
Matrix divide A by B

A is either a vector or a matrix with at least as many
rows as columns

B is a matrix with at least as many rows as columns

If B is singular, i.e., having fewer linearly inde-
pendent rows than columns, a domain error results.
Otherwise, B is non=-singular and the following apply.

Inverse: The shape of the result is ¢pB and the rank
is 2. The result is the generalized inverse of B, If
B is square, then

Identity matrix <« (11+pB)o.=11+pB
+»> (BB)+.xB
<> B+ ,.,x(HEB)

If B is non-square, then the result is the generalized
inverse.

Identity matrix (11+4pB)e.=114pB <> (HB)+.xB
Matrix Divide: A and B must be conformable, i. e.,
(14p4d)=14pB

The result is formally the same as (BB)+.x4. The
rank of the result is the rank of A. The shape of the
result is (14pB),1+p4.

The finite precision of computation resuits in only the
approximate inverse: the magnitudes of off-diagonal
terms should be 0 but normally are small compared to
the main diagonal terms of (EB)+.xB or B+.xBB. The
matrix 1is ill-conditioned to the degree that the
largest magnitude of the off-diagonal term approaches
1.

The comparison tolerance is used to determine singu-
larity: with large comparison tolerance most coef-
ficient matrices are "singular"; with the comparison
tolerance <1F 12, few matrices are considered singular.

MATRIX INVERSE,

DIVIDE
FUNCTIONS (2)
5
The method wused is Householder's orthogonal decom~
position. It 1is chosen over the more efficient

Gaussian elimination for the following reasons:

complete stability unless the coefficient
matrix is essentially singular

readily detectable singularity
single precision computations suffice

generalizable to overdetermined systems of
equations.

Although ABEB is formally equivalent to (EB)+.x4, the
former matrix divide is preferable as it only requires
about half the computation and is more accurate.

A detailed discussion of these functions and some of
the following examples are adapted from the article:

B22
2 1
5 3
B33
3 2 5
1 75 "1
2 1 73
A3
18 3 "y
A32
18 °s
3 5
Ty 1
BB22
3 "1
°5 2
B22+,
1.000E0
T2.328E710
(BB22
1.000E0
1.164E 10

Jenkins, M. A., "DOMINO-an APL Primitive Function
for Matrix Inversion--Its Implementation and
Applications", APL Quote Quad, Vol III, No. 4,
February 10, 1972

BB33
0.1524 0.1048 0.219
0.009524 ~0.181 0.07619
0.1048 0.009524% ~0.1619
E#B33
3 2 5
1 75 71
2 1 73

(BB33)+.%xA43
2.181 ~0.6762 2.562
A3BB33 a MATRIX DIVIDE
2.181 ~0.6762 2.562
B33+.xA3EB33 a CHECK

n INVERSE 18 3 y
A32BB33 a TWO SETS
2.181 "0.01905
x@B22 ARCHECKS T0.6762 “0.8762
1.455F 11 2.562 “0.6381
1.000E0 B33+.xA32BB33 A CHECK
)+ .XxB22 18 °5
T5.821F 11 3 5
1.000E0 y 1

MATRIX INVERSE,
DIVIDE
FUNCTIONS (3)

B

Linear Eguations:

Find X, the solutions to the equation (B +.x X) = A, given
arrays A and B.

B A COEFFICIENT MATRIX
3 2 5
1 "3 M
2 1 73
A p VECTOR OF RIGHT HAND SIDES
18 "4 5
ABB a SOLUTION
3 2 1
B+.xA@B A CHECK
18 "4 5§
AA n SEVERAL SETS OF RIGHT HAND SIDES
18 31
Ty 5
5 1
AARB A SOLUTIONS
3 4
2 2
1 3

Interpolation:

Find coefficients of approximating polynomial Y = F (X) given
that X 1is a vector of independent values and Y is a vector of
corresponding values.
Approximate F by polynomial of order n with coefficients

A = a[0},A[7), . . . ,A[n]

Y[I] = A+.xX[I]*xd 1+1pX
Solution for coefficients through the n+1 points in X, F (X)

A+« YHXo,x ¢ 1+1p X
Interpolation at XX not necessarily in X

XX 1 A

For example, if F (X) is SIN X, find SIN 0.223 given SIN 0.1x:110.

X<0.1x110 pn INDEPENDENT VARIABLE

Y+«10X n DEPENDENT VARIABLE, SIN (X)

0.2231Y8Xe . xd" 14+1pX a INTERPOLATED VALUE
0.221156329002

100.223 A ACTUAL COMPUTED SIN 0,223

0.221156329006

MATRIX INVERSE,

DIVIDE

FUNCTIONS (4)
5]

Linear Least Squares:

Estimate parameters A[I] occurring in a model to be fitted to
data of the form:

Y = (A[1]1xF1 X) + (A[2]xF2 X) + . . « + (A[n]xFn X)

where F1, F2, . . . , Fn are functions of a single variable or of
several independent variables.

The maximum likelihood estimator for the A{i] are given by the
least squares solution to the overdetermined equations

(F +.x A) =Y

where F[;i] has the values Fi X; and Y are the observed data
(more than n points).

The solution for 2 is
A« YR@BPF

Linear curve fit

Y = (A[1] x X) + (A[2] x 1)

FeXo ,x1 O n COEFFICIENT MATRIX

A<YBEF n PARAMETERS OF BEST LINEAR FIT
YP<F+.xA a PREDICTED VALUES

R+«YP-Y A RESIDUALS

Nth degree polynomial curve fit

F«Xo ,x$0, 1N

Multiple linear regression: If F is a matrix of the form:

F=1,X
where X is the matrix of observations:
X[i:3]

is the value of variable j at observation i. Then the parameters
of the linear regression model

Y = A[1]+(A[2]xX[1])+ . « « +(A[m+1]1xX[m])
are

A<«Y®BPF

EVALUATE

FUNCTION
[

Form:

e S
Where:

Results:

Conditions:

Evaluate string S

S is character string representing an APL expression

The result is the same as if S were an input entry for
evaluation. S 1is generally the result of expression
elaboration. Computed strings can be developed and
then evaluated.

S may not be a system command or any function
definition and editing action.

Examgles:
2344
7
!'3','+-'[1],'q'
7
INDEX+«1 A SAMPLE VALUE
2'3' , '"4+-'[INDEX],"u? A FUNCTION SELECTION
7
WORD+«'ADD' A A SAMPLE STRING
*(¥INDEX),'®d' ,WORD A USING DEFAULT FORMAT ¥
DAD

5-54

FORMAT
FUNCTIONS (1)
]

FORMAT FUNCTIONS.

Formatted character data structures can be produced using the format
primitive functions. The monadic form provides an implicit format.
The dyadic forms permit explicit specification of the desired formrat.
The discussion common to all forms or comparing forms 1is contained
here; detailed differences are described on subsequent pages.

Forms:

Implicit format
Numeric explicit format
Character explicit format
) Character explicit formatted list

nng
“ o o o
HiE=z e

is a data object of numeric or character type

is a numeric data object

is a numeric vector defining the edit format

is a character string defining the edit format

is a list of components, separated by semicolons;
each component 1is either a null, or a data object of
any tvpe.

Where:

ra<<aH

Results:

The result is a character data object that represents
the data objects(s) of the right arcument, formatted as
specified.

The implicit and numeric explicit forms preserve the
lengths of all dimensions except the last dimension
which is altered if F is numeric. FE may be a vector,
matrix or general array.

Each character explicit form accepts as right argument
(or 1list components) only scalar, vector, or matrix
data objects. The result is a character matrix having
at least one row, and generally the maximum number of
rows of any matrix in the list.

Conditions:

The numeric explicit form is more efficient where
appropriate than the character explicit format. The
character explicit format has many more capabilities.

5-55

FOPMAT
FUNCTIONS (2)
v

FORMAT SYNTAX DIAGRANMS.

Syntax diacrams are directed graphs used to show the syntax clearly
and concisely. The allowable constructs, defaults, alternatives, and
iterations are recognized as encountered along any path. The diagrams
are ricorous without being cumbersore.

The rules for interpreting these diacrams are simple:

svntactic units are either literal APL characters or descriptive
names or underscored mnemonics

syntactic units are set off by spaces and separated by lines and
nodes

anv path traced along a forward direction of the arrows will
produce a syntactically valid format

lines terminate at nodes: o« arrows indicate entrance directions
iteration is achieved by a leftward path o<«

limited number of occurrences is shown by a "bridce" /2\ covering
a number indicating the maximum number of crossings (here 2)

Formrat Function:

e e ¥ --- Data Object =~---- +o~->
+ 4
o~ Numeric Format Vector ---- ¥ -- Numeric Array =-----o
¥ 4
o~ Character Format Vector -- ¥ --o0------- E -------- +>o

¥ 4
NR o« 3 =~o 4
L is character or numeric + + 4 4
data object 0= (H0=-=m-r0=-) =-=-o
¥ 4
o~ F o

Nureric Format Vector:

O d — o= m e - —————— ——————— o
+ 4
~=»0- Width »o¢-- Decimal Digits ~-+o0~-> FIXED POINT
¥ 4
L i 0 -------- +o INTECER
v 4
o~ ~ Decimal Digits --o FLOATING POINT

is

IS

decimal digits

Character Format Vector:
-3 R e § "memmmm—-— o
¥ +
V¥ O¢mammmcam—— y —mmmmm——- o 4
+ ¢ + 4
—=>0FO0 PO~ === = Clause =--+0+0-30-=~>
+ 4
e~ R (Clause) -=+eo
Phrase:
+
O = o v on e e e G e e e oar W e e e e e an e
¥
+
+
O m e — e mm e m—————————— =
¥
O = = o= -——-- e - PO - - >0->0 = =
+ + + 4
+ o= [-0
+ +
+ 0--
+
[FO0F0 === b e - >0>0 =~
¥ + 4 + 4 + 4
0 - *<§> %0 o0- gﬁ +>0 0= QQ >0 ¢
¥
O = -
SN is sign selector:
o+-/§\—---o+ -------- °
+ -t +
-=30= = [1\-+0== <S> -20-=->
+ _ 4
o- O J/1\--o
+ - 4
o= + [f1\=->o
R is replicator
S is string
c is column
W is width of field

FORMAT
FUNCTIONS (3)

¥
Clause:
D L +>0~=-p
+ +
LR y mmmmm—- °
+ +
L +o- Phrase -+o
+ 4
0 - E -0
D b >0 --—
+
T w=>0- Q ------------------ 0
+ 4
O e e .- —- - - ----- <0
+ 4
X ==20- E ------------------ >0
+
A --+0- H ------------------ +>o0
+ 4
R T +>0
4 4 4
E ~=-2>0~ [>o0- ,Q ----------- >0
+
F =20~ E +0 - ,Q -0 4
+ + + 4
OmmewPdmo—m——- PO PO == - >0
4 4 4 4
] =-=30- H >0 0 - gﬂ -0
QU is qualifier:
O mmm = = °
+ _ 4
-=30~ [, /1\~-Po-=>
+ - 4
o- B /1\-+o
+ _ 4
o= (/1\->e
+ _ +
o- 7 /J1\=->o
5=57

IMPLICIT

FORMAT

FUNCTION (1)
¥

Form:

¥ b
Where:

Pesults:

Conditions:

Format E using implicit format

F is a data object

The result is a character data object.
If £ is of character type, the result is identically FE.

If E is of numeric type, the result is formed by
application of the rules:

Lvery element of E 1is rounded according to the
current print precision to get the specified
number of sionificant digits (integers are not
truncated and trailing fractional =zeros are
ignored) and then converted to characters.

If E is scalar, one blank is prefixed.

If £ is vector, the result is also a vector. This
result is the ravel of an array formed containing
the character representation of each element.
Sufficient columns are provided that at least one
blank precedes each non-klank, and all decimal
points are alined.

If E is an array, the result is also an array
except that the last dimension is expanded in the
sarme manner as 1if the array were raveled.

The lenath of the last dimension of the result is an
integer multiple of the length of the last dimension of
FE, since the same width applies to each element.

For some elemecnt(s) there will be only one preceding
blank. Other may have more than one bklank.

Print precision also controls the printed numbers.

Exponential notation is wused for all cutput if any
element has either an integer part too kig to be
exactly expressed, or only a fractional part and the
exponential notation would be shorter by 3 or more
characters than the numeric notation.

Examgles:
OpPpP«6
O«Y<«12345
12345
¥y
12345
p¥12345
6
X
12.34 0 11 222 7333
X
12.34 0 11
¥RX
12.34
0
11
222
333
0.4k
1000* 2 "1 0 1 2
1”6 0,001 1 1000
¥1000%x 2 "1 0 1 2
1E°6 1E~3 1E0 1E3 1E®6
A
12.34 0 22
~333 0.4y “0.5
¥A
12.34 0 22
~333 0.4y 0.5
OPp+2
¥4
1.2E1 0 2.2E1
T3.3E2 4L.4E" 1 T5.0FE 1
$YAPL!
APL
p¥'APL"®
3
'TEMP="',(¥%99,2),'c F!
TEMP= 99.20 F

1000000

-]

A

A

IMPLICIT

FORMAT

FUNCTION (2)
¥

6 DIGITS PRINT PRECISION
NORMAL DISPLAY

SCALAR IMPLICIT FORMAT
CHARACTER VECTOR

NORMAL DISPLAY

+> ,¥QX VECTOR IMPLICIT FORMAT

333 0.44
COLUMN MATRIX IMPLICIT FORMAT

E NOTATION ONLY WHERE REQUIRED
E NOTATION IF ANY DOES NOT FIT

ARRAY NORMAL DISPLAY

ARRAY IMPLICIT FORMAT

2 DIGITS PRINT PRECISION
AFFECTS IMPLICIT FORMAT

CHARACTER IMPLICIT FORMAT
NO CHANGE

ONE SPACE TO LEFT, NONE TO RIGHT

5=59

NUMERIC

FORMAT

FUNCTION (1)
¥

Form:

V¥N

Where:

Results:

Conditions:

Numeric explicit format of N according to V

V is numeric format vector
N is the numeric data object to be formatted

The numeric data object N is represented as a character
data object. The shape of the result is the same as N,
except that the last dimension is determined by the
format V.

The format V must be an integer vector of length 2xM
where M 1is a positive integer. Successive pairs of
elements from V specify how successive planes across
the last dimension of N are to be formatted.

If W is the first and D is the second member of a pair,
all elements of the corresponding plane across the last
dimension of N are formatted in a field W wide with D
decimal places. The character format equivalent is
also shown.

D>0+«>FW.D fixed point
D=20+>1W integer
D<O0<«>EW.D exponential

If M is less than the length of the last dimension of
N, then the format V is cyclically reused.

A field width inadequate to allow representation of the
number is filled with '*°',

In fixed point representation this fill occurs if the
integer part requires more than W-D+2 digits.,

The exponential result is 1left justified with leftmost
column for negative mantissa sign (otherwise blank).
The next column is the mantissa integer part N, 1<N<10,
then the decimal point, then D decimal part digits.
Next is E , then exponent negative sign only if neededqd,
then finally exponent (one digit if sufficient). Thus,
W must be at least D+4 and may need to be as much as
D+6 to allow representation.

NUMERIC

FORMAT

FUNCTION (2)
v

ExamElesﬁ

10 3¥0 123 0.0125 ~1234,5678 a VECTOR, FORMAT CYCLIC
0.000 123,000 0.012 ~1234,568
10 3¥8%0 123 0.0125 ~1234,5678 a ARRAY
0.000
123.000
0.012
T1234,568
5050 8 4 12 “3¥0 123 0.0125 12345.678 a VECTOR
0 123 0.0125 1.235Eu4
5 0 8 3¥100 200°,410 20°,+1 2 3 a ARRAY
111 112.000 113
121 122.000 123

211 212.000 213
221 222.000 223
5 0 5 2¥ 3 5,12 8 27.3456 " §
3 5,12 827.35 ~5
7 T1¥§% 53.8 ~0.0000345 0 12345678 2,35F10 4.0E 15 0,25
T5.4E1
T3.4E°5
0.0E0
1,287
2.4F10
* ok okkkk*k
2.5E"1
7 1 ¥ §53.8 0,0000345 0 12345678 2,35F10 4.0E 15 0.25
”53.8
0.0
0.0
* %k kkkkk
* % %k kK kK
0.0
0.3

5-61

CHARACTER

FORMAT

FUNCTION (1)
¥

Forms:

C v E Character explicit format
c ® (L) Character explicit formatted list

Where: C is a character string specifying the format
E is a data object of rank at most 2
L is a list of components separated by semicolons.

Results:

The result 1is character data matrix representing the
right argument or 1list components according to the
format specification. The number of rows in the result
is the maximum of the number of rows in the matrices
that comprise the right argument. If only scalars or
vectors appear in the right argument, then a matrix
with one row results.

A scalar component is replicated in all rows. Each
element along the last dimension of a shaped component
is formatted according to the corresponding format

phrase.

Conditions:
Each list component is either E or null. There is no
type or shape conformability requirement between list
components.

A character matrix 1is created of appropriate shape
filled with blanks. Then, non-blank characters are
inserted according to the format string applied to
corresponding portions of the right argument. Separate
format interpretation occurs for each row in increasing
order. Only the top fields in the result have values
for any matrices with less rows than the maximum.

A null list component may be used to allow replication
in all rows of the format specifier.

Character Format Syntax Chart:

The format character string C has many options. It should conform to
the following syntax. The leftmost entry is the syntactic unit being
defined in terms of one of the alternatives, if any, to the right of
'is'. Upper or lower case letters in this type font represent
syntactic units further defined. Letters or characters in the APL
font represent themselves. 'text' represents any APL string excluding
>, Blanks are ignored except within 'text'. Character represen-
tations of integers are used for r, M, W and D.

5-62

HWQ 0 Hh

o Q

o=

(@R~ Ml ol

9]

CHARACTER

FORMAT

FUNCTION (2)
¥

is S8 Or S;S; « « « ;S format
is g Oor g,9, « . « ,9 Or empty segment
is ¢ or r(c) group
is optional clause replicator, replicator
default is infinite
iSs P Or pP,Py « « « 4P clause
is one of: phrase
MJAW character object formatting
M JE W.D floating point numeric formatting
MLQFW.DR fixed point numeric formatting
MLQIWR integer numeric formatting
MXW skip W characters forward, M times
MTN tab to N characters from start of format;
(may be used to back up for replacement)
<text> literal text for each row;
is optional phrase replicator phrase replicator
default is 1
is total columns for field field width
is optional number of places to right decimal places
of decimal point, default is 0
is B or C or B C or enpty left decorator
is =x<text> background for field
is C or empty right decorator
is S<text> or S<text> S<text> conditional text
or S<text> S<text> S<text>
is one or more of: sign selector
- insert 'text' in field if negative
o insert 'text' in field if zero
+ insert 'text' in field if positive
is L[or empty, default is right justifier left
justify in field
is zero or more of: gualifier
L left justify in field
B skip if zero
c insert commas
Z leading zero insert
is columns to right of start of format next column

CHARACTER

FORMAT

FUNCTION (3)
¥

The prior syntax chart provides named syntactic elements for semantic
description only. The terminal forms as used in Q (shown in APL font)
are the same as in the syntax diagram.

In general, a right argument data object is treated as a matrix. A
vector or scalar is treated as a matrix with only one row.

The form using a parenthesized list containing component data objects
separated by semicolons imposes no conformability or type restriction
on adjacent components. The formatted result will have as many rows
as there are 1in the data object having the most rows. The
corresponding fields for objects with less rows will be blank. Each
semicolon represents a synchronizing point with a semicolon in the
corresponding format.

Each format segment applies in order to the corresponding data list
component. The format segments are cyclically reused 1if necessary,
until the entire data list has been formatted. If the format segment
is empty, default formatting is used to format that data object.

Each format group applies in order to the corresponding columns of any
one data list member. The format group 1is cyclically reused if
necessary, until all columns of the data list member are formatted.

Within the format group an integer clause replicator can be used to
limit replication. Without the replicator the clause is assumed to
replicate cyclically as often as necessary.

A format clause is a series of phrases separated by commas.

Each phrase specifies the field width, and the content for that field
resulting from either conversion of a data object or a literal text.

A The character object formatting phrase permits expansion between
the columns of the object if W is greater than 1. It <can be
explicitly justified left, or right by default.

£ The floating point numeric formatting phrase provides results in
scientific notation: mantissa E exponent, e.g., 3.2E 2 or 9.73E21.
Default columns for non-negative signs are elided. This format can be
explicitly justified left, or right by default.

F The f%xed point numeric formatting phrase provides fixed, aligned
format with a specified number of decimal places. This phrase permits
qualifiers and left or right decorators.

I The integer numeric formatting phrase provides integer results with
qualifiers and left or right decorators.

CHARACTER
FORMAT

FUNCTION (4)
¥

Any numeric formatting phrase for which the field width is too small
gives 'x' replicated for the entire field in the row in which the data
element was out of range.

X The skip formatting phrase provides rightward skip over the
indicated number of columns. The replicator is not needed. Instead,
using the default replicator of 1, the width <can be the product of
replicator times width. The columns are skipped, not blanked, to
allow any prior content to remain.

T The tab formatting phrase allows absolute repositioning to any
result column starting from the leftmost as column 0. Any subsequent
formatting phrase will overwrite any prior contents.

A <text> phrase unconditionally includes the text string in every row
of the result. The text cannot contain the '>' character.

R The integer phrase replicator specifies the number of uses of the
phrase before moving to the next phrase in the clause.

W The total field width for character or numeric phrase formatting
should include sufficient columns for the entire anticipated result
ranage of values including signs and decorations.

D The decimal places for fixed point and floating point numeric
formatting permit specified precision result. Rounding occurs as part
of formatting.

Left and/or right decorators apply to fixed point or integer
formatting.

- o + The sign selectors alter the result depending on the sign of
each individual data element. These prefixes to explicit text can be
applied separately, or in combinations. At most one of each sign
selector should occur on each side of a formatting phrase. The same
sign selector may appear in the left and right decorators. A '-!

selector removes the negative sign from any necdative element.

x<text> A field background can be specified. The text, replicated if
necessary, 1s 1initially placed in the field, then partially replaced.

L The default justification of phrases that do not require the
specified width is to the right. Unless background is specified,
excess columns to the 1left are blanked. Left justification can be
explicitly specified instead, blanking excess columns to the right.

L B ¢ Z qualifiers alter the field content for intecer and fixed
point formatting. They include left Jjustification; blanking (the
numeric result) if the element value is zero; insertion of commas to
set off positive powers of 1000 for large numeric results; and
insertion of leading zeros to fill the field.

5-65

CHARACTER

FORMAT

FUNCTION (5)
¥

Character Vector Formatting Examples:

Numeric data objects

O«NV+« 1230 4.55 0 ~0.765 60.525

“1230 4.55 0 ~0.765 60.525

(J«NM<~0.05 250,.,x410 1 0.025

“2,050F1 “5.000E"2 T1.250E 3
1.025E4 2.500F1 6.250F 1

Floating Point

'E10.2'¥NV
T1.23E3 4,55E0 0.00E0
'E10.4,E6.0,E10.2'¥NM

T2.0500F1 "5.E°2 T1.25E"3
1.0250FEu 3.E1 6.253 1
'"E6.1'Y 0.12 0.12
khkkkhkhkkkdkdkhk
'E7.1'%¥ 0.12 0.12
T1.2E71 1.2E"1

Fixed Point

'F10.2'¥QNV
T1230.00
4,55
0.00
T0.u47
60.53
'F10.2'¥NV
©1230.00 4,55 0.00
'F7.2,F6.1,F8.4"'¥NM
T20.50 0.0 "0.0013
*kkkkKk*x 25,0 0.6250

Integer

'T6V¥NV
1230 5 0 1 61
'75,I2'¥NM
21 0 0
1025025 1

5-66

“7.65E" 1

6.05EF1

60.53

Phrase Replicator

1

'213,2I5,3I2'y 1 2 3 4 56 7 8 9
2 3 4 56 7 8 9

Justify Left

1
2
34
56

7

'‘LIS'¥® 1 2 34 567

Background

'x<o>I5'% 1 0 2

ooo_loooooooooQ

'x</|\>I5'¥1 23 456

/I\N/1/1\23/ 1456

Sign Selectors

M1

'+ <P>0<Z>-<N>I5'%¥ 1 0 2

720 P2
'+0< >=<(>I5+0< >=-<)>'¥®°1 0 2 a (NEGATIVE)
pY ->0< >LI12'¥Q 1 32 0 541 35

-1

-35

Blank Zero Field

1

'*BIS'v¥ 1 0 5
5
'BLIS'¥® 1 0 5

CHARACTER

FORMAT

FUNCTION (6)
v

CHARACTER
FORMAT
FUNCTION (7)

¥

Comma Insert

'CI10'¥1234567
1,234,567
'CF12.4'91234,5678
1,234.5678

Zero Insert Left

'ZI3'¥®1 23 456
001
023
456

Combined

'%*<o>ZBI5'¥®1 23 ~u56 0 987
00001
00023
T0us6
00000
00987
'ZBCI7'¥1 0 2345 "1
000,001 002,345 00,001
'"BCI5'¥{ ™1 0 234 5678
1

234
5,678

Character
'A42'%2 Up'GOODWORK?!
G 0 0D
W OR K

YA1,A2 ,A3 ,A4"'¥'OPEN"'
O P FE N

"LA2'$'LEFT'
L EFT
Tab and Skip

'ri5,70,I5,X20,I75'¥25 50 75
50 25 75

'715,70,I5,I25'¥25 50 75
50 75

Text
'<|>,I5,<|o>'¥Q1 10 25
| 1]e
| _10]e
| 2510
Combined

'I5:X4,241'¥(5 6;'4B"')

CHARACTER
FORMAT
FUNCTION (8)

A4

"753A5;;F5.,1'v(81 10 100;®'FINE';2 3p1.1%x1 2 3 4 5 6)

S 6 AB
'75;X4 ,A2'%¥(100;Q'4B"')
100 A
100 B
'753;X4 ,A1'¥(,100;8'4AB")
100 A
B
1 F 1,1 2,2 3,3
10 I 4.4 5.5 6.6
100 N
E

'‘LI5,2(LI3,F7.2,X4),I3'¥3 5 15,72 17 23,15

3 5 15.72 17 23.15

3

3

5-69/5-70

SECTION 6

SYSTEM VARIABLES, SYSTEM FUNCTIONS AND SHARED VARIABLES

GENERAL.

