0GOS

Reference Manual

eeeeeeeeeeeeeee

ACKNOWLEDGEMENTS
LOGOS is a trademark of Reuter:file Ltd.

© 1990 Reuter:file Ltd.

All rights are reserved. Reproduction in whole or in part is prohibited without the
written consent of the copyright owner.

Printed in Canada
Publication code: 1311 9008 E1
Version: 2.0

CONTENTS

LOGOS COMMANDS ...ttt sess s sase e s sassssssens senssbsssnsssass 1

COMPILATION DIRECTIVES........ooviteeceerressiisisississsnniseseeeeesneeesenneneee 147

CODE TAGS ...ttt st s sess s bt s s s sasssnsscassenes 153
REGULAR EXPRESSIONS ...ttt e 157
AUDIT SCRIPTS.......oooenrririsiniresnnecneeesecssessssssssssesssssasesssisesescscsssmesssncaes 161
EDITOR COMMANDS ...t st snssisi e sessenessssssssssnens 179
EDITOR FUNCTION KEY SUMMARY ..o 251
THE EDITOR UTILITY INTERFACE.......coiniiineneeeseee e 253
LOGOS COMMAND CROSS REFERENCE...........cccociiiiniiininmccrnrieencecenes 261

Contents

it

1iv Contents

HOW TO USE THIS MANUAL

This book is a reference guide to LOGOS. It is intended to be used for checking the
definition of a command or a specific LOGOS component, but not for learning how to
use the system.

Conventions Used In This Document

The following conventions are used in this manual.
alias Commands you type as shown are in lowercase italic font.

save pathname +value=text Values you must supply in order to execute a command are shown
in lowercase bold font.

save objects Values for which you can supply a single item or a list of items are
indicated by the plural form of the noun.

modifiers New terms appear in the text in bold face.

Ctrl-S Keys on your keyboard that you must press simultaneously are
separated by a hyphen (-).

Fl Function keys are shown as a capital F suffixed with the number of
the function key you must press.

new password: apples Values entered by the user in sample sessions appear in bold face,
italic font.
C=pn, type,...] Lists that contain several items and cannot be shown in full are shown

with trailing dots (...) and explaincd later in the section.

] Instructions that arc buried within a scction of text are flagged
with a black box.

How To Use This Manual

Related Manuals

For more information on LOGOS, see the following manuals:
LOGOS Pocket Reference (Publication code: 1313 9008 E1)

LOGQOS User’ s Guide (Publication code: 1310 9008 E1)

vi How To Use This Manual

LOGOS COMMANDS

About LOGOS COMMANGS....ccverrerrereeeieeieieneiereanrenessssssssnssaesesisessessasasssasssencrnes 3
U eeteettie s et e b e b e st ss s e sa e s £eseer e b as et S ReaAe e R ReREaEeeasantereeebeRe et e R be b e teer e et e st et erearae nren 5
2 eereetisiaaeaeerter et tesretaaa e e At s aras st aReRsaREeeaeaurenreReeraeA et e R se et et e Ao aeRaserenreententersrarassrereenen 6
B oeeeeee et eette et et et te et e b e ae s e s sasa eeraeRtoReR R R e R e e Rt e RE e beRee b aesaeere s st e saesbastaantsrensresrans 7
B eevteerrr et rses et e ets st et re s s ae et s e et b e RS sae s ae et eent oAt Sre e taene et shes sbeaetaaeseereeere et senseean 8
QUAS ceeeeeeteeecietteeeeestese st eeesstessaesseesas ssbeestssrns shnestes saesstasatesserantessnestesstrsstesserssenstassten 9
BDUTIA ..oeveeeeeeeeeeveereseeeeesesissesasssseseesesssnssassessassrrsrssarssaesssstessssrnessassassessessssasonsonsensessanes 11
CQUIS c.vveveeeeeerereesseiesisesteesesesesseesseseatsstessansessessessesassssatesarsstensiss sesessssnsessasesessarsessessessaen 19
CIUALIT ...ovoaeveeceieesceeciteeeveeeeetrecsseeseesessaenssaaesseesssssste erbstenasessseeaststansieasssnsssesssseesaresns 22
COMMPATE cneereenveenessessssressesaresresssssssssssssssosessmassessenststasssssessessnsnesses seessesssassassssassresnossesses 24
COPY eorreereererietirisseresa et s esesreasas sa s s r st seRt Sae bR SRR SR sa e R s RS SRR R SbeR et erbe et sRn e R b 29
AELOLEceeeeereeeeaeeaeeeecteesreresnnesasaaasssesrasssaasaeessinsssssssnnssonsane ssneraseesssssssaeassseennssansaesan 31
QUSPIAY .ot tueaess st ser et b s e sasseesebetsessnessssstnsnenaeesasssesasostsssnsaseeeesasntsen 34
QUISITTDULEeoeeveeeecreeeerireeiissreseesserecaeteseessessesssensssassessessensaensesssasssreessensessassesrsersesrens 36
CUILoooveeeeeceeeserestecsrseesastaeasbassestnessaesnaaasasssasssassssase setesrasassesrsasrtesstessaresseseseasianassates 39
CIFOIL ettt eetteetrereessresreesssesteestessaessaessbes b e s bt e e s arsbaessassaaaseaasteessaaneesresanaans asasaren 42
CHVITONIMENLoovereeeereeenseenceceassesasassesserssnasaasesrersassssssnssanastssosesanssessontsesssansntesensanssseres 45
QUATE PATAIMELET ... eieeieeeeeceeiirieretiieeesseessaersnessesnssresestnssssssnesssesrsasssesssesssessssssssnaseas 46
CIAAIT PATAMELETceeeieieceiieceeceeeeccnteetiseestnsereerresstatesstsessnaes sebesenssessssessannenas 47
COMPIIE PATAMELET......ccccovvirienrereceerneeeeeeaversesansss sesessesserseressosssssassensesssessersassssrans 47
Aebug PATAMCLETcccovrnrrererererereeetenesrrerareserssnssasesonsessessessassssssessss e sesssessesans 48
ENIrY PATAIMELET ...oviiiiiiiiiiiceiecc ettt nreseesse e stsst ot saeesasenne e sotmsvssensasane 48
EXit PATAMEICToioveeeieeeeeieesvestarsseessiastnsnssrsressessssasssansnassesrsessssasssessessseessssesnsness 48
JIEld PATAMEGIETcvveecerrieeereriereerenseeeteastssnssesaesssasesestesassesesvassensessasensossannnsnsnnas 49
keYWOrd PATAMELETccoveverireerieeneeetiineseseeeseseeessesesesncsessasesessassaussessesessssesenes 50
SEPCAAr PATAMEICT . ..c.coviieiiiiintiiieirinte et sttt e e see st st e see s rean e et ane s 50
SIAIUS PATAMEIET ...oniiiiiiieiieesieeeciteetrerreeeereeereen et es s resessaeseeeesnts stesesstesaeseeansseans 51
LASK PATAMELETcovveeiiiiiiienseeereecteneeteosensnsesnrriessse sasasssssesssssesssnessasssesssensssssasenseenssd |
terminal PATAMELIETccovircirirereeceeee s et aneaseeeseeseeasssesseeseesreessestesssssassenses 52
FrACK PATAIMELIETeeeeieeeeeieeeeeeceiecertaaenteeseesesrassssesantnsases sesesessseansssennneeanseenstasassns 52
UPAALE PATAMELETcoceereieirrreresnnsraecreieeecensnsnesnsssnsanssessesacessessnessessensssresncevonsrees 53
WOTKAIr PATAMEIET ..c.veivviieeruieiieerreessistseestascsessaesssssereseerssssaasse sessessssssssasssnsasesserss 54
CXEL toverrvireresiiieserteeeseeesssresteaasaesteesat b er s e seeaaatsansstasbaesraesaATae s ae st sateeerssennnes sbesorssens 55
EXPOT s iiisiistssiristc st et bbb st s et r st R e st s s s e st s h BE SRS s as s s e s rs R e b shen 57
JUHEMQINE ...ttt et eeeecsnessenaeseeseesaeeseeasesrentesarsses stssenseres anasarns 59
JUESAVE .ottt trrer v esae s se et e st e eae s te s ra bt et ean e steere s ben et abeereens 61
O ettt ettt et st sene e et s e e ee st Rt e s btk s at et as et s b entesasetesesnerenen 64
BUOUD c.ouneiiaereseeeesesesueaeseesestasassessonsssastesessanarasssentess tasassentestsestensesansassnsessesssassevssoanss 66
RCID oottt et earsesessenese s s sttt sttt et e bt ese st et e s et ananabannes 68
IIUPOTLc.onevtrrererirseceeseeressesseereesessasseseses e sesssse ststesa et nass seasessseses stssassnsstantrssasssnsenssestone 69
KEYWOI....o.ooneeeeneeceeeeccieseenireine e st et seassrassass st ssesstsetsae s e ssessnestassessesmnsntensesesssens 71
JEMK oot cte et e s s ceee st et e e e euaeen e es e e s e st ae s e e s ae s s eas sese e aeeeresenesebesaRteeanaatssanresareranrans 73
JESE ceveeve e et e eee et e st et eess sse s bes e e b e sr e aeb b e ntR e e eeraeR et asseat shentees beresane sreseessennintn 75
JOCQEE et cteecteecteer it e et e e e rtesessaesssetassssesrnnseenenessseesesssassnsasssesssesonsannns 81

LOGOS Commands 1

FEICTEMNCES overnrerrerreceeesssssssssssssissesssissisissussassssanssarssmsaeesesostsstossors oassasasernscseesmessmentssusses 87
FEGISICL o.veereeveeernereeesessesssssassessesemssssssseesemmmraneensssesssessessessessesseonasseesssassessnnsensessesssossonns 91
FEPIACE ceneeneeeereerreeerenerersnsesariesssestssasssessesssassssessessesssensessessesssessessersassesssessssssesessssnessanes 94
FEOUBIN .o.oeenreerreecsesiesssessasesessssssasssnsnssensassassesessarssasssasasssssasssernsonesesesassasssssssassssnssassssnse 97
SAVE ..vveereeeereerssenssesssesssssssessssssasssasstenssssssssseerssessessssesssesssssssessesnsrssseseasensessssssnsensasssesares 99
SENA ..oeeeeeeeeerererereecersssearsesssessasesssesessnerarsserersssssrenssssasaesstestesasessereesnssatesarinsrsassensasssans 102
SHATE ..ceeeeterererrrerernesersesssessssssssosssssessensssrrssnssssssassessessssansassssssssssenssssnessesesvssesasessonsassn 105
SHBIL.coeeeeereecernrerersessecessesssesessnssasssesasassnsrensenssstessesatossentsntesss stesassssrassssesserarssesssassons 109
Slevueereereeneereeseasessesaeseassaseesassesstessensresseneentetesasaseaseesasatesstatessnensersenseentsnseesensentesssesesnense 114
SEGNOMN c..eeerrecnrerrcsaneranesersssssaseeressnessesseransasassssessssssss sostsasasssasssesssesassssnesens sansssnsssananses 115
STUAD cvvresseesrersissorsssiossonsssssssassossonsssssssssssassssssssessses sossssnsesssnnesssansssssesistsessassessasssstssonse 117
summarize eeeeeresiiessessrisaresatesarrreertabare nee e e ae b e e ebae st esaesseaseetenenaennesane 120
syntax eteesebeseiiestestessssbsshes LS ere s et bR S b bt SE SRR RS b RS b e R beeern e e s ensas b sabenenats bt 123
BQIK c..eoeeeeeeeeceeeretereeseenesesasessesastestasssansssessnesssssesbossssasensessassentassanssesassstensesnsres s ssnnann 126
FASKS <oeeeererrenreccsninseesstnsssnssasisessessessssessessssassasstesssesssesssessesssaesssssenssssssesessessssssssennsessens 128
PPANSIOT ovneeeeeeeeeernericnsiissistictisnnseansasesermsstssssssissssstssessnssasssessors sesstsss st sussstssesssssssvnne 130
VEISIOMNeeureerirennrsnnssssnssessssssesatasssessessnssossssnssnesssessssssetssassssesassessesennesses saesassasasasssssasas 132
WHOUS «..oeveereesresressessssseesensessassesassstnsenssessesasssarsssssassestesessstsssssnessessessssss sasessensens sensansensen 133
WILR cooeeeeennererrsesrssessssessessssessssessesssrsnsess sasssesessessnssssessasesssssesessassesnereossessrsensosassessessssass 135
WOFKGIT «...covveorrrrecreeeeeieeriresensensesisssesssessessssssssensensessessssesstonserss vasesasnsenseressssssensessasses 137
WSSEVE o..eeeeesrerrsiressessesssessanssessesssenssssssss sassansssssssasssssnsssssssessss sentanssesssnsosassssssssssasnsen 139
WSEOSTLE c.vererrrreertrievnseeeccaesesast e esrsssesssessssessasnnenasssssssstassessaessnn sonssansassnssessnesnesnsansens 141
XPEf caeecreeeerceeerrsnseseesasnsassassessesssssssssnsessesssestesenssrastsnsessastasssnsserssressers senssstassansenneessansene 144

2 LOGOS Commands

About LOGOS Commands

Command results are always character vectors, with embedded carriage returns where
the display spans more than one line. Normally, the result of a command is displayed
by default. However, some commands (such as delete and import) do not display their
result. You can use [+ on the command line to see any result, or assignment to a
variable to save it.

LOGOS Commands 3

4 LOGOS Commands

LOGOS Commands: V

The Vv command opens LOGOS objects for editing. This command is synonymous with
the edit command. See the section on the edir command for details.

LOGOS Commands: V 5

LOGOS Commands:

N0

The ? command displays information about LOGOS commands.

Syntax 2?1 {command]
? Displays the names of all LOGOS commands.
?? Displays syntax information about all LOGOS commands.
7command Displays syntax information about command.

??command Displays general, syntax, and usage information about command.
Resuit The command returns the requested information as the result.

Examples

uz?

Displays syntax information for every LOGOS command.

v 2display

Displays syntax information for the display command.

u ?2display

Displays general, syntax, and usage information for the display command.

6 LOGOS Commands: ?

LOGOS Commands: ¢

The £ command executes APL expressions from within LOGOS.
Syntax 4 [expression]

expression is the APL expression to be executed.
Result The command returns the result of the executed expression.

Usage Used within parentheses as an argument, & provides a means of interpolating APL
values into LOGOS command lines.

If you omit expression, you are prompted for an expression with the prompt £[1. If you
enter an empty line, you are prompted again. If you enter an expression, it is executed
and you are prompted for another line. To terminate the £ command, press the space
bar and then press Enter.

The & command does not recognize the LOGOS delimiters as special characters. For
example, 23 +f is treated as 3+f. +f is not treated as a modifier.

Examples

U oflts

1989 8 17 12 12 56 340

U ag<«list temp.dir v ¢a Oappend 10
us

[N Osize 10

1 6 12064 100992

+[1 15000 Oresize 10

+[1 <Space> <Return>
U

U x« list .public.util fr? %
U edit (2x)

LOGOS Commands: ¢ 7

Syntax

Resuit

Usage

Examples

LOGOS Commands: @

The ¥ command aids in the preparation of arguments for certain LOGOS commands,
such as send and exit.

¥ expression

expression is an APL expression.

The command returns the argument as the result.

The ¥ command provides a means of passing APL expressions which contain certain
special characters to other commands, without processing the special characters. This
command has unprocessed scope and does not process plus signs, quotes, parentheses,
backslashes, or braces in its argument. Thus, the result of the command is the value of
its argument, and no characters in the argument are treated as having any special proper-

ties. For example:

Frabe' {def} +ghi
Yabc' {def} +ghi

Quotes, braces, and plus signs are ignored.

The ¥ command is often used with the send command, which has ordinary long scope
and processes quotes, parentheses, and other special characters. In an expression like
this one:

Ycan' 't continue’ ¢ p<v\m

you would have to place quotes around the entire expression to prevent LOGOS from
removing a level of quotes and attempting to process \m as a reference to a keyword.
You would also have to double the existing quotes, as follows:

Usend '''can''' 't continue' ' ¢ pe<y\m'

Using the ¥ command, you can get the same result by typing:

U send (¥'can' 't continue' ¢ p<v\m)

8 LOGOS Commands: %

Syntax

Result

Usage

Examples

LOGOS Commands: alias

The alias command allows you to adopt a new alias.

allias] alias [password]
[+newpass[=password]]

alias Is the new alias. It must be an alias you are authorized to use.

password Is the password required to gain access to that alias. If you omit
password but one is required, you are prompted for the password.
When the new alias is the same as your current one, no password is
required unless you are also changing the password with +newpass.

+newpassL=password]
Specifies a new password to alias. If you omit =password, you are
prompted for the password. If you specify +newpass=, the current
password is removed.

When you use alias with no argument, the result is the current alias. When you provide
an argument, no result is returned.

Changing the alias to your primary alias refreshes your user profile parameters, such as
your working directories and command separator.

U glias (alias)

Refreshes the profile parameters of the current alias.

U alias john

Switches your alias to john, and establishes john’s profile. If john was already your
alias, all profile parameters are refreshed.

LOGOS Commands: alias 9

U alias john yellow

Switches your alias to john, which has a password of yellow. If a password is required
and none is supplied, LOGOS prompts for it before it prompts for the new password.

U alias john +newpass
new password:
repeat new password :

Switches your alias to john, and sets a new password. The new password is requested
twice, to reduce the chance of a typing error. If john already has a password and none
is specified, LOGOS prompts for it.

U alias john yellow +newpass=

Specifies no password for alias john.

10 LOGOS Commands: alias

Syntax

LOGOS Commands: build

The build command generates a collection of objects known as a cluster. Once
generated, the cluster can be placed into one or more end environments. The objects
which compose the cluster can be dispersed in the active workspace, or placed as a
package into the workspace, a component of a file, a pathname in the LOGOS file
system, or a node within a LOGOS paging area.

The build command can perform static tree analysis on the objects specified in the root
pathname argument.

If the destination of the cluster is a LOGOS paging area, then:

« The actions specified by the various build commands are deferred until a filesave
command is issued.

« Exclusion by inference takes place (by default). Tree analysis for a particular node
stops when it reaches the name of one of the other nodes in the paging area, and
the contents of this subordinate node are not included in the calling node.

bulild] [destination [pathnames]]
[+audit=filename]
[+compile=directives]
[+depth[=all|n]]
C+exclude=[, | /Inames]
[+file=filename[cn]]
[+inference=yes|nol
[+keepin=n]
[+lock=passnumber]
C+overwrite[=audit| , | buffer| , {dest]1]
C+protect]
C+recursive[=1|2]all1]
[+s5ize=n]
(+task[=task]]
[+update[=nodes]]
[+workdir=pathnames]

destination Specifies both the destination of the built object, and its form. If you
omit destination, you must also omit pathnames. If you omit both
destination and pathnames, the build command sets new default
values for any modifiers which were specified; see the usage note,
below.

LOGOS Commands: build 11

destination may be any of the following:

node

pathname.

<hame>

<>

<component-
number>

component-
number

Builds a node of a paging file and names it node. {Any undelimited
name that meets the rules for APL identifiers is considered a node
name.) Using * instead of a node name indicates the base node,
whose objects are always resident in the workspace. Several nodes
may be built with one use of build, if the names are separated by
blanks and enclosed in quotes.

Builds a cluster and puts it in pathname in the LOGOS file system.
(Any name that includes a dot (.) is considered a pathname.)

Builds a package and places it in the active workspace with the name
name. (Any name delimited by angle brackets (<>) that meets the
rules for APL identifiers is considered a package name.) If +taskis
specified or a task name has been set in the environment task
parameter, the package is placed into the workspace controlled by the
auxiliary task.

Builds a cluster and disperses it in the active workspacse. if +task is
specified or a task name has been set in the environment task
parameter, the cluster is dispersed into the workspace controlled by
the auxiliary task.

Builds a package and places it in a specific component of the file
indicated by +file. If the destination component number in the
specified file is beyond the end of the file, the appropriate number of
pad components is appended to the end of the file, each containing
the text unused.