The system variables provided within each workspace of the APL
processor specilally tailor the processing to the application of that

workspace.

The system functions are provided to permit the user to perform many
functions that query or alter the run environment of the account or to
query the total environment of the APL system,

The shared variables and the system functions that handle them permit
the user to communicate with other processes concurrently running with
APL/700 or with other APL users.

The classes of system functions include:

Function transformations
Name functions-

Debugging aids

Execution controls
Special characters

Status inquiries

Shared variable handlers
I-bar primitive functions

SYSTEM
VARIABLES (1)

Ocr 0ro OPP ORL

System variables always have values. They are provided in a workspace
by default. They are used by the APL processor to specialize its
behavior for the current needs of the user of that workspace. Only
values (N) in limited domains may be assigned to these variables.

System Name/ Purpose Suggested Domain
Variable System Default Value for N
Command for new account
gcr Comparison relative tolerance used in 1E710 0 <N< 1
Tolerance comparison with Boolean
YFUZZ and integer domains and the

primitive functions:

< £ = 2 > #£ € € D> N U 1t
Oro Index origin for ordinal counting, 1 0 or 1
Origin applies to the primitive
YORIGIN functions:
v 4V 20 1Q&
npp Print number of significant digits 10 integer
Precision used to round and display or 1 thru 12
YDIGITS default format fractional or
scientific notation numbers
ORL Random Link starting value for random 131131704506 integer
YSEED number generator 0 thru ~1+2%39

Any of these system variables may be included in the local names list
of a defined function. In contrast to other identifiers in the local
names list, the global value of a system variable is retained within
the function until first an assignment 1is made to that local instance
of it. This permits the function to remain sensitive to the calling
environment. For example, assume a result must depend on the callers
origin. The global origin value can be retained in another local
variable. Then the function is executed in the desired local origin
to develop the desired local result. Finally the result adjusted for
the global environment origin value before return to the calling
function.

In a clear workspace the suggested default values for the system
variables will result. These can be overridden by the user of the
account with the system commands corresponding to the system
variables. The system variables do not alter the defaults, and
changes to the defaults only affect clear workspaces, they do not
alter the values of the system variables in a non-clear workspace.

SYSTEM
VARIABLES (2)
Ocr 010 OPP [IRL

The comparison tolerance is a relative tolerance used in comparisons.
It helps resolve the problem of the finite precision with which
numbers are represented within the computer. In a dyadic function the
comparison tolerance is relative to the left argument., For example:

A=B <= [0CTz|(A-B):A
A<B <=+ [JCT=(B-4): 14

The comparison tolerance is also used for domain checking where the
domain of the function is non-continuous, e.g., integer or Boolean
domain. In this case the test is:

(TrClx)x1-0cT)=L({x)x1+0CT

The index origin affects +the denumeration of elements and the
dimensions in an array.

Origin Denumeration begins with

0 0
1 1

The index origin affects the first number for ordinal numbering:

& permute dimensions (dyadic left argument)
1 integers, index of
AY grade up, grade down
? roll (monadic), deal (dyadic)
(] subscripts on arrays [bracketed]
dimension selector [bracketed]
laminator [bracketed]
file component selector [bracketed]

The print precision affects the result of all numeric outputs in
fractional or exponential form. No more than [JPP significant digits
are displayed. Rounding is invoked first. Integers are displayed
with full precision if their magnitude is less than 2*39, Also, print
precision affects the character object result of default formatting
using ¥.

The random 1link affects the result of the roll and deal functions.
The random link is used as the seed to the random number generator.
Each time the random number generator is called, the seed provides the
starting value to determine the next value(s) delivered. Each use
delivers a result and changes the seed. Given the same seed and the
same range, the random number generator will generate the same random
numbers (and return the same new seed).

SYSTEM FUNCTIONS.

System functions allow the user to affect the run environment.

FUNCTION
TRANSFORMATIONS
Ocr OVR OFX

System Name Results
Function
O0CkR N Canonic Character matrix. N is the character string
Representation name of an unlocked defined function. If
not, result has shape 0 0. Otherwise each
row is a line of function N. The first row
is the function header. Line numbers and

opening and closing dels are omitted.

OO0VE N Vector Character vector. N is the character string
Representation name of an unlocked defined function. If
not, result is an empty vector. Otherwise

each line of function N is terminated by the
return character [Jr after the last non-blank.
Line numbers and opening and closing dels are
omitted.

JFx C Fix Defined function. C is either a character
vector or matrix in the form from the vector
or canonic representation. The function name
will be from the first 1line of C. If that
name is local to the function in which the
fix is executed, the fixed function 1is also
local. If an explicit result is required, it
is the name of the fixed function.

Canonic Representation of a function is wuseful for user-written
function editing routines where line rearrangement, function merging
or separation is desired. Note that the shape of the result is the
number of lines (including header) by the length of the longest line.
Thus, this form generally takes more space than vector representation,
particularly if the line lengths differ.

The Vector Representation is usually the more compact representation,
and is the preferred form for storing functions as file components.

A Fix of a character representation returns the function in unexecuted
form. This form takes slightly more space than after first execution.

The defined function name resulting from a Fix must not have prior

meaning. If the function name is local to some function in the
calling sequence resulting from executing the Fix, then the fixed
function is local to that function. The definition of the fixed

function disappears wupon exit from the function to which the fixed
function is local.

NAME FUNCTIONS
OnzL ONC OEX

Name system functions work with a string or matrix of names.

System Name Result
Function
ONL N Name List Matrix of names of objects of specified kinds in

the current environment. Names are alphabetized,
left justified, one per row. N is a numeric
scalar or vector selecting object kinds:

0 no associated meaning
1 labels

2 variables

3 functions

il

other (groups)

A ONL N Selective Like Name List, but only includes names starting
Name List with a character in the string A, A is chosen
from letters, underscored letters, A and A.

gwxc C Name Vector of integers indicating name use in the cur-
Classi- rent environment for corresponding name in charac-
fication ter or matrix C. Result values:

0 no associated object
1 label
2 variable
3 function
4 other (group)
Orx C Expunge Objects corresponding to names in character vector

or matrix C are expunged. The objects must not be
labels, groups, or active functions. If required,
the result is a Boolean vector with ones
everyplace the corresponding name from C was
expunged.

A character string argument to Name Classification or Expunge must
contain only one name. A character matrix argument must contain one
name per row.

The most local occurrence of a name in the current environment
determines its kind. A more global occurrence may be shielded by an
occurrence as a local name in an active function. A more global
meaning (if any) is restored upon exit from the function to which the
name is local.

Expunge may be used to eliminate current meanings for objects from the
current environment so long as they are not names of active functions
or labels. Unlike)ERASE, other local names can be expunged.

DEBUGGING AIDS (1)
gsr 0Ss 0OsM

OrRT ORS 0ORM

0qQr 0Qs OeM OMV

The following system functions are oriented to lines of unlocked user-
defined functions.

Monadic Name Dyadic Result
(all lines) (specified lines)
0Osr F Set Trace N OST F L
0ss F Set Stop N 0SS F L
OsM F Set Monitor N OSM F L
ORT F Reset Trace N ORT F L
OrRS F Reset Stop N ORS F L
ORM F Reset Monitor N ORM F L
ger F Query Trace B
ggs F Query Stop B
0OgM F Query Monitor B
oMV F Monitor Values N OMV F \Y/
Where:
F is character vector name of unlocked defined function
N is numeric vector of line numbers
L is numeric vector of 1lines with property (set, reset)
returned only if required
B is Boolean vector, 1 if property set, 0 if reset; one
element per line including header
\'4 is vector of numeric monitored values accumulated during

executions since set.

DEBUGGING AIDS (2)
asr 0ss 0OsM

ORT ORS [RM

0er 0es (Oem 0OMV

The monadic forms apply to all lines including the header line 0. The
dyadic forms apply only to altering the current setting for 1line
numbers in the left argument.

During function execution, the effects are as follows on encountering
a line on which one or more aids are set:

Aid Header Line Body Line
Trace result returned by function result
Stop suspend prior to return suspend before execution
Monitor increment number of calls increment CPU time in

line execution
The Trace result forms are:
Function-Name [Line-Number]
Function-Name [Line=-Number] Type (Shape) Value

The first form occurs if the line has no result; otherwise, the second
form occurs (including a leftmost control transfer value or
assignment) .

The Type is B for Boolean, C for character or N for numeric., The
Shape is a numeric vector; the Value is the normal displayed value.

The Stop result form is:
Function-~-Name [Line-=-Number]*

After a Suspend on the header after function completion, the local
names are still defined.

The Monitor values are internally accumulated more precisely than they
are displayed. The ceiling of the accumulated number of milliseconds
is displayed. A time of 0 is shown only for unmonitored 1lines or
monitored lines that have not been executed. Thus, monitoring all
lines over a period of execution is an effective way to determine if
some program path has reached each line, and also the time spent in
each line.

If a line contains a call on another function, any time spent in that
function would be accumulated there, instead of in the calling line.

6-7

EXECUTION CONTROLS
aprz UOED UER

Normal execution can be altered using the following system functions.

System Name Result

Function

Opr D Delay optional actual delay D in seconds

JED S Edit edited line after editing with normal entry of

within-line editing marks '/', '.' or ' '

B 0D S Phrase Edit edited line after editing string S according to
Boolean vector B with ones meaning phrase
terminators '.'

OER S Error simulates an error occurring at the point of
execution. S is displayed as the error message.

The specified Delay amount D is an integer indicating minimum desired
execution pause before resumption. The actual delay, returned if
required, also includes time awaiting an APL processor once the
specified delay has occurred.

Each Edit function accepts a character string as the right argument.
This string may not include any of the following characters:
linefeed, return, backspace, tab or null. The monadic form displays
the string and returns to the left margin for entry of a line of edit
characters applied to the characters above: '/' for delete, '.' for
phrase end before, and spaces for no change., The next line displays
the first phrase for editing., The ATTN causes entry of the next
phrase, etc.

The Phrase Edit dyadic form uses the Boolean left argument (of the
same length as the string) with each one indicating a phrase end.
This avoids the line of entered edit characters.

The Error message is displayed, an error indication prompt is given,
and execution is suspended. This is principally useful in a locked
function, where the error message results in the suspension point
indicator being in the 1line of the calling function containing the
call, rather than in the 1line containing the [EZR. The last line
executed in the function is the one containing the 0OER; no other
explicit control transfer out of the function is recquired.

SPECIAL CHARACTER
SETS (1)

0B Oz Or OT

oy (4 0D 04V

The single characters or character vectors below are the values
returned by niladic system functions.

System Name Result

Function

(B Backspace scalar backspace character

oL Linefeed scalar linefeed character

0r Return scalar carrier return character
ar Tab scalar tab character

Oow Null scalar null character

4 Alphabet character vector '4BC...Z2!

)y Digits character vector, '0123456789"

04v Atomic Vector all APL characters

These characters are processed internally to APL just as any other
elements of a character data object. The only special properties of
the first five are associated with output processing for terminal
display. Some terminals may not adequately accept these characters.

The Backspace character can be used to display overstruck output
characters not in the allowed character set. It can not be used to
move to the left of the start of the display line.

The Return character causes completion of an output line, just as the
RETN key does for input. It includes both line feed and cursor return
to the left margin.

The Linefeed character can be used for advancing the display line
while the cursor is positioned into a line without return.

In cases where the cursor is at the left margin, Linefeed and Return
have the same external effect.

The Tab character can be used to prepare output with irregular
terminal physical tab settings. In this use, the normal APL editing
to insert tabs in output for display should be disabled. The tab
interval should be set to 0 by)TABS 0. The print width may be
exceeded.

SPECIAL CHARACTER
SETS (2)

0B OL OrR OT

Oy 0A ODp DAV

The Null character takes one unit of transmission time when sent to
the display, but has no visual effect on the normal static display.
Its principal use 1is with non-standard display devices such as
plotters that may require time to complete a prior command.

The alphabet and digits are often useful in text processing.

The atomic vector includes all characters defined for APL. The
displayable characters are shown in table 6-1. The index position
numeric location of each character is shown in the last 1line below
each character. The hexadecimal equivalent is shown in the middle
line.

The shape of the atomic vector is 256. Only the printing and special
characters are shown in the table. The entries shown as ?2?? and the
others above 175 are non-printing. Any attempt to display one of
these results in the squish-quad 0. Since these are not displayable,
their use should be carefully considered. The principal application
of atomic vector is for communication with external processes through
shared variables.

The left tack (77), right tack (78), diamond (133), left brace (134),
right brace (135), and currency symbol (143) are not available on all
terminals. Printing conventions for these are uncertain on 88
character terminals. Note that these 6 extra characters are not part
of the necessary APL character set.

112

80
128

90
14y

AO
160

71
113

81
129

91
145

A1
161

Table 6-1

SPECIAL CHARACTER

SET, ATOMIC VECTOR

Dav

Character Representation Order in Atomic Vector

B
02
2

R
12
18

7
22
34

~

32
50

A
42

66

A
52

82

62
98

g

72
114

82
130

92
146

5
A2
162

c
03
3

S
13
19

8
23
35

A
33
51

\
43
67

A
53
83

63
99

P

73
115

83
131

93
147

A3
163

D
ou
u

T
1y
20

9
24
36

v
34
52

/
uy

68

<

54
8y

4
64
100

7y
116

8y
132

gy
1u8

Al
164

E
05
5

U
15
21

25
37

*~
35
53

\
45
69

55
85

65
101

75
117

85
133

B
95
149

%
AS
165

F
06
6

14
16
22

+
26
38

»
36
54

¢
46
70

O
56
86

¢

66
102

S

76
118

{
86
134

B
96
150

?22?
46
166

G
07
7

W
17
23

27
39

<
37
55

®
47

71

(
57
87

D
67

103

I

77
119

}
87

135

)
97

151

2?22
A7
167

H
08
8

X
18
24

X

28
40

<

38
56

€
ug
72

)
58
88

E

68
i0ou

78
120

0B
88
136

98
152

222
A8
168

I
09
9

Y
19
25

29
b1

39
57

1
49
73

L
59
89

E
69
105

79
121

0L
89
137

99
153

?22?
AS
169

J
04
10

Z
14
26

[
24
L2

>
34
58

T
Y|
an

]
54
90

g
64
106

4

74
122

OrR
84
138

94
i54

222
AA
170

K
OB
11

0
1B
27

L
2B
43

>

3B
59

u
LB
75

]

5B
91

74
6B
107

X
7B

123

227
8B
139

8B
1556

22?
AB
171

L
ocC
12

1
ic
28

*
2C
uy

z
3C
60

n
uc
76

>

5C
92

L
6C
108

4

7C
124

222
8C
140

9C
156

?22?
AC
172

M
0D
13

2
iD
29

®
2D
45

p
3D
61

-
4D
77

5D
93

g
6D

109

7D
125

722
8D
141

9D
157

222
AD
173

N
0F
1y

3
1E
30

I
2F
46

3F
62

-

4E
78

I
5F
9y

X
6E
110

7E
126

ar
8E
142

SE
158

222
AE
174

0
oF
15

n
iF
31

2F
47

1
3F
63

c
4F
79

o

5F
95

L
6F

111

7F
127

8F
143

9F
158

?227?
AF
175

=)
I

11

STATUS INQUIRIES

Opr Opw OWI 0OAN UOAI

ON¥EwWwS 0OLC 0OTS 0OUL

OwA OvA OLA OFA 0OSA

Status inquiries are niladic,

System Name
Function
gpT Print Tabs
aoprw Print Width
aOwr Workspace ID
OAN Account Name
OAI Accounting
Information
[INEWS News
oLc Line Count
ors Time Stamp
auL User Load
OwA Workina
Availability
On4 Name
Availability
OrLA Library
Availability
OF4 File
Availability
(054 Shares
Availability

Use of the above status inquiries
primitives.

Result

uniform physical tab interval
assumed for terminal

maximum characters/display line
character vector: identifier
character vector: identifier

computer time, connect
time this session

system news sign-on message

numeric vector: includes line
on which line count occurs,
then other line numbers of
functions in state indicator

numeric vector: year,
month, day, hour, minute,
second, millisecond

number of user accounts on APL

bytes remaining,
bytes in use in workspace

slots remaining, slots
assigned in symbol table

workspace slots remaining,
workspaces in)LIB

file slots remaining,
files in)FILES

shared variable slots
remaining, in use

value returning system functions:

Remarks

set by)TABS n

set by)WIDTH n
YWSID
I29 <~ [JAN

in milliseconds

127 <« [JLC
I26 <« (10)p0LC

Example
1974 12 31
23 59 59 399

123 <> [QUL

122 «> 14[1WA

is preferred to the redundant I-bar
The sum reductions of the last two area inquiries provide

the quotas established by the installation for the account. The number
of symbols in the

6-12

name table is +/0N4,
workspace default, or)CLEAR n for a particular workspace.
workspace is measured in bytes.

set by)SYMS

See Appendix B.

n for the clear
Space in a

SHARED
VARIABLES (1)

SHARED VARIABLES.

A shared variable permits coordinated data exchange between the user
process and one other partner process external to it. A rocess is
either an active workspace of an APL user or an APL shares variable
utility. APL user processes are referred to by their account names.
APL utility processes have account names that are character
representations of integers from 1 to 999.

Sharing means that either process can use or set the shared variable
value. Sharing is bilateral; no more than two processes can share a
variable at one time. Neither process is dominant.

A shared variable has a name used internal to the workspace. It also
has an external name, or surrogate, used in common by sharing
processes. The surrogate may be tge same as the name, in which case,
only the name is needed. Several shared variables may be in use at
one time. The same surrogate may be used with more than one internal
name, each shared with possibly different processes. An internal name
of a shared variable may have only one surrogate associated with it.

Use of a shared variable is initiated by this typical sequence:

Process A Process B
tenders an offer to share accepts the offer

Thereafter either process can access the variable being shared. The
degree of coupling is the number of processes that currently agree to
share a particular variable, as viewed by ones own process:

0 if the name is currently not in use as a shared variable

1 if an offer has been made but not been accepted; or after
sharing, an offer is retracted by the other process

2 if an offer has been made and accepted

When the degree of coupling is 2, either process may access the common
value. Access includes both setting (assigning a value to) and using
(once assigned, then referencing the present value of) the variable.,

The coordination of data exchange between the two processes is based
on a Boolean access control matrix (ACM), whose elements control the
allowable sequence of accesses. Each shared variable has an ACM.

The access control matrix (ACM) has shape 2 2 and has Boolean
elements:

1 access is constrained
0 access is not so constrained

6-13

SHARED
VARIABLES (2)

In summary form, ACM elements have meaning:

Set A Set B
Use A Use B
Where: A represents one's own process

B represents the sharing partner process.

In more detail:

ACM Element Constraint if value is 1
two successive requires intervening
Set A 1 1+ ACM sets by A access by B
Set B 1 "1+ ACM sets by B access by A
Use A T1 14 ACM uses by A set by B
Use B T1 T1+ ACM uses by B set by A

Note the symmetry of the above. For elements with value 1 in:

Top row - Two successive sets by one process requires an
intervening access by the other. This may be used to assure that
the second process has an opportunity to accept the value set by
the first.

Bottom row - Two successive uses by one process requires an
intervening set by the other. This may be used to assure that
(at least one) new value has been set prior to use.

First column - Individual controls on one's own process setting
and use.

Last column - Individual controls on partner's process setting
and use.

If a constraint is 1 and the required intervening event by the second
process has not occurred, the first process is delayed.

Each process sees the access control matrix with one's own process as
the first column and the partner process as the second column.

The four Boolean element access control vector (ACV) used to restrict
the ACM is established from one's own process as 2 2pOWNACV and the
effect of the setting by the partner process as viewed by one's own
process is ¢2 2p PARTNERACV.

The resulting ACM«+(2 2p OWNACV)vé 2 2p PARTNERACV describes the total
restriction imposed by both processes. The defaults are 0 for OWNACV,
OTHERACV and hence ACM. Thus unrestricted access 1is the default,
Restrictions must be explicitly established. One partner can only
increase restrictions set by the other. Upon retraction by one
partner, the explicit access controls set by the other remain.

6-14

SHARED
VARIABLES (3)

A set of surrogate 1lists is maintained between two particular
processes. Each such list has the record of offers to share using
one particular surrogate. A surrogate list is ordered in time of
offering to share a variabale using that surrogate. Acceptance of an
offer initiates sharing with the oldest outstanding offer.
Termination of sharing occurs when one partner retracts the offer.
Then the other partner still has a valid offer and will commence
sharing with the oldest remaining offer having the same surrogate (if
any).

An offer to share a variable can be made explicitly to another
process, or can be made general, to any process that may desire
sharing. The first capability permits inter-process communication,
typically between APL users. Queries are provided to determine if any
processes have explicit sharing requests outstanding to the querier,
and also what the surrogate names are. No queries are provided for
general offers. They are typically used by utilities ready to accept
an offer when made.

The shared variable does not provide additional space to the user
beyond that in the active workspace. There must be sufficient space
to use whatever size object the partner sets. The workspace contains
the data object that was most recently used or set by the wuser.
Using a value set by the partner changes the value in the workspace.

A workspace may be saved while a shared variable is offered or
accepted. If there had been no value assigned to that variable, the
name only will be saved as a name without meaning. If a value had
been assigned when saved, the 1last value either set or used by the
user will be saved as a non-shared variable. Loading or copying does
not reinitiate the shared variable.

SIIARED VARIABLE FUNCTIONS.

There is provided a family of functions for handling shared variables.
These include:

shared variable offer and degree of coupling
shared variable access controls query and augment
shared variable offers query and retract

SV OFFER,
COUPLING (1)

asvo
Forms:
gsvo N Determine degree of coupling of N
P Osvo N Offer N to P
Where: N is a character vector or matrix. Each row contains a
name possibly followed by a surrogate separated by at
least one space.
P is a vector (if N is a vector) or a matrix with as
many rows as N. Each row contains either the specific
name of an external process (an APL account or external
process name) with which sharing is desired, or an
empty vector or row of blanks indicating a general
offer to share with any process.
Actions/Results:

Conditions:

6-16

Coupling: The current degree of coupling of the name
or names in N is returned as viewed by the own process.
Each element of the vector result in corresponding
order as N may be:

0 if not currently offered as a shared variable
1 if offered by own process but not accepted
2 if both offered and accepted

Offer: Each offer by a different process of a shared
variable increases the degree of coupling of that
variable by one up to a maximum of 2, If an offer is
made to a specific process, only that process can
accept it. If a general offer is made, any process can
accept it by an explicit offer for that name,

An offer made by another process for a shared variable
already having degree of coupling 1, binds that
variable to the two processes involved (and makes the
general offer, if any, specific) so long as the degree
of coupling remains 2. Once a general offer is
accepted, it becomes and remains specific even if the
acceptor retracts the share.

The returned result, if required, is the attained
degree of coupling.

An attempt to make a second offer of the same name is
ignored and returns the present degree of coupling if
required.

Examgles:

7700

SV OFFER,
COUPLING, (2)
nsvo

Time sequence is downward for both columns in parallel.
Entries on the same line could occur in either order,

A PROCESS CLF
O«'TsG'0Osvo'y 2!
gsvo'x:

gsvo'z!

b 4

Y«'HI T5G*
Y

HI TSG

2

1 2

BB+ 'CABBAGE'
B+'PATCH'
(svo'BB B!

BB
3
B

PATCH

0

2

* %k

gsvorc!
Oe''Osvorc!

c
VALUE ERROR **x
v
c
C<«‘HELLO'
D4.' 'USVO'CI

7700

A PROCESS TSG

O«'CLF'svo'A 2

A«7700
A

A

HI TSG

1

32

2

O«''0svo'B
B+«1 2 3
B
3
gsvot'B!

C+32
O«tcLr'gsvo’c!

HELLO

6-17

SV ACCESS
CONTROLS (1)
Osve
Forms:
Qsve N Query access controls for N
C [0svC N Augment access controls for N by C
Where: N is a character vector or matrix. Each row contains
one name and 1is possibly followed by a surrogate
separated by at least one space.
C is a Boolean access control vector or matrix with a
row of 4 elements for each row of N.
Actions/Results:
Query Controls: For each row of N, the current access
control vector is returned.
Augment Controls: For each row of N, the corresponding
row of C 1is used to augment the access control matrix
for that variable:
ACM«+ (2 2pC0)VO2 2pCP
Where: CO is the control vector specified by own process

6-18

CP is the control vector specified by partner process

The effect by any one process on the access control
matrix of a shared variable is to only alter elements
not restricted by the partner (since the 'or' function
on C by one process can not remove any restriction
already placed by the other process).

Note the symmetry in specifying or querying ACM. For
each process, the first column refers to the controls
applied to it; the second refers to the controls
applied to the sharing partner process. The total
access control vectors can be determined:

For own process CO«, ACM
For partner process CP<«, ¢ACH
If an explicit result is required, it is the resulting

access control vector; or the matrix of the access
control vectors as rows.

Conditions:

Examgles:

0 0
1

1 0
1 1
1 1
2

0 1
11

If N is a

vector,

C is coerced to the necessary

SV ACCESS

CONTROLS (2)

it 1is coerced to

single, or 4 element Boolean vector:

CelipC

C+«((14pl),u4)pC

When an offer to share

When a prior offer to
control matrix returns

share,

if N is a vector
if N is a matrix

asve

a one

element

shape if it is a Boolean

a variable is initially made,
the access control matrix is all zeros.

share is withdrawn,
to only those

the access
restrictions
established by the remaining process still offering to

Time sequence is downward for both columns in parallel.
Entries on the same line could occur in either order.

p PROCESS CLF
e'TserOsvor x?

gsve'rxe
VI
gsvo'x

0«1 0 1 o00SVC'X!
1 0

gsve' x!
1 0
Oeosve'x!
0 o

gJe't0svo'c B!

gsvee'cx!
1 0
0 o

R PROCESS TSG

OetcLF'Osvor x!

gsverx:
0 o

asverx:
0 1

0«1 1 0 oflsvc'x!
0 1

O«'CLF'0SVO'A B!

Q«1 0 0 10svcC'A’
0 1

6-19

SV QUERY,
RETRACT (1)
0sve 0OSVR

Forms:

gsve P
OsvrR N

Where:

Shared variable query about offers P
Shared variable retract offer for N

P is a character vector, either empty, or containing an
external process name

N is a character vector or matrix. Each row contains a
name possibly followed by a surrogate separated by at
least one space

Actions/Results:

Query: If P is empty, it returns a matrix of processor
names having unaccepted specific offers to the
inquiring process. The names are left justified in a
six character row with trailing blanks.