If the result of build is a single variable, places the value of the
variable, not the variable packaged, into the specified component. If
the result is a package, it is placed into the component without being
re-packaged. If the result is a cluster, it is placed into the component
as a package. If the destination component number is beyond the
end of the specified file, the appropriate number of pad components
is appended to the end of the file, each containing the text unused.

pathnames Is the pathname of the root function of the node, cluster, or package.
pathnames must be the LOGOS pathname of a function, script, or
variable. You can specify more than one pathname in a single build
command. The first one specified is the primary root of the node, and
those following are ancillary roots. (If you subsequently build a shell
around this node, the primary root is the one used to determine the
default characteristics of the shell.) The calling trees are analyzed in
the order of their specification.

If you omit pathnames, it is assumed to be the same as destination.
destination in this case must specify a node in a paging file.

+audit=filename Identifies an audit file to contain information about this generation. If
the audit file you specify does not exist, LOGOS creates it. If you
omit +audit, the file specified in environment audit is used. If no file
is specified there, no audit file is used.

12 LOGOS Commands: build

+compile=directives
Specifies compilation directives to be applied to objects fetched from
the LOGOS file system. If you omit +compile, only compilation
directives specified in the objects or latent in your environment are
used.

+depth[=all | n] Specifies the number of levels in calling trees to analyze. n may be
any non-negative integer. +depth (without a value), +depth=all, and
+depth=0 specify that no limit is to be applied to calling-tree analysis.
+depth=1 specifies that calling trees are not to be analyzed;
consequently, the built object will contain only the root object.
+depth=2 specifies that calling tree analysis is to be performed on
only one level down from the root. Use a value for n appropriate to
the level of analysis you want. If you omit +depth, +depth=1 is
assumed.

+exclude=[, | /Inames
Specifies objects found in tree analysis which are to be excluded from
the node, package, or cluster generated by the build command. If you
omit +exclude, all objects found in calling-tree analysis are included.

s Adds the objects specified in names to any ex-
clusion list established by a global build command.
If you omit both , and / , names forms the com-
plete exclusion list,

/ Removes the objects specified in names from any
exclusion list established by a global build com-
mand. If you omit both , and /, names forms the
complete exclusion list.

names Is a list of objects forming the exclusion list, or to
be added to or removed from the global exclusion
list. Separate names by blanks.

+file=filename [cn]
Identifies the destination file, and optionally an area in the file. If the
destination file you specify does not exist, LOGOS creates it. +file is
relevant only when the destination is a component of a file or a node
in a paging area. When building a paging area, you can omit +file
from the build command if you specify it in the filesave command. cn
indicates the starting component number to be used for the paging
area. If you omit cn, the paging area starts at the first available
component of filename.

+inference=yes|no

Indicates whether nodes referenced by the calling tree analysis used to
generate this node are to be excluded by inference.

LOGOS Commands: build 13

+inference=yes indicates that called nodes are to be excluded from
this node. +inference=no indicates that called nodes are to be
included in this node. If you omit +inference, +inference=yes is
assumed.

+keepin=n Specifies the node’s keep-in priority. n can be any non-negative

integer. The higher the keep-in value assigned to a node, the less
likely it is to be paged out. If you omit +keepin, +keepin=0 is
assumed (and nodes with a keep-in priority of O will be the first to be
paged out). Note that if +keepin is not used on any nodes, then
priority does not enter into the page-out heuristics.

+lock=passnumber

Specifies the destination file’s passnumber. If +lock is not specified,
no passnumber is used for the file.

+overwrite(=audit | , | buffer |, | dest]

Specifies one or more working areas to be overwritten.

+overwrite=audit
Generates a new audit record.

+overwrite=buffer
Overwrites the internal build buffer. The build buff-
er is an internally maintained buffer containing page
file information to be used by the filesave com-
mand. It should only be overwritten if a paging file
generation has terminated abnormally (and should
definitely be overwritten in that case).

+overwrite=dest
Overwrites the destination paging area.

If you specify +overwrite or +overwrite=audit , buffer , dest all
working areas are overwritten. If you omit +overwrite, no working
areas are overwritten.

+protect Protects objects in the workspace from being overwritten if the

destination is <name> or <>,

+recursive(=1]2|all]

14 LOGOS Commands:

Controls iteration through directory levels encountered. This iteration
only occurs for directories which are specified as root pathnames. If
you do not specify +recursive, +recursive=2 is assumed.

+recursive=all Indicates that the named level and all its descen-

dants are to be used. Also +recursive=0 and +recur-
sive with no value.

build

Result

Usage

+recursive=1 Signifies only the named level.

+recursive=2 Signifies the direct descendants of the named level,
excluding the named level.

+size=n Specifies the maximum size, in bytes, of any node. n can be any
positive integer. When a node’s size exceeds the value of this
modifier, LOGOS automatically splits its contents into two or more
separate nodes. If you omit +size, node size is not limited, except by
workspace size.

+task{=task] Specifies the task whose active workspace is to receive the objects in
the destination <name> or <>. If +task is specified without an
argument, the default auxiliary task aux is assumed. If you don’t
specify +task, the task specified in the environment task parameter is
assumed.

+update(=nodes]
Specifies which nodes of the paging area are to be updated, avoiding
regeneration of the entire paging area. Specifying +update overrides
+overwrite=dest, so only the specified destination node is saved.

+workdir=pathnames
Specifies new working directories for this command. The evaluation
of any paths implied by the arguments to the build command or its
calling tree analysis is performed under the new working directories.
If you omit +workdir, your current working directories are used.

The command retums a message informing you of the number of objects clustered, and
the end environments in which they were placed.

A paging area is a set of contiguous components in a SHARP APL file containing a
series of named packages which can be retrieved with the LOGOS paging utilities. This
file can contain anything else -- including other paging areas.

Each paging area includes a header and a base node. The base node, whose nodename
is *, is the system kernel. It is always paged into the application’s active workspace and
is at the top of the paging tree.

The node name of a non-base node usually matches the name of the root function, but it
does not have to. For example, terminal-driver nodes for a repertoire of terminals will
usually have names reflecting the driven terminals; the functions contained by the
nodes will usually have the same names and syntax as functions in other terminals’
nodes.

If you issue a build command without specifying destination or pathnames, no cluster
is built but default values are set for the modifiers given.

LOGOS Commands: build 15

Examples

The build command allows you to specify multiple destinations. You can, for example,
generate four separate pages by entering build *a b ¢ d'. When generating pages, you
may not specify another type of end environment in the same build statement.
However, you can mix the other destination types. For example:

build v 10 .klh.util viom?* roots

The build command runs better, faster, and with reduced chance of workspace storage
problems if you specify an audit file. Tree analysis requires the use of information
which can be moved to the audit file when one is specified. Audit files also aliow you
to use distribute to make incremental modifications to any end environments you have
created using them.

U build <> input +depth=all +exclude=Inputd02

Deposits the function input and all functions and global variables it needs, except
InputAG2, in the active workspace.

U build <Qsp> input +depth=all
u sp[pnames Osp
713

Builds the function input and all functions and global variables it needs into a package,
and puts the package into Osp.

U build +audit=1234567 genaudit +compile=x,p +depth=all +workdir=john.terms.x

Sets global default values for the +audit, +compile, +depth, and +workdir modifiers.
Subsequent build commands in this session do not need to specify these modifiers again
to use these values. However, these default values can be overridden by specifying a
new value for any of those modifiers with a specific build command.

16 LOGOS Commands: build

v build test.input input

Builds a cluster from function input (and all functions and global variables it needs
because of the global +depth set in the previous example), and puts it in path test.input.

v (display test.input +nopathname)

test.input is the cluster built in the previous example. The display of a cluster is the
build command which was used to generate it. In this example, the expression in
parentheses is evaluated and the cluster is regenerated.

U build <10> input output +file=termdrivers

Builds packages from root functions input and output, and puts them in component 10
of the user’s file termdrivers.

U save klh.misc.term +value=hdsl108
kih.misc.term(vl]

U build 1 klh.misc.term +file=1234567 temp

1 variable placed into component 1 of file 1234567 temp
U s[read 10 1

hds108

Places the value of .klh.misc.term, unpackaged, into component 1 of the file 1234567
temp.

LOGOS Commands: build 17

U build <1> klh.misc.term +file=1234567 temp

1 clustered object placed into component 1 of file 1234567 temp
U ¢0read 10 1

kpackagex

U s[0pnames Oread 10 1

term

Places a package containing .klh.misc.term into the same component.

U build ibm3279 input +overwrite
U filesave +file=1234567 term page 40

Rebuilds node ibm3279 from root input, first clearing the contents of the various
working areas. The filesave command supplies the name of the paging file and area
where the node will be stored.

18 LOGOS Commands: build

Syntax

LOGOS Commands: calls

The calls command performs static tree analysis on a list of root pathnames. This
command is very much like build, but computes only the names resulting from tree
analysis, rather than the objects themselves.

callls] pathnames
[+compile=directives]
C+depthl=all[n]]
[+exclude=names]
L+notfound]
[+pathnames]
[+workdir=pathnames]

pathnames Is the pathnames on which tree analysis is to be performed. Separate
the pathnames you enter with spaces.

+compile=directives
Specifies compilation directives to be applied to the objects. If you
omit +compile, only compilation directives in the objects, or in your
environment, are applied.

+depth[=all| n1 Specifies the maximum number of levels to be examined in calling
tree analysis. n may be any non-negative integer. +depth (without a
value), +depth=0 or +depth=all specify that no limit is to be applied
to calling tree analysis. +depth=1 specifies that calling trees are not to
be analyzed. +depth=2 specifies that calling tree analysis is to be
performed on only one level down from the root. Use a value for n
appropriate to the level of analysis you want. If you do not specify
+depth, +depth=1 is assumed.

+exclude=names
Specifies objects which are to be excluded from tree analysis.

+notfound Causes the result to consist of a list of names which were not found
during calling tree analysis, rather than those that were.

+pathnames Causes the result to include the full pathnames (along with type and
version number) of objects found during tree analysis, rather than just
the object names.

+workdir=pathnames
Specifies new working directories for this command. If +workdir is
not specified, the working directories previously set in your session or
specified in your LOGOS environment are assumed.

LOGOS Commands: calls 19

Result

Usage

Examples

The command retums the object names which are either directly or indirectly refer-
enced by the root pathname (or if +notfound is selected, returns the names of those not
found).

Because calls is a tree analyzer, the only compilation directives that are likely to be use-
ful in conjunction with the command are those which can introduce or remove code
fragments (such as q, c, e, i, or z).

U clecalls ask +depth
not found: lastinput

U ec/

ask

cmdtable

qprime

validate

Returns the objects referenced either directly or indirectly by the ask function as a result.

U calls ask +depth=2 +exclude=lastinput
ask

gprime

validate

Includes only the objects directly referenced by the ask function in the result (due to the
+depth modifier) and excludes the lastinput object from tree analysis.

v calls ask +depth +notfound
lastinput

Retumns the list of objects which could not be found as a result of tree analysis.

20 LOGOS Commands: calls

U calls ask +depth +pathnames +workdir= john.sys.tables .klh.src.util
klh.src.util.ask[f1]

John.sys.tables.cmdtable(v2]

klh.src.util.qprime(f1]

klh.src.util validate(f1]

Retums the full pathname of the objects found and their types and version numbers.

LOGOS Commands: calls 21

LOGOS Commands: cmddir

The cmddir command establishes or inquires about your command directories.
Command directories specify where LOGOS will look for a script when you use its
name as a command but have not qualified it from the root of the file system.

The command directory in effect when you are first enrolled in LOGOS is
public.logos.cmds.

Syntax cCmddir] [pathnames]
C+reset]

pathnames Is a list of pathnames to be established as command directories. If you
omit pathnames, your command directories are not altered.

+reset Resets the command directory to the value saved in your profile. This
modifier is only useful when the command is used without an
argument.
Result The command returns the command directories in effect after the operation completes

as the result.

Usage Command directories are searched for scripts in the same order you specify them. Use
environment +profile to save your command directories in your profile.

Examples

U cmddir
publiclogos.cmds

Displays the current command directories.

U cmddir Ccmddir) .sys.util.cmds
public.logos.cmds .sys.util.cmds

Respecifies the command directories by adding a second entry after the existing one.

22 LOGOS Commands: c¢mddir

U cmddir +reset
public.logos.cmds

Resets the command directory to the value stored in your profile.

LOGOS Commands: cmddir 23

LOGOS Commands: compare

The compare command compares two versions of the same object or directory, or two
distinct objects or directories.

Syntax com[pare] primaries [secondaries]
[+auributes(=cld|jlnls|1]
[+compile [=directives]]
[+display]

[+extended]
[+flagsC=b11]s]]
[+interleave]

[+lines]

[+match]
[+recursive(=1{2}all]]
[+show]

primaries Is a list of pathnames (objects and directories) to be used as the
reference in performing the comparison. primaries must contain at
least one object.

secondaries Is a list of pathnames (objects or directories) which are compared
against the primaries.

+auributesC=cl|d|jln|slt]
Specifies the object attributes to compare. Valid attributes are:

Compilation directives
Documentation
Journal

Note

Source

Tag

~ L 3~ aAan

If you specify +attributes with no argument, all object attributes are
assumed.

+compile [=directives]
Specifies compilation directives to be applied to a function’s or a
variable’s source before the comparison. If you omit an argument, the
source is compiled using the global compilation directives, merged
with those saved in the object’s ¢ attribute.

24 LOGOS Commands: compare

+display

+extended

Displays altered lines from both the primary and the secondary
objects. To distinguish between added, deleted, and changed lines,
line numbers are prefixed with the characters +, —, or #, respectively.
Where a changed line occupies a different position in the two objects,
both line numbers are given. If +match is specified, only lines that
have not been altered are displayed, marked by the character =.

During a directory compare, +extended prints the names of objects
added to and deleted from the primary directory. To distinguish
between added, deleted, and changed paths, names are prefixed with
the characters +, —, #, respectively.

+flagsT=b1|1| 5] Controls the behaviour of the command. Valid flags are:

b Ignores trailing blanks in characler objects.

! Ignores differences in line labels. This works as
long as the spellings are used consistently within
each program being compared. This is particularly
useful when comparing different versions of a pro-
gram, where one has had its line labels renamed
using the editor resequence command.

s Performs a syntactic/semantic level comparison.
LOGOS converts both the primary and secondary
objects inlo a canonical format which:

e ignores comments

* treats statement separation using diamonds the
same as line breaks

* disregards the spelling of names local to the func-
tion being compared. The comparison is based
upon consistent use of a name set within each
function, and the name sets across funclions
being compared neced not be the same.

These rules allow functions that have been compiled using any
combination of decommenting (x), diamondization (d), local renaming
(r), or that have been changed with the editor sorf command, to be
compared meaningfully to their sources. Therefore, the two functions
compared using +flags=s may appear different visually, but compare
identically because they represent the same APL code. Specifying
+flags without an argument assumes all flags.

LOGOS Commands: compare 25

+interleave

+lines

+match

For example:

vV ful ab V fn2 ba
[11 b c 0 (1] a c 0
[2] a (2] a

v v

If +f=s is not set, lines 0 and 1 do not match and line 2 does. If +f=s
is set, the opposite is true: lines 0 and 1 match and line 2, although
visually identical, does not match,

Produces output similar to +display, but the lines of each object are
interleaved for easier visual comparison of differences.

Displays the line numbers of differing lines with respect to the
secondary object. To distinguish between added, deleted and changed
lines, line numbers are prefixed with the characters +, —, or #,
respectively. If +match is specified, only lines that have not been
altered are displayed, marked by the character =.

Reports information on equal objects or, if +display or +lines is also
specified, on equal lines of objects.

+recursive [=1|2|all]

+show

Enumerates the contents of any directories below the path you
specify. The argument to this modifier may be 1, 2, or all, signifying
only the named level of the hierarchy, its direct descendants but
excluding the named level, or the named level and all it descendants,
respectively.

If you do not specify this modifier, +recursive=2 is assumed. If you
specify +recursive without a value, +recursive=all is assumed.

Displays the changed lines and indicates where changes begin on a
line. If there is only one change on the line, a caret (A) points to the
change. If there is more than one change, an angle bracket (>) points
to where the changes begin on the line. If neither +display or
+interleave is specified, +interleave is assumed.

If neither +display, +interleave, +lines, nor +show is selected and you are comparing
objects, compare returns the primary pathnames and version numbers of differing
objects. If you are comparing directories, compare also returns added objects (those in
the primary but not the secondary). Both added and deleted pathnames are buffered
until the last object in the directory is compared, and then they are listed.

Result The command retumns the differences between the items you are comparing. Entries in
the primary list that do not have matching objects in the secondary list are reported as
not found in secondaries. Entries in the secondary list that are not found in the primary

list are ignored.

26 LOGOS Commands: compare

Examples

U compare object

Compares an object with the previous version of the same object. This command is
equivalent to:

U compare object[0] object[/]

u compare objectl object2

Compares one object to another. In this case, only one object or directory can be
specified for both primary and secondary arguments. The object types must match even
if the names do not.

U compare directory

Compares each object in a directory to its previous version. This command is
functionally equivalent to:

U compare directory.?*[0] directory.?*[" /]

The output, however, takes a different form.

U compare directory +recursive

Compares all of the objects in a hierarchy to their previous versions.

LOGOS Commands: compare 27

U compare directoryl directory2

Compares two hierarchies. The directories are compared as well as the objects within
the directories. If used with the +recursive modifier, this command compares entire

structures.

U compare object directory

Compares an object with any object of the same name in a particular directory.

28 LOGOS Commands: compare

Syntax

Result

Usage

LOGOS Commands: copy

The copy command duplicates objects or hierarchies.

copy] pathnames destination

[+in]

[+makedir)]
{+override]
[+protect]
[+versionsL=n])]

pathnames
destination

+in

+makedir

+override

+protect

+versions{=n]

Is a list of paths to be copied.
Specifies the directory into which the paths are to be copied.

Cancels out-registration of destination paths, if you set the
registration.

Allows the creation of directories in the destination path. If you omit
+makedir, new directories are not created.

Overrides the registration of registered paths (set by other users)
which are being copied over in the destination hierarchy. This also
has the effect of registering the paths out to you.

Indicates that existing paths in the destination hierarchy are not to be
overwritten.

Specifies a range of versions to be copied. If you omit +versions, only
the latest version of each selected object is copied. If you omit a
value, all versions are copied.

Where n is a positive integer, specifies that the oldest n versions of
the selected objects are to be copied. Where n is a negative integer
(for example, +versions="5), specifies that the n most recent versions
of the selected objects are to be copied. +versions without a value,
+versions=0, or +versions=all specifies that all versions of the
sclected objects are to be copied.

The command returns the pathnames of the saved objects, including type and version
number, as the result.

When pathnames is a directory, the directory and all objects beneath it are copied
under the destination directory.

LOGOS Commands: copy 29

Examples

If you specify the [d1 object type in pathnames, none of a directory’s descendants is
copied, but its attributes are.

If you want to copy specific, individual, noncurrent versions of an object, specify the
version numbers in the pathname.

U copy alpha .?* beta

Copies all descendants of alpha under beta (which must exist). An object with the
name alpha.a is copied to beta.a.

U copy alpha beta +makedir

Copies directory alpha and all its descendants under directory beta. An object with the
name alpha.a becomes beta.alpha.a in the new directory beta. Directories that do no
exist in the destination path will be created as needed.

U copy alphald] beta +makedir

Copies only directory alpha under beta.

U copy alpha.al2] beta

Copies only version 2 of alpha.a under beta.

30 LOGOS Commands: copy

Syntax

Result

LOGOS Commands: delete

Use the delete command to remove paths or versions of objects from the LOGOS file

system.

delete pathnames
[+confirm]
C+noncurrent]
[+override]
[+unused]
[+warn=n]

The delete command must be spelled out completely.

pathnames

+confirm

+noncurrent

+override

+unused

+warn=n

Is a list of paths to delete. You can qualify a pathname with version
numbers but an unqualified pathname refers to all versions, rather
than only the latest.

Prompts you to confirm the deletion of each object. (Confirmation is
described in a usage note below.) If you omit +confirm, objects are
deleted without confirmation.

Deletes only noncurrent versions. If you specify +noncurrent and
pathnames with version numbers, only versions preceding the
specified version are dcleted. If you omit +noncurrent, all versions
are deleted if the pathname is not qualified by version numbers, or
only the specified versions are deleted if the pathname is qualified by
version numbers.

Overrides any existing registrations for the specified paths. If you
omit +override, registered paths are not deleted.