If P is the name of a process, it returns a character
matrix of the surrogates for names of variables being
offered for sharing by that process specific to the
querying process, but not yet accepted. There 1is no
means to query general offers.

Retract: The result 1if required is the degree of
coupling existing prior to the retraction.

A previously made offer to share names in N is
retracted and the degree of coupling reduced to 0 by
the retractor and reduced by 1 for the partner (but not
below 0).

A retract with prior degree of coupling =2 terminates
sharing. Any access control restrictions from the.
retracting process are relaxed on that shared variable.

There is no effect on the sharing partner's
contribution to restricting the access control matrix.

If the sharing had resulted from acceptance of a
general offer, retraction by the acceptor does not
restore the general offer, but leaves it as a specific
offer to that acceptor.

Erasing or expunging a shared variable retracts the
share.

Examples:

TseG

SV QUERY,
RETRACT (2)
Osve OSVR

Time sequence is downward for both columns in parallel,
Entries on the same line could occur in either order.

A PROCESS CLF
Oet'rsc'Osvorx Y!
X<5

0«1 0 0 oOsVC'X!
0 O

O«0SVR*X?
X

osve:'!

gsve'rse!
Jer'svora B!

Jedsve:r!

CLF

A PROCESS TSG

gsve:':

usvQ'CLF!
O«'cLF'OsvVO'Z 1!
Y/

Qsvc'z!
0 o0

agsverz:
0 o0
asve':!
Z

gsvorz:

asvo:r!

6-21

I-BAR
FUNCTION
I

The primitive monadic function defined in early APL systems for
querying the environment has the form:

I N I-bar primitive selected by N
Where: N is an integer between 20 and 29, excluding 28.
This primitive is included but is redundant, having been replaced by

the system functions. Since it may exist in old APL programs, it is
described here. Deimplementation is expected in some future release.

Time units below are sixtieths of a second for I-bar results. Note
that replacements naturally have different units (hours, minutes,
seconds, milliseconds; or milliseconds). Conversion to the earlier
(sixtieth second) time base causes the bulk of the computation below.
Some results are vector instead of scalar.

Primitive Result Approximate Replacement
I20 scalar time of day LO.06x0 60 60 1000.3+[TS
I21 scalar CPU time used this session 0.06x1400AT

122 scalar bytes remaining unused in the workspace 1+00WA
123 scalar number of users currently signed on OurL

124 scalar time of day at start of the work session
L0O.06x(0 60 60 1000.3+[075)-1+0AT

125 scalar date in form MMDDYY where M,D,Y are 1001100[1¢3+(1TS
digits representing month, day, and vyear
respectively

126 scalar first element of 127 1+0LC

127 vector of line numbers in state indicator: [JILC
first element 1is line being executed, or the
one last suspended; the next element is the
line which called the first, or the prior
suspension, etc.

I29 character vector containing 6 character 1left [Jaw
justified user account identification

There 1is no I-bar 28 (meaning terminal type on some other APL

implementations). The terminal type is implicit in the line to which
the terminal is connected.

6-22

SECTION 7

FILE SYSTEM FUNCTIONS
GENERAL.
The APL/700 System includes a filing system and a set of file
functions that together provide a user with effective and convenient
means to retain and access APL data objects outside the workspace.
Defined functions can be represented as data objects and subsequently
can be fixed back into the functions. Thus, a user can work with more
data or functions than will fit in a workspace at one time.
FILE NAME,

Each file has a name unique among the file names of the account.

File Name is (Acct) Name [Password]

where File Name and optional Password are strings of 1 to 12
alphanumeric characters starting with a letter.

The optional Acct is the account name required if the file is owned by
another account. The Acct 1is a string of 1 to 6 alphanumeric
characters.

FILE COMPONENTS.

At any time a file has a number of components. These are numbered
starting with the index origin. Any component may be null, or may
contain a value. A component can contain any APL data object created
in a workspace and subsequently assigned to the file component. Each
component is independent, and can have any type, rank or size. In
particular, some components can be user created directories to the
file. A null component is one that has no value (this is different
from containing an empty array as a value).

FILE LIMITS.

Any file has a maximum of 1000 component slots. The installation
allocates to an account a maximum number of files, which can be
determined as +/[0FA. Also there is a maximum number of bytes per file
which can be determined as 2 File Name. There are system-imposed
maximum numbers of files that can be concurrently opened by any one
user (12), or by all accounts (4, and number of accounts concurrently
using files M3.

FILE OPENING, ACTIVE AND INACTIVE STATUS.

A file may be open in one or more accounts. A file has active status
if any account has the file open; otherwise, the file is inactive.

A file 1is opened for an account when first any file operation is
executed other than create, rename, destroy, or file status test. A
file remains open until either explicit release, or account sign-off,

FILE INTEGRITY.

File integrity is automatically maintained by retaining a master file
and an up-date file so long as a file is active. All transactions
that alter the file components are made to the up-date file. All file
component reads are from the most recent value. When there are no
active users of the file, it becomes inactive and any up-date file is
merged with the old master file into a new master file. Any user
attempt to access the file is deferred during this period when the APL
file system is closing the file. Only after the closing is complete
are the old up-date and master files destroyed. Thus the file will
not be partially updated.

If the user expects several accounts to concurrently access the file,
provision is made for any account to .hold it for exclusive use during
an update. Any transaction entries while the user has the file held
are provisional. They become part of the up-~date file only when a
file free is executed by that account, or any return to execution
mode, or terminal disconnect. Any return to execution mode before the
free occurs removes the provisional transaction. This capability
protects the file from being partially updated.

File updating integrity over interruption or system failure |is
achieved by assuring that an undisturbed backup is available until any
updating is complete.

All file functions that do not explicitly return a value implicitly
return the file name if required. This permits a sequence of file
operations to be executed in the same line of a defined function.
Thus, even user interruption using a single ATTN (for which the line
is completed) can have an update transaction completed in a single
line. Of course, a user-entered double ATTN can violate this
integrity.

FILE SYSTEM PRIMITIVE FUNCTIONS.

A group of file functions is provided for file management. Each is
denoted by overstriking the quad (box) symbol with another symbol.
The resulting file function has generally similar meaning to the APL
primitive function using the same second symbol.

Many of the file functions have both monadic and dyadic forms. The

right argument of each is the File Name, symbolically represented as
'F'.

7-2

Forms:

(0/N]

4
EEE
Lo B B s

Where:

FILE CREATE,

CHANGE PASSWORD,

RENAME, DESTROY
(!

Create file F

Change password on file F
Rename file F to become N
Destroy file F

is own account File Name, may include password

is new File Name for file of own account

is old password for file F, empty if none previously
is new password for file F, empty if none desired

e RO R AL

Actions/Results:

Conditions:

Examgles:

The File Name F is returned if required.
Create: A file F is created with no components.

Change Password: New password P replaces old password
0 of existing file F. Variants include:

add password if O is empty,
change password if both O and P are not empty,
delete password if P is empty.

Rename File: The file F is renamed to become N.

Destroy: The file F owned by this account is
destroyed.

Create: The file Name must not already exist.

Change Password: This can only be done by the file
owner when the file is inactive.

Rename File: A file can only be renamed if inactive.

Destroy: The File Name (including 1lock if any) of a
file owned by this account and not currently held by
any other wuser must be provided. No file of another
account can be destroyed.

B'NEWFILENAME'

B'LOCKEDFILE[KEY]'

B'NEWFILENAME([/KEY1]'

'"CHANGENAME [NEWLOCK]1'@'NEWFILENAME[LKEY1]!
B'LOCKEDFILETKEY]!

FILE COMPONENT

NULL, WRITE,
READ
ICIRT

Forms:

BlK] F
A BLK] F
8Kkl F

Where:

Null component K of file F
Write A to component K of file F
Read component K of file F

F is File Name
K is component number
A is any APL data object

Actions/Results:

Conditions:

Examples:

Null: Destroy any prior content of component K. If
required, return the file name.

Write: Replace prior value of component K by value A,
or append to end of F is 1 + largest component number.
If required, return the file name.

Read: Return the non-null value of component K.

Null: K must be an existing component number.

Write: K must be either an existing component number
or 1 + the largest component number.

Read: The component must be non-null,

BL31'FILENAME'
2 SB[2]'FILENAME'
O«'SMITH'BL3]'FILENAME"

FILENAME

g(2]'"FILENAME'

25

d[3]'FILENAME"

SMITH

Forms:

i
M @A A M
e Bes e |

Where:

FILE COMPONENT
FIRST IN, OUT;
LAST IN, OUT

R B

Read and pop first component out of file F
Read and pop last component out of file F
Append component before components already in file F
Append component after components already in file F

F is File Name
A is any APL data object

Actions/Results:

Examgles:

JONES

11
L7

The file components may be treated as a stack or a
queue. The component at either end may be read and
removed (out). A component may be appended to either
end (in).

Out: The result returned is the indicated first (last)
component. That component must be non-null. That
component is taken out of (popped from) the file. If
first, the component numbers of the o0ld components are
decreased by 1.

In: The data object is put in the file (pushed into).
It 1is appended before (after) the existing file
components, If before, the component numbers of the
0ld components are increased by 1. If required, the
File Name is returned.

'JONES'H 'PERSONS'
'SMITH'B'PERSONS!
(2 2 p 114 7) B'FILENAME?

K

'PERSONS!

R'FILENAME!

FILE COMPONENT
ORDER REVERSE,

ROTATE
g
Forms:
B F Reverse component order in file F
IBF Rotate circularly the components in file F
Where: F is File Name
I is integer
Actions/Results:
If required, the file name is returned.
Reverse: The component order of file F 1is reversed;
i.e., the first changes with the last, the second
changes with the second 1last, etc, Reverse 1is
analogous to the primitive reverse function on a
vector. If required, the File Name is returned.
Rotate: The components of file F are rotated
circularly by an amount I. File rotate is analogous to
the primitive rotate function on a vector. If 1I is
negative, this 1is effectively a right rotate. If
required, the file name is returned.
Conditions:

Examples:

Rotate: I is effectively the (number of components)
residue of I, I=1 causes the first component to become
the last, the second component to become the first,
etc,

B'FILENAME'
20' FILELLOCK]"
38'FILENAME'

Forms:

-
B3
sl |

Where

FILE

COMPONENTS

TAKE, DROP
G

Take I components from file F
Drop I components from file F

F is File Name

I is integer magnitude in 11000
I>0 applies to components from start of file
I<0 applies to components from end of file

Actions/Results:

These are similar to the primitive take and drop
functions in the components chosen. However, they are
destructive of components dropped or not taken.

Take: The resulting file F has 1 components. If
required, the file name is returned.

Drop: The resulting file F has I components dropped.
If required, the file name is returned.

Conditions/Options:

Examgles:

Take: If the magnitude of I exceeds the number of
components previously in the file, sufficient null
components are appended to the file at the appropriate
end:

before if I<0
after if I>0

Drop: A minimum of 0 components remain.

SB'FILENAME"

T23B'FILENAME!

2M'FILENAME'

FILE COMPONENTS
COMPRESS, EXPAND

2 N

Forms:

BUF
BN F

Where:

Compress components from file F where B is 0
Expand components of file F where B is 0

F is File Name
B is Boolean vector

Actions/Results:

Conditions

Examgles:

1
1

101
010

The ordered set of file components can be compressed or
expanded. These file functions are similar to the
primitive expand and compress functions.

Compress: The result is a new component set selected
in order from the components previously in F, wherever
a l exists in the Boolean B. The components of the
original file are destroyed wherever a 0 exists in B.
If required, the file name is returned.

Expand: The result is an expanded, ordered component
set preserving the order of the original components
within which null components are inserted wherever
zeros exist in Boolean B. If required, the file name
is returned.

Compress: The 1length of B must be the same as the
number of components in the original file F: (pB)=3@F.

Expand: The number of ones in B must be the same as
the number of components in the original file F:
(+/B)=3[F.

Q'FILENAME'
1 N'FILENAME!

FILE HOLD,
FREE, RELEASE
N ¥ H

Forms:
N F Hold file F for exclusive use
MF Free own hold on file F
B F Release own use of file F
Where: F is File Name
Actions/Results:

Conditions:

Examgles:

If required, the file name if returned.

In file use shared among several accounts, exclusive
use can be achieved for critical up-dates.

Hold: If the file is not currently being held (even if
it is active), a hold is placed on the file which
prevents any other account from accessing it. If
already held by another account, hold causes a wait
until freed by that account. If required, the file
name is returned.

Free: A held file is freed from exclusive use. If
required, the file name is returned.

Release: The account's active use of file F ceases.

Hold: A hold only persists while execution continues
in a defined function (including input requests) or
single entry from execution mode. Any return to
execution mode (or file destroy while held) breaks the
hold.

Free: The actual file up-dates to a held file take
place provisionally into the wup-date file. They are
accepted as up-dates to that file all at once when the
free occurs. Any interruption before the free voids
the provisional entries.

Release: When no users have a file active, and a up~
date file exists, it is merged with the master file.
During this period when the file is being closed by the
system, it is unavailable to any user. A file is also
released by any sign-off or involuntary termination.

W' (OTHER)FILE'
M'(OTHER)FILE'
B'FILENAME[LKEY]!

FILE COMPONENT

EXISTENCE
B B
Form:
8B F Map of non-null components of file F
BF Map of null components of file F
Where: F is File Name

Actions/Results:

The results are Boolean vectors with length the number
of components.

Non null: In component order, each resulting element
is 0 if the corresponding component is null; 1 if the
corresponding component is non-null,

Null: The result is the not (logical negation) of the
non-null map: 1 if <the corresponding component is
null; 0 if the component is non- null.

Example:

B'FILE!
123 4 Q'FILE!
3 B'FILE'
B'FILE'

1 0 0
B'FILE!

0 1 1

7-10

Actions/Re

FILE SYSTEM

INTERROGATE,

STATUS, QUERY
C]

Interrogate file system
Test status of file F
Query attribute of file F

: F is File Name
I is integer single

sults:

Examgles:

7
1
14

1974

Interrogate: Usage properties across the file system
can be determined for each valid value of I:

current number of accounts using files
current total number of files that are active
maximum number of accounts using files
maximum number of active files

FEWN =

Status: The availability status of file F is returned:

file F does not exist in this account
file exists and is not active

file is active

file is unavailable

file is held by some account

NENLO

Query: The result for each valid value of I is:

1 current size of file in bytes

2 maximum size of file in bytes as established by
the installation

3 number of components in file (not more than 1000),
including nulls

4 Boolean, 1 if any modification since file was last

organized

5 number of accounts with file open
6 cycle number of last reorganization
7 last update time stamp: vyear, month, day, hour,
minute, second, millisecond as 7 element vector
B1
QR*FILENAME!

3Q'FILENAME!

7R *FILENAME?
12 31 23 59 59 999

7-11/7-12

SECTION 8

FUNCTION DEFINITION, EDITING AND EXECUTION

GENERAL.,

A defined function provides an algorithm for specialized processing.
The algorithm, or solution method, is expressed in APL terms by the
user in function definition and editing mode. This mode allows
actions to be performed that define or edit the algorithm, The
definition of the function is thus captured for subsequent execution
or editing. Many different defined functions can coexist, recognized
by their unique function names.

Execution of a3 defined function is similar to execution of a primitive
function: it can be elaborated when the values for its actual
arguments are determined. A defined function that returns an explicit
result can be used similarly to APL primitive functions in composition
of APL expressions.

FUNCTION CONTENT.

A defined function has a header line and a body. The header line
begins with a template and optionally may include a list of local
names, each preceded by a semicolon.

A function template determines the syntax required for its execution.
A defined function may have any of the six templates:

niladic monadic dyadic

Returns explicit result: ReF Re«F B ReA F B
Returns no explicit result: F F B AFB
Where: R is the local name for the function result

F is the function name

A is left local argument name

B is right local argument name

The names R, F, A and B must all be distinct. F must not have any
current global meaning.

When the function is called to be executed, the argument local names A
and B are established initially to have the argument data objects as
values. Thereafter within the function the names A and B can be used
like any 1local name. When the function execution is completed the
meaning of the result local name R (a data object or undefined) is
the function explicit result.

A local name is a name that can be attached to a data object (or fixed
function) without affecting any use of that name outside (at a more
global level than) the function. This determination is made for each
instance of execution of a function. A name in the local name list
has no meaning until given one during execution of the function.

System variables and the character input prompt communicator may also
appear in a local name list. Until assignment to a system variable is
made within the function, the global value is retained. This permits
the calling environment to affect the returned result.

A function body has zero or more lines. Each line must have at least
one of the following, in left to right sequence in the order given if
more than one:

labels, each terminated by colon L1:

branch transfer of control +L2
APL expression »y X+3+4
comment A NOTE

For example, a line containing all parts is:
L1:2L2,X«3+4n NOTE

Each line of the body has a line number: The first line is line 1,
the next line 2, and so on. When displayed in function definition and
editing mode, each line is preceded by a bracketed prompt including
the line number.

Sample Function

V AVE«AVERAGE VALUES;SUM;SIZE
(1] SUM«+/VALUESa SUM OF VALUES
[2] SIZE<«p ,VALUESA SAMPLE SIZE
(3] AVE«SUM+SIZE
(4] LABEL:m AVE«(+/VALUES)*p ,VALUES
v

The header line here defines a monadic, value returning function named
AVERAGE with five local names: argument VALUES and explicit result
AVE; 1local names SUM and SIZE, and label LABEL. Line 4 illustrates a
labeled 1line containing as a comment an alternative and generally
preferable algorithm that could be used to determine the average, if
the comment character were removed. The initial and final v 'Del’
characters bracket the function.

Forms:

L:

Where:

Results:

Conditions:

BRANCH,

TERMINATE,
LABEL (1)
>
Branch to line E
Terminate
Label
E is a line specifier expression yielding a non-
negative integer scalar or vector value
L is a named local constant

Branching and terminating are the means to alter line
control flow from the normal next line in sequence in
defined functions. Labels provide names for lines.

Branch: After the 1line containing the branch is
elaborated, the path of control transfers to the next
line to be executed as determined by the non-negative
integer value of the first element of E:

Value of first element of E Next execution

a line number that line
empty numeric vector next line in sequence
0 or greater than last line exit to caller

Terminate: Stop execution of this function and all
functions pending its completion.

Label: A 1label is a local constant name used as a
destination for branching. A label has as its value
the number of the line in which it appears followed by
a colon. One or more labels, each followed by a colon,
may occur on any line. All labels must precede any
branch, expression or comment on a line. No assignment
of value to a label is permitted. Each label name must
differ from the function name or any other local name
in the function. Because function editing may cause
line numbers to change, labels may be used to identify
targets for branching. Labels are attached to 1line
contents and so automatically change their values as
function lines are renumbered through editing.

Branching and terminating apply to the function on top
of the state indicator. That function is either being
executed or suspended. If suspended, entry of a branch

8-3

BRANCH,
TERMINATE,
LABEL (2)

<>

applies to relieve the suspension and continue

execution. Terminate abandons execution of the
function and any other functions pending its
completion.

The comparison tolerance applies to determine if the
first element of the value of non-empty E is an
integer.

Branching in execution mode is ignored if there is no
state indicator, otherwise it applies to the most
recently suspended function.

In a user defined function, the branch or terminate
function may only appear as the leftmost function on a
line. Only labels may appear to their left.

No branch to any line in any pending function, other
than the return to the point of call, is automatically
provided. To achieve this the returned value may be
used to select the desired line as target of a control
transfer in the pending function when it is
reactivated.

The constant value of a label may be referenced as a
global value in a function called from the function in
which the label is defined.

Examgles:

Typical branching expressions include:

-+ A GO TO L
+0 a EXIT THE FUNCTION
+B/L a IF B=1 THEN GO TO L ELSE CONTINUE (B=0)
+(L1,L2,L3)[N] » BRANCH TO L1 IF N=1, L2 IF N=2, L3 IF N=3
+N+LO,L1,L2 A BRANCH TO LO IF Ne 2 "1 0, TO L1 IF N=1, TO
p L2 IF N=2, ELSE CONTINUE
+>(xE)6L2,L3,L1 a BRANCH ON SIGN OF E: TO L1 IF E<0, TO
R L2 IF E=0, TO L3 IF E>0
+y+0LC A BRANCH TO CURRENT LINE + N
+BxL n EXIT IF B=0 ELSE TO I IF B=1
- A TERMINATE
Where: L, LO, L1, L2, L3 are line number specifiers

B is Boolean
E is expression yielding numeric single
N is integer

FUNCTION EDITING ACTIONS.

A defined function is created and edited in function definition mode.
This mode is entered using the character Vv, followed by the function
header if this is a new definition. If the function already exists,
the v is followed by only the function name (and an optional action
specification to be described).

The function definition mode may be recognized by the display of a
bracketed prompt starting at the left margin. This prompt is the
default action specifier indicating a line number where the next entry
will appear unless overridden by an alternative action. This prompt
is generally to a non-existent line (the next line in sequence), so no
current line will accidentally be replaced.

To begin defining a defined function, the initial line entered is the
header. The prompt returned is [1], the default action specifier for
the next entry. An entry following the default action specifier not
commencing with a V, # or a [causes the line referred to by the
prompt to receive the entered string of text, and then a new prompt to
be returned (if the text string is syntactically valid).

If the last character entered after the prompt is a v or #, function
definition terminates and the five character indent prompt is received
indicating the return to execution mode.

Six classes of function editing actions will be described:

Function definition, open and close
Line replace, append or insert

Line content edit

Line group diagnostic aids

Line group display

Line group delete

Each action 1is recognized by its unique form. The action specifier
encloses this form in brackets.

If an action is entered at the start of an entry, it overrides the
displayed prompt for that line.

The numbers associated with (but not part of) lines of the function
body are always the continous set of integers starting with 1 for the
number of body lines. The header is referenced as line 0. If lines
are inserted or deleted, line numbers larger than the smallest line
affected by the action will be renumbered.

Most action specifiers identify the line(s) to which they apply by
inclusion of one or two line number specifiers. A line number
specifier has an integer value of an existing line or sometimes 1 +
the last line number. This value may have any of the forms:

integer absolute line number
label existing in function
label + integer relative to and following label
label - integer relative to and preceding label

8-5

FUNCTION
DEFINE, OPEN,

CLOSE ACTIONS (1)

ve

] Y

Actions:

next prompt

Define function header H [1]
Open defined function with name F [2]
Open own locked defined function F [z]
Close open function indent 5
Close and lock open function indent 5

H is function header for new function
F is existing function name
Z is 1 + the last line number

Function define or open changes system mode from
execution to function definition and editing. Function
close returns to execution mode.

Define: Create a new function with header H. H has
the form of one of the templates, possibly followed by
a list of local names each preceded by a semicolon.
The function name in the template must not already have
current global meaning.

Open: Reopen an existing defined function. The open
entry can include an action specifier and text if
desired.

In either case the prompt displayed is the bracketed
line number of the next unused line, unless the open
with action overrides.

Close: The close symbol (only entered as the last non-
blank character of a line) closes the function and
returns to execution mode. It c¢an follow a prompt, or
any command except full edit.

In place of the V character if # is used with close,
the function is locked. Subsequent opening using
the # can only be done by the workspace owner loading
(not copying) the workspace in which the function was
created. A locked function cannot be opened if it is
copied into another workspace or loaded into the
workspace of a another account.

Examgles:

(1]
[2]

[21]

(31

FUNCTION

DEFINE, OPEN

CLOSE ACTIONS (2)
v e

During execution of a locked function, user initiated
ATTN or any error encountered causes function exit, and
passes any error message to the caller environment,
Line trace and suspend within a locked function are
ignored, even though their settings are retained should
the function be subsequently unlocked.

VR«F X;YV

VF
LABEL1:Y+«LINE Xa LINE IS A FUNCTION
»

BF
LABEL2 :R+G X+Ya G IS A FUNCTIONV

VF
v

The first example creates a function header and then
immediately closes, effectively reserving a name for
subsequent function editing which will provide the
function body.

The next open returns the prompt [1]. The content of
line 1 is then entered. After the prompt [2], the
function is locked.

The next open of the locked function must use %. The
prompt is now [2], the first unused line. That line is
given content and the function unlocked by the close
with v, here done at the last character of the entered
line.

The final open demonstrates that the function 1is now

unlocked., After the prompt [3] the function is again
closed.

8-7

FUNCTION LINE
REPLACE,

+ ¢

Forms:

[A]lT
(+]1T
{(+B]T
[+]T
[+ClT

Where:

Actions:

Conditions:

INSERT
ACTIONS (1)

next prompt if T is

empty non-empty
Text of line A is replaced by T [A] {z]
Insert text T before prior line 1 [+1] [+2]
Insert text T before prior line B [4B] [+B+1]
Insert text T at end [2] [2]
Insert text T after line C [+C] [(+C+1]

is existing line specifier or 2

is existing line specifier except 0
is existing line specifier

is text string or empty

is 1 + last line specifier

NSO

If T is empty, the entered action specifier becomes the
next prompt, otherwise the text of T becomes a line.

Replace: Replace the prior content of 1line A (if A
exists) by T. Replace causes no change to 1line
numbering.

Insert before: Create a new line B with content T and
increase by one the line specifiers of the former
lines starting with B (or Z). The next prompt allows
continued insertion before the same o0ld line, whose
number increases by 1 for each insertion.

Insert at end: Create a new last line with content T
without affecting any prior line. Same as replace
entry to line Z.

Insert after: Creates a new line with content T, and
increases all former 1line specifiers larger than C by
one. The next prompt allows continued insertion before
the original 1line C + 1, whose number increases by 1
for each insertion.

If C has value Z-1 then the action is the same as
insert at end, and the next prompt is 2.

Examgles:

(3]
[+2]
[51]
[+4]
[+5]

(1]
(2]
(3]
[4]
(5]
(6]

FUNCTION LINE
REPLACE, INSERT
ACTIONS (2)

+ ¢

If the text T is empty (the entry contains only one of
these action prompts) this prompt becomes the next
prompt instead of the one indicated above (a 1line
without content is not allowed). By this means, using
the replace action it is possible to have the default
prompt refer to an existing 1line. Subsequent entry of
text only (without another action) destroys the prior
content of the line.