Deletes only unused paths (paths not referenced in any application).
If you omit +unused, both used and unused paths are deleted.

Prompts you to confirm dcletion if the number of paths to be deleted
is greater than or equal to n. (Waming prompts are described in a
usage note below.) If you specifly +warn=0, no warning is issued. If
you omit +warn, a warning is issucd if any objects or paths are being
deleted in their entirety.

The command returns the pathnames of the deleted objects as the rcsult. The result is
not displayed unless requested via assignment.

LOGOS Commands: delete 31

Usage

Warning Prompts

Confirmation
Prompts

delete rejects its pathnames argument if any pathname and version qualifier are inad-
vertently separated by a blank.

The delete command proceeds itemwise: the operation on each pathname you specify is
separate. If you specify three pathnames, for example, this has the same effect as
executing the delete command for each of the three pathnames in turn.

If you specify a directory, that directory and all its descendants are deleted. delete
informs you if it has deleted any of your current working directories.

If you specify +unused, the used status is checked for each path subject to deletion.
This can be somewhat expensive.

A waming is issued if you do not specify +warn and any pathnames are being deleted
in their entirety, or if the number of paths to be deleted exceeds or is equal to the value
of the +warn modifier. If you specify +warn=0, no warning is issued. A warning
prompt might look like this:

delete 15 paths?
The number of paths to be deleted is the number of pathnames; versions are not
counted. Consequently, this prompt is never issued when you specify +noncurrent,

since specification of this modifier always causes the most recent version to be retained.

Reply yes, no, confirm, or stop to the waming prompt.

yes (or y) Deletes the paths.
no (or n) Does not delete the paths.
confirm Prompts you to confirm the deletion of each path, as if +confirm had

been specified.
stop Does not delete the paths, and aborts the action of the command.

If you specify +confirm, you are prompted to confirm each deletion. These requests for
confirmation follow any warning controlled by +warn. For example:

delete 15 paths? yes
delete <.scl.inven.post>?

Reply yes, no, back, continue, or stop to the confirmation prompt.

yes (or y) Deletes the object and prompts you for the next path to be deleted.

no (or n) Does not delete the object and prompts you for the next path to be
deleted.

back Repeats the previous prompt.

32 LOGOS Commands: delete

continue Deletes this path and all following paths without further prompting.
stop Aborts the deletion.
Deletions are not actually done until you respond to all warnings and confirmations.

Examples

U delete input
delete 1 path? yes
1 path and 3 versions deleted

Warns the user and deletes all versions of object input.

U delete inp? %
delete 4 paths? yes
4 paths and 10 versions deleted

Warns the user and deletes all versions of all objects whose pathnames begin with inp,

U delete in? %

delete 4 paths? confirm
delete <inp>? yes
delete <input>2 no
delete <insight>? no
delete <into>? yes

2 paths deleted

Confirms and dcletes all versions of two objects. Two objects are not deleted.

LOGOS Commands: delete 33

LOGOS Commands: display

The display command displays LOGOS objects or their attributes.

Syntax dlisplay] pathnames
[+compile [=directives]]
[+nopathname]
C+surrogates(=b|clill|n]]

pathnames Is a list of objects to be displayed.

+compile [=directives]
Displays a compiled version of the object rather than the source.
Optional values for +compile allow you to specify additional
compilation directives. Without a value, the object is compiled
according to the global compilation directives and to the directives
saved in its [:¢] attribute. If this modifier is omitted, the source is
displayed without compilation.

+nopathname Refrains from displaying the pathname, type, version number, and
attribute of displayed objects. If you omit +nopathname, this
information displays as a header to each object’s definition.

+surrogates(=b|clill|n]
Specifies the nontypable characters in a variable that are to be
displayed by surrogates. Following is a list of surrogates.

Backspace is represented by a surrogate.
Carriage return is represented by a surrogate.
Idle is represented by a surrogate.

Linefeed is represented by a surrogate.

Null is represented by a surrogate.

N ~~0 O

If you specify +surrogates with no value, Backspace, Idle, Linefeed, and Null (but not
Carriage return) are displayed by surrogates. If you omit +surrogates altogether, no
character is displayed by a surrogate.

Result The command retums the display of the objects specified as the result.

Usage Backspace, Carriage return, Idle, Linefeed, and Null cannot be unambiguously dis-
played in a source listing. Consequently, LOGOS enables you to show them through
surrogates. A surrogate is formed by the character’s identifying letter (for example, b
for Backspace) overstruck with *™ a dieresis (**). Some terminals are not capable of dis-
playing that combination of characters. On thosc terminals the display may consist of
just the dieresis.

34 LOGOS Commands: display

Examples

v display checkitem

Displays the source of the object checkitem exactly as stored.

U display checkitem(:d}

Displays the documentation for the object checkitem.

U display report.? * +surrogates=cl

Displays the source of all objects in directory report. Within variables, all occurrences
of Carriage return and Linefeed will appear as surrogates.

Y display .john.util formattilte +compile

Displays the function john.util formattitle after any compilation directives in
John.util formattilte(: c] or in the environment compile parameter have been applied to
the source.

U display john.util formattitle +compile=x,r

Displays the version of john.util formattitle compiled after the x (decomment) and r
(rename) directives have been merged into the list of active directives.

LOGOS Commands: display 35

LOGOS Commands: distribute

The distribute command places LOGOS objects into a set of end environments which
are known to use those objects according to a specified audit file.

Syntax distLribute] pathnames
+audit=filename
[+compile [=directives]]
[+environments=envs]
C+override]
[+replacement=pathnames]
C+show]
[+task[=task]]

pathnames

Is a list of objects to be distributed.

+audir=filename Specifies the audit file. This modifier must be included unless an

audit file is named in the environment audit parameter.

+compile [=directives]

Specifies compilation directives to be applied before the objects are
distributed. If you specify +compile without a value, the objects are
compiled the way they were last placed into their end environments.
If you omit +compile, only compilation directives specified in the
objects or in your environment are applied.

+environment=envs

+override

36 LOGOS Commands: distribute

Indicates the end environments to which you want to distribute. The
default value is the value specified in the environment update
parameter, The argument to the modifier contains three fields for
type, name, and location, separated by spaces. The type of
environment is represented by one of the following letters:

Cluster

File component
Paging file
Workspace

E 3 T Y

For further information on specifying environments, see the
discussion of the update parameter under the environment command.

Overrides any existing registrations on pathnames. If you omit
+override, the objects cannot be distributed into a pathname with
registration set.

Result

Usage

Examples

+replacement=pathnames
Specifies a series of replacement pathnames. These objects will be
distributed instead of the objects named in the pathnames argument
in each environment where any object in pathnames was distributed
(according to the audit file). The used list in the audit file is updated
to reflect the new names. If you omit +replacement, pathnames are
distributed directly.

+show Displays, while the command is running, the location in the end
environments into which each object in pathnames (or in
+replacement) is being distributed.

+task{=task] Identifies the auxiliary task which will be used to distribute objects
into workspaces, if any of the end environments is a workspace. If
you specify +task without an argument, the default auxiliary task aux
is used. This modifier must be specified if distributions to workspaces
are going to be done. If this modifier is omitted, the task named in the
environment task modifier, if any, is used.

None.

This command is used to avoid the need to complctely regenerate an end environment
or set of end environments. Note that an audit file must have been used in the original
generation of the end environments. The command also updates the audit file with refer-
ence information about the objects being distributed.

Using distribute on page files can sometimes cause problems because the calling tree is
not recalculated by the distribute command. If the object being distributed has a
different calling tree than it did originally, the build and filesave command with the
+update modifier should be used instead. Sec the description of filesave in this guide
for more information. Or, use the calls command to generate the list of items that are
now in the root object’s calling tree.

U distribute .public.logos.paging.Alpagein +audit=1234567 mysys
1 object distributed to 1 end environment

Places the latest version of the object .public.logos.paging.Alpagein in one end
environment on the basis of the information in audit file 1234567 mysys.

LOGOS Commands: distribute 37

U distribute .public.logos.paging.Alpagein +audit=1234567 mysys +show
public.logos.paging Alpagein to file: 1234567 sysfile, 5 ; page: *
1 object distributed to 1 end environment

The addition of the +show modifier to the above command causes the display of each
end environment distribution.

U distribute .public logos.paging Alpagein +audit=1234567 mysys
+replace=_john.logos.paging Alpagein | Alpageinsub +show
pathnames selected for replacement :
John.logos.paging.Alpageub[f10]

John.logos.paging Alpageinsub(f3]

public.logos.paging.Alpagein to file: 1234567 sysfile, 5; page: *
2 objects distributed to 1 end environment

Places both john.logos.paging.Alpagein and john.logos.paging.Alpageinsub in the end
environment locations where the audit file shows public.logos.paging.Alpagein to be
used.

38 LOGOS Commands: distribute

LOGOS Commands: edit

The edit command opens LOGOS objects for editing.

Syntax e[dit] [=]1names
C+browse[=off|on|lock]]
L +command=command]
[+disttask=task]
C+override]
[+register]
[+status=text]
[+task[=task]]
C+workdir=pathnames]

[(=Inames Is a list of one or more objects to be edited. If you specify more than
one object, they are stacked to be edited in your specified order. If
you precede any name with an equal sign (=), that object is taken
from your active workspace. If any object in names is not found, a
new object of that type is opened. The default type for new objects is
a function.

+browse [=off | on | lock]
Prevents users from saving changes to objects. +browse accepts three

arguments:

off Allows cdited objects to be saved if you have write
access. This is the default setting.

on Inhibits you from saving changes made to the ob-
ject. This still allows full access 1o the display and
inquiry fcatures of the LOGOS editor.

lock Prevents you from turning browse mode off. You

can overwrite this by changing the name of the ob-
ject. setname will automatically turn browse mode

off if you use it to successfully change the name of
the cdited object.

If you specify +browse without an argument, +browse=on is assumed.
+command=command

Specifies a command to be executed immediately after opening cach
object listed in names.

LOGOS Commands: edit 39

+disttask=task

+override
+register
+status=text

+task[=task]

Specifies the name of the auxiliary task to be used by the Application
Debugging Assistant to distribute changed objects to the active
workspace.

Overrides registration on any of the objects listed in names.
Registers out all objects listed in names.

Overrides the standard status line on the editor screen.

Allows you to edit objects in the workspace of an auxiliary task. The
syntax is:

edit =foo +task[=task]

If environment task is set, that task is used unless overridden by a
local +task. Whether environment task is set or not, if you do not
specify task, the default value aux is used. The local task may be
specified by using *.

For example, if no environment task is set, you could use +task in the
following ways:

ed =foo Uses the current task.
ed =foo +task Uses task aux.

ed =foo +task=aux3 Uses task aux3.

ed =foo +task=* Uses the current task.

If environment task is set, for example, to aux2, you could use +task
in the following ways:

ed =foo Uses task aux2.

ed =foo +task Uses task aux.

ed =foo +task=aux3 Uses task aux3.

ed =foo +task=* Uses the current task.
+workdir=pathnames

Specifies alternative working directories for the duration of the
command.

Result The command returns the pathnames of any objects saved during the editing session.

Usage The LOGOS edit command is based upon workspace 7 del, which in turn is based on
the VS APL Extended Editor and Full Screen Manager, used as the) xedit on com-
mand. See the VS APL Extended Editor and Full Screen Manager Program Descrip-
tion/Operations Manual [IBM publication H20-2341], supplemented by the notes about
editor commands in this manual.

40 LOGOS Commands: edit

Examples

U edit test.report

Edits test.report.

U edit test.report +command=/title+

Edits test.report, positioning the reference at the first occurrence of title«.

U edit =reportnew

Edits the workspace object reportnew.

LOGOS Commands: edit 41

LOGOS Commands: enroll

The enroll command adds a new user to LOGOS, changes an existing one, or deletes a
user. At some sites, the use of this command is restricted.

Each user in LOGOS has a primary enrollment entry, which specifies the preferred alias
for his user number. Each user number may have more than one alias associated with it,
in which case these other aliases are considered secondaries. Analogously, each alias
has associated with it a primary user number -- namely, the number which ultimately
claims ownership for its LOGOS files. Each alias may also have more than one user
number associated with it, in which case these other user numbers are considered
secondaries. In this manner, users may have multiple aliases, and different users may
share the same alias.

Syntax enr(oll] [alias] [user]
[+alias=alias]
{+cmddir=pathnames]
[+delete(=yes]]
C+flags=C, | 71ilplsim]
(+groups=(, | /]groups]
[+name=name]
[+password=password]
[+reset=yes]
[+user=user]
C+workdir=pathnames]

alias Specifics the new alias to enroll, or an existing alias for which some
enroliment information is going to be changed; if you do not specify
it, a prompt is issued.

user Specifies the uscr number for that alias, if it is a new enrollment or if
it is a secondary entry. (If the user alrcady exists, then its primary
enrollment entry is assumed in the absence of this parameter.) A
user’s primary alias may be used in place of his account number as
the second parameter to the command.

+alias=alias Changes the alias of an existing LOGOS member.

+cmddir=pathnames
Sets or changes the user’s command directories.

+delete [=yes] Requests that the specified alias and user be deleted from LOGOS. If
you specify an argument, it must be yes.

42 LOGOS Commands: enroll

Usage

+flags=L,1/ilpislm

Sets or changes the user’s status flags. These are:

Internal access
Preferred access
Steward access
Maintenance access

Sh-u....

Precede flags with a comma (,) to add them to the existing list, or
with a slash (/) to delete them.

+groups=C, | /1groups

+name=name

Sets or changes the user’s groups membership. Precede group codes
with a comma (,) to add them to the existing list in which the user is
enrolled, or with a slash (/) to delete them.

Sets or changes the user’s full name. Enter the full name last name
first, followed by a comma, a blank, and then any familiar names and
initials. This format ensures that the name can be properly collated in
the LOGOS user directory.

+password=password

+reset=yes

+user=user

Sets or changes he user’s password. If you do not supply a password,
the existing password is removed.

Requests that the entry command line and terminal type for the user
be restored to their LOGOS defaults. This allows a steward to help a
user out of an awkward situation.

Changes the user number of an existing LOGOS member. The
argument can be an alias, in which case the alias’s primary account
number is inferred.

+workdir=pathnames

Sets or changes the user’s working directories.

For new members you must specify the alias, user number, name, and password. You
are prompted for any that you do not specify.

LOGOS Commands: enroll 43

Examples

U enroll dick 2239945 +name=Thompson, Dick S. +password=yellow +group=test
projdev logos

Enrolls a new user with the alias dick, the user number 2239945, the full name Dick S.
Thompson, and the password yellow. Enrolls the user in the groups test, projdev, and
logos.

U enroll dick +alias=dsmith

Changes the alias dick to dsmith.

U enroll dsmith dick

Estalishes the secondary alias dsmith for the alias dick.

U enroll dick +group=Iprojdev logos

Removes the alias dick from the groups projdev and logos.

U enroll dick 2239945 +delete=yes

Deletes the user dick from LOGOS.

U enroll dick

Displays enrollment information for existing alias dick.

44 LOGOS Commands: enroll

Syntax

LOGOS Commands: environment

The environment command changes or displays aspects of your LOGOS environment,
such as the command separator character, working directories, and keyword definitions.

envlironment] [parameter] [value]
[+destack]
L+profile]
[+reset]
C+stack]

parameter Is the name of the environment parameter whose value is to be
changed or displayed. If you omit parameter, the values of all
parameters are displayed.

You can specify only one parameter at a time. The valid parameters
are as follows:

audit Default audit file

cmddir Command directories
compile Compilation directives
debug Script debug setting

entry Entry command line

exit Exit command line

field Screen field attributes
keyword Keyword definitions
sepchar Command separator character
status Status line detail

task Auxiliary task identity
terminal Terminal type

track Tracking table setting
update Environments to be updated
workdir Working directories

Each of these is described below.

value Is the new value of parameter. If you omit value, the previous value
is displayed and not changed. The form of value depends on the
parameter you’ve specified. See the description of each parameter,
below. :

+destack Restores the last stacked environment entry before any modifications
made in the same command invocation.

LOGOS Commands: environment 45

Result

Usage

+profile Saves the environment setting for a specified parameter (or all of the
parameters, if no particular one is specified) in your profile after the
environment is changed according to the parameter and value you’ve
specified.

+reset Resets the specified parameter (or all parameters, if none is specified)
to its saved value in your profile.

+stack Stacks an environment entry, before any modifications made in the
same command invocation.

Without a parameter, the result is all environment settings currently in effect. With a
parameter, the result is the setting of the specified environment parameter.

You may specify the shortest unambiguous truncation for any parameter. For example,
w is sufficient to denote workdir, and co to denote compile.

You may specify only one parameter in a single environment command.

audit Parameter

Syntax

Example

NOTE:

The audit parameter establishes an audit file name. That file is used for audit records
when the build, distribute, filesave, shell, snap, and wssave command are used without
the +audit modifier. It is also used by various audit file scripts when an audit file is not
specified.

env audit filename

The argument filename is the audit file to use.

U env audit 1234567 prodaudit

The audit parameter is a session value that is not stored in your LOGOS profile.

46 LOGOS Commands: environment

cmddir Parameter

Syntax

The cmddir parameter establishes or displays the directories in which LOGOS searches
for scripts. You may also use the cmddir command for this purpose.

The command directory in effect when you are enrolled in LOGOS is
public.logos.cmds.

env cmddir { pathnames]
pathnames is a list of pathnames specifying the command directories to be established.

Command directories are searched for scripts in the same order as they are specified.

compile Parameter

IMPORTANT:

Syntax

Example

The compile parameter specifies giobal compilation directives that are to be applied to
every object fetched from LOGOS into an end environment.

Use this parameter with care! Everything fetched from LOGOS, including script and
user-defined compilation directive functions, are compiled when environment compile
has a non-empty value. NEVER use the user-defined compilation directives (a and z) in
an environment compile parameter. LOGOS will attempt to compile the user-defined
directive function with a compiled version of itself, causing an endless loop.

Also, composite scripts that another user has shared with you may not be able to be
compiled if you do not have the required access to paths localized in the scripts.

Specifying an environment compilation directive is a very useful technique, however,
when used inside of a script that is building end environments.

env compile [directives]

directives is a list of directives to be established. Separate the directives you specify
with commas.

U environment compile x,d,r=0,p

For more information about compilation and compilation directives, see the section
Compilation Directives in this Reference Guide.

LOGOS Commands: environment 47

debug Parameter

The debug parameter selects LOGOS’s reaction to errors occurring in a script.

Syntax env debug Lon| off]
on Causes a script error to result in interactive debugging.
off Causes a script error to result in abandonment of execution and a return to
the LOGOS command prompt.
entry Parameter
The entry parameter specifies an entry command line, a LOGOS command line to be
executed upon each entry into LOGOS.
Syntax env entry [Lcommand]

command is any LOGOS command or series of commands. Since a command may be
a script, arbitrarily complex actions are possible.

exit Parameter

Syntax

The exit parameter specifies an exit command line, a LOGOS command to be executed
upon each exit from LOGOS.

env exit [command]}

command is any LOGOS command or serics of commands.

48 LOGOS Commands: environment

field Parameter

Syntax

Example

The field parameter displays or establishes the colour and highlighting given to fields
on the screen.

Colour and highlighting are used only for LOGOS full screens, not standard command
prompt dialogue, and even then only for devices that support the features, such as the
IBM 3179 and 3279 display stations.

env field [field=Ccolour] Chighlight]]

field Is the field for which colour or highlighting are being specified. If
you omit field, information about all fields is displayed. field may be
any of:
status Status information
message Error messages
command Command line
title Title lines
frame Screen borders
input Input fields
output All other output fields
colour Is the field’s colour. If you omit both colour and highlight,

information about the specified field displays. colour may be any of:

neutral turquoise
blue white
green yellow
pink high (monochrome)
red
highlight Is the ficld’s highlighting. If you omit both colour and highlight,
information about the specified field displays. highlight may be any
of:
neutral
blink
off
reverse
underline

Separate colour and highlight with a blank; separate specifications for fields with
commas.

U environment field status=yellow reverse title=blue

LOGOS Commands: environment 49

keyword Parameter

The keyword parameter displays or maintains keywords. You can also use the keyword
command for this purpose.

A keyword is a phrase you define which you can call at any time in response to a
command prompt from LOGOS. Specify a keyword in a LOGOS command by
preceding it with a backslash (\).