VPL2)R«Y+3

(4]a NEW LINE 1
[+]a LAST LINE
[+43]1a NEW LINE 3
A AFTER 3

V ReF X;Y

v

A NEW LINE 1
LABEL1 :Y+«LINE Xa LINE IS A FUNCTION
A NEW LINE 3

A AFTER 3
R«Y+3
a LAST LINE

FUNCTION LINE
EDIT ACTIONS (1)

€ O W

Forms:

[eA]
[aA]
[aA]lT
[wA]
[wA]T
[1A]

Where:

Actions:

8-10

1

next prompt

Full edit line A (2]
Prefix edit line A after line number [2]
Prefix text T before text of line A [Z]
Suffix edit line A (2]
Suffix edit text T after text of line A [z]
Inject text of line A to last executed [Z]

APL expression

A is a specifier of an existing line
T is text string
2 is 1 + the last line number

Full Edit: Display line A, and return carrier to left
margin awaiting edit position controls entry under any
characters of line A. These controls may only include
spaces, periods and slashes: space indicates no
change, 'L indicates phrase terminator before
character above, '/' indicates delete character above.
Upon next RETN, the first phrase is displayed ready for
normal entry typing. Each subsequent ATTN with cursor
to the right of the current display brings the next
phrase. Any RETN causes entry of the line as it
appears. If there are no more phrases left, an ATTN
acts like a RETN. During any phrase, ATTN not at the
rightmost attained display position acts to delete
display characters above and to right, but not
undisplayed phrases. The entire line (including
prompt, labels, APL expressions, and comments) may be
edited. There must be at least an action specifier
remaining when the entry is made.

Prefix Edit: This edit bypasses the edit position
controls entry and assumes a single '.' was entered
after the bracketed line number. This command displays
the prompt, then awaits entry. This is useful either
to change the 1line number within the prompt (and thus
make a second copy of the original line) or to place a
label or further expression at the start of the
existing line.

Prefix Edit with string T causes the string to become
the leftmost part of the line following the prompt,
without displaying the line.

FUNCTION LINE
EDIT ACTIONS (2)
€ 0w 1l

Suffix Edit: This edit displays line A and awaits text
entry at the end. A change near the end of a line may
often be made more quickly using this action (by
backspaces, ATTN, then correction) than using full
edit.

Suffix Edit with string T appends T to the end of line
A, without displaying it first.

Inject: Place a copy of the content of line A into
"the 1last executed APL expression”, available for
examination, alteration and execution in execution
mode. Only the last inject done in function definition
and editing mode applies at function close. If no
inject is done, then the most recently executed APL
expression is unchanged by function mode actions.

Conditions:

Examgles:

[1]

(1]
(713
[2]

An edit that removes all non-blanks from the 1line is
the same as a new action. No edit can remove the
action. Changing the line number relocates a (possibly
edited) copy of the line. The original 1line remains:
if it is labeled, the line copy will only be permitted
if the label is changed.

Text insertion as part of prefix or suffix edit actions
does not provide visual fidelity since only the change
to the line is shown.

VFlel]
a NEW LINE 1
///7.
a EDITED PHRASE IN LINE 1
[w2]
LABEL1:Y+«LINE Xa LINE IS A FUNCTION
v
MONADIC FUNCTIOR
[al1]
Xa EDITED PHRASE IN LINFE 1
[(121v

LABEL1:Y+«LINE Xa LINE IS A MONADIC FUNCTION

1111777
Y«LINE Xa LINE IS A MONADIC FUNCTION

8-11

FUNCTION
MULTILINE GROUP
SPECIFIER (1)

Actions having potential effect on more than one 1line use the
following forms for indicating the lines in the group. The
character o is used to indicate any one of the allowable actions.

Unqualified: applies to all lines in the range.

Form Line Range
[o] 0 thru Y
[oA] A only

[Ao] A thru Y
[AOR] A thru B

Name Qualified: applies to only those lines within the inclusive
rancge that contain the name X.

Form Line Range
[(0X)] 0 thru Y
[(oX)A] A
[A(oX)] A thru Y
[A(oX)EB] A thru B
Where: 0 is any multiline function editing action, one of

T+ LnuvlD 2?2 ~

is line number specifier: 4e 0, 1Y
is line number specifier not less than A:

volieeg

B €4, A+\Y-A

X is name of label, function or variable
Y is number of the last line defined for function

FUNCTION
MULTILINE GROUP
SPECIFIER (2)

Examglesz

To 1illustrate line specifier use, the action character 0 (display
lines) is used.

vFLO]

V ReF X;Y
[1] n NEW LINE 1
(2] LABEL1:Y+«LINE Xa LINE IS A FUNCTION
£31] n NEW LINE 3
(4] a AFTER 3
(5] R+«Y+3
[6] A LAST LINE

[71 [LABEL1+104]
[3] n NEW LINE 3
fu] n AFTER 3

[7] (503

£5] R+Y+3

(6] A LAST LINE
£7] £013

(1] n NEW LINE 1

[71] [(OLIne)]

(2] LABEL1:Y«LINE Xa LINE IS A FUNCTION
[71 £3(0y)1

[5] R+Y+3

£71 v

Note the initial display action VvF[J], does not include a close, Vv, at
its end. Therefore, after the display of the entire function, Vv is
shown to indicate that 1line 6 was the last defined line; then [7]
prompt is given. This indication only occurs if the entire function
is displayed. The 7 in [7] is 1 + the last line, and appears after
each of these examples and serves as a default for entry of a next
line unless a new action is specified. In each of the above cases, a
new display action 1is specified following the [7]. All other lines
above are the result of these display actions.

The qualified use of the name LINE does not recognize occurrence of
LINE in comments, in quotes, or as part of another name.

8-13

DIAGNOSTIC

FUNCTION LINE

GROUP ACTIONS (1)

TLlT L nu

Forms:

(r]
[1]
(rl
(Ll
[n]
Lul

Where: 2

Actions:

system function next prompt

Set trace gsr (2]
Reset trace ORT {z]
Set stop 0ss (2]
Reset stop Ors (2]
Set monitor OsM [2]
Reset monitor ORrRM [2]

is 1 + last line number.

These actions are analogous to the system functions by
the same names, except that they are entered in
function definition mode, and may only refer to a group
of contiguous 1lines, possibly name qualified (the
principal advantage). Both these actions and the
system functions have the same execution effects.

Trace: Upon completion of execution of a line on which
trace is set, the function name and bracketed 1line
number is printed followed by the type (N numeric, B
Boolean, C character), shape in parentheses, and value.
Trace of line 0 refers to the returned value (if any)
on function exit.

Stop: Upon transfer to a line on which stop 1is set,
the function suspends there, the function name and
bracketed 1line number are displayed followed by an
asterisk. Control returns to execution mode for user
examination or alteration of the current state. Stop
on line 1 causes suspension after actual arguments are
assigned but before any processing in the body. Stop
on line 0 causes suspension before actual return to the
caller, so all local names still have values.

Monitor: Upon completion of execution of each
monitored body 1line, the computer time there consumed
is accumulated in a counter for that 1line. The
precision of this time is 2.4 microseconds. This time
excludes time spent within any user defined functions
called in that 1line. (Such time may be separately
monitored in their own body 1lines). Monitor of line 0
provides a count of the number of calls on the
function. The display unit for these times is
milliseconds and the result is rounded, (OMV gives the
ceiling of the time instead).

Conditions:
The forms
Examples:

vF[O]

V R«F X;Y
[1] an NEW LINE 1
£2]1 LABEL1:Y<LINE Xna
[£3l n NEW LINE 3
[u] a AFTER 3
[5] R+Y+3
(6] a LAST LINE

v

vFLT]
{71 ([(TR)]
(7] ([(nY)]
(71 v

DQT'F'
1 1 1 1 1 1

DQS'F'
1 0 o 0 1 0

DQM'FI

DIAGNOSTIC

FUNCTION LINE

GROUP ACTIONS (2)
TL [l L nu

for the range of lines specified resulting

from inclusion of left and/or right line specifiers and
parenthesized name qualifier apply.

1 0 0 1 0
VFLLABEL1(uY)]V
DQM'F'

0 0 0 0 O
VF[(nLINE)]V

LINE IS A FUNCTION

OgM'F' o ADDITIVE, NOT IN COMMENTS

i1 0 0 0 O

8-15

DISPLAY

FUNCTION LINE

GROUP ACTIONS
gz

Forms:

adl
(2]

Where:

Actions:

Conditions:

ExamEles:

vFLO]
V R<+F
[1] a NE
[2] LABEL

next prompt

Display lines [z2]
Display vector of line numbers [2]

Z is 1 + last line number

Lines: display lines causes display with bracketed
line numbers followed by text of all indicated lines.

Numbers: display numbers causes display of the numbers
of all 1lines in the indicated range. This is useful
where name qualified.

The forms for the range of lines specified resulting
from inclusion of left and/or right line specifiers and
parenthesized name qualifier apply.

Name qualification displays the line number but not the

header 1line content, should the name occur 1in the
header, line 0.

XY
W LINE 1
1:Y«LINE Xmn LINE IS5 A FUNCTION

{3] A NEW LINE 3
(4] A AFTER 3

[51] R«Y+3
[6] A LAST LINE
v

VF[1(0OY)1
[2] LABEL1:Y«LINE Xa LINE IS A FUNCTION
{51 R«Y+3
(73 [(?2Y)]
2 5
[7] C(OLINE)]
{2] LABELA:Y«LINE Xa LINE IS A FUNCTION

{71 v

8-16

Form:

(~]

Where:

Action:

Conditions:

Examgle:

(71
(6]
Cu]
(3]

(1]
[2]

VF
[~6]
[3~u
(o~1
colv

DELETE
FUNCTION.- LINE
GROUP ACTION

~

next prompt

Delete lines in indicated range [z]

Z is 1 + last line number remaining

The 1lines in the indicated range are deleted. If
qualified, only those lines containing the gualifying
name are deleted.

Deleting lines causes renumbering of lines after the
first deleted.

The effect of [~0] is only to eliminate the local names
list from the header; the template cannot be deleted,
and thus the line remains.

The forms for the range of 1lines resulting from
inclusion of left and/or right 1line specifiers and
parenthesized name qualifier apply.

If a sequence of deletions (or line insertions) is to
be done, they should be done from the bottom up so that
renumbering will not effect the previously known line
numbers.,

]
]

V ReF X

v

R+«Y+

LABEL1:Y+«LINE Xa LINE IS A FUNCTION

3

DEFINED FUNCTION EXECUTION.

The execution of an instance of a defined function begins when the
function is called (appears in an expression being executed) either
from execution mode or by another function., From the instant
execution of an instance of a function begins until the execution of
the instance of the function is completed, the function is active. An
active function is either in process of being executed, or may be
suspended or pendant. A pendant function is one which is awaiting
completion of a function it called. A suspended function is one whose
execution was stopped for some reason other than a call to another
function.

SCOPE OF NAMES.

A name can be global, having existence in the workspace independent of
an execution of a defined function. It can also be specified as
local in a defined function. The existence (scope) of a local name
is then no longer (in time) than the instance o the function is
active to which it is 1local. A local name to one defined function
becomes global to any function called from that function. A global
name becomes inaccessible while an instance of a local use of the same
name exists.

A local variable or function can be dynamically expunged from within
the function to which it is local. The name is still local, so a more
global instance does not become accessible.

The importance of scope is its aid to structured programming. Names
that are of no consequence outside the function to which they are
local need only be contained (and thus known) therein. Understanding
at the global level is not confused by these extraneous names.

EXECUTION COJTROL SFQUENCE.

At function call, the values of arguments are bound to their
equivalent local arguments. 2All local names are established. If any
of these names already had more global meaning, that meaning is
shielded while that instance of the function is active.

Execution begins with control at line 1 of the function. Within each
line order is right-to-left elaboration of primitive or other defined
functions. VWhen a 1line is completed, control moves to the next line
in sequence unless explicitly altered by a control transfer.

Function completion occurs when control transfers to line 0 or some
other non-existent line (including implicit last 1line plus 1). 1If an
explicit result variakle is included in the function header and is
required by the call, a value must have been assigned to it prior to
completion. The last such executed assignment is the value returned
by the function.

8-18

MULTIPLE INSTANCES.

More than one instance of execution of a function may be active at the
same time. This can result from unrelated calls on the same function
name (directly or indirectly via call from some other function) while
the earlier instance is pending or suspended. This is generally to be
avoided as extra space is consumed. Recursive function calls are
permitted, which also causes multiple instances.

RECURSIVE FUNCTIONS.

A function is recursive if completion of one instance of its call can
require another call on another instance of the same function.
Recursive functions are the natural means to formulate some
algorithms. A directly recursive function includes a call on itself.
An indirectl recursive function 1includes a call on some other
function that either itself calls the first, or includes in its call
sequence one that does. The number of instances is limited by the
amount of space required for each instance and the amount of space
available in the workspace.

Determination whether or not a function is potentially recursive is
generally not possible. Recursion 1is a dynamic property of an
instance of a function, determined by data values. The appearance of
more than one instance of a function in the state indicator without
intervening suspensions does indicate recursion. An intervening
suspension does not necessarily indicate whether a reappearing
function is recursive.

Static function content examination may detect potential recursion.
Since dynamic control flow is generally not known, actual recursion is
even less readily recognized. If the evaluate primitive and function
fixing are excluded, it is possible to detect potentially recursive
functions by recognizing the reappearance of the function name within
itself, or in a function in any potential static call sequence of
other functions from it. This process is complicated since a name may
be in some contexts either a variable or a function, only known
dynamically. If the source data object for function fixing is known
and examinable, it can be handled as above. The source may not be
known; it may be any expression. Since evaluation or fixing of a
general expression is permitted, in general no static examination will
suffice to detect all potentially recursive functions.

8-19

SUSPENSION OF DEFINED FUNCTION EXECUTION.

The normal 1line-to-line path of control resulting from defined
function execution may be interrupted by execution suspension.
Suspension occurs in three ways:

The path of control reaches a line with a stop set on it.

The user enters one or two ATTN during function execution or

output. The first kills output and suspends after completing any

line in progress. The second may interrupt mid-line.

An error occurs in the line recognizable only during execution.
The result of suspension 1is a return to execution mode after

displaying the suspension prompt, typically for line 3 of the function
named RUN as

RUN[3] =

While execution of a function is suspended, it is still active. The
user may do most of the things normally available in execution mode,
but in the environment defined by that instance of the function:

examine or alter values of local or unshielded global variables
create new variables or define new functions

enter expressions or system commands for evaluation

alter the most recent suspended function by edit actions

No pendant or suspended function other than the most immediately
suspended one can be altered. (They can be displayed and diagnostic
aids changed). The header line cannot be changed in the suspended
function. No pending or suspended function may be expunged.

Execution of the suspended function may be resumed. To resume on the
line specified by expression N (which need not be the same as the line
where suspension occurred), enter:

>N

Termination of the execution of the suspended function (and any
pending 1ts completion) may be achieved by entering

->

The response to termination is a reminder of the suspension prompt for
the immediately prior suspended function if any; followed by the
execution mode prompt.

It 1is good practice to eliminate all suspensions soon after they
occur, as suspended and pendant functions take up space in the
workspace. The user should usually avoid a second execution of a
function from the beginning after execution is suspended.

The)RESET system command may be used to remove all suspended
functions at once, rather than entering a sequence of terminates.

8-20

DEFINED FUNCTION EDITING USING APL FUNCTIONS.

An alternative to line-at-a-time function editing exists: edit a
data object that represents a function, then fix it back into a
function again.

The canonic representation [JCR is a convenient means to create a
data array from a function with one row per line. In this form,
user defined functions can be used to select or rearrange lines.
Simple defined functions permit merging separate function bodies or
selecting line groups to become the body of a new function.

The alternative vector representation OVR of a function is
convenient for name replacement or other contextual editing.

After completion of editing on these APL variables, they may be
refixed into functions by OFX. If the function name in the header
is unchanged, the old version must be purged using OEX or)ERASE
first.

DEFINED FUNCTION DOCUMENTATION,

One approach to documentation is to have function pairs: one
executable, the other containing the documentation (each line a
quoted string). A common way to relate the pair is to suffix the
executable function name by 'HOW'. This method sacrifices the
proximity of the functions to their descriptions. The space saving
results from erasing or excising all the 'HOW' functions before
execution. An alternative is to save the 'HOW' as a variable. The
vector representation is useful in that it can readily be fixed for
changes.

A second approach is to maintain two equivalent workspaces: one for
documentation, the other for execution. The documented functions
can have copious comments and descriptive names., Then this
documented workspace 1is saved and a copy of it edited to shorten
these names and eliminate comments. This condensed workspace
becomes the working version.

A third approach is to maintain vector representations of functions
as file components. Vector representation 1is preferable to canonic
representation for this purpose as it is generally more compact.
Selective fixing of needed functions and expunging of extraneous
functions can be used to save much space. The documentation can
normally be 1left in the file components, Either of the previous
approaches can be used in conjunction with this to minimize the size
of the vector representation that is wused as the basis for function
fixing. If the name of a function to be fixed is in the local names
list of a small "cover" function which fixes it then automatic
expunging occurs upon exit from the cover function.

8-21/8~22

SECTION 9

ERROR REPORTS AND THEIR INTERPRETATION

GENERAL.,

The APL/700 system includes a comprehensive error-reporting capability
that helps to determine the cause of error, the specific location, and
the corrective action. This section provides descriptions of the
various error reports and sufficient information to aid the wuser to
interpret and correct errors. A complete 1listing of error reports is
contained in Table 9-1.

ERROR REPORTS.

An error message line displayed on the terminal starts at the left
margin. It indicates the error message text and is surrounded by
asterisks.

*x%x SYNTAX ERROR *%%
Additional lines may be displayed, depending on the particular error.

If the error is detected in an execution mode entry the second line
indicates the point(s) at which the error is detected. The third line
is the entry in error. An ATTN entered here recalls this entry for
inline editing. (See Section 2.)

8 6 7-5 3
*xx LENGTH ERROR *%%
v
8 6 7-5 3

An error detected during attempted execution of a line of a user
defined function results in the error report, then a line containing
the function name and bracketed 1line number, asterisk indicating
suspension on that line, then the 1line content. The next 1line
indicates the error position(s).

TEST
*x%x LENGTH ERROR *%%
TEST({1]l* 3 4+4 5 6
A

The return to execution mode allows examination of the process state

and adjustment if desired. The suspended function can be opened or
altered as desired. Execution may be resumed.

9-1

Note the down-caret v indicates that the error is in the last entered
expression and is available for error correction. The up-caret A is
displayed otherwise.

Two additional 1lines may appear if the error is detected during an
attempted evaluation. These lines indicate the errored position in
the string being evaluated. They occur after the error message.

o1 2 3+4 5!
k LENGTH ERROR *%%
v
1 2 3+4 5
v
2'1 2 3+4 5!

A similar indication occurs for an error in evaluation during
execution of a function line. Note the difference in caret use.

TRY
**%x LENGTH ERROR **x
v
1 2 3+4 5
TRY[1]x ¢'1 2 3+4 5"
A

If any characters other than ' ', '/' or '.' appear in the edit
specifier of a line edit, the one line error message appears.

1 2 3+4 5
2
k% EDIT ERROR *%%

The REPORT column of Table 9-1 lists in alphabetical order the error
report texts. The DEFINITION column provides the corresponding system
interpretati n of the cause for each error report. Where applicable,
corrective a:i:tion is indicated.

The basis for error reports 1is system inability to complete an
indicated transaction. The report identifies what is found to be
wrong; it does not try to prejudge a correction.

If the user types a parenthesis in the wrong location, or omits a
required en*ry, the system can only report what problem it encountered
as it tried to execute the instruction, it can't tell the user what
should have been typed. This has to be determined by the user alone.

Normally, when the error occurs, the expression has to be edited or
reentered. The value of an intermediate expression within the
instruction is not saved, unless the instruction specifically directs
that it should be assigned to a name. This arises only when a
specification arrow was executed earlier than the caret that indicates
where the trouble is. If the result of an intermediate step has been
assigned only the unexecuted part of the entry has to be reentered.

The following paragraphs give samples of how some of the more common
errors may occur.

When the user attempts to enter an expression whose syntax is invalid,
the "SYNTAX ERROR" message is reported. Examples causing this error
include: two variable names appearing without an intervening
function, a missing function argument, or unmatched or mispaired
parentheses or brackets (several caret marks may result).

Incorrect usages of the definition mode include: embedding the del (V)
not within quotes in a line entry, attempting to alter the definition
of any active function not on top of the state indicator, or to alter
the header 1line of the suspended function on top of the state
indicator, attempting to start a new definition for an existing
function whose header contains a result, an argument, or a local names
list, and entry of an incorrect action request.

When an argument to a function contains an element outside the domain
for which the function is defined, a "DOMAIN ERROR" message is
reported, for example, an attempt to divide a non-zero value by zero.

A "TYPE ERROR" message is reported if the type is incorrect for the
function. Examples are attempts to perform arithmetic on character
objects, catenation of character with numeric objects, or character
object insertion into a numeric array.

A "VALUE ERROR" message indicates that the expression being elaborated
references a name for which no value has been assigned. Causes are
failure to assign a value to that name to make it a variable,
misspelling the name, or failure to define a function of that name. A
value error will also arise if the result of a defined function is
required but the function definition or execution fails to provide
one.

A "RANK ERROR" message indicates that the arguments to a dyadic
function are non-conformable or an argument has improper rank for the
particular function. Some functions (such as the left arguments
of 11 or ®8) can take arguments only of rank 1 or rank 0. Grades
require a rank 1 argument.

Any error report on any system command indicates failure to process.
There are no side effects of partial processing.

Any system response not enclosed in asterisks is information only, it
does not indicate an error. For example

JERASE X
NoT X

ok ok Report L2 F

ACCOUNT ACTIVE

ACCT-NAME ERROR

BUFFER LIMIT

CHARACTER ERROR

CONTEXT ERROR

CONTROL ERROR

DEFINITION ERROR

DIMENSION ERROR

DOMAIN ERROR

DUP-NAME ERROR

EDIT ERROR

FILE ACTIVE LIMIT

FILE ALREADY EXISTS An attempt was made to

Table 9-1
Error Reports (1)
Cause

An attempt was made to sign on an account that is
already signed on to APL.

A reference was made to a nonexistent account, or
the name was improperly formed.

An attempt was made to execute a string longer
than the buffer, or an attempt was made to set the
prompt to be a string longer than the buffer. The
buffer length is 1620 characters.

entered. The locations
are indicated by the

An invalid overstrike was
of the invalid overstrikes
squish quad (0) symbol.

its current

A name was used out of context with

definition.
A parameter to a command was incorrect.

An attempt was made to define a new function with
a name that already exists, or the function header
was improperly formed. (Refer to Section 8.)

The dimension specified does not exist. (This
occurs with a function that can be applied on one
of several dimensions.)

The argument of a function (or any element of it)
was outside the acceptable values for that
argument to the function.

An attempt was made to give a local name multiple
definitions, or to repeat a label.

Something other than a ' ', '/', or '.' editing
control symbol was typed beneath a line when using
the full edit action.

of files
files

The wuser has the maximum number
permitted; no more requests to make more
active can be accepted.

create a file that already
exists.

#%% Report ***

FILE

FILE

FILE

FILE

FILE

FILE

FILE

FILE

FILE

FILE

FILE

FILE

FILE

ERROR

INDEX ERROR

LOCKED

NAME ERROR

NONCE ERROR

NONEXISTENT

QUOTA LIMIT

SPACE LIMIT

SYSTEM ERROR

SYSTEM LIMIT

UNAVAILABLE

USERS LIMIT

VALUE ERROR

FORMAT ERROR

GRP-NAME ERROR

INDEX ERROR

Table 9~1 Error Reports (2)
Cause

Either execution of APL was halted or a line-~drop
occurred while a file operation was in process.
The file operation may or may not have been
completed.

An attempt was made to read or write a component
of a file with index value more than one larger
than exists in the file.

Either no password when required or an incorrect
password was used in a file reference.

An attempt was made to use an improperly formed
name as a file name.

The file operation referenced is not presently
implemented.

The referenced file does not exist.

An attempt was made to create more files than the
account is permitted.

The space reserved for the file has been
exhausted.

An unexpected execution error occurred in the file
system. (This should be reported to the system
manager; all relevant output should be saved.)

The maximum number of files allowed to be active
are currently active; no more requests that
activate a new file can be accepted at present.
The referenced file is unavailable at this time.
The maximum allowable number of file users are
currently using the file system; no more file
users can be accepted at this time.

An attempt was made to access a null component of
a file,

The left argument to the format function is not a
valid format.

A reference was made to a nonexistent group.

An index into an array was out of the array
bounds.

% %k %k Report * %k &

INTEGER LIMIT

INTERRUPT ERROR

LENGTH ERROR

NAME ERROR

NONCE ERROR

NUMBER LIMIT

PASSWORD ERROR

RANK ERROR

RANK LIMIT

SHAPE ERROR

SIGN-ON ERROR

SIZE ERROR

SPACE LIMIT

STATE ERROR

Table 9-1 Error Reports (3)

Cause

A number larger than the largest integer that may
be represented by the machine was used where an
integer was needed. The magnitude of the largest
integer is 549755813887 <«»> ~1+8%13.

An error was forced at a non-suspendable point by
striking the attention key twice.

The length of a vector is incorrect for a function
using one or more vector arguments.

An argument to a system function requiring a name
was given an improperly formed name, or a name
with incorrect meaning was given.

An attempt was made to use a feature that is not
presently implemented.

The result of a computation is a number with
magnitude greater than the largest number that the
machine can represent. The magnitude of this
number is 4.31359146674E68 <+ (1+8%13)x8%63,

An incorrect password was used.

The rank of an object is incorrect for the
function to which it is an argument.

An attempt was made to create a structure whose
rank was greater than 16, the maximum allowable.

The shapes of objects are incompatible for the
function to which they are arguments.

An incorrect sign-on entry was made.

A one—~element object was needed as an argument to
a function, but it was not found.

An attempt was made to use more space than is
available in the active workspace.

A edit request was made on a function which could
cause the state indicator to be incorrect if the
edit were performed.