Syntax env keyword [name [definition]]
name is name of the keyword to be defined or whose definition is to be displayed. If
you omit name and definition, the names of all keywords currently defined are

displayed.

definition is the definition to be given name. If you omit definition, the definition of
name displays. If you specify two single APL quotes (' '), the keyword is deleted.

sepchar Parameter

The sepchar parameter displays or establishes the global command separator character.
This character separates commands in command lines that do not imply a local
separator, and is also the LOGOS command prompt.

Syntax env sepchar [sepchar]

sepchar is a single character that is neither an alphanumeric, a blank, nor a LOGOS
metacharacter. The metacharacters which cannot be used are the following:

(Y)+{}'"\V.[Qte?e=%0cwAA_
You can override the global sepchar character immediately upon entry to LOGOS,
without altering the value saved in your profile, by specifying the desired separator as
the first character in the argument to the environment entry parameter.

Example U env entry ' commandl ¢ command2’®
This establishes the diamond (¢) as the separator character for this line.

U env sepchar ¢

This establishes the diamond as the separator character for this LOGOS session.

50 LOGOS Commands; environment

status Parameter

Syntax

The status parameter selects the level of detail to be displayed on the status line at the
top of the screen (this parameter applies only to certain device types).

env status [status]

status is the status control. Valid settings arc:
full Selects a two-line status area.

half Selects a one-line status area.

off Selects a zero-line status area
none Retains the size of the status area but prcempts writes to if.

task Parameter

Syntax

NOTE:

The task parameter displays or defines the task with which LOGOS workspace
interactions occur by default. If there is a task specified, that is the task used by the
commands build, distribute, edit, get, save, send, shell, talk, and wssave when a task is
not specified.

env task [task]

task is the names of the task with whose active workspace LOGOS interactions are (o
occur by default. The task identity may be that of any LOGOS task initiated via the
signon command, or * to indicate the active workspace.

The task parameter is a session valuc which is not stored in the LOGOS profile.
However, a command or script invoked as a part of the env entry parameter could sct a

particular task name to ensure that this environment parameter is always set
appropriately.

LOGOS Commands: environment 51

terminal Parameter

The terminal parameter identifies the type of device you are using.
Syntax env terminal [terminal type]

terminal type is the type of device you ar¢ using. LOGOS uses this information to take
advantage of your terminal’s special features. Valid terminal types are:

unspecified Specifies no terminal type.

ibm3270 Specifies a terminal in the IBM 3270 family of devices (including
IBM 3279).

hdsI108 Specifies a Concept HDS/108.

The terminal type may be specified either as an absolute quantity, as in IBM3270, or as
a quantity to be evaluated by LOGOS, as in:

U environment terminal
(#2(2 7p " hds108 ibm3270") [Qio+2=DrunsCQio ; io+21; 1)

track Parameter

The track parameter controls whether or not objects fetched into the workspace are
tracked in the variable ALTRACK. The tracking table is maintained by the gef and
build commands, for use primarily by snap and wssave.

Syntax env track Con| off]

on Tracks objects fetched into the workspace in the variable ALTRACK.
off Does not track objects fetched into the workspace.

52 LOGOS Commands: environment

update Parameter

The environment update parameter tells LOGOS which end environments to update
with the new version of an object when using the Application Debugging Assistant, or
distribute. The update parameter is a session value that is not stored in your LOGOS
profile.

The argument to the update parameter contains type, name, and location of each end
environment, delimited by a separator character. The separator character is identified as
the first non-alphanumeric in the argument. For example:

environment update /type name location

The / character is the separator character. The type of end environment can be any of
the following letters:

c Cluster

f File component
p Paging area

w Workspace

The following rules apply to the way you specify the name and location of the end
environment.

Rules Governing Name and Location Of The End Environment

if: Then:

the type is f, p, or w, name must be an account number and name. The account number
is optional. If you don't specify it, LOGOS assumes your account
number.

the type is c, name must be a pathname.

the type is f, location must be a component number within the file.

the type is p, location must be the paging area’s starting component number.

For example:

/f 1234567 myfile 550

Because the type of end environment is { (file), the name is an account number and
name, and the location is a component number.

LOGOS Commands: environment 53

The update parameter takes the wild-card characters ? and ?*, The comma (,) is not a
valid character. For example:

/¢ .myws.cmds.? *
Because the type of end environment is ¢ (cluster), the name is a pathname.

NOTE: This parameter is a workspace session property and is not saved with your profile.

workdir Parameter

The workdir parameter establishes or displays your working directories. You may also

use the workdir command for this purpose. A working directory is the directory which

the LOGOS file system searches for pathnames not specified from the root. If you have

more than one working directory, they are searched in the order specified.

The working directory in effect when you are enrolled in LOGOS is your alias.
Syntax env workdir [pathnames]

pathnames is a list of pathnames specifying the working directories to be established.

Working directories are searched for objects in the same order as they are specified.

54 LOGOS Commands: environment

Syntax

Result

Usage

Examples

LOGOS Commands: exit

The exit command ends a LOGOS session and returns you to the environment from
which you called LOGOS. The exit command takes effect immediately; any commands
to its right on the line are ignored.

ex[it] [expression]
[+reset]

expression Is the APL expression to be evaluated just before LOGOS ends.

+reset Unties all LOGOS files and resets the tables which LOGOS maintains
in the workspace to the state they were in before LOGOS was run.

None.
A typical use of expression is to load a new workspace.
Use of +reset commonly results in an increase in working storage (reflected in the

result of Owa), but in no other effect. +reset is useful for returning a workspace to
pristine form before saving it for general use.

U exit

Ends LOGOS.

U exit 'Oload ' 1666 box' ' !
saved 1988-01-07 23:50:04

Ends LOGOS and loads workspace 666 box.

LOGOS Commands: exit 55

U exit +reset
)erase logos
)save
1988-09-25 23 :35 :40 payables

Resets the workspace, ends LOGOS, erases the /ogos function, and saves the workspace
with its current name, payables.

U exit Ots +reset
1988 9 25 23 45 62 439

Displays the system time, resets the workspace, and ends LOGOS.

56 LOGOS Commands: exit

Syntax

Result

Usage

LOGOS Commands: export

The export command copies objects from LOGOS paths to a file intended for export to
another system or for storage outside LOGOS’s domain (such as in a private backup).
export differs from copy in the following ways:

« The destination path must be the pathname of an export file that was created by the
export command with +makedir specified.

« The names of copied paths are identical to the original full pathnames, with the ad-
dition of the export file name as a prefix. For example, the objects
John.reports . ?* copied into the export file .vp.transfer arc called .vp.trans-
fer.john.reports.?*.

explort] pathnames
[+makedir]
C+override]l
[+protect]
[+versions(=n]]

pathnames Is a list of paths to be exported.

+makedir Creates directories not extant in the destination path.

+override Overrides the registration of paths being exported.

+protect Refrains from overwriting extant paths in the export directory. If you

omit +profect, extant paths can be overwritten.

+versions[=n] Provides control over which versions of objects are exported. By
default, only the latest version of each specified object is exported. If
you specify +versions without a value, or with a value of all or 0, all
versions are exported. If n is a ncgative integer, the most recent n
versions are exported; if positive, the oldest n versions are exported.

The command returns the pathnames of the saved objects, including type and version
number, as the result.

See the script .public.logos.cmds.install for an example of how to install an application
from an export file.

When pathnames is a hierarchy, the entire specified hicrarchy is exported under the
destination pathname.

LOGOS Commands: export 57

Examples

If you specify the [d] object type in pathnames, none of a directory’s descendants are
exported.

If you want to export specific, individual, noncurrent versions of an object, specify the
version numbers in the pathname.

The command copy .john.archive . at the receiving end performs the inverse of all
export operations made to the export file john.archive. Using the +protect modifier to
copy prevents overwriting existing objects.

U export dir.?* john.archive +makedir

Exports all paths under dir and creates export directory .john.archive if necessary.

U export reportl report2 john.archive

Exports two paths to the existing export file .john.archive.

58 LOGOS Commands: export

LOGOS Commands: filemaint

The filemaint command reclaims file space consumed by deleted objects and generates
reports describing the use of space within files.

Syntax fileCmaint] pathname
[+compress]

[+extended]

pathname Is the pathname of a LOGOS file and must contain two segments (for
example, .sys.tools).

+compress Reclaims the space used by deleted components within a file. The
effects of this action are not visible until after the next fulldump and
restore of the APL file system.

+extended Provides additional information in the usage report (see Result).

Result filemaint retumns a basic report including:

« file size in bytes

» file reservation

» difference between size and reservation

« number of deleted objects

An extended report includes more information, including:

« total space consumed by deleted objects

» total number of objects in the file (excluding those deleted)

« number of objects with non-empty note attributes

» number of objects which are registered out

- individual counts of each object type (clusters, directories, functions, links, scripts,
and variables)

Usage When you use the delete command to delete an object from a LOGOS file, LOGOS
removes the object from the hicrarchy and marks the space the object occupied as
reusable but does not actuaily reclaim the space. The next time data is written to the
file, this space is reused.

LOGOS Commands: filemaint 59

In certain situations (for example, the deletion of a large number of objects followed by
a period where no new data is written to the file) a file can grow to be much larger than
the sum of the sizes of the objects in it. filemain! can reclaim this space and inquire
upon the amount of orphaned space in a file.

Examples

U filemaint .dkol.appll

Generates a basic report for .dkol.appll. For example:

2,599,856 total bytes
3,681,764 bytes reserved
1,081,908 bytes free

533 deleted objects

U filemaint .dkol.appll +extended

Generates an extended report for .dkol.appll. For example:

2599856 total bytes
3,681,764 bytes reserved
1,081,908 bytes free

533 deleted objects

729,660 byes consumed by deleted objects
2,334 total objects
7 objects have note set
2 objects are registered out
37 clusters
149 directories
1,975 functions
2 links
51 scripts
120 variables

60 LOGOS Commands: filemaint

Syntax

LOGOS Commands: filesave

The filesave command generates a LOGOS paging area. The filesave command uses
information supplied by build and shell commands issued in this session since the last
filesave command.

filesave [filenamelcn]]
[+audit=filename]
(+end=n]
[+lock=passnumber]
(+note=text]
C+overwriteC=audit| , | buffer| , | dest]]
[+size=n]
[+update[=nodes]]

filename(cn]

+audit=filename

+end=n

Is the SHARP APL file that is to contain the paging area. LOGOS
creates the specified destination file for you if it does not exist. If you
omit filename, the file identifier is taken from the +file modifier of a
buffered build command.

cn identifies the starting component number of the paging area to be
built. If you omit cn, LOGOS builds a new paging area starting at the
first available component.

Identifies an audit file to contain information about this generation.
+audit is relevant only when you’re generating a paging area or a
workspace. If the specified audit file does not exist, LOGOS creates it
for you. If you omit +audit, the value of +audit in a buffered build
command (if any) is used.

Specifies the upper component number limit for this paging area. 0
(zero) indicates no limit.

+lock=passnurnber

+note—text

Specifics the paging file’s passnumber. If you omit +/ock, the value
of this modifier in a buffered build command, or 0, is used.

Specifies text to be placed in the hcader component of the associated
paging area, providing documentation about the area.

LOGOS Commands: filesave 61

+overwrite[=audit| , | buffer| , | dest]
Specifies one or more working areas to be cleared.

+overwrite=audit
Generates a new audit record.

+overwrite=buffer
Overwrites the internal "build buffer” (which con-
tains the build statements accumulated previous to a
filesave).

+overwrite=dest
Overwrites the destination node.

+overwrite or +overwrite=audit,buffer dest
Overwrites all working areas.

If you omit +overwrite, no working areas are overwritten.

+size=n Specifies the maximum size, in bytes, of any node whose size was not
specified by its build statement. n may be any positive integer. When
a node’s size exceeds the value of this modifier, LOGOS
automatically splits its contents into two or more separate nodes. If
you omit +size, node size is not limited.

+update (=nodes]
Specifies nodes to be updated. Separate nodenames in nodes with
blanks. If you omit +update, the entire paging area is regenerated.
This is the default setting.

Resuit None.

Usage filesave is used solely for the generation of LOGOS paging areas. Each paging area con-
sists of two or more consecutive components of a file, and is used as a repository for
named packages called nodes. Each paging area has a primary node which is called the
base node and is represented by *. LOGOS contains a standard set of paging utilities,
found in the LOGOS directory .public.logos.paging, which are available for your use.
For more information on the use of paging areas, see Chapter 8 of the LOGOS User’s
Guide.

Use the +note modifier to help distinguish among paging areas or files, in the event that
you are perusing them manually.

filesave will run better, faster, and with reduced chance of workspace storage problems
if an audit file is specified. This is due to the amount of information which must be
maintained when tree analysis is being performed. When an audit file is specified, this
information is kept in that file. Audit files are also desirable because they allow you to
use distribute to make incremental modifications to end environments you have
generated using them.

62 LOGOS Commands: filesave

Example

U build +depth +workdir=.john.logos.util public.logos.util +overwrite

U build * publiclogos.paging Alpagein| Alpageout | Alpwsfull | Alpcmprs Qtrap
U build ' calculate edit model report?

U shell 'calculate edit model report?

U build 'ask output pring getdata putdata openfiles*

U filesave 1234567 model 10 +audit=1234567 audmodel

generating 10 nodes to paging area 1234567 model, 10

10 nodes Cincluding 4 shells) generated using 147 objects

generation 8 of paging area 1234567 model, 10 saved 03mar86 13:54 by john

The first build statement defines a new set of default modifiers to apply when
generating the nodes specified in the statements which follow. The second build
statement establishes the base node, a set of objects to be brought into the workspace
when the paging arca is opencd. The third build statement specifics a sct of primary
nodes, which in this case arc commands. The shell statement which follows specifies
that shells are to be built around the primary nodes. The last build statement specifies a
set of ancillary nodes to be paged in whercver they are needed. Finally, the filesave
command specifies the file which will contain the paging area, and the component in
the file at which the area is to start. This command also specifies the audit file to be
used to keep track of object placement within nodes in the paging arca.

LOGOS Commands: filesave 63

Syntax

Result

LOGOS Commands: get

The get command fetches objects from the LOGOS file system and deposits them in
your execution environment,

gLet] pathnames
[+compile=directives]
[+protect]
C+recursive(=1|2|all]]
(+task=[task]1]
[+workdir=pathnames]

pathnames Is a list of objects to be fetched.

+compile=directives
Specifies the compilation directives to be applied to the source form.
If you omit +compile, the objects are compiled according to directives
saved with them and directives global to your LOGOS environment.

+protect Does not overwrite the existing workspace objects. If you omit
+protect, workspace objects may be overwritten.

+recursive[=1]2]all]
Indicates which objects subordinate to a specified directory are to be
retrieved. If you specify +recursive without a value, +recursive=all,
or +recursive=0, all subordinate objects are retrieved. If you specify
+recursive=1, only the named level is retricved. If you specify
+recursive=2, only the named level’s direct descendants and not the
named level itsclf are retrieved. This is the default setting.

+task[=task] Specifies the auxiliary task into whose active workspace the retrieved
objects are to be placed. If you omit +ask, the objects are retrieved in
the workspace of the task names in the environment task parameter. If
no environment task is named, the objects are retrieved into your local
active workspace. If you specify +task without a value, the objects
are retrieved into the workspace of the auxiliary task with the default
name aux.

+workdir—pathnames
Specifies working directories to be in effect for the duration of the
command. If you omit +workdir, your global working directories are
used.

The command returns the pathnames and version numbers of the retrieved objects.

64 LOGOS Commands: get

Usage

Examples

By default, the object form of the requested pathnames is retrieved. You may have
other attributes, such as source, documentation, or note, retrieved by specifying the at-
tribute in pathnames.

The attribute being defined is put, by default, in your current execution environment.
This is either the active workspace of the task in which you’re running LOGOS, or the
active workspace of the auxiliary task specified by environment task. Selection of the
execution environment may be overridden by the +task modifier.

U get util.viom

Fetches the object form of vrom into the workspace.

U get replace vtom +compile=x +workdir=util

Fetches the object form of wtil.replace and util.vtom, with comments removed.

U get utill :d] +task=taska

Fetches the documentation from util into the active workspace of task raska.

LOGOS Commands: get 65

LOGOS Commands: group

The group command allows you to add new groups to LOGQOS, change information
about existing groups, and delete groups.

Syntax grolup] [alias]
[+alias=alias]
[+delete[=yes]]
C+enrollment="L, | /Jaliases]
[+flags=C, | /1ilc]
[+mentor=alias]
[+name=name]

alias Is the alias of the group to be enrolled or changed. An alias can be a
maximum of twelve characters or numerals in length, starting with a
letter.

+alias=alias Specifies the new alias for an existing group. If you omit +alias, the

group’s alias is not changed.
+deleteL=yes] Deletes the specified group. If you supply an argument, it must be yes.

+enrollment=C, | /Jaliases
Specifies or changes a group’s membership. To add aliases to a
group, preceed the aliases with a comma (,). To delete aliases from a
group, preceed the aliases with a slash (/).

Hlags=0(, | /1ilc
Sets or resets status flags for the group. The flags are:

i Sets the group’s internal flag.
c Sets the group’s closed flag.

Currently, LOGOS does not use either of these flags and setting them
has no effect.

+mentor=alias Specifies the alias to be the group’s mentor. The mentor of a group is
the user responsible for establishing and controlling its composition.
A mentor is similar to a project leader or a meeting coordinator.

+name=name Specifies the group’s full name. The name can be a maximum of 45
characters from the ASCII character set. This name is used to collate
the group in the LOGOS user directory, so it is effective to begin the
name with the group’s central theme.

66 LOGOS Commands: group

Resuit The command returns the new enrollment information for the group, or its enrollment
information just prior to deletion.

Usage To enroll a new group, you must specify alias, +name, +mentor, and +enrollment. You
are prompted for missing information.

If you omit the value to any modifier, you are prompted for the missing information.
The mentor of a group need not be a member of it.

If the full name you want to use contains parentheses, as in inventory control (dev),
and you are specifying it on the command line, enclose the name in quotes. Without
quotes LOGOS treats the parenthetical expression as a command, and an error occurs.

To any prompt issued by group, you can enter the keyword stop or back. stop aborts
the enrollment operation without change to the group, and back returns you to the
previous prompt issued. To enter the words stop and back, preceed them with a slash
(.

Any LOGOS user may create a group. Mentors of a group can change group
membership by adding or delcting aliascs. Remember that group membership

automatically grants the access that has been given to the group to new members.

Examples

U group inventdev +name=inventory control group +mentor=invent +enrollment=invent
invbase dick

Enrolls the group inventdev with invent as the mentor and invent, invbase, and dick as
members.

U group invent +enrollment=, bob jstaniey

Adds the aliases bob and jstanley to the group invent.

U group invent +delete=yes

Deletes the group invent from LOGOS.

LOGOS Commands: group 67

LOGOS Commands: help

The help command obtains information about another LOGOS command.
Syntax hCelp]l [command]

command is the command whose description is to be displayed. If you omit command,
information on the various kinds of help available is displayed.

Result The command returns the information requested as the result.
Usage help followed by a command name is equivalent to ?? followed by the same name.
Examples

U help

Displays the various kinds of help you can request.

U help list

Displays general, syntax, and usage information about the /ist command.

68 LOGOS Commands: help

Syntax

Resuit

Usage

Examples

LOGOS Commands: import

The import command attaches a LOGOS file to the LOGOS system. Typically, the file
will have been generated via an export operation performed on another system,
followed by a retrieval of the file to the current system. But the file might also have
been created on the current system at some point in the past, and retrieved from a
backup. Without performing the import operation, a retrieved file is not accessible to
LOGOS.

imp(ort] pathname [newpathname [oldpathname]]
pathname Is the LOGOS pathname or APL file identifier of the file as retrieved.

newpathname Is the LOGOS pathname or APL file identifier which the imported
file is to assume. If you omit newpathname by specifying ' ' instead
of a pathname, the imported file retains its present name.

oldpathname Is the pathname that the file possessed when it was first generated, if
different from pathname.

The command returns the pathname of the imported file as the result. By default, this
result is not displayed (although a message including it is). To display or capture the
result, use assignment on the command line.

import does not actually move any objects. Rather, it simply attaches a file to the
LOGOS file system. To move the objects, use the copy command.