* %k % Report % %k

SV - QUOTA LIMIT

SV - SPACE LIMIT

SV - UTILITY ERROR

SYMBOLS LIMIT

SYNTAX ERROR

SYSTEM LIMIT

TIME-QUOTA LIMIT

TYPE ERROR

VALUE ERROR

WS-NAME ERROR

WS-QUOTA LIMIT

Table 9-1 Error Reports (4)

Cause
An attempt was made to share more variables than
the processor is permitted to share.

An attempt was made to use more shared variable
space than the processor is permitted.
variable to an

An attempt was made to offer a

undefined utility.

An attempt was made to create more symbols than

there is space for in the symbol table. (Unless
otherwise specified by the user, there is space
for 256 symbols.)

The syntax of the APL expression entry is
incorrect.

APL encountered an unexpected error during
execution. (This problem should be reported to
the system manager; all relevant output should be
saved.)

This error occurs once an account has exceeded its
computer usage gquota. The user session 1is then
terminated, and the quota must be increased before
the account may use APL again.

the

The type of an argument is incorrect for

function being done.

An attempt was made to use a name as an argument
for which no value has been specified.

A reference was made to a nonexistent workspace,
or the name was improperly formed.

A)SAVE could not be executed because the account
has wused all available workspace slots. Some
workspace must be dropped, or the workspace quota
for the account must be increased.

9-7

UNIMPLEMENTED CONSTRUCTS.

Some constructs previously described are not implemented in the 2.7
release of APL/700.

1.

A "SYNTAX ERROR" results from an attempted dimension
selection from the anti-origin for the structure mixed
primitive functions: '

e[K1B reverse
Ae[X]1B rotate
A#[K1B compress
AX[X1B expand.

An empty segment in the character format string gives a
"FORMAT ERROR",

The dyadic form of the edit system function B [ED F gives
"SYNTAX ERROR",

The result of monitoring line 0 of a defined function does
not provide a count of the number of calls on the function,
but gives 0 invariably.

The Name List system function [OVL does not permit specifying
the value 0, meaning objects with no associated meaning. A
"DOMAIN ERROR" is given instead.

The Shares Availability system function [JS4 gives a "SYNTAX
ERROR".

Prefix and suffix edit actions with following text give
"EDIT ERROR":

(oL 1T prefix
(wZ]T suffix.

Term

Account Name

Across

Active Workspace

Along

APL

APL/700

Argument

Array

Assignment

Boolean

Calculator Mode
Character Type

Coercion

APPENDIX A

GLOSSARY
Meaning
The identification which the APL system records
resources consumed by a user.
An orientation of a "plane" orthogonal (at right

angles) to a specified dimension of an array.

The working area within which all transactions are
performed.

An orientation of a vector, relative to a
specified dimension of an array. Vectors can be
considered to be "along" a dimension when they are
parallel to the axis of that dimension.

A Programming Language. A language for describing
procedures in an interactive environment.
Originally developed by K. Iverson.

APL enhanced for series of
computers.

the Burroughs 700

A data object (or list)
operator.

supplied to a function or

A data object having shape. An array may be a
vector, a matrix, or an n-dimensional object and
may have zero or more elements.

Replace, insert into, or modify the value attached
to a variable name.

Subtype of numeric data
(false) and 1 (true).

type, having values 0

See Execution Mode.
Data object containing literal character elements.

Replication of a data object to a conforming shape
for the function being applied to it.

Term

Comment (APL)

Component

Constant

Control Structures

Corner

Data Object

Defined Function

Definition MMode

Dimension

Dimension Qualifier

Domain

Dyadic Function

Elaboration

Element

Empty

Execution Mode

Expression

Meaning

Any text prefixed by the lamp symbol (a) and
terminated by RETURN or a new line.

Any member of a 1list. A component may be any
data object or may be null., (Also see File
Component.)

A data object without name,
The rules for determining order of execution.

Any n-dimensional sub-array having for each
dimension at least one face that is a sub-face of
an n-dimensional array.

A unit of data for processing, with properties:
type, rank, and possibly shape and value.

A procedure or program defined by a user,
containing lines of APL expressions and used to
perform a discrete function, such as averaging.

Mode of APL system in which defined functions are
created or altered.

One of the independent axes of a shaped data
object. Dimensions are numbered from 1 to n for
an n-dimensional object (origin 1).

A single indicating the dimension for coercion or
application of a function or operator.

Allowable set of values for function argument.

A function having two (explicit) argquments (left
and right).

The process of applying functions to arguments in
an expression to determine its value.

A scalar object; for an array, located by a set
of scalar indices for each dimension.

A size-zero datum of any rank with shape and
type.

llormal mode of APL/700 terminal in which entries
are directly executed.

A constant, variable, a niladic, monadic, or
dyadic function, or syntactically valid
combination of these.

Term

File

File Component

File Library

Fill

Format

Function

Function Definition
and Editing Mode
Global

Group

Identifier

Inactive Workspace

Index Number

Index Origin

Instance

Integer

Meaning

A named workspace extension with file components
containing data objects.

An APL data object referenced by file name and
either file component number or end of component
queue.

The files owned by an account.
Objects used to expand the size of a datum.
Blanks (spaces) are used for character objects;

zeroes (0's) are used for numeric objects.

Specifier for mapping of a list of data objects

of various types into a character type data
object.
A transformation on zero, one, or two arguments

that generally produces a value.

Mode in which functions are defined or changed.

Definition of a name outside (in the
environment of) a defined function.

calling
See local.

A name to which other related

associated for reference.

names are

A string starting with a
an underscored letter, or a delta (a) or
underscored delta (4) and followed by zero or
more of the above characters, the digits, or
underscore.

letter of the alphabet,

A workspace in a user library.

An integer specifying the position of a plane
across a dimension of an array, starting with the
origin.

The first ordinal number, either 0 or 1.

A single occurrence of the environment resulting
from execution of a defined function, commencing
with its call and completing either by return to
the calling environment or termination. The

environment of local names shields any more
global uses of the same names,

Subtype of numeric having no fractional part; in
inclusive range 1-2%*39 tOo (2%x39)-1,

Term

Iteration

Label

Lamp Character
Last Executed
Expression
Library

List

Local

Lock

Loop

Matrix

MCS

Mode

Monadic Function

N-Dimensional

Name

Niladic Function

Null

A

Meaning

A single execution of repetitive function lines,
returning to common point in a loop.

Local name for line of defined function, always
followed by ':', having constant value the line
number on which it occurs.

A prefix to denote comment text following in entry
or on a line of a defined function.

The retained string last entered, available for
recall by ATTN for further editing.

Inactive workspaces of an account stored for later
use, Also workspaces from other accounts to which
access has been granted.

Expression, or sequence of component expressions
separated by semicolons.

Definition of a name within (local to) a defined
function, possibly shielding a more global
instance of meaning of that name.

A user access control to protect an account,
workspace, file, or function.

Failure to find a parallel solution, resulting in
a path in a function that can lead to iteration.

A rank-2 datum (two dimensions).

Message Control System (data communications
control system, one of which is APL).

System interpretation of transaction entry:
execution, function definition and editing, eval-
uated, or character input. Recognized by prompt.

A function having only one (explicit) argument
(always right argument).

A rank-N array--see vector, matrix.

An identifier used to denote a variable, defined
function, group, local name, or a label.

A function having no (explicit) argument.

File component or 1list element without value
(contrast with empty).

Term

Numeric

Operator

Orthogonal

Password

Pendant Function

Plane

Primitive Function

Prompt (system)

Qualification

Range

Rank

Recovery

Scalar

Scalar Primitive

Selection

Set

Meanin

Type of datum consisting of only numbers, has
subtypes integer and Boolean; in inclusive range
for mantissa magnitude 0 to (2*39)-1 and exponent
(8*-63) to 8%63,

On defined functions to produce a new function
that applies to arguments.
Mutually perpendicular, or independent; referring

to different dimensions of an array.

User selected name for
workspace, or file.

access control of account,

A function that is awaiting completion of another
function that it called.

Any "slice" of a shaped object that is orthogonal
to a given dimension of that object. A plane
"across" the K-th dimension of an N-dimensional
object is a (N-1)-dimensional object with all but
the K-th dimension of the original retained.
Thus a "plane" of a vector is a scalar element,
and a "plane" of a matrix is a vector from a row
or column.

Any of the functions supplied as part of the APL
language.
A displayed response (from APL) that identifies

the mode. The terminal is unlocked to accept user
entry following a prompt.

Specification of dimension for application of
function, or name for function editing.

Allowable set of values for result of
function.

applying a

The number of dimension of a data object. Scalars
are rank 0, vectors are rank 1, matrices are rank
2, and n-dimensional arrays are rank n.
Restoration of the work in after an
interrupted work session.

progress

A data object without shape; that 1is, a rank-0
data object; may be either a number or character.
its

Function applied element to

argument(s).

element by

Specify a subarray by providing a list of indices.

Unique values in data object independent of shape
or order,

A-5

Term

Shape

Shared Variable

Single

Size

State Indicator

String

Subscript List

Surrogate

Suspended Function

Symbol Table Entry

System Commands

System Functions

System Variables

Template

Text

Transaction

Type

Meaning

A vector specifying the number of planes across
each dimension of a data object with positive
rank, Arrays have shape, scalars do not.

A system variable that is <hared between a user

and another user or process external to APL.
A data object of any rank with only one element.

The scalar number of elements in an array.

Record of user defined functions in process,
suspended, or pending completion of other called
functions.

A character type data object that may be either a
scalar or vector.

List of expressions or nulls, one for each
dimension of an array data object.
A substitute, or external name, for shared-

variable reference,

A function whose execution was stopped for some
reason other than a call to another function.

Any of the set of distinct names and numeric
constants occurring in a workspace.

Execution Mode commands with ')' prefix that
provide environment controls and interrogation
facilities.

Functions with [0 prefix that provide executable

controls and inquiry capabilities regarding the
environment.
Variables shared with APL/700 to specialize

processing within a workspace (index origin, print
precision, comparison tolerance, and random link).

Specification of name and call syntax of defined

function.
Any string of characters,

entry, APL processing
as required),

Cycle consisting of user
(and display of output and prompt
and unlock of keyboard.

Either character or numeric, of data object.

Term

Value

Variable

Vector

Workspace

Meaning

The scalar element or array of elements of a data
object, each in the domain for the type of the
data object.

Data object attached to a name by assignment and
used for reference.

A rank-1 datum.
The maximum space made available by the APL

installation for direct access by an application.
See Active Workspace, Inactive Workspace.

A-7/A-8

APPENDIX B

WORKSPACE CONTENT SPACE CONSIDERATIONS

USE OF SPACE.

The user workspace size is limited to the maximum number of bytes
established by the installation. The system function [0WA provides the
amount of space remaining and the amount in use. In a clear
workspace, there is some space in use for workspace management and for
the user symbol table. As functions, variables and groups are
created, the space remaining decreases. The space remaining is used
also for temporary results of computations. The available space is
augmented by release of unneeded objects: automatically for temporary
results, local names, or a prior data object attached to a name on
replacement; explicitly for other named objects. Since the total
available space 1is limited, some consideration of space consumption
may be required in large applications.

SYMBOL TABLE.

The symbol table is used to provide convenient reference to names, and
to literal constants and comments in user-defined functions. Each
symbol table entry requires 6 bytes, whether or not the entry actually
refers to anything. The user can control the maximum symbol table
size in a clear workspace using either:

)SYMS N establish default as N symbols
JCLEAR N override default to become N symbols

The user can interrogate the current symbol table size by: [On4.
NAMES,

Each entry in the symbol table referring to a name contains the means
to recover the corresponding name supplied by the user. The space
required (once per name) depends on the number of characters in the
name:

Characters in name Extra bytes
1, 2 or 3 0 (stored in entry)
X, more than 3 12+6x[X%6

VARIABLES.

Each data object has an overhead of 12 bytes. Also, each requires
space to describe the structure and to contain the values of its
elements. The space for structure description depends on the rank.

Rank R Extra Bytes
Scalar 0 0
Vector 1 0
Matrix 2 6
Array 3 or more 6+6xR

The space for N elements, regardless of shape, depends on the type:

Txge thes
Boolean 6x[N+32
Numeric, not Boolean 6xN
Character 6x[N%6

FUNCTION DEFINITION.
The space for function definition occurs only once in a workspace.

Each line of a user-defined function requires 18 bytes overhead. Each
local name, argument or label requires 6 bytes.

Upon initial definition, line editing, or wupon fixing a variable to
become a function, the internal representation of the function is a
token stream. Each name, constant primitive function or operator,
file operator, system command or variable, punctuation, literal or
comment is a token. Each token requires 2 bytes. Each constant also
requires the space for the corresponding data object. Each comment
requires space for the text string.

Upon first execution of any 1line of a function, the internal
representation of that line is converted into a process stream that
provides a parenthesis-free reordering suitable for direct
elaboration. The process stream is generally more compact than the
token stream., The process stream representation is maintained until
the line is edited.

DEFINED FUNCTION CALL.

Each dynamic instance of a function call (appearing in the state
indicator) requires space for all instances of locals:

Local name 12 bytes
Result 12 bytes
Label 18 bytes
Argument enough for copy of data object if a

variable name

Thus, significant space consumption can result from having earlier
instances of functions suspended or pending in the state indicator.

B=2

Reassignment to an argument changes the initial space allocation, just
as with any other variable.

The space indicated for 1local names is the minimum requirement at
function entry when they have no meaning. As they gain value as
variables by assignment, or as functions by fixing, more space is
required. The amount is determinable as the sum of the individual
space requirements as indicated before for the various kinds of names.

FUNCTION REPRESENTATION SPACE COMPARISON.

Typical relative space requirements are indicated below, assuming most
names are 3 characters or less, and few comments are included.

Representation Typical size ratio
vector data 1.0
canonic data 2.7
token stream executable function 2.4
process stream executed function 2.3

The overhead per 1line for the function forms is more than the fully
expanded names of the vector data representation. The appended
blanks in the canonic representation become a major part; particularly
if a function has a large local names 1list, or 1lines of greatly
varying length.

Note that fixing a vector representation may require more space than
the original, and that some space is reclaimed by first execution.
The space for a comment (a string of characters) is constant in all
representations (except canonic where comments that do not increase
the length of the longest line take no extra space).

LOCAL AND GLOBAL NAMES.
Any name local to a defined function shields any global meaning of

that name. The space the global object is also required, even though
inaccessible until exit from the function shielding it.

GROUPS,

Each group name takes 12 bytes. In addition, a group with N names
attached requires 6x[N:4 bytes.

SHARED VARIABLES.

If there are any shared variable offers outstanding, 12 bytes are
required. In addition each shared name takes 6 bytes.

TEMPORARY RESULTS.

Any data object created as a result of expression elaboration requires
space for its elements and description as indicated for a variable
above. This space 1is relinquished when the function for which it is
an argument has been executed.

SPACE SAVING TECHNIQUES.

Clear the state indicator of unnecessary pending functions.
Expunge or erase unnecessary variables or functions.

Limit the space for unnecessary positions in the symbol table by
copying into a clear workspace having only the necessary positions.

Recover the space for local variables or local functions fixed therein
by exiting the function to which they are local.

Call common defined functions rather than repeat expressions contained
therein.

Attach a scalar to a variable name, replacing a large named data
object that is no longer needed.

Hold large inactive data objects in file components. Enough space
must exist in the workspace to accept a component. After a file write
of a large variable, it may be necessary to assign a scalar to that
variable name to free enough space before another file component can
be read, even to the same name.

Keep functions not immediately required in vector form as file
components. Use a cover function that reads and fixes necessary
functions from file components as needed, and expunges them when no
longer needed. Exit from the cover function automatically recovers
the space for such functions if their names are local.

Minimize the number of 1lines in a function at the expense of writing
more complex expressions.

Use Boolean data objects where appropriate instead of numerics.
Arithmetic functions applied to Booleans cause conversion to numeric
representation. A numeric data object N known to have only values 0
and 1 can be converted to Boolean by N<«1=¥.

Pack several numeric values with limited domains into a single number.

Adapt processing algorithm to space available. Trade iterative
processing on sub-arrays for space required for parallel processing on
the entire arrays.

Avoid reduction of the result of an outer product operator where inner
product will suffice.

Consider using a global variable rather than an argument to a defined
function to avoid creating a copy of the argument if always called
using the same variable name.

Develop parallel functions for documentation. All comments can be
placed therein. A frequently used convention is to put the
documentation in another function with "HOW" as a suffix to the
executable function name. The documentation can be erased easily if
all such names are included in a group.

APPENDIX C

REFERENCE CHARTS

Much of the material detailed in the body of this report is presented
here in the form of summary reference charts. These charts are
intended for review, once the complete development has been absorbed.
They may also be used as a quick indication of the power of APL/700
constructs.

The subjects covered in these charts are:

dyadic and monadic scalar primitive functions

primitive operators on dyadic scalar primitive functions
mixed functions

primitive file functions

function definition and editing actions

Also, four APL syntax summary pages are provided for quick reference.

Finally, a condensation is included of the transaction cycle, editing,
and the attention conventions.

| LARGER OF 4 AND B +—+ AlB

| 7 «» 307 6.01 ++ 6.0176.01 3 «+ 377

I ..
| SMALLER OF 4 AND B ++ 4lB8 _

| 3 +> 317 6.01 «» 6.010L6.01 7 «+ 3177
g
| 1.5 «+ T2+3.5 5.5 ++ 2+3.5 T1.5 «> 2+73.5
g gy g
|l T1.5 «»> 2-3.,5 1.5 «> 3.5-2 5.5 «+ 2-73.5
e
| 5 «+ 4x1.25 3 «+ Bx",5 0 +«» 0x",09

Jmeememm e cdedcieeacecceeccccemccmecar——enna
| 1.76 «+ 3.52%2 5 +» 10+ 2 4 «+ 1233

' ..
| 3 «+ 5]13 B-AxLB#4 ++ 41B FOR 4=0

| 5 «+ 0l5 B ++ 4|B FOR 4=0

| 5 «+ 14]s

| 14 «+ 13,14 4 o+> 5|711 T1 o> 4|7

| ..
| 4 RAISED TO THE POWER B: 9 ++ 3%2

| 1024 «+ 2=x10 2 +> 4x.5 3 ++» T27%(%3)

] (eB)te4 ++ LOGARITHM OF B FOR BASE 4 +» A®B

: 1.87506.,. ++ 10875 3 «+ 208
1 oeo0 100 oe1 101 36y 3e3 453
I o 0 1 0 1 0 0
| 1] 1 1 1 1 0
| 1 0 0 1 0 1 0
| 1 1] 1 0 1 1
I o 1 0 0 0 0 1
: 0 1 1 0 1 0 1
| oeo oe1 100 101 BOOLEAN DOMAIN (0 OF 1)
I o 0 0 1
| o 1 1 1
| 1 1 1 0
{ 1 0 0 0
1 (1-B*2)*.5 +> 008
| ARCSIN B ++ ~10j SIN B ++ 108
| ARCCOS B8 +» "20B CO0S B ++ 208
| ARCTAN B ++ ~308 TAN B ++ 308
| (T1+4B%2)%x.5 «+ 408 (1+48%2)%,5 ++ uoB
| ARCSINH B «+ ~Ssog SINH B <+ SOB
| ARCCOSH B ++ ~60B COSH B ++ 608
; ARCTANH B «+ ~70B TANH B <+ 708

6 «+ 214 (1B8)+(4)x!B-4 FOR 4<8

0 +«+ 9!3 1 «+ 5!5 0 «+ A!B FOR 4>B

!

' -

| 710 «»> 3173 4,9346.., *+ 1.1!4.5
|

|

| LESS
|NOT GREATER
| EQUAL
| NOT LESS
! GREATER
| NOT EQUAL

{ ARND
| OR
| NAND
| NOR
|mmmmcmmmaaen
CIRCULAR

|COMBINA~
| TORIAL

| |

| |

| o |
l:::]::::::::::::
| | NAME
l:::l::::::::::::
| T | CEILING

| |
[==-]emmmmemaeaaa
} L | FLOOR
Joemlmmmm e e
| + | IDENTITY
Jeme|mmmme e aean
| - | NEGATE
[===|e=-mememeen
| x | SIGNUM
[===fomemmcee e
| + | RECIPROCATE|
R R il
| | | MAGNITUDE

i]

| |

| |
|e-=|memermcacnen
| * | BASE E

| | POWER

R e
| @ | BASE E

! | LOGARITHM
R R R T i
| |

| < |

| < |

| = |

I 2}

I > |

| = |

Rl R
} ~ | NOT

| A

v |

I

| » |

R R e
| o | PI TIMES

] |

| |

| |

|]

| |

| |

| |

Jomm] e
| ¢ | FACTORIAL

| SMALLEST INTEGER NOT LESS THAN B ++ [B
| 4 +> 3,101 T3 «» [73.141 101 «» 101

| LARGEST INTEGER NOT GREATER THAN B ++» LB
| 3 «» 13.181 T4 «»> [T3.141 101 «» L101

| SIGN OF B: 1 ++ x7.2 0 ++ x0 1 ++ x73
1348 «+> $8 .5 ++ #2 2 «+ 7.5

| ABSOLUTE VALUE OF B +~_|B

| 9.5 «+ [9.5 9,5 «> [79.5 0 «> |0

] (2.71828...)*8

| 4 ++ %1,.386294361... 20.0855... ++ %3
| (2.71828...)@8 N ++> %0} <+> ox}

| 1.386294361..., +> o4 T.693147,...

1 ++ ~0

BOOLEAN DOMAIN (0 OR 1)

Bx3.14159,.. ++ OB

| Bx!B-1 «> !B FOR B21, B AN INTEGER;
| GAMMA(B+1) <++ !B FOR NON-INTEGER B

| 39916800 +-+ !11 2.68344, .. «+ 12.3
] 3.3283... ++ !°

REDUCTION 6 «> +/1 2 3

1.4 «> -/2,3 5.6 4.7

| B YECTQR: SCALAR RESULT IS FORMED BY ELABORATING THE APL |

| EXPRESSION FORMED BY PLACING e BETWEEN THE ELEMENTS OF THE]

| VECTOR. |

| IF B IS AN EMPTY VECTOR THE RESULT IS THE IDENTITY ELEMENT FOR | 1 <+ x/10 ~4.31...E68 <+ [/10
| IF IT EXISTS. !

| B 4BRAL: RESULT IS FORMED BY REDUCING VECTORS ON THE LAST } 1.5 4.8 7.875 «+ #+/3 3p19
| DIMENSION OF THE ARRAY. THE RESULT HAS RANK 1 LESS THAN THE I

| RANK OF THE ARGUMENT. THE SHAPE OF THE RESULT IS THE SAME AS THE]

| SHAPE OF THE ARGUMENT LESS THE LAST DIMENSION. |

| I

|]

B SCALAR: THE RESULT IS THE SCALAR B. B MUST BE IN THE DOMAIN 5 «> x/5

OF e.
......... T e
| ®/[K1B | LIKE e BUT VECTORS ON THE ¥ TH DIMENSION ARE REDUCED. | 1.75 3.2 4.5 +> #+/0113 3p19
.........]--_-----_--____---________-___-____-_______--_________--_-_----__]_-.._____.--____------_.._----_--------
| ®4B | o8 «+ ©/[11B8 [1.75 3.2 4.5 +> #£3 3p19
J | REDUCTION ON THE FIRST DIMENSION. | 6 «++ +41 2 3

|

: ©/LK1B | of[X1B «» ©/[1+(ppB)-K1B REDUCTION ON ¥ TH FROM LAST DIMENSION.| 1.5 4.8 7.875 «+ +#[113 3p19
....................... I_____________________________-_____-________________-____-___-___'__--____-__-_-_--_----_----_-------.

| ox[XIB | ®X[X1Z «+e\[1+(ppB)-X1B
| SCAN ON THE K TH FROM LAST DIMENSION.

S [== memcemcmecccceeemee-eeemesmme—mee;e—————- —mmmmmm——c———

INNER PRODUCT| 4e.®j8 ELEMENTS OF THE RESULT ARE FORMED BY TAKING CONFORMING VECTORS 32 «+ 1 2 3+.x4 5 6

SCAN | o\B | B YECTQR: RESULT IS A VECTOR OF THE SAME LENGTH WHOSE | 1 3 6 «+ 4+\1 2 3
| } I TH ELEMENT IS ®©/I43. | 2.3 73.3 1.4 «> -\2,3 5.6 4.7
| | 8 ARRAY: RESULT IS FORMED BY REPLACING VECTORS ON I 1 0.5 1.5
] | THE LAST DIMENSION OF B BY THE © SCAN OF THE VECTOR | 4% 0.8 4,8 +»> #\3 3p19
] | I¥ B. I 7 0.875 7.875
: : B SCALAR: THE RESULT IS THE SCALAR B. B MUST BE IN THE DOMAIN : 1 ++ A\l
OF o,
R L i e i T T P R e P PP P PR P LT
| O\[XIB | LIKE e\ BUT VECTORS ON THE X TH DIMENSION |1 2 3
| ARE SCANNED.] 0.25 0.4 0.5 +»> #\[1]3 3p19
; | | 1.75 3.2 4.5
......... l-_-_-___---___,-__--_-_-_____-_-__________---__-__--______-__--__'________--_--_----_----_--_---------
| L 2¥:] | 8 +» e\[11B | 1 2 3
] | SCAN ON THE PIRST DIMENSION. | 0.25 0.4 0.5 «+ +%3 3p19
| | | 1.75 3.2 4.5
| |
|
|
|
|
|
|

ON THE LAST DIMENSION OF 4 AND THE FIRST DIMENSION OF B APPLYING| 1 ++ 1 0 1v.A1 1 0

:
| ® BETWEEN THEM AND REDUCING THE RESULT BY ®. M1+.xM2 IS THE | 56 7 8 «» (2 3p16)-.3 upr112
| | LINEAR ALGEBRA MATRIX PRODUCT FOR MATRICES M1 AND M2. | 6 8838
-------------- R R e e e B it
OUTER PRODUCT! 4eo.e3 | THE RESULT IS THE OPERATOR ® APPLIED BETWEEN ALL | 4 5
! | PAIRS OF ELEMENTS SELECTED FROM 4 AND B. THE RESULT HAS | 8 10 «++ 1 2 3e.x4 §
| | SHAPE (p4),pB. | 12 15
| | | 01
| | | 11 «> 0 1e,v0 1
i

® AND ® ARE ANY DYADIC SCALAR PRIMITIVE FUNCTIORS: [L + - x ¢+ | » @ < §$ 2 2> 2 AV aw» 0!
K IS A DIMENSION NUMBER OF B: [KeippB

SUBSET

e e e———-

SUPERSET

| SHAPE PRODUCES A VECTOR WHICH IS THE SHAPE OF THE
| ARGUMERT.
I .4 ++ pdpB

R el i L T T PR L S R

| B MUST BE A NON-NEGATIVE INTEGER SCALAR. THE RESULT
| IS A VECTOR OF LENGTH B OF THE FIRST B INTEGERS
| STARTING AT THE INDEX ORIGIN.

| 10 «+ THE EMPTY NUMERIC VECTOR. N ++ (\N-1),N IN ORIGIN 1.

[e T T TR UEP AP A U g g

| 4 MUST BE A VECTOR. THE RESULT IS A DATA OBJECT WITH THE
| SAME SHAPE AS B. EACH ELEMENT OF THE RESULT IS THE

| INDEX IN 4 OF THE THE FIRST OCCURENCE OF THE

| CORRESPONDING ELEMENT IN B. IF THE ELEMENT DOES NOT OCCUR
| IN 4 THE RESULT IS 1+o4(IN ORIGIN 1, o4 IN ORIGIN 0).

| THE RESULT IS A CHARACTER DATA OBJECT WITH THE SAME
SHAPE AS B EXCEPT THE LAST DIMENSION IS EXPANDED.
THE RESULT IS A CHARACTER REPRESENTATION OF 8.

SEE FORMAT CHART.

B MUST BE A CHARACTER STRING WHICH IS A VALID APL EXPRESSION.

|

| THE RESULT OF EVALUATE IS THE RESULT PRODUCED FROM THE

| EVALUATION OF THE EXPRESSION IF IT PRODUCES A RESULT.

| IF THE EXPRESSION DOES NOT PRODUCE A RESULT EVALUATEMUST
| BE THE LEFTMOST FUNCTION IN THE EXPRESSION.

| 4 DETERMINES THE SHAPE OF THE BOOLEAN RESULT. EACH ELEMENT
| IS 1 IF PRESENT IN B, 0 OTHERWISE. {€B ++ v/4°.=,8

| THE BOOLEAN SCALAR RESULT IS 1 IF ALL UNIQUE ELEMENTS
| OF 4 ALSO APPEAR IN B, 0 OTHERWISE. AcB ++> A/,4€B

| THE BOOLEAN SCALAR RESULT IS 1 IF ALL UNIQUE
| ELEMENTS OF B ALSO APPEAR IN 4, P OTHERWISE. 4>B ++ A/,Bed

| THE VECTOR RESULT IS THE UNIQUE ELEMENTS FROM 4 OR B IN THE
| ORDER OF FIRST OCCURRENCE IN (,4),,8.

| THE VECTOR RESULT IS TRE UNIQUE ELEMENTS OCCURRING IN BOTH
1(.4) AND (,B) IN THE ORDER THEY FIRST OCCUR IN 4.

| THE VECTOR RESULT IS THE UNIQUE ELEMENTS OCCURRING IN 4 BUT
| ¥OT IN B, IN THE ORDER THEY FIRST OCCUR IN 4.
|

,5 «+p"2 71012
2 3 4 «> p2 3 4p124
10 ++ pfA?

..................................... --—-

12 3 45 ++ 15
»1 ++ 11
0p0 «+ 1O

3 «> 4 7 10 22110
2 1 3 «+ 'ABCABCDE'\'ABAC'

"

1 «+ 71 0 1t10 0 T16 "1
++ 'ABC'11 2 3

'1 2 3" «+ 91 2 3
YAPL' «+ ¥%'APL'®

4 +> 272420

12 34 5 +> 215"

'APLI Py .l"'APL"'

T2 71012 «> 2¥2 71012

1 «+ 1 2 3 1€¢1 3 5
1 0 «+ 'LEARN'e'TEACHER'

1 «+ 1 2c3 2 1 0 «+ '4A'c3
0

<+ 1 2c 3 1 ++ "PAOLI'c<c'PLATONIC'

0 «+ 1 254 3 21 0 ++ '4'53
0 <+ 'PAOLI'>'PLATONRIC!

14 «+ 1 1uk 1 13 ++113
'MANGET' ++ 'MANAGEMENT'u''

2 3 ++12 3n2 34
*HAR' <+ 'HARRY'n'MARTHA'

vl ++ 1 2 3~ 2 3 4
'SET' ++ 'SETTLED'~'LAND'

iv1i0

MIXED PRIMITIVE FUNCTIONS - 2

REPRESENT 0 1 «+ 2 2 275

26 23 +> 24 60 6071583

| B8 SCALAR: IF 4 IS A VECTOR THE RESULT IS A VECTOR THE |
| SAME LENGTH AS A. THE RESULT CONTAINS THE REPRESENTATION OF |
| 8 IN THE NUMBER SYSTEM A. IF A IS AN ARRAY THEN THE RESULT |
| IS THE REPRESENTATION OF B IN THE NUMBER SYSTEMS | ++(3 204 5)717
| SPECIFIED BY VECTORS ALONG THE FIRST DIMENSION OF 4. |

| B 4BBRAY: THE RESULT WILL BE A DATA OBJECT WITH SHAPE (p4).rB |

| WHERE VECTORS ALONG THE FIRST DIMENSION OF THE RESULT ARE THE|

| REPRESENTATION OF A SCALAR IN B IN THE NUMBER SYSTEM |

| SPECIFIED BY A VECTOR ALONG THE FIRST DIMENSION OF 4. |

| FUNCTIONS IN A MANNER SIMILAR TO OUTER PRODUCT. |

++ 2 2 274 7 30

WO
O
ococo

BASE VALUE | B YECTOR: IF 4 IS A VECTOR THEN THE RESULT IS A SCALAR | 5§ «> 2 2 2110 1
| WRICH IS THE BASE 10 VALUE OF THE VECTOR IN THE NUMBER SYSTEM| 1583 +> 24 60 6010 26 23
| SPECIFIED BY 4. 4 MAY BE A SCALAR IN WHICH CASE IT IS | 15 «+ 2111 1 1
| EXTENDED TO THE LENGTH OF B. IF A IS AN ARRAY THE RESULT HAS | 22 30 38 +> (3 2p5 5 7 7 9 9)14 2
| SHAPE “1+p4 AND CONTAINS THE REPRESENTATION IN BASE 10 |
| OF B IN THE NUMBER SYSTEM SPECIFIED BY A VECTOR ALONG THE |
| LAST DIMENSION OF 4. |
| B ARRAY: THE RESULT IS AN ARRAY WITH SHAPE (1+p4).1+p8. | 4 6 «> 2 2 213 2p1 10100
| THE RESULT IS SCALARS WHICH ARE THE BASE 10 REPRESENTATION |
| OF VECTORS ALONG THE FIRST DIMENSION OF B IN THE NUMBER |
| SYSTEMS SPECIFIED BY VECTORS ALONG THE LAST DIMENSION OF 4. |
| FPUNCTIONS IN A MANNER SIMILAR TO INNER PRODUCT. |
--------------- R e e e e e T S e P e
MATRIX INVERSE| @B | B MUST BE A MATRIX WITH NO | 3.5 "1.5 .5
| | MORE COLUMNS THAN ROWS. THE RESULT IS THE INVERSE OR I "u
| | GENERALIZED INVERSE OF THE MATRIX IF IT EXISTS. | 1
--------------- R e e et et e D R R bl
MATRIX DIVIDE | B MUST BE A MATRIX WITH NO 11 ++ 0 T182 201 1 2
| MORE COLUMNS THAN ROWS. 4 IS EITHER A VECTOR WITH LENGTH
| EQUAL TO THE NUMBER OF ROWS IN B OR A MATRIX WITH THE SAME
| NUMBER OF ROWS AS B. THE RESULT IS THE SOLUTION TO THE SYSTEM
| OF LINEAR EQUATIONS WITH COEFFICIENT MATRIX B AND RIGHT HAND
| SIDE(S) 4 IF IT EXISTS. WHEN B HAS MORE ROWS THAN COLUMNS
| THE RESULT IS A LEAST SQUARES FIT FOR THE SYSTEM.

GRADE-UP | 4B | B MUST BE A NUMERIC VECTOR. THE RESULT IS A SET OF INDICES | 254 13 +> 480950
| | THAT CAN BE USED TO ORDER B IN ASCENDING ORDER. | 005 89 «>80 395 0[48 09 5 0]

GRADE-DOWN | ¥8 | B MUST BE A NUMERIC VECTOR. THE RESULT IS A SET OF INDICES] 314 25 «>9%80 950
| | THAT CAN BE USED TO ORDER B IN DESCENDING ORDER. | 9 85

)
1
]
1
1
1
)
)
]
]
]
1
1
]
1
)
1
1
]
]
1
1)
)
1
)
1
]
1]
1
'
'
]
]
]
1
1
]
]
1
)
]
i
)
1
]
'
1
'
)
)
1
)
]
]
1
]
]
]
i
1
1
I
t
)
)
)
)
t
)
1
]
1
]
1
)
1
]
1
]
1
1
]
]
]
]
'
]
]
]
]
)
t
t
]
)
]
t
]
]
[]
'
1
)
1
]
)
)
[}
]

?B | B MUST CONTAIN POSITIVE INTEGERS. THE RESULT IS A DATA | 11 «+ 211
| OBJECT LIKE B WITH EACH ELEMENT A RANDOM CHOICE FROM
| \S WRERE S IS THE CORRESPONDING ELEMENT OF B. |
| 4 AND B MUST BE NON-NEGATIVE INTEGERS WITH 4 NOT GREATER | ,1 ++ 121
| THAN B. THE RESULT IS A VECTOR OF LENGTH 4 THE ELEMENTS | 10 «+ 0710
| OF THE RESULT ARE A RANDOM SELECTION WITHOUT REPLACEMENT :
| FROM 1B.

THE RIGHT ARGUMENT OF ANY STRUCTURE MIXED PRIMITIVE FUNCTIONS MAY BE A

REVERSAL ALONG THE K TH FROM LAST DIMENSION.

THE FOLLOWING VARIABLES ARE USED IN THE EXAMPLES:

CHARACTER DATA OBJECT. SINCE CATENATE AND LAMINATE JOIN TWO DATA OBJECTS, 111 112 113 114
IP THE RIGHT ARGUMENT IS A CHARACTER DATA OBJECT THE LEFT ARCUMENT MUST 12345 «»V 121 122 123 124
ALSO BE ORE. ALL OTHER STRUCTURE MIXED PRIMITIVE FUNCTIONS 131 132 133 134
FUNCTION IN THE SAME MANNER ON CHARACTER DATA OBJECTS AS ON NUMERIC P
DATA OBJECTS. FILL FOR TAKE AND EXPAND IS BLANKS IF THE RIGHT ARGUMENT 11 12 13 14 211 212 213 214
IS A CHARACTER DATA OBJECT. 21 22 23 24 +«+ M 221 222 223 224
31 32 33 34 231 232 233 234
=============::==:==:::::::::::::========’—'=::===:==========:===:=========l
NAME : PORM | DEFINITION | EXAMPLES !
=ZTS=S====s=S= ::::::::I:::::::::::::::::::::::====::===:::::=:===:==============:=== 2 S F X P F S T S R R R 2 E E st it 2t - s s - Rt 2t ¢
RESHAPE | 408 | THE DATA OBJECT B IS MADE INTO THE SHAPE SPECIFIED BY 4.] 5§55 «+ 3p5
| | IF B HAS LESS ELEMENTS THAN ARE NEEDED THE ELEMENTS OF B | 41 <> 1pV
| | ARE REUSED UNTIL ENOUGH ELEMENTS ARE OBTAINED. IF B HAS MORE| 2.5 ++ (10)p2.5 8.6 ~3.1
| | ELEMERTS THAN ARE NEEDED THE EXCESS ARE IGNORED. I 1 2
| | .4 ++ pdeB | 3 4 «» 3 20V
| | | 5 1
---------- i e T et e L i et b bt
RAVEL | .8 | THE DATA OBJECT B IS RESHAPED INTO A VECTOR. | 11 12 13 1% 21 22 23 24 31 32 33 34 <+
: | »8 ++ (x/pB)rB : 1p8.6 ++ ,8.6
.................. |-_---------_----_--_-_--_-....--__----__---_---_-----_-----_--- e - . - - . - - . - w -----
CATENATE | 4.8 | THE DATA OBJECTS 4 AND B ARE JOINED TOGETHER] 12345123465 +>V,V
| | TO FORM A NEW DATA OBJECT. THE DATA OBJECTS ARE] 712345 «> 7,V
| | JOINED ALONG THE LAST DIMENSION. A SCALAR IS I 7 11 12 13 18
| | EXTENDED TO FORM A PLANE ACROSS THE DIMENSION IT IS | 8 21 22 23 24 +«+ 7 8 9,M
| | BEING JOINED TO. | 9 21 22 23 24
| |] 11 12 13 14 1
| | [21 22 23 24 1 «+ M,1
! | | 31 32 33 34 1
=== R L D R L L L L LR L e b R et e e bt LD S L DL S]
| 4,[K18 | LIKE A,B BUT THE DATA OBJECTS ARE JOINED ON THE 1 11 12 13 14
| | X TH DIMENSION. | 21 22 23 24 «+> M, (117 8 9 10
! | | 31 32 33 34
|] | 7 8 9 10
---------- [bt e e e L e P L LY |
LAMINATE | A,[K1B | THE DATA OBJECTS A AND B ARE JOINED ALONG A NEW | 1 100
| | DIMENSION. K MUST BE NON-INTEGRAL ARD BETWEEN THE NUMBERS | 2 200 «» 1 2 3,0[1.53100 200 300
| | OF THE DIMENSIONS BETWEEN WHICH THE NEW DIMENSION IS] 3 300
] | FORMED, A SCALAR IS EXTENDED TO THE SHAPE OF THE OTHER] 12345
| | OBJECT. | 88888 «+> V,[.u76]8 !
---------- R D e T b e e e Lt b bt bbbt
REVERSE | L7 | B YVECTQR: THE ORDER OF THE ELEMENTS IN B IS REVERSED. | 54 3 2 1 +> ¢V
| | B ABRAY: THE VECTORS ON THE LAST DIMENSION OF B | 18 13 12 11
| | ARE REVERSED. | 24 23 22 21 «» ¢M
| |] 3% 33 32 31
| | B SCALAR: NO ACTION OCCURS WHEN B IS A SCALAR. | 1.5 «> 61.5
|-mememe I L D et R et L E LT
| &[XIB | SAME AS ¢B BUT VECTORS ON THE X TH DIMENSION] 31 32 33 34
] | ARE REVERSED. | 21 22 23 24 «»> $[11M
| | I 11 12 13 18
[=mmeenem R L L L L T T R e L L E L L R et R LR e bty |
| B | e «» $[1]1B | 31 32 33 34
| | REVERSAL ALONG THE FIRST DIMENSION.] 21 22 23 24 «+ @3 3pM
] | | 11 12 13 14
IEEEEEEEE R et e e L E L P L P T [e L LT L L L L Ll
elX1B } o[X1B +» ¢[1+(ppB)-K1B] 18 13 12 11
!

MIXED PRIMITIVE FUNCTIONS FOR STRUCTURING - 2

ROTATE

PERMUTE

COMPRESS

B YECTQOR: THE ELEMENTS OF THE VECTOR ARE ROTATED TO THE |
LEFT CYCLICALLY (pB)|4 POSITIONS. |
B ARBAYL: VECTORS ON THE LAST DIMENSION OF B8 ARE ROTATED BY |
ARE THE AMOUNT SPECIFIED BY THE CORRESPONDING ELEMENT IN 4. |
4 MUST BE AN ARRAY OF RANK ONE LESS THAN THE RANK OF B AND |
SHAPE SAME AS B LESS THE LAST ELEMENT. 4 MAY BE A SCALAR IN |
WHICH CASE IT SPECIFIES THE ROTATION FOR ALL VECTORS. !
B SCALAR: NO OPERATION IS PERFORMED IF B IS A SCALAR. |

LIKE A$B BUT VECTORS ON THE X TH DIMENSION ARE
ROTATED.

deB «» 4¢[118
ROTATION ON THE FIRST DIMENSION.

4e[X1B «» 4$[1+(ppB)-X1B
ROTATION ON THE X TH FROM LAST DIMENSION.

B SCALAE: THE RESULT IS B AS A 1 x 1 MATRIX.

B VECTOR: THE RESULT IS B AS A COLUMN MATRIX (SHAPE o8B x 1).
B ARE4AY: THE RESULT IS B WITH THE DIMENSIONS REVERSED.
(dr1ppBIRB ++ 8B FOR 2s5ppB

THE DIMENSIONS OF B ARE PERMUTED AS SPECIFIED

BY A. THE I TH DIMENSION OF B IS THE 4[I] DIMENSION
OF THE RESULT. SEVERAL DIMENSIONS OF B MAY BE MAPPED
INTQ A SINGLE DIMENSION OF THE RESULT TO OBTAIN A
DIAGONAL CROSS SECTION OF B. IF 4 IS THE SAME AS
\pp8 THEN THE RESULT WILL BE B.

B VECTOR: 4 MUST BE A LOGICAL VECTOR WHOSE LENGTH IS |
IS THE SAME AS THE LENGTH OF B. THE RESULT HAS LENGTH]
+/4. THE ELEMENTS OF THE RESULT ARE TAKEN FROM B EVERYWHERE |
A 1 APPEARS IN A. A MAY BE A SCALAR IN WHICH CASE THE RESULTI
IS B IF 4 IS 1 AND THE EMPTY VECTOR IF 4 IS 0. |
B ABRAY: VECTORS ON THE LAST DIMENSION OF B ARE COMPRESSED |
BY 4. |
B SCALAR: B IS EXTENDED TO THE LENGTH OF THE VECTOR 4 AND |
THEN COMPRESSED BY 4.]

LIKE A/B BUT VECTORS ON THE X TH DIMENSION |
ARE COMPRESSED. |

478 <> 4/[1]8 |
COMPRESS ON THE FIRST DIMENSION. I

A#LK1B +» 4/11+(0pB)-K1B
COMPRESS ON THE K TH FROM LAST DIMENSION.

34 51 2 «»> 20V 4 5 1 2 3 +»
14 11 12 13
21 22 23 24 ++ "1 0 14M

32 33 34 31

12 13 14 11

22 23 24 21 ++ 56M

32 33 34 31

5 «+ 865

12 22 32 «+ &M 1

111 121 131 «»+ 1 2 187
212 222 232

124 ++11010/V
235++01101/V

10 +»> 0/V

12 3 4 5 «+ 1/V

12 13

22 23 «+ 01 1 O/M

32 33

5555 «>101100 1/5

4.5 4.5 «+ 0100100 0/74.5

NAME : PORM | DEFINITION EXAMPLES
==2==s=S=== ::::::::l:=======:====:=:=======:=====::::========:=====:=:=====::=:== IS S S-S S S SCS == C S SECS =S RTSX=sCSSERS-SSS=S=ZzZ======
EXPAND | 4\B | B VECTQR: A MUST BE A LOGICAL VECTOR SUCH THAT +/4 IS THE 01203450 ++01101110\V
I | SAME AS THE LENGTH OF B. THE RESULT HAS THE SAME LENGTH AS
| | 4 WHERE SUCCESSIVE ELEMENTS OF B ARE USED WHERE EACH 1
[| APPEARS IN 4 AND FILL IS INSERTED WHERE EACH 0 APPEARS.
| | B ABBAY: VECTORS ON THE LAST DIMENSION OF 4 ARE 11 0 12 13 0 14
| | EXPANDED BY 4. 21 0 22 23 0 24 ++ 1 0 1 1 0 1\M
| | 31 0 32 33 0 34
] | B SCALAR: B IS EXTENDED TO LENGTH +/4 AND THEN
I : EXPANDED BY 4. 000077 70<>0002061110\7
| A\[X1)B | LIKE A\B BUT VECTORS ON THE KX TH DIMENSION 11 12 13 14
| | ARE EXPANDED. 0 0 0 0
| ! 21 22 23 24 «> 1 0 1 0 I\[11¥
| | 0o 0 0 o
| | 31 32 33 34
EEEET R Jomcmomecuan e e el EE L L L L PP R LT LR EE
4x8 4XB «» A\[1]B 0 0 0 o

EXPANSION ON THE FIRST DIMENSION.
21 22 23 24 +» 0 1 1 0 1%¥

I 4x[g18 | 4X[KIB «» A\[1+(ppB)-X1B
! | EXPANSION ON THE K TH FROM LAST DIMENSION.

8 SC4ALAR: B WILL BE MADE INTO A ONE ELEMENT OBJECT WITH RANK| 1 1 1p8 «> 0 0 0+8 _
THE SAME AS THE LENGTH OF 4 THEN THE DROP IS DONE ON IT. 010 1p 1.75 «+ 5 0 1 0+ 1.75

TAKE | 448 | B VECTOR: THE RESULT IS THE FIRST(LAST) |4 ELEMENTS OF 1 2 3 «+ 34V

| | B IP 4 IS POSITIVE(NEGATIVE). IF |4 IS GREATER 34 5 ++ 34V

| | THAN THRE LENGTH OF B THEN FILL IS ADDED AT THE 123450 0 «> 74V

| | END(BEGIKNNING) OF B. 0 01254 5 «> "74V

| | B ABBAY: 4 MUST BE A VECTOR WHOSE LENGTH IS EQUAL TO THE 11 12 13

| | RANK OF B. THE RESULT OF TAKE IS A CORNER OF THE ARRAY. 21 22 23 «+ 3 34M

| | 31 32 33

| | 0o 0 0 0 0

| | 0 0 0 0 O

| | 11 12 13 14 0 +«+ "5 S54M

| | 21 22 23 24 0

| | 31 32 33 34 O

| | B SCALAR: B WILL BE MADE INTO A ONE ELEMENT OBJECT WITH RANK| 0 ~3

| | THE SAME AS THE LENGTH OF 4 THEN THE TAKE IS DONE ON IT. 0 0 «> 2 2473
.......... |_-------[-----_----------------------_--_-------_--__----------------_ - = . .= = == - == = e = - -
DROP | 4+ | B YECTOR:THE RESULT IS B WITH THE FIRST(LAST) |4 4 5 «> 34V

| | ELEMENTS OF B REMOVED IF 4 IS POSITIVE(NEGATIVE). 1 2 «+ "3V

| | IP 14 IS GREATER OR EQUAL TO THE LENGTH OF B THE 10 «+ 74V

I | RESULT IS AN EMPTY VECTOR. 10 «+ “ T4V

| | B 4BRAY: & MUST BE A VECTOR WHOSE LENGTH IS EQUAL TO THE 11 12

] | RANK OF B. THE RESULT OF DROP IS A CORNER OF THE ARRAY. 21 22 «+ 0 T24M

| | 31 32

| |

! |

NAME I FORM i DEFINITION

::::::::::::::::::::::::|=============:|==:::=:=::===::::::::::::=============:==:==:==
CREATE FILE | BF | CREATES THE FILE WITH THE NAME F. CHANGES THE PASSWORD ON F.

RENAME FILE | §BF | RENAMES FILE E TO BECOME J.

DESTROY FILE f 8F | DESTROYS THE FILE F.
________________________ |______-_-__--_|___-____________-_____--_________-___________________---_-__-_-----_-____-_------_-_--.
COMPONENT WRITE | 4ABLKIE | INSERTS 4 AS THE X TH COMPONENT OF P.

COMPONENT READ I BIKIE | RETURNS THE K TH COMPONENT OF E.

COMPONENT NULL | BLKIF | REPLACES THE X TH COMPONENT OF F WITH A NULL COMPONENT (DESTROYS K TH COMPONENT).
........................ '_-_-_-_-_-_-__'_--____-____-__-___-___-_____--___-___--____-_--_-_________-------_--------_-----------
COMPONENT FIRST OUT &F IF NON-NULL, RETURNS THE FIRST COMPONENT OF F AND REMOVES IT FROM E.

IF NON-NULL, RETURNS THE LAST COMPONENT OF [AND REMOVES IT FROM E.

|
I

4ARE | APPENDS A AS NEW COMPONENT BEFORE COMPONENT POSITIONS ALREAD IN F.
I

|

COMPONENT LAST OUT | Br
COMPONENT FIRST IN |
!

COMPONENT LAST IN ABF APPENDS 4 AS NEW COMPONENT AFTER COMPONENT POSITIONS ALREADY IN E.
........................ |______________l___________-____________________,_________-___________-__-______-_--_-_---_-_-_-_--_--.
VALUE MAP | BF | RETURNS A BOOLEAN VECTOR WITH LENGTH THE NUMBER OF COMPONENTS IN F.
NULL MAP | BF | VALUE MAP RETURNS 1 IF NON-NULL. NULL MAP RETURNS 1 IF NULL.
........................ |___-_-____-_-_|____-__--____-______-______-___________-__-___-__--_--_--__--_____-----_--------_-_-_-.
COMPONENT TAKE | ABF | MODIFIES F TO BE THE A TAKE OF F. SIMILAR TO THE TAKE FUNCTION. TAKING MORE
| | COMPORENTS THAN ARE IN THE FILE APPENDS NULL COMPONENTS TO THE FRONT OR END OF E.
COMPONENT DROP | 48F | MODIFIES F TO BE THE 4 DROP OF F. LIKE THE DROP FUNCTION.
________________________ I--______-_____|___________________________________-__________-__-_____-___-_-_--_--_---_-_--__---_---_
REVERSE COMPONENTS | BF | REVERSES FPILE COMPONENT ORDER IN F. LIKE THE REVERSE FUNCTION.
ROTATE COMPORENTS | 4ABF | MODIFIES F TO BE THE 4 ROTATE OF F. LIKE THE ROTATE FUNCTION
....... ._--_--_--_-____-|____________-_I_______________,_____________________________,___________________--__-------_----_----.
COMPRESS COMPONENTS | 4or | MODIFIES F TO BE THE 4 COMPRESS OF F. LIKE THE COMPRESS FUNCTIOW.
EXPAND COMPONENTS | ABF | MODIFIES F TO BE THE 4 EXPAND OF F. LIKE THE EXPAND FUNCTION.
________________________ l____-_________‘_____________________-______________________________-______________--_-_----_-_-_--_-_.
HOLD FILE | BF | PLACES A HOLD ON F (PREVENTS OTHER USERS FROM USING [F).
FREE FILE | ¥r | REMOVES HOLD ON F (ALLOWS OTHER USERS T0 USE E).
RELEASE FILE] Br | RELEASE FILE FROM THIS USE.
........................ |--.._-__-----_..|-_--...._-.._---___---__--_.,--_-_---_-____---__-----_---_---_..-___---_--------------------
QUERY FILE | ABF | RETURNS INFORMATION ABOUT [F:
I | 4=1 - CURRENT SIZE OF FILE IN BYTES. 4=5 - TIMES FILE REORGANIZED.
| | 4=2 - MAXIMUM SIZE OF FILE IN BYTES. 4=6 - ACCOUNTS CURRENTLY USING F.
|] A=3 - CURRENT NUMBER OF COMPONENTS. 4=7 - TIME OF LAST MODIFICATION.
| | 4=4 - BOOLEAN 1 IF MODIFIED SINCE BECAME ACTIVE.
........................ '----________-_|________-____________-_-_____-______--__--____--_---_-_-_-----_--_--_-----------------.
FILE USE STATUS | BF | RETURNS USAGE STATUS OF PILE F:
| | 0 = FILE F DOES NOT EXIST.
| | 1 = FILE EXISTS AND IS NOT ACTIVE. 4 = FILE IS BEING CLOSED.
: | 2 = FILE IS ACTIVE. 5 = FILE IS HELD BY SOME ACCOUNT.
-------------------------------------- I T T R it L T R b T
SYSTEM INTERROGATE BB | RETURNS INFORMATION ABOUT THE FILE SYSTEM:

|
| | B=1 - CURRENT NUMBER OF FILE USERS. B=3 - MAXIMUM NUMBER OF FILE USERS.
| | 8=2 - CURRENT NUMBER OF ACTIVE FILES. B=4 - MAXIMUM NUMBER OF ACTIVE FILES.