Since export moves objects and import doesn’t, these two commands are not inverses.
The inverse of an export command is a copy command with a target path of a dot (.).
See the description of export for more details.

U import V1234567 archive!
John.archive imported

Imports the file 1234567 archive (john is the primary alias for user 1234567).

LOGOS Commands: import 69

U import archive
John.archive imported

Imports the file /234567 archive. LOGOS assumes that the first argument is a file
identifier if it contains no dots.

U import john.archive
John.archive imported

Imports the file /234567 archive.

U import '1234567 archive' john.temp
John.archive imported as .john.temp

Imports the file 1234567 archive as john.temp.

U import ' 1234567 retrieved' john.temp .john.archive
John.retrieved imported as john.temp

Imports the file 1234567 retrieved as .john.temp. Its original name was .john.archive.

70 LOGOS Commands: import

Syntax

Result

Usage

Examples

LOGOS Commands: keyword

The keyword command displays or maintains your keyword table.

A keyword is a phrase you define which you can call at any time in response to a
command prompt from LOGOS. A keyword entered in a LOGOS command must be
preceded by a backslash (\).

kCeyword]l [name ([definition]]

name Is the keyword to be defined or displayed. If you omit name and
definition, the names of all keywords currently defined are displayed.

definition Is the definition to be given name. If you omit definition, the
definition of name is displayed. If you spccify ' !, the keyword is
deleted. The keyword’s definition cannot exceed 500 characters in
length.

If you use keyword to define or delete a keyword, the command returns an empty
result. If you use keyword without an argument, it returns the names of all of your
defined keywords. If you use keyword to inquire upon one or more keywords, it returns
the definitions of these keywords (see the example below).

You may supply an argument of keyword enclosed in parentheses (LOGOS evaluates
the expression) to display all your keywords and their definitions.

Use environment +profile to save your keywords in your profile.

U keyword

Lists the names of the keywords you have defined.

LOGOS Commands: keyword 71

U keyword compare .mde.logos.myscripts.compare
U workdir \compare
.mde.logos.myscripts.compare

Defines the keyword \compare and uses it to establish a new working directory.

U keyword box ' #[lload ' ' 666 box' '
U keyword

compare box

U keyword box

keyword box ' #(0load * ' 666 box' ' "'

Defines the keyword \box 10 load workspace 666 box, displays the names of existing
keywords, and displays the definition of \box.

U keyword (keyword)
keyword compare ' .mde.logos.myscripts.compare!
keyword box '#[load * 666 box''!

Displays the definitions of all keywords.

U keyword compare '
U keyword
box

Deletes the keyword compare and displays the names of all existing keywords.

72 LOGOS Commands: keyword

Syntax

Result

Usage

Examples

LOGOS Commands: link

The link command eslablishes a surrogate pathname by which you can access other
LOGOS paths. When a link appears as a pathname or a portion of a pathname, LOGOS
replaces the link with its value and then searches for the newly formed name.

link newpathname oldpathname

newpathname Is the name of the link and must be a name that doesn’t exist. After a
link is created, its pathname can be used in place of the oldpathname,

oldpathname Can be any LOGOS object or directory.

The command retums the pathname of the newly created link as the result.

Some commands -- such as copy, delete, and list -- operate on the link itself and do not
resolve the link. For example, invoking delete on a link deletes the link, but not the

path to which it resolves.

Most commands do resolve links to their ultimate pathnames; this can be disabled by
specifying a type of [/] in the pathname argument to the command.

Use list with +summary to display the path to which a path is linked. Note that when
links themselves are linked to other paths, you can traverse the intermediate paths and
see the final path in the chain by using the +ultimate modifier with list.

A link can refer to another link, but cannot refer to itself. To change the value of a link,
you must first delete the link and then use link to reinstate it.

U link util .public.util
U get wtil.b? *
public.util badinp[f2]
public.util bsTvl]

Establishes a link to a directory, and fetches those objects beginning with b.

LOGOS Commands: link 73

U link myvtom .public.util vtom
U get myvtom
public.utilviom(f2]

Establishes a link to an object, and then fetches that object.

74 LOGOS Commands: link

Syntax

LOGOS Commands: list

The list command displays information about objects and directories in the LOGOS file
system. To display a LOGOS object, use the display command. To display the APL
attributes of an object, use the summarize command.

ICist] [pathnames]

[+column)
[+datal=pn.type,...]
[+extended)]

C+Hfull]

[+headings]
[+long]
[+overhead]
C+recursive(=1)2]all]]
C+summary]
[+type]

C+ultimate]
[+versions[=n]]

pathnames Is a list of objects or directories to be listed. If you omit pathnames,

+column

the path specified by the primary current working directory is used.
Formats the report in as many columns as will fit across the display.

This modifier is ignored for data, long, summary, and version reports.
If you omit +column, the names display in a single column.

LOGOS Commands: list 75

+datal=pn,type,...]

+extended

+full

+headings

76 LOGOS Commands: list

Displays information in a delimited data format, suitable for analysis
by a program. Lines of the report consist of ficlds identified by a
leading delimiter. 16 fields are defined, and any unique subset may be
selected. Fields are:

pn Pathname

type Object type

size Object size or directory descendant count

perm Permission (¢,w,r.x)

cts Create timestamp (YY YMMDDHHMM)

cwho Creator

ts Last write timestamp (YY YMMDDHHMM)

who Author

rts Registration timestamp (YYYYMMDDHHMM,;
empty if not registered)

rwho Registerer (empty if not registered)

vers Versions available

ret Retention (0 if all)

ver Version number

cc True change count

aurs Attributes (c.dj.n,t,r.p)

Ipn Link pathname (empty if not link)

Neither the field delimiter nor the maximum number of fields should
be assumed. If you specify +data with no argument, the fields are
returned in the order shown above. If you specify +data with an
argument, fields are returned in the order specified.

Specifying +data overrides other modifiers that control the result
format - column, long, summary, and version. The content of the
result is affected by the presence or absence of the +full, +overhead,
+version, or +ultimate modifiers. For example, if pn is one of the
items requested and +full is specified, full pathnames will always be
returned.

Displays extended information on pathnames, including: the type, the
version number, the attribute (if not source).

Displays rooted pathnames. If you omit +fu//, partial pathnames
display when they are unambiguous.

Displays report headings. This modifier applies only to data,
summary, and long reports. If you omit +headings, report headings do
not display.

+long Displays a long report. A long report contains all the information in
the summary report, plus the timestamp, the alias of the user who
created the object, change count, number of versions in LOGOS,
registration information, and broadcast note. If you omit both +/ong
and +summary, only the object names display.

+overhead Includes the total size of all attributes of the object in the size column
in data, summary, and long reports. If you omit +overhead, the size of
the specified attribute is reported. If you don’t specify an attribute, the
size of the source is reported.

+recursive[=112|all]
Controls the levels of directories to be processed. +recursive (without
a value), +recursive=all, or +recursive=0 specify that the named
level and all subordinate directories are to be listed. +recursive=1
lists only the named level. +recursive=2 lists only the direct
descendants of the named level, excluding the named level itself. If
you omit this modifier, +recursive=2 is assumed.

+summary Displays a summary report. For each object (if not a link), a summary
report gives:

* pathname

* object type

* size

* your permission

» the timestamp when last modified

+ the alias of the user who last modified the object
¢ the most recent version number

¢ retention period

» flags which indicate if the object is registered

« what attributes it has set.

If the object is a link, the summary report gives:

* pathname of the linked object

» object type

* size

* your permission

+ the timestamp when last modified

* the alias of the user who last modified the object

» the pathname of the object to which the first object is linked

If you omit both +summary and +long, only the object names display.

LOGOS Commands: list 77

+type Displays the object type. This modifier is not necessary if you also
specify +summary or +long.

+ultimate Resolves links to ultimate paths, and displays information about these
paths rather than the links themselves.

+versions[=n] Displays information about specified versions of selected objects. If
you do not specify a value, all versions of the objects display. If you
specify n, only the first or last n versions are listed, depending on
whether n is positive or negative, respectively. Use of this modifier
implies a summary report if +long is not selected.
Result The command returns the requested object or directory information as the result.

Usage If you omit all modifiers, only names are displayed, in a single column.

+type is useful with +column to list the names and types of objects. +summary displays
a convenient one- or two-line summary of each object. +long supplies the most detail.

You can list all objects of a particular type with the command /list 2 *[f]

list pathname(d] +full +recursive where pathname is a dircctory, lists the full
pathnames of all directories at or below a particular node in the file system.

list pathname +recursive=1 +summary where pathname is a directory, lists the entry
for the directory itself, rather than its descendants. The count of descendants in the

directory is reported as its size.

+full is useful when you want to pass the result of list to another LOGOS command
because it identifies the pathname unambiguously without reference 1o the working
directory. For example:

U display (list dick.util.a?* +full)

78 LOGOS Commands: list

Examples

u list inventory

Lists pathname inventory, or if it is a directory, all objects immediately subordinate to it.

u list inventory +column +full +type

Lists the full pathname of inventory, or if it is a directory, all objects immediately
subordinate to it, in columnar format with object type.

U list inv?x[f] +column

Lists the pathnames of all functions beginning with inv, in columnar format.

u list report chart +summary

Lists a summary of the named objects, or if they are directories, the objects
immediately subordinate to them.

U list report chart +versions=_3

As above, but reports information on the last three versions of each object.

U list dick.util +recursive=1 +summary

Lists a summary of the directory .dick.util, with the count of descendants in it reported
as its size.

LOGOS Commands: list 79

U list chart[:d] +summary

Lists a summary of the object chart, or if it is a directory, the objects immediately
subordinate to it. The size of the object included in the report is the size of the
documentation attribute.

v list inv? *x[f] +d=pn.perm,size,who +headings +full

Returns a delimited list containing the full pathnames, your permission, and the size
and author of all functions beginning with inv. Delimited headings are included.

80 LOGOS Commands: list

LOGOS Commands: locate

The locate command returns the locations of one or more strings or of a regular
expression in LOGOS objects.

Syntax locCate] string [pathnames]
C+display]
C+flags=cllinloiqlsix]
C+lines]
(+multiple]
C+recursive[=1]2|all]]
[+show]

string Is the text or expression to be sought. Enclose it in quotes if it
contains blanks or the command separator. Enclose it in curly braces
({ }) if it is a regular expression.

pathnames Is a list of objects to be searched. This argument is optional and, if
unspecified, defaults to your primary working directory.

+display Displays the entire line on which matches to string occur. If you
specify none of +display, +lines, or +show, the command displays
only extended pathnames, indicating the object type and version
number, of objects containing the string.

LOGOS Commands: locate 81

+flags=cllinlolglslx

+lines

+multiple

Specifies the parts of objects to be included in the scarch. If you omit
+flags, the entire object is searched. This search is nonsyntactic and
searches the object as an undifferentiated character vector. A
function’s comments and character constants are included in the
search, Note: the flags c, /, g, and x are effective only when you
specify them with the flags s or o.

¢ Searches function comments.

/ Searches LOGOS comments only. (LOGOS comments begin
with aV.)

n Searches the composite elements of numeric vectors; see the

usage note below.

0 When specified with ¢, /, ¢, or x, searches those types of
lines only.

q Searches quoted strings (character constants).

s Syntactic search. Searches for occurrences of string as a

syntactic unit within the non-comment lines of the objects
being searched. If any of the flags c, /, ¢, or x are also
specified, those types of lines are included. If flag o is also
specified, restricts search to only those types of lines.

x Searches executed quoted sirings (that is, character constants
that are arguments to # functions).

Displays the line numbers of lines in which string is found. If you
specify none of +display, +lines, or +show, the command displays
only extended pathnames, indicating the type of object and the
version number, of objects containing the string.

Searches for multiple strings. See the usage note below. If you omit
+multiple, string is sought as one unit.

+recursive(=1|2]all]

82 LOGOS Commands: locate

Controls the recursive processing of directories. +recursive (without a
value), +recursive=all or +recursive=0 indicate that the named level
in pathnames and all subordinate objects are to be searched.
+recursive=1 indicates that only the named level is to be searched.
+recursive=2 indicates that only the direct descendants of the named
level, excluding the named level itself, are to be searched. This last
specification is the default behaviour if you omit the modificr
altogether.

Result

Usage

Examples

+show Displays the entire line on which matches occurred, with a caret (r)
pointing to each match. If you specify none of +display, +lines, or
+show, only pathnames, types, and version numbers of objects
containing the string display.

The command returns the display of all matches as the result, in the format you re-
quested.

Use +multiple to search for several different strings simultaneously. When you specify
+multiple, the first character of the string argument delimits the substrings to be sought.

You can specify only a single regular expression to locate even with +multiple.
However, you can unite several regular expressions using the alternation construct
between each expression. For example:

{a:|[ILJw:}

To search functions for names of objects, specify +flags=s. Names in comments and
character constants are ignored unless ¢ and g are also specified.

To include comments and character constants in a syntactic search, specify +flags=cgs.

In a syntactic search, a single number such as 1 is not found if it appears in a vector.
For example:

10/j

Use +flags=ns to match constants that are embedded in vectors.

U locate dig

Searches for dig in your primary working directory.

u locate dig (workdir)

Searches for dig in your working directories.

LOGOS Commands: locate 83

U locate dig compfn

Searches for dig in compfn.

U locate z dir +flags=s

Searches for the name z in dir.

u locate 1 compfn +lines

Searches for the digit / in compfn, and returns the line numbers of each object line in
which it is found.

U locate 1 compfn +flags=s +lines

Searches for the numeric scalar /.

U locate {a: | [ILJw: } dir

Searches for the regular expressions & : and [/IL]w: in dir.

U locate /pgm«/pgs+ dir dirx +flags=s +multiple +show

Searches for the syntactic constructs pgm<+ and pgs+ in dir and dirx, and displays the
context of each occurrence. The slash (/) is the delimiter for the string argument.

84 LOGOS Commands: locate

LOGOS Commands: output

The output command generates various classes of LOGOS output from within a script.

Syntax outLput] text
C+error]
[+message]
C+quadprime]
C+result]
C+status]
text Is a character vector to be displayed.
+error Defines text as an error message, signals errors to the LOGOS
command processor, and aborts execution of the script.
+message Defines text as LOGOS message class output. If you do not specify a
modifier, this is the default class.
+quadprime Displays or assigns text as if it were quadprime (1) output.
+result Defines text as LOGOS result class output, the result of the script
calling the outpur command.
+status Writes text to the LOGOS status line.
Result The result is the argument. By default, this result does not display. ouiput also has the

ability to pass its result on as the result of the script which calls it.

Usage See the LOGOS User's Guide for a description of how output may be used in scripts.

LOGOS Commands: output 85

Example

v display .dick cmds.divide

dick.cmds.divide[s2] :

1] quotient~divide +Dividend= +Divisor=

(21 Dividend<{lfi Dividend ¢ Divisor«{}fi Divisor
(3] - (Divisorz0)el0

[4])output division by zero +error

51 10:)ouwput dividend is (£Dividend) +message
[61)output divisor is (£Divisor) +message

L71 quotient«Dividend+Divisor

U divide 22 7
dividend is 22
divisor is 7
3.142857143
U divide 3 0
division by zero
divide 3 0
A

Note that output +result cannot be used in a script who’s header defines an explicit
result, as in the example above. To use output +result, we would have to rewrite the
examples as shown below:

U display .dick cmds.divide

dick.cmds.divide[s2] :

(1] divide +Dividend= +Divisor=

(21 Dividend<Ufi Dividend ¢ Divisor«<{fi Divisor
(3] - (Divisorz0)el0

(4])output division by zero +error

[51 10:)output dividend is (£Dividend) +message
L61)output divisor is (#Divisor) +message

C11])output (2Dividend+Divisor) +result

U divide 22 7
dividend is 22
divisor is 7
3.142857143
U divide 3 0
division by zero
divide 3 0
A

86 LOGOS Commands: output

LOGOS Commands: references

The references command displays a list of end environments which contain copies of
the objects specified in the pathname arguments.

Syntax reflerences] [pathnames]
(+audit]
[+delete]
[+environments=envs]
[(+headings]
[+pathname]
C+recursive[=1|2|all]1]
[+unreferenced]

pathnames

+audit

+delete

Is a list of pathnames to be searched for in end environments.
pathnames may be elided when references is used to delete
environments specified in the +environments modifier.

Provides complete information about the exact location of objects in
the various end environments. This modifier does not take a value.
LOGOS keeps a record of the audit file which was used when the
paths were created. If +audit is not selected, a report containing just
the end environments and their types displays.

Deletes the environments sclected with +environments from the used
list.

+environments=envs

+headings

+pathnames

Specifies the end environments to be scarched for references (see the
Usage notes, below).

Prints a heading, labelling the various columns of output, at the top of
the output.

Specifies that the result is to contain full pathnames only. This
modifier is used in conjunction with the +environments and
+unreferenced modificrs.

+recursive(=1|2|all]l

Controls iteration through dircctory levels encountered. +recursive
(with no value), +recursive=0, and +recursive=all signify that the
named level and all its descendants are to be scarched. +recursive=1
signifies only the named level. +recursive=2 signifies direct
descendants of the named level, excluding the named level. If this
modifier is not specificd, +recursive=2 is assumed.

LOGOS Commands: references 87

Result

Usage

+unreferenced Identifies objects which are not referenced by any applications.

All of the locations in which the specified objects are found are listed in the result
returned by this command. Varying levels of detail can be controlled with the use of the
modifiers.

The references command is particularly useful when you are considering making any
potentially harmful changes to a system, such as deleting an object. It enables you to
see all end environments in which the object is used before making the change.

The references command resolves links in its pathname arguments, Include [/] at the
end of the pathname to disable link resolution. If util.vtom is a link, references util.viom
lists the references to the object to which the link refers, and references util.viom(1]
lists the references to the link itself.

The argument to the +environments modifier can contain one or more environment
selection templates. Multiple templates are delimited by a separator character. The
separator character is identified as the first non-alphanumeric in the modifier’s
argument.

An environment selection template is divided into two parts, separated by a comma,
The first part is the end environment specification consisting of type, name, and

location; the second part is an optional audit file name.

Type is a single letter indicating the end environment type. This can be one of:

c Cluster

f File component
l Link

p Paging arca

s Script

w Workspace

Name and location of the end environment depend on the type of end environment, as
shown in the following table.

Rules Governing Name and Location of End Environment

If: Then:

the type is f, p, or w, the name must consist of an account number and name.

the typeis c, |, or s, the name must be a pathname.

the type is f, the location must be the companent number within the file.

the type is p, the Igcation must be the paging area’s starting component
number.

88 LOGOS Commands: references

Examples

The audit file name contains a single file name field. For example:
+environments=w 1234567 mysys, 1234567 audit

This specifies the workspace 1234567 mysys which is a part of the audit file 1234567
audit.

Limited regular expressions can be applied to the environment specification. The
following example selects all data files and paging areas on account 1234567.

+environments=f|p 1234567 7 *

If the comma and audit file name are elided, end environments are selected whether or
not they are kept track of by an audit file.

If the comma is present and the audit file name elided, then only environments that are
not kept track of by an audit file are selected.

U references .john.source.utils.vtom
f 1234567 fnsfile 10

p 1234567 paging 25 1234567 audilpg
s john.source.cmds.print

Displays the three end environments which are known to use john.source.utils.vtom.
Shows:

« the reference type (f, p, and s above)
» the name of the end environment in which the object was found

» the component number if it’s a file or the starting component number of a paging
area

» the audit file used in the generation of the paging file
The end environments listed are component 10 of 1234567 fusfile, one or more nodes

in the paging area 1234567 paging 25, which is being tracked by the audit file 1234567
auditpg, and the script john.source.cmds.print.

LOGOS Commands: references 89

U references .john.source.utils.vtom +headings

———————— pathname———————— type ——-—end environment——— ~loc— ——-—-audit file—————
John.source.utils.vtom f 1234567 fusfile 10

p 1234567 paging 25 1234507 auditpg

s John.source.cmds.print

Produces the same report as above with column headings.

U references john.source.utils.vtom +headings +audit

———————— pathname———————— type ———end environment——— ~loc— ————-audit file————-
John.source.utils.vtom f 1234567 fnsfile 10

p 1234567 paging 25 1234567 auditpg
version=23 references=>5 saved=26apr89 23:10
pages=calculate edit erase model print

s John.source.cmds.print

Expands upon the information being tracked in the audit file. Shows the version number
used in the generation, the number of references to the object, and the saved timestamp.
Prints a list of the individual nodes which contain the object.