£ IS A CHARACTER STRING CONTAINING THE NAME OF THE FILE. THE NAME MAY BE COMPOSED OF FROM 1 TO 12

ALPEANUMERIC CHARACTERS (NO UNDERSCORES) STARTING WITH A LETTER. A LOCK IN BRACKETS MAY FOLLOW THE NAME.

IF A FILE ASSOCIATED WITH ANOTHER ACCOUNT IS TO BE ACCESSED THE ACCOUNT NAME IN PARENTHESIS SHOULD PREFIX THE FILE NAME.
INDIVIDUAL COMPONENTS MAY HAVE ANY TYPE (CHARACTER OR NUMERIC) AND ANY SHAPE THAT FPITS IN THE WORKSPACE.

| ACTION | | | NEXT
COMMAND | SYMBOL | FORM | ACTION | PROMPT
l:::::::::::::::::l::::::::':::::::'==:=:_=======:::::::::::::::::::::::::I====='_'==
| \J | v | DEFINE NEW FUNCTION, WITH HEADER H; | [1]
| | | INITIATE EDITING THEREON. |
----------------- R i e B et e b e
OPEN | v | VE | INITIATE EDITING OF PREVIOUSLY | [Z2]
] | | DEFINED FUNCTION, F.
| OPEN (LOCKED) | » | BF | ONLY IF OWNER OF WS AND NOT COPIED |
----------------- R el e et E L e
CLOSE I v] v | TERMINATE FUNCTION EDITING. |
|] | (MAY FOLLOW ANY COMMAND EXCEPT EDIT)|
CLOSE (LOCKED) | ¥ | # | S0 NO COPY OF WS CAN OPEN FUNCTION |
============:===:I::::::::I====::=|=::==::====::::::::::::::::::::::::::I::::::::
REPLACE | | [41T | TEXT OF LINE A IS REPLACED BY T. | (2]
] | | (IF 4 = Z, SAME AS APPEND-AFTER) |
Jommocmm e e R R [e L L LT T |
APPEND-BEFORE | + | (41T | TEXT OF NEW LINE 1 IS T. |
----------------- e R B b e E e |
APPEND-AFTER [+ | [+]T | TEXT OF NEW LAST LINE IS T. }
----------------- R il et L TN TR
INSERT-BEFORE i + | (+41T | TEXT OF NEW LINE, TO BE INSERTED] [+4+1]
| |] | BEFORE LINE 4, IS T.]
----------------- R b R I
| INSERT-AFTER] v | [+41T | TEXT OF NEW LINE, TO BE INSERTED | [+4+1]
! | | | AFTER LINE 4, IS T. |
======::=====:=:=I::::::::I=======I:::::::::::::::::::::::::::::::::::::l::::::::
| PULL-EDIT | € | Cedl | INITIATE EDIT OF LINE A. RULES SAME | [Z]
I |] | AS FOR TRANSACTION EDIT. {
Jecmemcm e e fooomeaen e R e I
PREFIX-EDIT] o | Tad] | SIMILAR TO FULL-EDIT EXCEPT SINGLE |
| | | | INSERTION BEFORE TEXT OF LINE 4 IS |
| | | | ASSUMED.]
R L L LT [===m===- Joomm - e L L LT |
| DIRECT-PREFIX | a | [ad1T | THE TEXT T IS INSERTED BEFORE THE |
| | ! | TEXT OF LINE 4. |
----------------- e e R et e L LR L T Ly
| SUFFIX-EDIT | w | [wdl | SIMILAR TO FULL-EDIT EXCEPT SINGLE |
|] | INSERTION AFTER TEXT OF LINE 4 IS |
l [! | ASSUMED. |
R e e L L T R |==-cem- e e aan L L LR e I
| DIRECT-SUFFIX] w | CwdlT | THE TEXT T IS INSERTED AFTER THE [
| i | TEXT OF LINE A [
Jocmmmmm e e R R e e LR |
| IMMEDIATE-EDIT | 1 (14] | UPON TERMINATION OF DEFINITION MODE, |

|

| TEXT OF 4 BECOMES THE 'MOST RECENT |
] | | | APL EXPRESSION' AVAILABLE FOR EDIT. |

|

C-10

- - - - o = e o S e s = e S Tv A Mm Em e mv S R S am ST Nr ST A N SR T M S e mm am s e e o Ae e e A S e S e e e e em e e e we e m m me s a
P I i 2t ittt s it R it T Rt R 2ttt st L kT

UNQUALIFIED: QUALIFIED:
ALL LINES IN DOMAIN LINES CONTAINING NAME X IN DOMAIN
FORM LINE DOMAIN FORM LINE DOMAIN
(o] 0 THRU Y [(oX)1] 0 THRU Y CONTAINING X
[04] 4 ONLY [(0X)4A1 4 ONLY IF CONTAINING X
[40] 4 THRU Y [4(0X)] 4 THRU Y CONTAINING X
[4081] 4 THRU B [4(0X)B] 4 THRU B CONTAINING X

O IS ANY MULTILINE FUNCTION EDITING ACTION

4, B ARE LINE NUMBER SPECIFIERS: INTEGER, LABEL
OR LABEL¥INTEGER; A<B

X IS NAME OF LABEL, FUNCTION OR VARIABLE

Y IS NUMBER OF PRESENT LAST LINE

| ACTION | | NEXT
COMMAND I SYMBOL | ACTION | PROMPT

:::::::::::::::::I:::::::::::::::: l T 3 2tk t t 2t Attt kit 2=z =====
SET-TRACE ! T | FORM OF DISPLAY (DURING EXECUTION): | [Z]

| | FLYIX(SHY F = FUNCTION NAME |
CLEAR-TRACE [1 I ¥ = LINE NUMBER [

[i LINE [0] TRACES X = VALUE TYPE |

| | FUNCTION RETURN. N - NUMERIC |

| | OTHER LINES TRACE B - BOOLEAN |

| | LEFTMOST VALUE, C - CHARACTER |

[| IF ANY. S = VALUE SHAPE I

[| Y = VALUE |
----------------- R L LR R LR L e e D B L R LTy
SET-STOP | r | FORM OF DISPLAY (DURING EXECUTION): |

| | EC¥1x F = FUNCTION NAME |
CLEAR-STOP | L ! X = LINE NUMBER]

I | LINE [0] STOPS |

| | BEFORE RETURN. |
----------------- kR et e e R L
SET-MONITOR] n | INITIATE COLLECTION OF STATISTICS. |

| | [
CLEAR-MONITOR | u | LINE [0] COUNTS THE NUMBER OF TIMES |

[| THE FUNCTION IS EXECUTED. |
----------------- R et e L R Rl ettt
DISPLAY-LINES | 0 | FORM OF DISPLAY: | (2]

| | HEAD - vy & = HEADER !

| | BODY - [N1 T ¥ = LINE NUMBER |

| | TAIL - v T = LINE TEXT |
----------------- R el et Rt
DISPLAY-NUMBERS | ? | FORM OF DISPLAY: VECTOR OF NUMBERS |
==gS=S=S==zs===s=Sz===== I SRSz =s===S === I ==:==================================I::::::::
DELETE ~ DELETE THE D SELECTED LINES WITHIN | [Z-D]

DELETES LOCAL NAMES LIST ONLY). |

o= e an mn o o e e o e T e A mm = o e Am S S e T e S m ST SR M ms e mm mm me mr e s e e e T Sm o Sm ER e e e mv mm TSmO ER MmUY A e e em Sm R mr e ov Am e m e A o o
EE S35t i -ttt it R -t E E R R R A R R R R R R R A A R R R A R A R R

|
| DOMAIN B (DELETE ON LINE ZERO |
I

c-11

BURROUGHS B 6700/B 7700

APL/700

system commands

gession control

)ON acet [passwordl*
)OFF [oldpword/newpword]l*
YCOFF [oldpword/newpword]l*
JBLOT

terminal control

SYNTAX SUMMARY

argument legend

NUINNOD QWD
B

any type

Boolean
character
decimal, numeric
character 'name'
integer

list

name

line specifier
result

text

header for defined function n

no result

I3
==

template

template local-names-list
result template
R «n niladice
R+ nVN monadtic
R« Mnn dyadie

eontrol structures

RN
I
f S

=4 ¥

~
A

call defined function n
niladie
monadic
dyadie

sequence of execution
branch
terminate
label

function precedence
list separator

comment

k-

system variables

JWIDTH 30 thru 32767*%*
YTABS 0 thru 30%
elear-workspace control
)JCLEAR 16 thru 1024*
)SYMS 16 thru 1024%
JORIGIN 0 or 1*
JDIGITS 1 thru 12%
)SEED 0 to n*
YFUZZ 0 to 1*
library control
YJFILES
JLIB
YLOAD waid
YCOPY wsid nameset?*
JPCOPY wsid nameset*
)SAVE wsid*
)DROP own-wgid
YWSID name*
group control
JATTACH groupname nameset?*
JDETACH groupname nameset*
JGRP groupname
run state
)SI
JRESET
name display
YFNS name*
YVARS name *
)JGRPS name *
YERASE nameset

wsid t8 (account)* name [passwordl*

* optional field

Cc-12

acr
gro
opp
ORL
0
0

comparison tolerance

index origin

print precision

random link

evaluated in, explicit out
character in, set prompt

shared variable functions

¢ 0svo
asvo
B 0svc
asve
0sve
OSVR

aaoaoaan

shared variable offer
degree of coupling
shared variable control
control veetor

shared variable query
shared variable retract

system functions transaction editing

function representations meaning of attention
OCR F canonic represent inttial: enter edit cycle
Ove F vector represent embedded: correct typing erpor
OrFx ¢ fix terminal: display next phrase
name edit control characters
c Onvr 1 name list * / delete
are ¢ name classification . mark phrase

Oex ¢ expunge

diagnostic function editing actions
I O0ST F get trace *
I 0SS F set stop * vV M define
I OSM F set monitor *
I 0ORT F reset trace * v M open .
I ORS F reset stop * B M open (locked
I ORM F reset monitor * v close
I OMV F monitor values * » close (locked)
0T F query trace
0es F query stop (Pl T replace
ggM F query monitor (¢1 7T append (before)
[(+1 T append (after)
execution control (4@l T ingert (before)
OpL » delay [+@1 T ingert (after)
OED C edit
B OED ¢ phrase edit [e@] full edit
OErR C error (a@] prefix edit
(w@] suffix edit
character set (@] inject edit
0B backspace
ac linefeed multiline group actions O
Or return
ar tab T set trace*
ay null 1 reset trace*
04 alphabet r set stop*
Op digits L reset stop*
DAv atomic vector n get monitor?*
u reset monitor*
status inquiry
aer print tabs 0 display lines*
Opw print width ? display addresses*
Owr workspace-1.d.
04w account name ~ delete*
DAI account information
0rLc line counter * unqualified (all lines)
ors time stamp [o] 0 thru last
avL user load [Po] P thru last
OwA working avatilability [0Q] Q only
Owna name availability {pPogq] P thru @
0Ora library availability
gra file availability qualified (lines with N)
0s4 ghares availability [(oN)] 0 thru last
ONEWS sign-on news [P(oN)] P thru last
[(oN)@Q] Q only
* dyadie - selective (P(oN)Q) P thru @
monadic - inclustive
tdentifiers
eonstants
letter, underscored letter, A or j,
'KEN''S' character "ken's" followed by 0 or more of above, _,
1 1.2 3.4E"7 numeric or digits.

C-13

selection and assignment

#

seal

Couooo

=~]

B AV SR

ty
€ <>

NlL]

N « 4
N[L] « A
N f« A
N[L] f« A

select

replace

ingert

modi fy#
modifited insert#

f i8 sealar dyadic
primitive function

ar

——— -
Toow

— X I+ — s X 1 +

o * & *»

HVIVHIAA
BOUNOY

o0
oo

c-14

primitive funetions

floor

cetling
minimum
maximum

identity
negate
8ignum
reciprocate
magnitude
add
subtract
multiply
divide
residue

(CBvEVEVECRVACECE V]

base e power
base e logarithm
power

logarithm

CoOow

less

not greater
equal

not less
greater
unequal

not
and
or
nand
nor

o

pt times
etircular

he)

factorial
D combinatorial

mized primitive functions - structure

I

-

~ Ny

Wy W

NN W w

©
B

n ey

X1
03

¢ A

$[K]
el[K]

/ A
A
/K]
#LK]

S P
NS e
—

+ >
- Y

E -

ghape
reshape

integers
indezx in

ravel

catenate / laminate
last dimengion
Kth from first dim'n
between dim'ne LD, D

reverse
last dimenseion
first dimension
Kth from first dim'n
Kth from last dim'n

rotate
last dimension
first dimension
Kth from firet dim'n
Kth from last dim'n

trangpose dimensions
permute dimensioneg

compress
laet dimensgion
first dimension
Kth from firet dim'n
Kth from last dim'n

expand
last dimension
first dimension
Kth from first dim'n
Kth from last dim'n

take
drop

mixed primitive functions - gets

E - - NS
!D2cunm
E S - RS

membership
subset
superset
unton
intersection
exclusion

mized primitive functions - other primitive operators

4D grade up A o.g A outer product#
YD grade down
reduction
2 I roll f/ D last dimension
I?rI deal £ D first dimension
F/Lkl D k-th from first dim'n
D 1D base value FALKY D k-th from last dim'n
DTD represent
scan
B D matrix inverse fAD last dimension
D@D matrix divide FAD first dimension
N[kl D k-th from first dim'n
s C evaluate FAIX] D k-th from last dim'n

4 f.g A inner product#
format primitive functions
f, g are scalar dyadic

v A implicit format primitive functions
KD numerie format
K in pairs w d
w width file functions
d deeimal places:
<0 floating point B F ereate file
=0 integer NBF rename file
>0 fixed point R F destroy file
cvl character format
L expregsion or (list) BLX]l F null Kth component
[format: 8 or 85...58 A BLk] F write Kth component
8 segment: g OF gyeseyg WLkl F read XKth component
g group: e or r(e)
r replicator R F first-out component
) clause: P OP DyesesD . B F last~out component
P phrase: one of ARF first-in component
ABF last-in component
mgJgAw character
mgJj E w.d floating point B F reverse components
m1lgqV Fwdr fixed point Iagr rotate components
mlgqIwer integer I®BF take eomponents
X w 8kip forward I@F drop components
Tn tab to n-th column BWOF compress components
<text> actual text BNF expand components
m phrase replicator# A F hold file
J Jjustifier: M F free file
L left justify in field#
w Ffield width g F release file
d decimal places
lr left, right decorators: B F value component map
~0+<text> 8ign selector(s)# B F null component map
*<text> background#
q qualifiers: g I interrogate system
left justify in field# B F test file status
IBQF query file

ingert commasg#

L

B skip if zero#

c

z insert leading zeros#

optional field

91-0

| 1. SYSTEM INITIATES CYCLE BY DISPLAYING PROMPT AND

| UNLOCKING KEYBOARD.

| 2. USER SPECIFIES TRANSACTION BY MAKING TEXT ENTRY.

| 3. SYSTEM COMPLETES TRANSACTION BY INTERPRETING ENTRY,
| DISPLAYING APPROPRIATE DATA OR ERROR MESSAGE,

| AND RETURNING TO STEP 1.

| CHABACTER | INSERT CHARACTER INTO TEXT AT POSITION

| | OF CURSOR, THEN MOVE TO RIGHT ONE SPACE.
| SBACE | POSITION CURSOR ONE SPACE TO RIGHT.

| BACKSPACE | POSITION CURSOR ONE SPACE TO LEFT.
| T48 |
| |
| |
]

SYSTEM EITHER (1) TYPES OUT TEXT, RETURNS, AND UNLOCKS
KEYBOARD, OR (2) EXDENTS CURSOR, AND UNLOCKS KEYBOARD.
USER TYPES IN EDIT CONTROLS.
INITIAL INPUT OF --
ATIENTION SYSTEM ASSUMES MODIFICATION AT END OF
TEXT, POSITIONS CURSOR TO COLUMN
IMMEDIATELY TO RIGHT OF TEXT, UNLOCKS
KEYBOARD AND PROCEEDS AT STEP u.
OTHERWISE IF INPUT UNDER CHARACTER OF TEXT IS:
A DELETE CHARACTER ABOVE;
! MARK START OF NEXT PHRASE.
SYSTEM TYPES QUT REVISED TEXT, STOPPING BEFORE NEXT
INSERTION POINT, AND UNLOCKS KEYBOARD.
USER ADDS TO, MODIFIES, OR TERMINATES CURRENT ENTRY BY
USUAL TYPING RULES.
INPUT OF --
ATTENTION PROCEEDS AT STEP 3 IF CURSOR TO RIGHT

POSITION CURSOR RIGHTWARD TO NEXT TAB STOP. OF CURRENT TEXT FOR NEXT PHRASE.
LINEFEED DISCARD TEXT ABOVE AND TO RIGHT OF CURSOR.
RETURY TERMINATE USER ENTRY PORTION OF TRANSACTION.

- 2+ 2 A S+ - E S s S S E S F R S S S 2 T A A AR S E R R RS S RS S S F S 22 RS S S S S S S S S S SR E R A S PR RS R AR R RS I R A R R T R R I R A 2 2 2 0
|====:::::::::=::::::::::::::::::::::::::::::::::::=========:====:==:===:=::=::::::======:z:::::::::::========:===:===::========
|
| ATTENTION CONVENTIONS
|
':::::============:=::======:::::::::::::::::::‘:::::::::::===:==::==========:::’_‘::====::====:===================::::::::::::::::
| KEYBOARD | ATTENTICN |
| STATE | INPUT IS | ACTION (SEE TRANSACTION EDIT FOR OVERRIDING USES)
I::::::::::::l::::::::::: IR TR S S SIS L SR I NS C oSS SIS oSS IS oSS S oSS oSS T o oI CoSE oIS S S CCCSCSRC ST S RS ESSCCoESEZSSSCSSCSE=2SZsT==Z
| URNLOCKED | INITIAL |
! | | MODE] PROMPT | AFTER VALID ENTRY | AFTER ERRONEOUS ENTRY

I femececceeceaas R e e e T L T jeeeeeccecccacccenancca-
]] ! EXECUTION | FIVE SPACES | EDIT MOST RECENT APL EXPRESSION THIS LEVEL. | EDIT ERRONEOUS ENTRY.
] [B el LT B et e T
: | | DEFINITION I [...1] | EDIT MOST RECENT DEFINITION MODE ENTRY. |
] Jomcoemcmme e R el D R e EE L LS LT |
: | ! 0 | G: LF 3-SP | PROCESS EVALUATED INPUT. |
| R el R e et et LT |
: | | s} | USER DEFINED | PROCESS CHARACTER INPUT. |
e R it R e it e L L L
| | NON- | SYSTEM LINEFEEDS, TYPES ‘'v', LINEFEEDS., AND UNLOCKS KEYBOARD.
: | INITIAL | ACTION SAME AS LINEFEED FOR TYPING RULES.
............ |-------_---l-___-_--_---_-_--_-_______---_-__-______-________--____-_____-_-__-_____--__-_-_____..-__-_-----------_
: LOCKED | N.A. | SEQUENTIALLY INPUT ATTENTIQNS MEAN:
| |
: | | DURING EXECUTION OF AN APL EXPRESSION | OPHERWISE
I e e e T LT P J===smemmmmm e
: : i FIRST: SUSPEND EXECUTION AFTER LINE AND ABORT QUEUED OUTPUT. | ABORT QUEUED OUTPUT.
| |

SECOND: ALSO KILL ACTION.

INDEX

Terms indexed below with section and page numbers are used in sections
1 through 9 of this manual. Cross references are indicated by (see
Primary listing). They are used both for alternative entrics and for
some terms used in other APL manuals and texts. Some generic terms
are included to provide different categorizations than are discussed
in detail in the manual: in particular, alphabetic lists of character
names, file editing actions, file functions, primitive functions,
system commands, system functions and system variables. For each APL
character, entries are included for both the function or action names
in which it is used, and the character name independent of its use.

Absolute value | 5-8 Arctanh 5-14
Account name Areas (sece Availabilities)
for files 7-1 Arguments
for other workspaces 3-6 definition 1-5
for sign~-on)ON 3-2 in function header 8-1
function 04N 6-12 left and right 4-7, 8-1
Accounting information 0AI 6-12 Arrays 4-2
Acoustic coupler 2«6 Arrow characters
Across dimension 4-2 down + 5-40, 7~7
Action specifier 8-2 left « 5-4
Actions, on defined functions right - 8-3, 8-20
(see Function editing actions) up 4+ 5=40, 7-=7
Active Agssignment <« 5-4
file 7-2 Asterisk x 5-10
function 8-18 Atomic vector [JAV 6-9
workspace 1-8 Attach system command)ATTACH 3-10
Add + 5-8 Attention ATTH
Along dimension 4-2 key 2-4
Alpha o 8-10 editing last entered
Alphabet 04 6-9 expression 2-9
Alternating entry typing error
product */ 5-23 correction 2-8
sum -/ 5-23 function suspension 2-10
And A 5~13 output termination 2-10
APL Availability
character set 2-2 file [OFA 6-12
keyboards 2-3 library 0OLA 6-12
MCS identifier \APL 2-6 name VA 6-12
Apostrophe (see Quote) ! workspace 0OV4 6-12
Arccos 5=14 Average 8-2
Arccosh 5~14 Backslash \ 2-6, 2-9, 5-38, 8-~10
Arch characters dash % 5-38
down v 5-42, 8-14 quad N 7-8
left c 5=42 Backspace
right > 5-42 tey BKSP 2-4
up n 5-42, 8-14 character OB 6-9
Arcsin 5~14 Base e logarithm e 5-10
2rcsinh 5-14 Base e power * 5-10

Arctan 5-14

INDEX~-1

Base value 1 5-8
Beta function 5-16
Blanks as separator #-9
Blot system command)BLOT 3-3
Body of function 8-2
Boolean type 4=4
Braces 2=3,
Brackets []

dimension selector 4-8

index list 4-8, 5~2

prompt 8-2
Branch -

conditions 8-4

described 8-3

examples 8-i

no argument (see Terminate) 8-4
Built=-in functions (see Functions,

primitive)
Bytes, space measure 6-12
Calculator mode, (see Execution mode)
Call

defined function 8-18

recursive 8-=19
Canceling a line 2-8
Canonic representation OCR 6-4
Cap n 5-42, 8-14
Caret characters

down v 5-=13

left < 5-12, 5-13

right > 5-12, 5-13

up A 5-13

not down # 5-13

not left 2 5-12, 5-13

not right < 5-12, 5-«13

not up » 5-13
Carrier return, (see Return)
Catenate , 5-8
Ceiling [5-7, 8-14
Change password

account 3-2

file B 7-3

workspace 3=7
Character

alphabet 04 6-9

atomic vector UAV 6-11

data displayed 4-3

data type #-3

digits D 6-9

error 2-10

format v 5~062

input [0 4-11

quote ' 4-=3

string 4-4

type mixed with numeric 4-8

vectors U4-3

6-10

INDEX-2

Character names
alpha o 8-10
apostrophe (see quote) !
arch,
down u 5-42,
left c 5=42
right > 5-42
up n 5-42, 8-14
arrow,
down + 5-40, 7-7
left <« 5-=4
right - 8-3,8-20
up + 5-=40, 7-7
asterisk (see star) =
backslash \ 2-6, 5-38
dash % 5-38
braces 6=10
brackets [] 4-8, 5-2, 8=2
box (see quad) 0
cap (see arch, up) n
caret,
down v 5-13
left < 5-12, 5-13
right > 5-12, 5-13
up A 5-13
not down # 5-13
not left < 5-12, 5-13
not right =z 5-12, 5-13
not up « 5-13
ceiling [5-7, 8-14
circle o 5-14
backslash § 5-36
dash e 5-34
star e 5-10
stroke ¢ 5-34
colon =11, 8-2
comma , 5-8
cup (see arch, down) u
dash - 5-8
del Vv 8-6
stroke ¢V 5-44
tilde ®# 8-6
delta A U=6
stroke 4 5-U4
undcerbar A 2-4
diamond 6~10
dieresis " 2-3
digits 2-2
divide + 5-8
dollar ¢ 6-10
domino [5-50
epsilon ¢ 5-42, 8-=10
equal = 5~12
exclamation ! 5-=16
I-bar 1 6-22
iota 1 5-31, 8=10

4-3

8-14

jot o 5=20
down tack & 5-54
up arch (see lamp) AR
up tack ¥ 5-=55
letter 2-2
underscored 2-2
lamp a 4-10
log @ 5-10
negative -~ 4-3
omega » 8-10
parentheses () 4-7, 8-12

Circle o 5-14

backslash &§ 5=36

dash e 5-34

star & 5~10

stroke ¢ 5-34
Circular functions o 5=14
Clear command)CLEAR 3-4

Close function action v 8-6
Close and lock function action ® 8=6

Coercion 5-17
Colon : 4-11, 8«2

right) 3-1 Combinations ! 5-15
period . 2-9, 4-3, 5-20, Combinatorial, generalized ! 5-16
5-26, 8-10 Comma , 5=8
plus + 5-8 Command, system (see System command)

quad 0O 4-11, 8-16
backslash § 7-8
circle B 7-6

Comment o 4-10
Comparison tolerance
default)FUZZ 3-5

del @ 7-3 variable 0OCT 6-2
delta @ 7-3 Component
divide (sce domino) B of file 7-1

of list 4-8
Compress / # 5-38
Compress components {1 7-8
Confornable arcuments 5-17
Connecting with the APL/700

system 2-6
Constant 1-5, 4-5
Continue off cormand)COFF 3=2
Control structures 1-7, 4-7, 8-18
Coordinates of an array
(see Dimensions)

Copy command)COPY 3-7
Copy, protect)PCOPY 3-7
question mark ? 5-45, 8-16 Corner elcment 4-2
quote ' 4-3 Correction of typing error 2-8

quad (sec quad quote) [Cosh 5-14
rho p 5=30 Cosine 5-14
semicolon ; 4-8, 4-11, 5~55, 8-1 Create file B 7-3
slash / 2-9, 5-38, 8-10 Cup u 5~42

dash # 5-38 Curve fitting 5-53
star * 5-38 Dash - 5-8
stroke | 5-8 Data Communications Processor
tack, (bCpr) 2-1

down L 5-46 Data entry mode 1-4

left 2-=3, 6=10 Data object 4-2

right 2-3, 6=-10 character 4-3

up v 5-48 display forms 4-3
tilde ~ 5-13, 5-42, 8-17 numeric 4-4
times x 5-8 tests of properties 4-5
underscore _ Deal ? 5-U45

alphabet U4-6 Deblank 5=35

delta A U4-6 Decimal point . 4-4
uncqual # 5-12 Default format ¥ 5-58
Define header action Vv 8-6

down arrow @ 7-7, 7-9
dovn caret M 7-9
equal B 7-10

jot B 7-11

left arrow @ 7-4
left caret § 7-5
quote M 4=11
right arrow B 7-4
slash 0 7-8

tilde B 6-10

up arrow @ 7-7

up carct B 7-9
unequal & 7-10

INDEX-3

Defined function editing actions Delay 0ODL 6-8

action specifier 8-5 Delete action ~ 8-17
define header V 8-6 . Delta A& U-6
delecte ~ 8-17 stroke A 5=44
display line numbers ? 8-16 underbar A 2-4
display lines [0 8-16 Destroy file B 7-3
full edit line € 8-10 Detach command)DETACH 3-10
function Diagnostics 6-6, 8-14
close V 8-6 Diagonal, selecting from
close and lock ® 8-8 an array 5-36
open V 8-6 Diamond 2-3, 6-10
open locked ® 8-6 Dieresis =~ 2-3, 6-10
inject as most recent Digits)DIGITS 3-5
expression 1 8-10 Dimension selector 5-19, 5-29
insert Dimensions 4-2
before + 8-8 Display
after + 8-8 array H-3
multiline group specifier 8-12 defined function 8-16
prefix edit o 8-10 empty vector 4-3
replace [] 8-8 fractional number 4-4
reset line numbers action ? 8-16
monitor uv 8-14 lines action 0O 8-16
stop T 8~-14 natrix 4-3
trace L 8-14 nunber in E notation 4-4
set significant digits
monitor n 8-14 3-5, L=4, 6-2
trace [8-14 value of cexpression 4-3
stop T 8-14 vector 4-3
- suffix edit w 8-10 Divide * 5-8
Defined functions Documentation 8-21
argunents 8-1 Dollar sign 4 6-10
body 8-2 Domain
canonic represent [OCR 8-4 of function argument 1-5
definition 8-1 of numbers 4-4
documentation 8-21 Domino 3 5-50
editing actions (see Function Dovm
editing actions) arch v 5-42, 8-14
editing as data 8-21 arrow + 5-40, 8-8
example 8-2 caret v 5=~13
execution, (see Execution of tack L 5-46, 8-14
defined functions) E notation for numbers E U-4
fix OFX 6-4 Edit
header 8-1 characters . / 2-9, 8-10
line numbers 8-=5 function 8-10, 8-21
line renumbering 8-5 nost recently entered
local names 8-1 expression 2-9
local names list 8-1 system function [JZD 6-8
list command)FNS 3-9 Elaboration of expression #-=7
name 8-1 Element of a data object 4-2
name list ONVL 6-5 Empty array -4
transformations 6-4 Entry length 2-5
vector represent [OVR 6-4 Epsilon ¢ 5-42, 8-10
Definition and editing mode, Equal = 5-12
function 8-1 Erase
Del Vv 8-6 command)ERASE 3=9
stroke ¥ 5-44 file (see Dcstroy)
tilde ¥ 8~6 system function [JEX 6-5

typing error 2-8
workspace (see Drop command)
INDEX~4§ :

Error reports, table of 9-i4
Errors
described 9-1
in a defined function 9-2
in expression entry 4-9
reports, table 9-i4
system function OER 6-8
Escape
from character input 0 4-12
from evaluated input - 4-12
Evaluation of expressions 4-7
Evaluate ¢ 5-54
Evaluated input 0 4-11
Exclamation ! 5-16
Execution
controls 6-8
mode 1-4
state 2-1
Execution of defined functio:
active function 8-18
call 8-18
diagnostics 6-6, 8-14
dynamic expunging 8-18
global name 8-18
instance 8-18
local name 8-18
monitor 6-6,8-14
multiple instances 8-19
pendant 8-18
recursive calls 8-19
result 8-18
scope of local name 8-18
structured program 8-18
stop 6~6, 8-14
suspended function 8-18, 8-20
trace 6-6, 8-14
Expand \ % 5-38
Expand components § 7-8
Explicit output O« 4-11
Exponential notation E 4-4
Expression
definition 1-=7
entry 4-9
list 4-8
order of execution 4-7
with a quad or
quote-quad 0 0 4-11
Expunge [EX 6-=5
Factorial ! 5-16
File
account name 7-1
active status 7-2
availability 0OFA 6-12
components 7-1
inactive status 7-2
integrity 7-2

library names)FILES 3-6
limits 7-1
name 7-1
password 7-1
open 7-2

File functions
change passworxrd @ 7-3
create file [§ 7-3
compress components [7-8
destroy file @ 7-3
expand components § 7-7
first component in B 7-5
first component out g 7-5
free ¥ 7-9
hold R 7-9

interrogate file system B 7-11
last component in B 7-5

last component out H 7-5

map components non~null B 7-10
map components null B 7-10

null component B 7~4
query file attribute g 7-11
read component § 7-4
release file § 7-9
rename f£ile { 7-3
reverse conponents @ 7-6
rotate components @ 7-6
take components @ 7-7
test file status O 7-11
write component B 7-4
Fill 5-38, 5~40
First file component
in 8 7-5
out B 7-5
Fix [OFx 6-4
Fixed Point number 4-4
Flooxr | 5-=7, 8-1#
Forgotten password 1-9
Formally equivalent
expressions <«-» 5-1
Format ¥ 5-55
Fractional numbers U-4
Free file M 7-9
Full edit action ¢ 8-10
Function definition and editing
mode 8-1
Functions
defined (see Defined
functions) 8-1
file (see Tile functions) 7-1
primitive (see Primitive
functions) 5-=1
system (sec System
functions) 6-1
Future value 5-47

INDEX-5

Fuzz
command)FUZZ 3-5
system function QOCT 6-2
Gamma function ! 5-16
Generalized combination ! 5-16
Generalized factorial ! 5-16
Global name 8-18
Go.to (see Branch) 8-=3
Grade down Yy 5-44
Grade up 4 5-4i
Graph construction 5-21
Greater than > 5=12
Greater than or equal = 5-12
Group commands 3-10
names command)GRPS 3-9
content command)GRP 3-11
name of 4-6
Header, function 8-1
Hexadecimal/decimal
conversion 5-47, 5-49
Histogram construction 5-21
Hold File B 7-9
Hyperbolic functions o 5-14
I-bar functions 1 (=22
Identifier 4-6
Identity + 5-8
Identity elements for scalar
dyadic functions 5-28
Illegal character
display 0 2-10, 6-11
Implicit output 4-11
Inactive
file 7-2
workspace 1-8
Index 5=2
generator 1 5-3
list 5-2
nunber 5-19, 5-29
of (ranking) 1 5-31
sequence (row major
ordexr) 5=32
Index origin
default origin)ORIGIN 3-4
variable 0I0 6-2
effect on functions 6-3
Indexing [] 5-2
Inject line action 1 8-=10
Inner product operator ¢.® 5-26
Input
transaction 2-8
comnunicators O M 4-11
Insert
extra blanks 4-=9
lin¢ action + ¢ §-8
value in array A(L]« 5-4
Instance of defined function 8-18

INDEX-6

Integer
fraction separation T 5=49
not greater than L 5-7
not less than [5-=7
subtype of numeric 4-4
Integers to v 5-31
Internal character
representation AV 6-9
Interpolation 5-52
Interrogate file system B 7-11
Intersection n 5-42
Interrupt (see Attention)
Inverse
hyperbolic functions o 5-14
matrix B 5-50
trigonometric function o 5-14
Iota v 5-31, 8-=10
Jot o 5-=20
down tack 2 5=54
quad [d 7-11
up arch a 4-10
- up tack v 5-55
Justify ragged array 5-25
Keyboard 2-3
Label
narme U4-6
use of 8-2, 8-3
Laminate , 5-32
Lamp a 4~10
Last entered expression 4-9
Last file component
in @ 7-5
out B 7-5
Least squares estimation 5-53
Leaving function definition
mode 8-8
Left
arch < 5=42
arrow <« 5-=4
brace 6-10
bracket [4-8, 5-2, 8-5
caret < 5-12
parenthesis (4-2, 8-12
tack 2-3, 6-10
Length of names U-6
Less than < 5«12
Less than or equal < 5-12
Library
area L4 6-12
command)LIB 3-6
of files)FILES 3-6
of inactive workspaces 1-8
Line
count [JLC 6-12
drops 1-8
editing o € w 8-10
group specifier 8-12

in function definition 8-2 Matrix multiply

insertion + + 8-8 - inner product +.x 5=26
number 8-5 ' outer product o.x 5-20
number specifier 8-5 scalar x 5-8
renumbering 8-=5 Maximum [5=7
replacing [] 8-8 likelihood estimator 5-53
Linear Membership e 5-42
curve fit 5-53 Merge 5-414
equations 5-52 Message control system MCS 2-6
least squares estimation 5-53 Minimax L.[5-27
Linefeed Minimum L 5-7
key 2-5 Minterm v.A 5-=27
character 0L 6-9 Mixed
List : primitive functions 5-29
component 4-8 radix 5=-46, 5-U48
delimiter ; 4-8 type list 4-11, 5-55
expression 4-8 Modes 1-4
local names 8-1 character input 4-11
Literal character constant 4-5 evaluated input 0: 4-11
Load command)LOAD 3-7 execution function
Local definition and
functions 8-2 editing 8-1
label constant 8-3 Modify e+« 5-4
left argument 8-1 Modified inscrt [Je<« 5-4
name 8-2, 8-18 Monadic function defined #-=7
names list 8«1 Monitor execution 6-6, 8-14
right argument 8-1 lonitor values MV 6-6
result 8-1 Most recently entered eupression 4=¢
variables 8-2 Multiline group specifier 8-12
Local/communicate switch 2-4 Multiple
Location in 1 5-=31 spaces 4-9
Locked linear regression 5=55
account 3-2 Multiply x 5-3
file @ 7-3 N-dimensional data object 4-2
function ® 8-6 Nanme
keyboard 1-3, 2-5 account H4-6
workspace 3-6 arca ['4 6-12
Locks and passwords 1-9 classification (V4 6-5
Log e 5=10 defined function 4-6, 8-1
Logarithm e 5-10 display 3-9
Logical functions 5-13 file U4-6
Logical station number group H#=6
LSN 2-6 label 4-6
Looping list ONL 6-5
by backward branch -» 8-3 password U4-6
interrupt by ATTN 2-10 restrictions U4-6
Main diagonal 5-37 shared variable U4-6
Map file components variable U4-6
null 8 7-10 uses U4-6
non-null g 7-10 workspace 4-6
Margin key 2-5 Name displays
Match A.= 5-27 files)FILES 3-6
latrix functions)Iys 3-9
described 1-U4, 9-2 group)GRP 3-11
display of 4-3 groups)GRPS 3-9
Matrix divide @ 5-50 library of workspaces)LIB 3-6
Matrix inverse @ 5-50 list (VL 6-5

variables)VARS 3-6
INDEX~7

Nand « 5-13 Parentheses ()

Natural logarithm e 5-10 ‘ in an expression H4-7
Negate - 5-8 redundant 4-8
* Negative sign for number ~ 4-3 system command prefix) 3-1
News Password
sign-on message 2-7 for sign-on 2-6
system function [ONEWS 6-12 forgotten 1-9
Niladic function 4-7 name U4-6
No-element array 4-3 on account 3-2
Nonscalar arguments used on file 7-3
with scalar functions 5-17 on ‘,Jorkspace 3=7
Nor # 5-13 security use 1-9
Not ~ 5-13 ' Pendant function 8-18 ,
Not equal = 5=-12 Period . 2-9, 4-3, 5-20, 5-26, 8-10
Not greater < 5-12 Permute dimensions § 5-36
Not less 2 5=12 Pi times o 5-14
Null Plane across dimensions 4-2
character [J# 6-9 Plus + 5-8
file component B 7-4 Polynomial 5-47
file map B 7-10 Power = 5-10
Number of users OUL 6-12 Precision of numbers U4-4
Numeric Prefix edit action ¢ 8-10
data type 4-3 Present valuec 5-47
character representation 6-9 Primitive Functions
format v 5-6 absolute value | 5-8
vector 4-3 add + 5-8
Off cormands © and A 5-13
terminate)OFF 3-2 base e logarithm e 5-=10
suspend, continue)COFF 3-2 base e power x 5-10
Omega w 8-10 base value 1 5-46
On command)ON 3-2 catenate , 5-32
One=-element array 4-4 ceiling [5=7
Open circular o 5-14
file 7-2 combinatorial { 5-16
function action Vv 8-6 compress / ¢ 5=38
locked function action ¥ 8-6 deal 2 5-45
Operators, primitive divide : 5-8
inner product e.® 5=26 drop ¢ 5-40
outer product ¢.® 5-20 equal = 5-12
reduction /e 5~22 evaluate ¢ 5-504
scan \e 5-24 expand \ Yy 5-38
Or v 5-13 factorial ! 5-16
Order of elaboration 4-7 floor [5=7
Origin (see Index origin) - format vy 5-55
Orthogonal #-2 grade down { S5-44
Outcr product operator o.e 5-20 grade up 4 5-44
Output for display greater than > 5-12
communicators O« [« #4-11 greater than or equal > 5-12
display form 4-3 identity 4+ 5-8
mixed type 4-11 index of , 5-31
Over (sce Reduction) integers to . 5-31
Overstruck characters 2-4 intersection n 5-42
Overtake 4 5-40 laminate , 5-32
Parallcl elaboration 1-7, 4-7 less than < 5-12

INDEX~8

less than or equal g 5-12
logarithm e 5=10
magnitude | 5-8
matrix divide B 5-50
matrix inverse @ 5-50
maximum [57
membership ¢ 5-42
minimunm | 5=7
multiply x 5-8
nand ~ 5-13
natural logarithm e 5-10
negate - 5-8
nor » 5-=13
not equal # 5=12
not greater s 5-12
not less 2 5-=12
or v 5~13
permute dimensions § 5-36
pi times o 5=-14
power x 5=10
ravel , 5«32
reciprocate + 5-8
represent T 5-U8
reshape p 5=30
residue | 5-8
reverse ¢ e 5-34
roll 5-45
rotate ¢ e 5-34
selection [] 5-2
set exclusion ~ 5-U42
shape p 5-30
signum x 5-8
subget c 5=-42
superset o 5=42
subtract - 5-8
take 4 5-40
transpose dimensions & 5-36
unequal # 5-=12
union u 5-42
Primitive operators (see
Operators, primitive)
Principal diagonal of matrix 5-37
Print precision
default)DIGITS 3-5
variable JOPP 6-2
Print tabs
default)TABS 3-3
function 0OPT 6-12
Print width 3-3
default YWVIDTH 3-3
variable 0OPF 6-12
Procedures for terminal 2-6
Processor phase 1-3
Progressive expression
development 4-9

Prompts 1-4
Properties of data objects U4-5
Protect copy)PCOPY 3-7
Protecting functions ¥ 8-6
Quad
display lines O 8-16
evaluated input prompt J: 4-11
explicit output [0« 4-11

overstrikes (see character names)

quitting quad input 4-12
Qualification, line group 8-12
Query

file attribute § 7-11

monitors QM 6-6

stop [0S 6-6

trace 0QT 6-6
Question mark ? 5-45, 8-16
Quitting (see Sign-—-off)
Quotas
computer use 1-7
files, number 1-7, +/0F4 6-12
files, space, 1-7, @ 7-11
on user account 1-7
shared variables 1-7
. workspaces 1=7, +/0LA 6-12
Quote~-quad M 4-11
Quotes in character data ' 4-3
Radiang o 5-14
Radices 5-8
Random number

deal ? 5-45

link default)SEED 3-5

link variable ORL 6-2

roll ? 5=45
Range of a function result 1-5
Rank

of a data object 4-2

determined by shape

function 5-30
Rank-n arrays

described 4-2

display of 4-3
Ravel , 5-32
Read component @ 7-4
Reciprocate + 5-8
Recovery 1-8, 2-12
Redundant

blanks 4-9

parcentheses §-9
Recursive function 8-19
Reduction operator e/ 5~22
Relational functions 5-12
Relecase file @ 7-90

INDEX-9

Rename
file @ 7-3
function 8-10
workspace)WSID 3-8
Reordering a vector 7-3
Repeat key 2-5
Replace
function « 5-4
line action 8-8
multiple 5-5
Represent T 5-48
Request for input
character [#4-11
evaluated 0 #4=11
prompt 0. 4-11
Reset
command)RESET 3-12
monitors 0ORM 6-6, u 8-=14
stop ORS 6=6, L 8-14
trace ORT 6-6, L 8=14
Reshape p 5=30
Residuals of curve fit 5-53
Residue | 5-8
Result
explicit 8-1, 8-18
value of expression H#-7
Return ’
“key RETHN 2-4
character [F 6-=9
completing entry 2-8
Reverse ¢ e 5-34
Reverse components 4@ 7-6
Rho p 5-30
Right
arch o 5-42
arrow -+ 8=3
brace 2=3, 6-10
bracket] 4-8, 5-2, 8-=5
caret > 5-12
parenthesis) 4-7, 8-12
tack 2-3, 6-10
Right-to=-left elaboration 4-7
Roll ? 5-45
Root (see Power)
Rotate ¢ e 5-34
Rotate components B 7-6
Row major order 5-32
Save workspace command)SAVE 3-7
Scalar
single character 4-3
nunber 4-3
Scalar primitive functions
definition 5-6
cxtension arrays 5-17
Scan operator e\ 5-24
Scientific notation 4-4
Scope of local namc 8-18

INDEX-10

Security 1-9
Seed command)SEED 3=5
Selection [] 5-2
Self protections 1-8
Semicolon
and indexing 4-8
local names list delimiter 8-1
with formatted output 5-55
with mixed output 4-11
Sequence of characters 5-3, 5-32
Set
character input prompt O« 4-11
exclusion ~ 5-42
functions 5=-42
monitors (51 6-6, n 8-=14
stop 0S5 6-6, [8-14
trace (ST 6-6, T 8-=14
Session controls 3-2
Shape p 5-=30
Shape of data object u4-2, u4-4
Shared variables
access control 6-13
availability 0S4 6-12
control OSVC 6-18
coupling [SV0 6-16
name U4-6
offer JSVO 4-6
query [0svVg 6-20
retract [OSVR 6-20
surrogate 6-13
Shares availability 0S4 6-12
Sharing 1-9
Shift key 2-4
Shriek ! 5-16
Sign-off 2-6
continue)COFF 3=2
discard)OFF 3-2
Sign-on 2-6
connect command)0 3-2
1MCS specifier \APL 2-6
Significant digits (see Print
Precision)
Signum x 5-8
Sine 5-14
Single 4-~4
Sinh 5-14
Size x/p U=2
slash / 2-9, 5-38, 8-10
dash # 5-38
Solidus / (sce slash)
Sorting 5-4i
Space
bar 2-4
with constant vector 4-9
in formatted data 5-55
redundant 4-9

Special characters 2-2, 2-4

Square root ,
normalized surds o 5-14
general (sce power) x 5-11

Souish quad g 2-10, 6-11

Standard functions (see functions,

primitive)

Star * 5-10

State indicator)gyr 3-12

Station name 2-6

Stopping
function execution ATTN 2-10
output display ATTN 2-10
terminate » 8-3
session (see sian-off)
suspend 6-6, 8-11

Storace space availability [jwa 6-12

Strina U-4
Stroke | 5-8
Structure of an expression U-7
Structured procoram 8-18
Structurina an array 4-3, 5-30
Subarray 5-2
Subscript list 5-2
Subsct ¢ 5-U42
Subtract - 5-8
Sudilos \- (see backslash)
Suffix edit action 4 8-10
Superset 5 5-42
Surrogate 6-13
Suspencded functions
clearing state indicator
JRESET 3-12, 8-20
correctinag errors in 8-20
detection of 8-20
meaning of 8-18
termination -5 8-20
Switches on the terminal 2-4
Symbol table
availability [Oya 6-12
command)SyMs 3-U
entry by replace 5-5
Syntax
defined functions 8-1
expression list U4-8
expressions U-7
formats 5-56
primitive functions 4-7
Svstem commands
JATTACH 3-10
YBLOT 3-3
YCLEAR 3-4
YCOFF 3=2
YCOPY 3-7
YDETACH 3-=10

YDIGITS 3-5
YDROP 3-8
YERASE 3-9, 8-21
YFILES 3-6
YFNS 3-9
YFUZZ 3-5
YGRP 3-11
YGRPS 3-9
YLIB 3-6
YLOAD 3-7
JOFF 3-=2
YON 3-2
YORIGIN 3-U
YPCOPY 3-7
YRESET 3~-12, 8-20
)SAVE 3-7
YSEED 3-5
¥SI 3-12
)SYMS 3-4
YTABS 3-3
YVARS 3-9
YWIDTH 3-3
YWSID 3-8

System functions

accounting information [JAI 6-12
account name [JAN 6-12
alphabet []A €-9

atomic vector [AV 6-9
backspace character (B 6-9
canonic representation [ICR €-4
delay [DL 6-8

dicgits (0D 6-9

edit [ED 6-8

error ['FR 6-8

expunae [UEX 6-5

file availability [FA 6-12
fix [JFX 6-4

library availability [074 6-12
line count [LC 6-12
linefeed character [IL 6-9
monitor values [MV 6-6

name availability [ONA 6-12
name classification UONC 6-5
name list [ONL 6-5

news [ONEFS 6-12

null character [N 6-9

print tabs [PT 6-~12

print width [PV 6-12

aquery monitors [1QM €-6
ocuery stop [0S 6-6

query trace [T 6-6

reset monitors ['RM 6-6
reset stop [ORS 6-6

reset trace [IRT 6-6

return character [6-9

INDEX-11

set monitors [0SM 6-6 " Transaction

set stop (0SS 6-6 definition 1-3
set trace 05T 6-6 entries 2-8
shared variable editing 2-8
control (JSVC 6-18 Transformations, function 6-4
offer 0OSVO 6-=16 Transpose dimensions & 5-36
query 0svg 6-20 " Triangular numbers 5-25
retract [OSVR 6-20 Trigonometic functions 5-14
shares availability 0S4 6-12 Truth table 5-12
tab character 0O 6-9 Type of data object 1-4
time stamp 075 6-12 Typing errors 2-8
user load QUL 6-12 Twitch prompt 2-10
vector representation [OVR 6-4 Underscore _ U-6
working availability 0OW4 6-12 ~delta b 4-6
workspace identity 0OWI 6-12 " Unequal = 5-12
System information 1 6-20 . Union u 5-42
System variables 6-2 Up
comparison tolerance [CT 6-2 arch n 5-42, 8-14
index origin 0I0 6-2 arrow + 5-40, 8-8
print precision (PP 6-2 caret A 5-13
random link [ORL 6=2 .tack T 5-48
Tab . User :
key, SET/CLR 2-5 account 1-7
character [T 6-9 . name D4 6-12
command)TABS 3-3 defined functions (see
inquiry 0OPT 6-~12 defined functions) 8-1
interval 2-7 load QUL 6-12
Tables 5-21 phase 1-3
Tack characters Value of a data object 4~2
down L 5~U46 Variable
left 2=3, 6-10 global 8-18
right 2-=3, 6-10 list ONL 6=5
up T 5-48 command)VARS 3=9
Take + 5-40 local 8-1, 8-~18
Take components @ 7-7 name 4-6
Tangent 5-14 Vector
Tanh 5-14 described U4-2
Telephone 2-6 display of 4-3
Template of function 8-1 empty 4-4
Terminal represent VR 6-4
keyboard 2-3 Visual fidelity 2-5, 4-9
logical station number 2-6 Width
station name 2~6 default command)WIDTH 3-3
tab interval 2-7 print 0OPW 6-12
width of display 2-7 Working space
Terminating function execution availability 0OWA 6-12
after a suspension)RESET 3-12 Workspace
from function line -+ 8-3 attributes 3-4
Test file status @ 7-11 clear)CLEAR 3-4
Text (sece string) 4-4, 8-11 identity OWI 6-12
Tilde ~ 5-~13, 5-42, 8=17 library 3=-6
Times x 5=8 locking of 3-2
Time stamp 0TS 6-12 name U-6
Trxace name command YHSID 3-16
function cexecution 6-6, 8-14 Write component o 7-4

of matrix 5-37

INDEX-12