90 LOGOS Commands: references

Syntax

LOGOS Commands: register

The register command registers an object out or in, or alters its registration potential.

When you register out an object, any other user who tries to get the object is warned
that you’re working on it. Another user can’t change the object unless he overrides its
registration. If another user overrides your registration, you are warned the next time
you access the object.

When you register in an object, it is available to any user with sufficient permission.

The registration potential of an object is on or off. This refers to its propensity to be
registered out automatically whenever it is opened for modification with the edit
command.

reglister] outlin{on|off pathnames
[+conditionall
[+override]
C+recursive[=112alll]

out or in Indicates whether the named objects are to be registered out or in.

on or off Indicates whether the registration potential of an object is to be on or
off.

pathnames Is a list of objects to be registered.

+conditional Conditionally alters an object’s registration state, depending on
whether or not it has registration potential set. Objects without
registration potential are ignored. This modifier has no effect when
the first argument to the register command is on or off.

+override Overrides any existing out-registration of the specified objects by
another LOGOS user. When registration is overridden, the original
registrant is notified the next time he accesses the object. If you omit
+override, existing registration is not overridden, and any attempt to
register an object alrcady registered is rejected.

LOGOS Commands: register 91

+recursive[=1|2all]
Controls the level of recursion to be applied to the named level’s
subordinate directories. +recursive (without a value), +recursive=all,
or +recursive=0 indicate that the named level and all subordinate
directories are to be registered. +recursive=1 registers just the named
level. +recursive=2 registers just the direct descendants of the named
level, excluding the named level itself. If you omit +recursive
altogether, +recursive=1 is assumed.

Result The command returns the names of the paths whose registration was altered as the
result. By default, this result is not displayed.

Usage An object’s registration out is not overridden unless you have authority to do so and
you specify +override.

If pathnames specifies or implies a directory, only that directory is registered, unless
you specify +recursive.

Registration potential set on a directory is automatically passed on to any objects
subsequently created beneath that directory.

Examples

U register out util.vtom

Registers out ufil.viom.

U register out util.Arcat util.Avtom
already registered: util.Avtom

Registers out util.Arcat.

U register in util.Avtom

Registers in util.Avtom.

92 LOGOS Commands: register

U register on util

Sets on registration potential of directory uzil. New objects created under it will inherit
this property and, whenever edited, will be registered automatically.

(11 myed +Path=;source;type; .proj.tools.edit.med

[2])type«list \Path +data=type a get object type

[3]1 =(I=etype+litype)rl0 n extract type specifier

C41 Doutput only one path can be edited at a time! +error

{51 10:)register out \+Path +conditional aconditionally register object out
L6])sourcesdisplay \Path +nopathname a capture source

[7]1 source~med source a edit source with private editor

[81)save \Path[(&type)] +value=ssource n save edited source

(91)register in \+Path +conditional a conditionally register it back in

You can use register +conditional to write a script that allows you to use your own
personal editor to edit LOGOS objects, while mimicking the LOGOS editor’s handling
of registration.

LOGOS Commands: register 93

LOGOS Commands: replace

The replace command changes all instances of one or more strings (or regular
expressions) in a set of LOGOS objects with another string or strings.

Syntax repllace] oldstring newstring pathnames
[+display]
C+flags=cllinlolqglsix]
[+lines]
C+multiple]
[+override]
[+recursive(=1|2]all1]
[+show]

oldstring Is the string to be replaced. Enclose it in quotes if it contains blanks
or the command separator. Enclose it in braces({ }) if it is a regular
expression.

newstring Is the string to replace oldstring. Enclose newstring in quotes if it
contains blanks or the command separator. Enclose it in braces({ }) if
it is a regular expression.

pathnames Specifies the paths in which oldstring is to be replaced.
+display Displays the entire line on which matches and replacements occurred.
If none of +display, +lines, or +show is specified, replace returns

only the pathnames, types, and version numbers of objects which
were modified.

94 LOGOS Commands: replace

+flags=c|l|inlolqls|x

+lines

+multiple

+override

Specifies the parts of objects to be included in the search. If you omit
+flags, the entire object is searched. This search is nonsyntactic. The
command searches the object as an undifferentiated character vector.
A function’s comments and character constants are included in the
search, Note: the flags c, /, g, and x are effective only when you
specify them with the flags s or o.

c Searches function comments.

l Searches LOGOS comments (LOGOS comments begin with
av).

p Searches the composite elements of numeric vectors. See the

usage note below.

0 When specified with the flags ¢, I, g, or x, restricts the search
to those types of lines.

q Searches quoted strings (character constants).

s Syntactic search. Searches for occurrences of oldstring as a
syntactic unit within the non-comment lines of the objects
being searched. If any of the flags ¢, I, ¢, or x are also
specified, those types of lines are included. If flag o is also
specified, restricts search to only those types of lines.

X Searches executed quoted strings (character constant that are
arguments to 4 functions).

Displays line numbers of lines in which oldstring is replaced. If you
specify none of +display, +lines, or +show, replace returns only the
extended pathnames, indicating object type and version number, of
objects which were modified.

Searches for or replaces multiple strings. If you specify +muitiple, the
first character of both oldstring and newstring is taken to delimit the
multiple strings. If you omit +multiple, both oldstring and newstring
are taken to specify one string each.

Overrides registration of modified objects so that the modified version
can be saved.

LOGOS Commands: replace 95

+recursive(=1|2]all]
Indicates the level of directories subordinate to the named level which
are to be searched. +recursive (without a value), +recursive=all, or
+recursive=0 indicate that the named level and all subordinate
directories are to be searched. +recursive=1 searches only the named
level. +recursive=2 searches only the direct descendants of the named
level, excluding the named level itself. This latter specification is the
default behaviour if you omit this modifier altogether.

+show Displays the entire line on which oldstring was replaced, with a caret
(A) indicating where the replacement was done. If you specify none
of +display, +lines, or +show, replace returns only the pathnames,
types, and version numbers of objects which were modified.

Result The command returns the display of all replacements, in the format you requested.
Usage If you specify +multiple and one string in newstring, several strings in oldstring are
replaced by the same string. Also, oldstring is assumed to specify several strings to be

sought, and the first character of oldstring is taken to delimit these multiple strings.

If you also specify +muitiple, newstring is assumed to specify several strings, and the
first character of newstring is taken to delimit these multiple strings.

Examples

U replace ALF ~10+ALF comp

Replaces all occurrences of ALF in object comp with ~10+ALF.

U replace /" 1/0/1 /QNI1/Q0/Q1 comp +multiple +flags=s +lines

Replaces syntactic occurrences in comp of ~1 with QNI, 0 with Q0, and I with Q1.
Also displays the line numbers.

U replace {((pa),1)pa«} 5 dir dirx +recursive +show

Replaces all occurrences of the regular expression {((pa),1)pa«} with 5 inall
objects in paths dir and dirx. The context of each replacement is displayed.

96 LOGOS Commands: replace

Syntax

Result

Usage

LOGOS Commands: retain

The retain command specifies the maximum number of versions of a path to be stored
in LOGOS.

ret[ain] count pathnames
C+recursive[=12]all]1]

count Is the maximum number of versions to be retained. The largest
number you can specify is 255. all or 0 indicates that all versions
should be retained. If the specified retention count is less than the
number of versions currently stored, the oldest versions of the paths
are deleted. The number of versions stored never exceeds the active
retention count.

pathnames Is a list of pathnames to which the retention count is to be applied.

+recursive(=1|2|all]
Indicates the level of recursion through directories subordinate to the
named level to which the retention count applies. +recursive (without
a value), +recursive=all, or +recursive=0 include the named level and
all subordinate directories in the retention count specification.
+recursive=1 includes only the named level of pathnames. This is
the default behaviour if you omit the modifier altogether.
+recursive=2 include only the direct descendants of the named level,
excluding the named level itself.

The command retumns the pathnames on which retention was changed as the result.
These are not displayed unless requested by assignment.

A retention count of 1 avoids saving back versions of an object.
A path’s retention is copied from its parent directory at the time the path is created.

The retain command may also be applied to an alias-level path. The retention for an
alias-level path, and hence all paths created under it, is set to 10 by default.

LOGOS Commands: retain 97

Examples

U retain 20 .dba +recursive

Establishes a retention count of 20 for all paths under .dba.

V retain all .dick.modules.util.? *

Establishes boundless retention for paths under .dick.modules.util.

98 LOGOS Commands: retain

LOGOS Commands: save

The save command saves directories, objects, and their attributes in the LOGOS file

system.
Syntax sCave] pathnames
C+in)
[+makedir]
C+override]
[+protect]
(+rask{=task]]
[(+value=[4+ 1value]
{+workdir=pathname]
pathnames Is a list of pathnames the saved objects are to have.
+in Cancels the object’s out-registration if you set it. If you omit +in and
the object is registered out, the object’s registration remains in effect.
+makedir Allows the creation of intermediate directories implied in pathnames.
If you omit +makedir, intermediate directories are not created, and the
save is aborted.
+override Overrides the object’s registration by another user. If you omit
+override and the object is registered to another user, you cannot save
it.
+protect Indicates that existing paths are not to be saved over. If you omit
+protect, the paths specified in pathnames can be saved over existing
paths.

+task[=task] Specifies the auxiliary task in whose aclive workspace the object to
be saved is found. If you specify +task without an argument, the
default auxiliary task aux is assumed. If you omit +task, the object is
found in the current execution environment, unless +value is
specified, in which case the object is defined in-line. The current
execution environment is specified by environment task, and may be
the active workspace or an auxiliary task.

LOGOS Commands: save 99

Result

Usage

+value=[2]value
Specifies the value of the object being saved. If the argument begins
with 4, it is evaluated in the active workspace, and its result becomes
the value; otherwise, the argument directly becomes the value. Note
that use of # in this context differs from the LOGOS ¢ command, in
that the latter always retumns a character vector result, while <save
+value=2value> saves the result of the expression without further
manipulation.

+workdir=pathname
Specifies the directory into which pathnames not specified from the
root are to be stored. If you omit +workdir, the primary global
working directory is used.

The command returns the extended pathnames, indicating object type and version num-
ber, of the saved objects as the result.

The terminal segment of the pathname argument normally specifies the workspace ob-
ject to be saved.

If you don’t specify an object type (for example, modules(d]), objects at the second
level (right below an alias) are assumed to be directories. Objects at all lower levels are
assumed to be functions or variables. To save an empty directory, enter a command of
the form:

U save test.alphald]

Version numbers are incremented, by default, only when the source attribute is saved.
You can always explicitly specify the version to be saved.

Use +value when you’re saving an object not found in any workspace, or when you’re
saving an object attribute other than its source. +value is evaluated once for every name
being saved.

100 LOGOS Commands: save

Examples

U save test.alphavtom

Saves the object viom from the current execution environment.

U save test.alphaBio +value=20

Saves a scalar numeric O value for Dio.

U save test.alpha.0iol :n] +value=nondefault origin required

Saves a broadcast note on the nondefault Oio.

U save test.alpha.text[:n]

Saves the variable rext from the current execution environment as the broadcast note
attribute for test.alpha.text.

U acnt<lio-1
U save cml cm2 cm3 cmd +value='32>(a>boc2d) Lent« cnt+171

Saves four paths, each with a different value taken from the workspace objects a, b, ¢,
and d, respectively.

LOGOS Commands: save 101

LOGOS Commands: send

The send command transmits input to and receives output from an S-task signed on
with the signon command.

Syntax se[nd] [line]

C+asynch]

C+break]

C+immex]
C+retractC=on|off]1]
C+suppress]
[+task{=task]]

line

+asynch

+break

+immex

Is a line of input to be sent to the S-task. If you omit line, no input is
sent to the S-task. send ' ' sends an empty linc to the S-task.

Sends the line and does not wait for output. The command returns
immediately with an empty result. If you omit +asynch, the command
waits for the S-task’s response to line.

Sends a break signal to the S-task.

Checks that the S-task is in immediate execution mode, and, if it isn’t,
sends a break or input interrupt signal to the task to force it into
immediate execution mode. If the task is not in immediate execution
mode and the attempts at forcing it fail, the command fails. If you
omit +immex, line is sent regardless of the S-task’s mode.

+retract [=on | off]

+suppress

+task([=task]

102 LOGOS Commands: send

Requests or cancels permission to retract the shared variable used to
interface with an auxiliary S-task. The shared variable is global to
your workspace, so retract permission is required only if you plan to
clear the workspace, load another workspace, or explicitly retract or
expunge the variable. If you specify +retract without an argument,
retract permission is requested.

Specifies that an error signalled as a result of execution of line in the
S-task is not to cause the send command to fail. If you omit
+suppress, signalling of an error as a result of exccution of the input
line by the auxiliary task causes send to fail, and halts execution of
the command line or script.

Provides the name of the task to which the line is to be sent. If you
specify +task without an argument, the default task name aux is used.
If you omit +task, the task named in environment task, if any, is used.

Result

Usage

Examples

Usually, the result of send is all of the output generated by the execution of line in the
S-task. If you omit line, no input is sent to the S-task but any pending output from the
task is passed back as the command result. (Output might be pending if you’ve used
send earlier with +asynch.)

Two types of event in the S-task are considered errors by the send command. If line is
a system command, then messages such as incorrect command or ws locked are con-
sidered errors. If line is not a system command, any output that resembles a canonical
error display is considered an error. The +immex modifier is useful when line is a sys-
tem command.

For example, if the command) send) clear +immex appears in a script, the caller of the
script can be certain that the) clear command will be successfully issued or that the
script will halt.

Regardless of retract permission, an S-task that is in immediate execution mode will
end if the shares to it are broken. Retract permission meaningfully applies only to
S-tasks that are doing work or are in) keyboard lock state.

v send) load state +immex

Loads workspace state in the S-task, and forces immediate execution mode.

V send Opdef names +suppress

Defines the contents of package names in the S-task, suppressing errors in the Opdef.

LOGOS Commands: send 103

Usend *Y'q'' Onl 3!
or
Usend (¥ 'q' Onl 3)

Finds all functions in the S-task which begin with the character a.

104 LOGOS Commands: send

Syntax

LOGOS Commands: share

The share command extends or revokes access to LOGOS paths, to specific users or
groups of users enrolied in LOGOS. This command also returns information about
current permission on paths.

shlare] aliases pathnames
[+delete]
C+permission=c |w|r|x]
C+recursive[=1]21all]1]

aliases Is a list of LOGOS users to whom access is to be extended or
revoked. An alias of Oall indicates all LOGOS users. Enclose
multiple aliases in quotes.

pathnames Is a list of paths to which access is to be granted or revoked.

+delete Revokes the permission designated in the +permission modifier from
the aliases and paths named in the arguments. If you do not specify
+permission, all access is revoked from the specified aliases. If you
do not specify +delete, access is granted to the specified aliases.

+permission=c |w|r|x
Specifies the permission to be extended to (or revoked from, if
+delete is selected) each alias. The argument to this modifier may be
one or more of the following;

Control permission
Write permission
Read permission
Execute permission

N\Eﬁ

If you omit +permission, the command by default grants no
permission. If you specify +delete, it revokes all permission from
aliases.

LOGOS Commands: share 105

Result

Usage

+recursive[=1]2|all]
Controls access to only certain levels of paths.

+recursive=all Grants or revokes access to the named level and all
subordinate paths, as do +recursive (with no value)

and +recursive=0.

+recursive=1 Grants or revokes access to the named level only.
This is the default behaviour if you omit +recursive.

+recursive=2 Grants or revokes access to the named level’s direct
descendants only, excluding the named level itself.

The command returns a list of pathnames, aliases, and permissions as the result.

The following are some useful forms of this command.

Selective inquiry:

share aliases pathnames

Full inquiry:

share ' ' pathnames

Selective grant:

share aliases pathnames +perm=rx

Selective revoke (all permission):

share aliases pathnames +delete

More selective revoke:

share aliases pathnames +delete +perm=rx

Full revoke:

share ' ' pathnames +delete

Without the specification of modifiers, the command acts in an inquiry capacity only,
and returns information on the permission of the named aliases to the named paths. If

aliases is empty (' '), the permission of all users to the named paths is returned.

Specifying the +permission modifier requests a grant operation. Additionally or
exclusively specifying +delete requests a revoke operation.

106 LOGOS Commands: share

The permission of all aliases to a set of pathnames can be revoked in a single operation

by specifying aliases of ' ' and selecting the +delete modifier.

The following table summarizes the effect that a user sees for each type of access for
objects and directories:

Permission

level Effect for objects Effect for directories

X use object form match specific directory entries

r access source form and attributes list directory entries

w save source and attributes save new objects, delete objects
c sat and show permission to object set and show permission to object

and subdirectories

Examples

U share ' ' .scl.inven.post

.Scl.inven.post dba rx
kih wrx
mde rx

Displays aliases with access to .scl.inven.post with their access levels.

U share dba .scl.inven.post
.scl.inven.post dba rx

Displays dba’s access to .scl.inven.post.

LLOGOS Commands: share 107

u share Oall .sclinven.post | find +permission=x
.scl.inven find Oall x

.sclinven.post Oall X
dba rx
klh wrx
mde rx

Grants execute access to .scl.inven.find and .scl.inven.post to all users.

U share 'Oall mde' .scl.inven.post +delete +permission=rx
.sclinven.post dba rx
klh wrx

Revokes read and execute access to .scl.inven.post from all users and from mde.

U share klh .sclinven.post +delete +permission=r
.sclinven.post dba rx
kih wX

Revokes klh’s read permission to .scl.inven.post.

108 LOGOS Commands: share

Syntax

LOGOS Commands: shell

The shell command generates a shell. A shell is an APL function which "covers” a
node in a paging file or a component in an ordinary APL file. Localized in its header
are all the functions and variables which the root function of that node or file
component might need to call. Once the shell is invoked, it pages in the node or reads
the component from file, and executes the root function.

she(1l] [destination] [sourcel

[+audit=filename]
[+compile=directives]
[+exclude=C, | /Inames]
[+file=filename]
[+header=, | /names]
[+lock=passnumber]
[+name=name]
[+qlx=expression]

[+skeleton=pathname]
[+task([=task]]
C+variant=alelllr|s|t]

source The package or cluster that is to be the source of the shell may be
taken from either a node of a LOGOS paging file, or a component
(N) of an APL file that contains a package.

destination The valid destinations depend on the source, as shown in the

following table:

LOGOS Commands: shell 109

Source

NODE

Destination

NODE

<>

CN

PATHNAME.

The source and destination node namas must be
the same. In fact, only the destination need be
specified; the source will be assumed. Use
+name if you want to give the shell function a
different name from that of the node's root
function.

This combination must be used in conjunction
with the build and filesave commands that
create NODE.

The shell function will be placed into the
workspace - either your active workspace, or in
an auxiliary task.

Requires +name to provide the name of the
shell function, unless +skeleton is specified.
Requires +file to specify the name of the source
file.

When the destination is another component
number, the shell function will be placed into that
component. N and CN must be different.

Requires +name to provide the name of the shell
function, unless +skeleton is specified. Requires
+file to specify the name of the file that is both
the source of the package and the destination
for the shell.

If the destination is a LOGOS pathname, the
shell function is stored in that path.

Requires +name to provide the name of the
shell function, and this name must match the
terminal segment of the pathname. Requires
+file to specify the source file.

+audit=filename Identifies an audit file to contain information about this generation. If

+compile=directives
Specifies compilation directives for the pathname named in the
+skeleton modifier. If you omit +compile, only compilation directives
specified in the object or latent in your environment are used.

110 LOGOS Commands: shell

you omit +audit, no audit file is used.

+exclude=C, | /1names

+file=fileid

Indicates node names which are not to be included in the analysis of
the shell or in its header. If you omit +excl/ude, all the names included
in the package are included in the function header. If you omit both ,
and /, names forms the complete exclusion list.

, Adds the objects specified in names to any ex-
clusion list established by a global shell command.

/ Removes objects specified in names from any ex-
clusion list established by a global shell command.

names Is a list of objects to form the exclusion list, or to be
added to or removed from the global exclusion list.

Separate names in names with blanks.

Identifies the destination and source file.

+header=, | /names

Specifies local names to be added to or deleted from the shell
function’s header.

R Adds the names specified in names to the shell
header.

/ Removes the names specified in names from the
header.

names Is a list of names to be added to or removed from

the locals list. Separate names by blanks.

+lock=passnumber

+name=name

passnumber specifies the destination and source file’s passnumber. If
you omit +lock, no passnumber is used.

Specifies the shell’s name. If you omit +name, the name of the
primary root function of the source is used. Required if the source is a
component from an APL file.

+qlx=expression Specifies an alternate APL, expression to be used to start the contents

of the shell. The default is bascd on the shell’s name.

+skeleton—pathname

+task[=task]

Specifies a function that is to be used as the frame for the shell. See
the usage note below.

Identifies the task whose active workspace will receive the resultant

shell if <> is specified as the destination. If you specify +task without
an argument, the default auxiliary task awux is assumed.

LOGOS Commands; shell 111

Result

Usage

Examples

+variant=alelllr]s|t
Specifies shell generation controls for shells constructed from a node
of a LOGOS paging file.

a Supports ambivalency. If the function’s header is dyadic, the
left argument may be elided. If you omit 4, all arguments
must be supplied.

e Includes Oec in the header. If you omit e, the shell’s header

includes Oec only if the root function’s header does.

/ Locks the shell.
r Traps result error. If you omit r, result error is not trapped.
s Causes paging to be self-contained. The shell is to contain all

the code to page in the package. If you omit s, the shell calls
the LOGOS paging utilities.

t Causes the shell’s stack level to be transparent to existing
signalled exits from within the shell. If you omit ¢, signalled
exits are not passed upward.

None.

If the header of the root function is z«x fnl y;a;b,c, and it calls functions fn2 and fn3,
the shell function’s header is built as z«x fnl y;fnl fn2;fn3. If you specify
+skeleton=fnl, so that the stored version of function fnl is used as a frame, the shell
function’s header becomes z«x fnl y;ab;c.fnl fn2;fn3.

It is important to note that shell functions built around packages from an ordinary APL
file assume by default that the root function in that package (your argument to +name)
does not take any arguments and does not return a result. If you want to create a shell
function that returns a result, or accepts arguments, then use +skeleton to provide the
pathname of a function with the appropriate syntax and definition to which skell can
add the locals list.

U shell <> 30 +header=,ask Aqi /start +file=termdrivers +name=input

Builds a shell around component 30 of the file termdrivers and deposits it in the
workspace. The shell’s header includes ask and Agi in its locals list and removes start.

112 LOGOS Commands: shell

U shell 10 30 +file=termdrivers +name=input +qlx=getinput

Creates a shell called input from component 30 of the file termdrivers, and writes it to
component 10 of the same file. The default start up expression is replaced by a call to
the function getinput.

U display .proj.cmds.buildshell[s]1 +n
[1] buildshell

[51)build +depth=all +file=projpage 40
L61)build start

[7])shell start +name=input +v=als
£73 dfilesave

This script creates a shell around the node start of the LOGOS paging file projpage.
The shell will have the name input. The variants indicate that the shell will be
constructed so that a left argument will be optional; the shell will be locked; the code to
page in the shell objects will be self-contained in the shell - no utilities will be called.

LOGOS Commands: shell 113

LOGOS Commands: si

The si command displays the LOGOS execution stack.

Syntax si

Result The command returns a display similar to that generated by the APL system command
) si, with scripts being denoted by their pathnames.

Usage This command is most likely to be used in debugging mode, where you would type) si.

Example

U lrep
invalid script parameter: \Pathname
.mde.logos. mycmds.listc[4]) t«list \Pathname
A

debug

)si
.mde.logos.mycmds.listc[4] *
.mde.logos.mycmds.lrep[5]
logos(20]
logos[2]

114 LOGOS Commands: si

Syntax

Result

NOTE:

LOGOS Commands: signon

The signon command signs on an auxiliary S-task. An S-task started with this command
begins with a clear workspace. You communicate with an auxiliary S-task with the
send, talk, and transfer commands.

The maximum number of S-tasks that can be signed on to any given account is an APL
startup parameter. The value varies by site and over time. The only indication that
you’ve reached the limit is the message number in user in the S-task processor, or a
result of 3 0 from Orun.

sigCnon] [usernumber]alias(: password]]
[+retract]
[+task[=task]]

usernumber Is the user of the S-task. If you omit usernumber or alias, the S-task
is signed on with your user number.

alias Is the alias. This alias’ primary user number identifies the user of the
task. If you omit usernumber or alias, the S-task is signed on with
your user number.

Indicates that you are going to specify a password. If you specify
user number or alias but omit the colon (:), you are prompted for a
password, unless the usernumber you specify or the user number
represented by alias is yours.

password Is the user’s password. If you omit password but specify the colon
(z), the password is assumed to be empty.

+retract Requests permission to retract the shared variable used to interface
with an auxiliary S-task. The shared variable is global to your
workspace, so retract permission is required only if you plan to clear
the workspace, load another workspace, or explicitly retract or
expunge the variable.

+task[=task] Specifies the name by which the auxiliary task may be referenced. If
you specify +task without an argument, or omit the modifier

altogether, the default auxiliary task aux is assumed.

The command returns the name of the task signed on as the result. By default, this
result is not displayed.

LOGOS Commands: signon 115

Examples

U signon

Signs on an S-task with your user number and with name aux.

U signon 1234567 : sesame

Signs on an S-task for user 1234567, whose password is sesame.

U signon devel : poppy

Signs on an S-task for the user identified by LOGOS alias devel’s primary user number.
That user’s password is poppy.

U signon devel

Signs on an S-task with the same alias as above, but in this case, you will be prompted
for the password.

U signon +task=build

Signs on an S-task with your user number with the name build.

116 LOGOS Commands: signon

Syntax

LOGOS Commands: snap

The snap command stores workspace data in the LOGOS file system. With the use of
certain modifiers (+audit and +script), snap can optionally build images of a workspace
in the form of audits and scripts.

snap analyzes your workspace, and saves those objects which:
» were fetched from LOGOS and altered in the workspace
« have never been stored in LOGOS

« are stored in LOGOS, but available tracking information is insufficient to deter-
mine their location.

Objects in the first case are stored in the path where they originated, and objects in
other two cases are stored in the primary working directory.

snap [namelist]
[(+audit=filename]
[+confirm]
[+exclude=names]
[+makedir]
C+overwrite]
(+script=pathname]
[+view]
[+workdir=pathnames]

namelist Is a list of workspace objects which are to be analyzed. namelist may
be a list of objects or limited regular expressions. If the argument is
omitted, all workspace objects are analyzed.

+audir=filename Identifies an audit file to contain information about the location of
objects analyzed. If you omit +audit, no audit file is used. snap does
not use the filename stored in environment audit.

+confirm Requests confirmation of each object to be saved. Confirmation is
described in a usage note below. If you omit +confirm, objects are
saved without confirmation.

+exclude=names
Excludes the objects in names from analysis. names may include

limited regular expressions.

+makedir Allows the creation of intermediate directories implied by +workdir.

LOGOS Commands: snap 117

Result

Usage

Confirmation
Prompts

+overwrite Generates a new audit record. If you omit +overwrite, the existing
audit record is used.

+script—pathname
Specifies the pathname in which to save a script describing the
objects snapped. If the pathname already exists, new objects are
added to the existing script.

+view Returns a list of pathnames to allow you to preview the objects which
have changed in your workspace, without actually moving any of the
objects into LOGOS.

+workdir—pathnames

Specifies new working directories for the duration of the command. If
you omit +workdir, the global working directories are used.

The command returns pathnames of the saved objects, including type and version num-
ber, as the result.

LOGOS counterparts to workspace objects are located through parent pathname com-
ments, the workspace’s tracking table, and the current working directories. Only objects

which have been changed or are new are saved by snap.

System variables other than Oer, Oec, OAt, and Osp which are set to non-default values
are saved by snap.

If you specify +confirm, you are prompted to confirm each object to be saved. For ex-
ample:

save <.scl.inven.post>?

Reply yes, no, back, continue, or stop to the confirmation prompt.

yes (or y) Saves the object and prompts you for the next path.

no (or n) Does not save the object and prompts you for the next path to be
saved.

back Repeats the previous prompt.

continue Saves this path and all following paths without further prompting.

stop Aborts snap.

Paths are not actually saved until all confirmations are complete.

118 LOGOS Commands: snap

Examples

U snap A?*

Analyzes workspace objects beginning with the character A, and saves those which are
new or changed.

U snap +script=dick.util gen

Analyzes all workspace objects, saving those which are new or changed, and builds a
script in .dick.util.gen which can be used to generate the workspace.

U names<snap +view

Assigns to names the full pathnames of objects which have changed or are not yet
stored in LOGOS.

LOGOS Commands: snap 119

LOGOS Commands: summarize

The summarize command displays summary information about LOGOS objects.

The summary includes: the object’s pathname, type, version number, size, number of
lines (if a function or script), rank and shape (if a variable), and number of members (if
a package or cluster). The leading or trailing comment of a function or script, and
summary information about objects in packages or clusters can also be displayed.

Syntax sum[marize] pathnames
[+comments]
[+expand]
C+full]
[+headings]
C+recursive[=112]all]1]
{+versions[=n]]

pathnames Is a list of objects for which information is to be displayed.

+comments Displays the first or last line of a function or script if the line contains
only a comment. If you omit +comments, comment lines do not
display.

+expand Computes and displays summary information for the contents of

packages and clusters.

+full Displays full pathnames. If you omit +full, partial pathnames are
displayed.

+headings Displays report headings. If you omit +headings, report headings are
not displayed.

+recursive(=1]2]all]
Indicates the level to which subordinate directories are to be
processed. +recursive (without a value), +recursive=all, or
+recursive=0 specify that the named level and all subordinate
directories are to be summarized. +recursive=I processes only the
named level. +recursive=2 processes only the named level’s direct
descendants, excluding the named level itself. This behaviour is the
default if the modifier is omitted altogether.

+versions[=n] Displays information about only certain versions of selected objects.
If you specify +versions without a value, all versions are displayed. If
you provide n, only the first or last n versions are reported, depending
upon whether n is positive or negative, respectively.

120 LOGOS Commands: summarize

Result

Usage

The command returns the requested summary information as the result.

summarize’s result gives each object’s LOGOS type, as well as its APL type where ap-
propriate. The following types are displayed:

c (pk) Cluster

f ledd Function--explicit, dyadic

f Cem) Function--explicit, monadic

f Cen) Function--explicit, niladic

f (nd) Function--nonexplicit, dyadic
f (nm) Function--nonexplicit, monadic
f (an) Function--nonexplicit, niladic
¥ Function--locked

1(Link

s (en) Script--explicit, no parameters
s Cep) Script--explicit, parameters

s (nnd Script--nonexplicit, no parameters
s (np) Script--nonexplicit, parameters
v (ar) Variable--nested array

v (bD) Variable--boolean

v (ch) Variable--character

v (cm) Variable--complex

v (D Variable--floating-point

v (in) Variable--integer

v (pk) Variable--package

v () Variable--undefined

summarize also displays for each object information that depends on the object’s type:
» If the object is a function, its number of lines is shown in square brackets [1J.
+ If the object is a variable, its rank is shown in parentheses ().

» If the object is a package or a cluster, the number of objects in it is shown in angle
brackets <>,

summarize normally resolves links, but through use of the [/] notation, it can be
induced not to resolve a link and instead to report on the link itself.

The name of a packaged object is formed by extending the pathname, using a jot (o) as
the separator. For example, the object report in package sys.modules is displayed as
sys.modulesereport. If report is itself a package, the object print within it is displayed
as sys.modulesereporteprint,

LOGOS Commands: summarize 121

Examples

U summarize chart report

Displays a summary of the named objects, or if they are directories, the objects
immediately subordinate to them,

U summarize chart report +expand

As above, but expands packages and clusters into their components.

U summarize inv? *

Displays a summary of all objects beginning with inv.

U summarize chart +comments +versions=_ 2

Displays a summary of chart, or its descendants, reporting on the last two versions of
each object and including leading or trailing function comments.

122 LOGOS Commands: summarize

Syntax

LOGOS Commands: syntax

The syntax command computes a report describing static errors within a program. It
tests conditions such as illegal characters, symbol juxtaposition problems, mismatched
parentheses, brackets, or quotes, and suspicious use of names. syntax does not actually
execute the program; consequently, a tool such as this command should be used to
supplement but not replace careful program and system testing.

syn(tax] pathnames

(+all]
C+display]
C+lines]
C+quotes]
C+recursive(=1|21alll]
C+show]
pathnames Is a list of objects on which you want to compute reports.
+all Computes all errors, including suspicious name references which may
not be erroneous.
+display Displays the entire line on which errors occurred.
+lines Displays the line numbers on which errors occurred, followed by a
symbol denoting the type of error. Sce the note on result.
+quotes Causes quoted strings logically appearing after executes (¢) within

the program to be examined as if they were not quoted.

+recursive [=1|21all]

+show

Iterates through directory levels encountered. The argument to this
modifier may be 1, 2, or all, signifying the named level, its direct
descendants but excluding the named level, or the named level and all
descendants, respectively. If you omit this modifier, +recursive=2 is
assumed. If you specify +recursive without a value, +recursive=all is
assumed.

Displays the entire line on which errors occurred, with a symbol
pointing to each error. The symbol denotes the type of error at that
location. Because errors relating to parentheses, brackets, and quotes
are obvious, the caret (*) is substituted as the pointer.

LOGOS Commands: syntax 123

Result

Usage

Errors are classified into a number of categories. If the +/ines modifier is selected, the
category is represented by a symbol following the line number on which the error was
detected. If +show is selected, the category is represented by the symbol under the loca-
tion where the error was detected (errors relating to parentheses, brackets, and quotes
are indicated by a caret). The notational symbols and their corresponding error
categories are:

A Generic syntax error
(Parenthesis error

L Bracket error

' Quote emror

+ Domain error

. Constant error

? Suspicious reference

Generic syntax errors include most incorrect uses of symbols. For example, a dyadic
symbol used monadically; an improper outer product; an improperly labelled line; use
of branch not as the root function of a statement; or redundant use of a diamond, all
constitute syntax errors.

Parentheses, bracket, and quote errors refer to mismatched instances of the paired
delimiters (...), C...J,and '... ", respectively.

Domain errors arise from apparent use of a character argument where a numeric one
was expected. As the syntax command does not execute the program, only a limited
number of such cases is detected.

Constant errors refer to illegal formation of numeric constants. For example, 4..7 and
8je4 are illegal constants, whereas 4.7 and 8;8e¢4 are legal oncs.

Suspicious references denote the use of names which are unusual but may or may not
be erroneous in the running application. For example, a local variable which is not
assigned a value, or a name which is used to define a line-label more than once, is
considered suspicious.

If none of the modifiers +display, +lines, or +show are sclected, syntax returns the path-
names and version numbers of those objects in which any error was found.

124 LOGOS Commands: syntax

Examples

U syntax .mde.logos.test +r

Reports all objects in which an object occurred. For example, this command returns the
result:

.mde.logos.test.aplterm.cov(fl]
.mde.logos test.apiterm.genchars(f1]
.mde.logos.test foolf13]
.mde.logos.test.genreport[fI3]
.mde.logos.test.hoo(f13]

U syntax .mde.logos.test +r +lines

Reports all the objects in which an error occurred, and the line numbers on which errors
occurred, followed by a symbol denoting the type of error. For example, this command

returns the result:

.mde.logos.test.aplterm.cov(f1] VA
.mde.logos.test.aplterm.genchars(fI] 11~
.mde logos.test foolf13] 2(3~
.mde.logos.test.genreport(f1] 54¢ 657
.mde.logos.test.hoo[f1] 2¢ 3~

U syntax .mde.logos.test.genreport +show

Displays the entire line on which errors occurred, with a symbol pointing to each error.
The symbol denotes the type of error at that location. For example, this command

returns the result:

.mde.logos.test.genreport(fl1 (2 errors)
(541 pv=(GievN\mmsk))<u>Ql1vu, Q1) vQI +mmsk,Q0 n mask marking last blank in each

field
A
L65] L7:pvpvAmmskvicnaz+\pv © +L9 © v«cyvt 0 +L9 na enforce long right scope rule
A

LOGOS Commands: synfax 125

Syntax

Result

Usage

LOGOS Commands: talk

The talk command carries on an interactive session with an auxiliary S-task.

tallk] [task]
[+prompt=prompt]

task Is the name of the task with which you wish to interact. If the
argument is elided, the task named in the environment task parameter
is used, unless this name is . In the latter case, the default name aux
1s used.

+prompt=prompt
Specifies a value to be used as a prompt for your input to the
auxiliary S-task.

None.

A session controlled by the talk command is almost completely indistinguishable from
normal sessions. Following arc the differences.

talk issues an immediate execution prompt (carriage return followed by six blanks)
when the auxiliary task is awaiting input. The +prompt modifier can be used to alter the
prompt, so that sessions using falk can look different from ordinary APL sessions.

If you are signed on using a terminal which supports a status line, and you have the full
status line enabled, the second line displays a message reminding you that you are com-
municating with an auxiliary task.

Break or Attention causes the prompt abandon, resume or break: 10 be issued. Valid
Tesponses are:

abandon Exits the talk command.

resume Causes the session to resume just after the point at which you
signalled the interrupt.

break causes a break signal to be transmitted to the S-task

The pseudo-system command) disconnect causes the talk command to terminate. In ad-
dition,) logos invokes a LOGOS command, as in)logos list +column.)logos can be
abbreviated if the character after the right parenthesis is a valid LOGOS command
separator. For example, the previous command is equivalent to) xlist +column.

126 LOGOS Commands: talk

5 While in a talk session, entering) recalls the last APL expression; entering)) recalls
the last LOGOS command entered.

The talk and send commands may be intermixed during a LOGOS session.
Termination of the talk command by way of either)disconnect or a response of
abandon to the interrupt prompt does not result in the termination of the auxiliary task

itself. To terminate the auxiliary task, send) off to it.

Examples

U talk

Enters into an interactive session with the auxiliary task implied by the environment
task parameter.

U talk gen +prompt=":"

Enters into an interactive session with the auxiliary task gen, changing the immediate
execution prompt for the session.

LOGOS Commands: talk 127

Syntax

Result

Examples

LOGOS Commands: fasks

The rasks command displays a report which describes the auxiliary tasks started by the
inquiring task. This command can be used to obtain a list of task names, or detailed
information regarding specific tasks.

tCasks] [task]
[+headings]
{+users=users]

task Is a list of task names on which to report detailed information. If you
enter more than one task name, separate the names with spaces.

+headings Displays column headings for the report.

+users—users Restricts the command so that it reports only on tasks which are
running on accounts listed in users. users may contain aliases, user
numbers, or a mixture of both.

Without an argument, the command returns the names of all auxiliary tasks started by
you. With an argument, information is returned for each specified task, including the
task number, sign-on time, CPU usage, and an indication of whether or not retract per-
mission was requested.

U rasks
aux gen logg

Displays the names of auxilary tasks started by this user.

U rask logg
logg 2023 mde 20apr89 15:29 60 115 yes

Displays details on the auxilary task logg.

128 LOGOS Commands: tasks

U tasks (tasks) +headings

name-—id—-———account———-———-— signon time cpu connect——retract
aux 2015 mde 20apr89 15:27 1 286 no
gen 2016 mde 20apr89 15:28 1 270 yes
logg 2023 mde 20apr89 15:29 62 151 yes

Displays details on all auxilary tasks along with column headings.

LOGOS Commands: fasks 129

LOGOS Commands: transfer

The transfer command transfers objects between two tasks.

Syntax trLansfer] namelist
(+from (=task]]
C+protect]
C+suppress)
[+r0 [=task]]

namelist Is a list of objects to be transferred.

+from{=task] Specifies the task from which the object is to be transferred. If you
omit =task, the default auxiliary task is assumed. If you omit +from
altogether, the object is transferred from the local active workspace.

+protect Does not overwrite objects in the target workspace. This is analagous
to the operation of the APL) pcopy system command.

+suppress Indicates that errors in the source or target task are not to cause the
transfer command to end with an error (thereby interrupting a script
that might have issued the command). An error of this type would
occur if an object with the same name as one being transferred
existed in the destination workspace, and +protect was specified.

+to[=task] Specifies the task to which the object is to be transferred. If you omit
=task, the default auxiliary task is assumed. If you omit +to
altogether, the object is transferred to the local active workspace.

Result The command returns the names of any objects which LOGOS was unable to transfer
as the result.

Usage The transfer command can also be used to transfer objects between two auxiliary task
workspaces. Note that transfer only deals with workspace-resident objects. To move ob-
jects between the LOGOS filesystem and a workspace, use the get and save commands,
which also work with auxiliary tasks.

130 LOGOS Commands: transfer

Examples The following examples illustrate the way the +from and +fo modifiers can be used
separately or in combination to construct a transfer path between any two LOGOS
tasks. The examples here assume that three auxiliary tasks are signed on, one named
aux (the default name), one named a, and one named b.

U transfer x +to

x is transferred from the active workspace to the aux task (default auxiliary task).

U transfer x +from

x is transferred from the aux task to the active workspace.

U transfer x +to=a

x is transferred from the active workspace to the a task.

U transfer x +from=a

x is transferred from the a task to the active workspace.

U transfer x +from +to=a

x is transferred from the aux task to the a task.

U transfer x +from=a +to=b

x 18 transferred from the a task to the b task.

LOGOS Commands: fransfer 131

LOGOS Commands: version

The version command displays information about the version of LOGOS you are using.

Syntax ver[sion]
Resulit The command returns information about the current version of LOGOS as the result.
Example

U version

logos version 2.0 (190ct89 20:24)
copyright (¢) 1990 Reuter file Ltd.

Indicates that you are using LOGOS version 2.0, which was generated at 20:24 on 19
October 1989.

132 LOGOS Commands: version

Syntax

Resuit

Usage

LOGOS Commands: whois

The whois command prints the identity of a user or a group in LOGOS. The search
performed by whois may be upon an alias, a user number, both of these, or a full name.

wholis] id
C+all]
C+extended)
C+name)
[+summary]

id Is interpreted as an alias (as in whois testnum), as a user number (as
in whois 1234567), or as an alias and user number pair (as in whois
testnum 1234567). Searches on user numbers require preferred
LOGOS access.

+all Displays entries for secondary as well as primary alias and user
number matches. Primary entries are indicated by an asterisk (%)
beside the alias (and beside the user number, if +extended is selected).

+extended Displays the enrollment date for each matching user or group, as well
as the user number for matching users. This modifier requires
preferred LOGOS access.

+name Treats the argument as a name rather than an alias or group code. A
prefix search is assumed, so that an argument of name is equivalent
to name? . To search for a string anywhere in a name, use ? *name

(equivalent to ?*name? *).

+summary Displays the groups for each matching user, as well as the
membership for each matching group.

The command returns the requested user or group information as the result.

Any inquiry on, or reference to, user numbers by this command requires preferred
LOGOS access.

+summary reports group membership, which is not displayed by default.

+all is useful if you are performing an inquiry on a user or alias that has secondary
entries.

LOGOS Commands: whois 133

Examples

U whois john

Displays the full name of the person or group enrolled with alias John.

V whois richards +name

Displays the full name of any enrolled users or groups whose name begins with
richards.

U whois 2 *apl +name

Displays the full name of any enrolled users or groups whose name contains the
sequence apl.

Y whois lhg +summary

Displays the full name and group membership of the person or group enrolled with
alias lhg.

134 LOGOS Commands: whois

Syntax

Result

Usage

LOGOS Commands: with

The with command applies a series of commands to a list of arguments itemwise. (with
is a metacommand.)

wilth] expression arguments
[+surrogate=character]

expression Is a single LOGOS command, or a series of LOGOS commands
separated from each other by the separator character (for example, U).
expression must be enclosed in quotes if it includes any blanks or
separator characters. expression may also contain the argument
placeholder metacharacter, a.

arguments Is a list of arguments delimited by blanks or carriage returns.

+surrogate=character
Uses the character you specify as the argument placeholder instead of
o, The symbol used as a surrogate must not be alphanumeric, and
may not be one of the following:

{YL1(H)AAYN«+=2.'0s27¥

The command returns the concatenation of the results of each command executed, if the
result would have been displayed. A command whose output is assigned (x<command),
discarded (+command), or which does not normally display a result (for example,
delete), does not contribute to the composite result returned by with. Note that you can
always use the O« construct to force a command to display its result -- and hence be in-
cluded in the result of with.

with extracts the first argument from arguments, interpolates it into the expression
wherever the placeholder appears, and executcs the entire expression. with then extracts
the next argument from the list and repeats the process. This continucs until the argu-
ment list is exhausted.

LOGOS Commands: with 135

Examples

U with 'locate Oappendr reports.yearendlal' 456 7
is equivalent to:

u locate Dappendr reports.yearend[4] reports.yearend[5] reports.yearend[6]
reports.yearend[7]

U with Ylocate & reports.yearend(p1' 4 5 6 7 +surrogate=p
is equivalent to:

U locate o reports.yearend(4] reports.yearend[5]
reports.yearend[6] reports.yearend(7]

The APL character « is sought in the specified paths, and e is made the placeholder for
the command.

136 LOGOS Commands: with

Syntax

Result

Usage

Examples

LOGOS Commands: workdir

The workdir command establishes or displays your working directories.
The working directory in effect when you are first enrolled in LOGOS is your alias.

wlorkdir 1 [pathnames]

[+reset]
pathnames Is a list of pathnames specifying the working directories to be
established. If you omit pathnames, your working directories do not
change.
+reset Resets the working directory to the value saved in your profile.

The command returns the working directories in effect after the operation completes as
the result.

A working directory is where the LOGOS file system looks for pathnames not specified
from the root.

If you specify more than one working directory, they are searched in the order specified.

Use environment +profile to save your working directories in your profile.

U workdir
dick

Displays the current working directory’s pathname.

U workdir comp
dick.comp

Extends the working directory’s pathname.

LOGOS Commands: workdir 137

U workdir .lhg.gen.temp.wsfns (workdir)
Ihg.gen.temp.wsfns .dick.comp

Establishes two working directories by introducing one in front of the previous setting.

U workdir +reset
dick

Resets the working directory from the value saved in your profile.

138 LOGOS Commands: workdir

Syntax

Result

Usage

LOGOS Commands: wssave

The wssave command saves the active workspace of an execution environment.

wssave [wsid]
[+audit=filename]
[+information]
C+overwrite]
[+rask[=task]]
[+user=user]

wsid Is the name under which the workspace is to be saved. If you omit
this argument, it defaults to the current workspace name.

+audir=filename Identifies an audit file to contain information about this saved
workspace generation. If you omit +audit, the {ile named in
environment audit, if any, is used.

+information Causes the inclusion in the saved workspace of a variable called
ALINFO, containing the name of the script (if any) that called wssave.

+overwrite Uses a new audit record.

+task[=task] Specifies the name of the task whose active workspace is to be saved.
If you specify +task without an argument, the default auxiliary task
aux is assumed. If you omit +task altogether, the current execution
environment, as specified in environment task, is saved.

+user=user Specifies the user name (alias) or number under which the workspace
is to be saved, if other than the account on which you are currently
running. If you do not provide an account password, it will be
requested with a protected prompt.

The command returns the system save timestamp of the workspace as the result.

This command is the preferred method of saving a workspace. Only through it will ob-
jects reflect their use in a workspace via the references command.

LOGOS Commands: wssave 139

Examples

U wssave message +user=dick

Saves the active workspace as message on dick’s account.

U wssave mymail +task=aux

Saves the active workspace of auxiliary task aux as mymail.

140 LOGOS Commands: wssave

Syntax

LOGOS Commands: wstofile

The wstofile command builds a source file suitable for input to the SHARP APL
Workspace Documentation Facility (WSDOC). This command also allows you to
document other LOGOS attributes, such as compilation directives, documentation, and

note.

wst[ofile] pathnames
C+attributes=c|d|jlnl|1]
[+file=filename]
[+pathnames]
C+recursivel=1121all1]
[+state=pathname]
[+wsid=wsid]

pathnames

Is a list of objects to be incorporated in the WSDOC source file.

+attributes=c{d{jinlt

+file=filename

+pathnames

Specifies the non-default LOGOS attributes which are to be
documented in addition to the source (which is always documented).
Valid attributes are:

c Compilation directives
d Documentation

j Journal

n note

t Tag

If you specify +attributes with no argument, all object attributes are
assumed. This modifier also causes a LOGOS header line, including
the pathname, type, version, timestamp, and writer, to appear before
each documented object.

Specifies the name of the file to be built. If you omit +file, the value
of +wsid is used. If you omit both +file and +wsid, clear ws is used.

Replaces object names by full LOGOS pathnames in the wsdoc report.

+recursive[=1(2]all]

Indicates the level to which subordinate directories are processed.
+recursive (without a value), +recursive=all, or +recursive=0 process
the named level and all directories subordinate to it. +recursive=1
processes only the named level. +recursive=2 processes only the
named level’s direct descendants, excluding the named level itself.
This latter behaviour is the default if you omit +recursive altogether.

LOGOS Commands: wsfofile 141

Result

Usage

Examples

+state=pathname
Selects the wsdoc state to be used in the source file. The pathname
specified must be a package that represents valid wsdoc state settings,
such as would have been set by the wsdoc state program..

+wsid=wsid Specifies the name of the workspace appearing in the WSDOC report.
If you omit +wsid, clear ws is used.

The command returns the tie number of the source file built as the result.

If the specified file already exists and is a valid WSDOC source file, the pathnames to
be documented are added to the file. If the file does not exist, it is created.

+wsid sets the file name as well as the workspace name if +file is not specified.
Scripts appear as variables in the WSDOC report.

Non-default attributes of directories as well as objects are included in the report, if both
+attributes and +recursive are selected.

U wstofile test.wsfns +attributes +pathnames +wsid=wsfns
srcfile 20 — 1234567 wsfns

38 functions

20 variables

A WSDOC source file is created. When processed by wsdoc, the summary and
definition reports will contain the full LOGOS pathnames, a LOGOS header line, and
any attributes associated with the objects.

U wstofile test +attributes=dj +recursive
srcfile 21 — 1234567 clearws

145 functions

42 variables (including 11 scripts)

A WSDOC source file is created from all objects below test. 11 scripts found were
included as variables. When processed by WSDOC, the definition reports will contain a
LOGOS header line and the documentation and journal attributes of the objects, if set.

142 LOGOS Commands: wstofile

U wstofile doc . A? *x[f] util(f] +file=output +wsid=misc
srcfile 22 — 1234567 output

52 functions
O variables

A single WSDOC source file is created for all functions in two specified paths. The file
is given name output, but the workspace is identified as misc.

LOGOS Commands: wstofile 143

Syntax

Result

Usage

LOGOS Commands: xref

The xref command computes and displays a cross-reference table for functions stored in
LOGOS. The cross-reference table gives the location and type of each reference to each
identifier used in each named program.

xrLef] pathnames
[+quotes]
[+symbols=symbols]

pathnames Is a list of objects for which cross-reference tables are to be computed
and displayed.

+quotes Examines character constants (quoted strings) that are arguments to
the execute (#) function as if they are not quoted. If you omit
+quotes, such character constants are not examined.

+symbols=symbols
Specifies APL characters to be cross-referenced along with ordinary
APL identifiers. If you omit +symbols, the APL characters +# :[] are
cross-referenced. symbols may be any APL characters.

The command returns the requested cross-reference tables as the result.

For each identifier found in a program, xref computes the identifier’s local type, and an
indication of whether or not the name occurs "suspiciously". For example, a local vari-
able that is not assigned a value, or a name that is used to define a line label more than

once is considered "suspicious”.

An identifier’s type is one of the following:

la Left argument

I Line label

v Local variable

af System function ("quad function")
ra Right argument

rs Result

* Indeterminate

A suspicious identifier is marked with a query (?) after its type.

For each reference to an identifier in a program, xref computes the line number of the
reference, and its type.

144 L.OGOS Commands: xref

The reference type is one of the following:

Blank Simple reference

« Simple assignment
L Indexed reference
[« Indexed assignment

Line label definition

A name enclosed in quotes and otherwise not detected as an identifier can be
cross-referenced if the avU codetag is included on the program line. For example:

[3] i«124 Osvc tctl® ¢ i<l Osve "ctl'aVV ctl

Examples

U xref report cmdtop +symbols=~2T

Computes and displays cross-reference tables for paths report and cmdtop. The tables
include references to APL symbols +2T .,

U xref wkstation +quotes

Computes and displays a cross-reference table for wkstation. Quoted strings that are
arguments to ¢ are included in the analysis.

LOGOS Commands: xref 145

146 LOGOS Commands: xref

COMPILATION DIRECTIVES

About Compilation DIr€CHVES.......c.cecemreeinincrenesrriinenters st eesseserreseaes 149
Summary of Compilation Dif€CHVEScccuvnrirrismresirnsesrensniisnsesenssnesisennniscinns 149
TUmning Off DIFECLIVEScoeereeuercrererrecreresseanreseesesseresssescssassesassrsssessescescsse 151
Precedence Of DITECHVEScoveurerierrinmenissenieesecensnnesessescesnssesessrssssssssssesssnseses 152

Compilation Directives 147

148 Compilation Directives

About Compilation Directives

Syntax

Compilation directives, which are described fully in Chapter 10 of the LOGOS User’s
Guide, specify in a general way the actions you want the LOGOS compiler to take on
objects in your system. They can be applied to a single object, or to arbitrary groups of
objects.

A list of compilation directives may appear in any of three places:

« Saved with the object itself (as the object’s [:c] attribute)

» As a modifier to a command (for example, get .mde.utils.viom +compile=d R=2.y)
» In your session profile (as specified by the environment command)

In general, a compilation directive list has the syntax:

dl{=valll,d2(=val2],..

For example:

a=prologl3.d.x,l,z=.mabra.tools.tscom

Summary of Compilation Directives

a=pathname

c=pathname

The directives are described in the following sections. The following letters indicate the
object types with which the directive can be used:

f function
s script
v variable

The User-defined Prologue directive (f, s, v) executes a user-defined function or
cluster immediately before compilation of each object begins.

The Context directive (f, s, v) defines a context for evaluation. The argument path-
name must be a cluster. Objects in pathname are to be available for evaluation during
compilation.

The Diamondize directive (f) diamondizes the object. Each line is to be merged with

the next, separated by a diamond (¢). Does not merge a line with its successor if it con-
lains a comment, if the following line is labelled, or if either line contains the aVo code

tag.)

The Evaluate directive (f, s, v) evaluates expressions commented by aV# code tags.

Compilation Directives 149

i=list

pl=0|11

r[=C_30]1112C_11

The Format directive (v) formats the object by the SHARP APL Text Editor (from
workspace 4 edit).

The Inclusion directive (f) includes the tagged segments specified in list in the com-
piled object. The value list is one or more numbers, names, or expressions separated by
blanks, as in i=mon test or i=1. Expressions can contain identifiers as well as symbols
from the set:

()VANA~NCDZCLS>>
and must yield a Boolean result.

Identifiers in the expression are assigned a value of 1 if they correspond to names
appearing in the argument to the active i directive. All other identifiers have a value of
0.

Expressions are evalutated using standard APL (right-to-left) precedence rules. If the
result of the expression is a 1, or if no / directive is in force, the line is retained. If an i
directive is in force and the expression yields a 0, then the line is removed.

For example, a line containing the code tag aVe unixvmvsatest would be retained if the
argument to the i compilation directive contained the name unix, or the names mvs and
test. Each line of the source can potentially have an inclusion tag indicated by aVe,
The i directive controls which of these tagged segments appear in the object, by
selecting any lines whose aA€ statements include any values in common with the
specified inclusion list. ‘

The Lock directive (f, s) locks a function or script.

The Parent Pathname Tag directive (f) includes the parent directory name.

p=0 (or p) appends a comment beginning with a* to the last line of a function. The
comment contains the parent directory name from the root, and the object’s version

number in brackets.

p=1 adds a comment beginning with a* as the last (separate) line of the function. For

example, in ax public.logos.paging. [31————— , the path public.logos.paging identifies
the directory (note the terminal dot, implying extension of the path); the phrase [31] is
the source’s version number; and the ————— is a checksum for the snap command.

The Implant Tracking Statement directive (f) includes the least-recently-used (LRU)
statement. This statement generates a record of a function’s use for page-out control.

The Rename locals directive (f) renames local variables and line labels. If you specify
_ at the beginning or end of the value, names beginning with characters in the second al-
phabet are not changed.

r=0 renames locals and labels A99, A98, A97, ..., 400, AI199, This is also the
scheme used if you specify r without an argument.

150 Compilation Directives

r=1 renames locals and labels a, b, c, ... , aa, ab,
r=2 gives locals and labels random seven-character names.

w=workdirs The Working Directory directive (f, s) specifies a set of working directories. These
directories are used when searching for objects to be included in a composite script, and
when evaluating pathnames in code tags.

x[=v|0]|1] The Excise Commands directive (f) decomments the object.

x=0 (or x) removes all comments from compiled functions. This is the default be-
haviour if you do not specify x.

x=1 retains the opening a of whole-line comments, thus preventing the renumbering of
function lines. Removes end-of-line comments in their entirety.

x=V removes both whole-line and trailing LOGOS comments, and retains regular com-
ments,

y[=_1] The Remove Labels directive (f) removes line labels.
y removes line labels and replaces all references to line labels with constants.

y=_ removes line labels except for those beginning with letters in the second alphabet
and replaces references to line labels with constants.

z=pathname The User-defined Epilogue directive (f, s, v) executes a user-defined function or
cluster at the end of compilation.

Turning Off Directives

Any directive can be forcibly turned off by using a ~ before its letter. For example, to
turn off decommenting, use ~x. Expressions of this form provide a convenient way to
negate the effect of a directive saved in the [:c] attribute of the object.

You may also specify any directive in the second alphabet. For example, A or I=/ist. A

directive in the second alphabet takes precedence over its simple variant and cannot be
overridden. This is discussed below.

Compilation Directives 151

Precedence of Directives

The order in which you specify directives is irrelevant. LOGOS computes the set of
directives to take effect using the following precedence rules (listed in order of most
dominant to least):

» adirective in the second alphabet saved with the object

» adirective in the second alphabet in the user’s profile

« adirective in the second alphabet passed as a command parameter

» an ordinary directive (a directive in the first alphabet) saved with the object

« an ordinary directive in the user’s profile

» an ordinary directive passed as a command parameter

152 Compilation Directives

CODE TAGS

ADOUE COdE TAZS ...ceiivveeiiree vttt ceesrrerste et eseesesests e sesreeessssansenene 155
SumMmMary Of Code TaAES.....c.corvvveireerirtererrrrresiereeriereseresresieserbeseesasessvessssessasressens 155
Evaluation ENVITONIMENE «...cccevevueeeeirrecmerneasescseecssresstesessssasstesassessenssnssssseseens 156

Code Tags 1353

154 Code Tags

About Code Tags

Code tags, which are described fully in Chapter 10 of the LOGOS User’s Guide, are
special comments which appear in the body of an object. They qualify the actions
specified by the compilation directives. Because code tags appear in the source of an
object, they are processed object by object. Code tags remain a part of the object after
compilation, unless you specifically remove them using the x (decomment) compilation

directive.

A code tag is distinguished by its opening aV. a marks it as an APL comment, and V
as a code tag. A symbol immediately following aV identifies the code tag’s type.

Summary of Code Tags

The code tags are listed below:

aVU namelist

AV; namelist

AV~ namelist

AVe list

Union: treats names in namelist as if they were ex-
plicitly referenced in this line. This is useful for in-
forming LOGOS of ‘hidden’ refcrences to names.
For example, refercnces in quoted arguments to ex-
ecute or Otrap definitions. This makes it possible for
commands such as build and calls to process these
names. It also enables the WSDOC program to build
accurate WSGRAPHS and xref listings.

Local: treats names in namelist as local to this func-
tion and does not perform calling-tree analysis on
them. This is used with the build and calls com-
mand. With the build command you can specify that
an unlocalized name is not to be treated as a global
and not to be searched for during analysis.

Exclude: ¢xcludes names in namelist from the ac-
tions of the r (rename) and y (delabel) directives.

Inclusion sct: includes the entire line only if list has
any values in common with the set defined by the i
directive. If the i dircctive is not set, this tag is ig-
nored and all lines are included.

Code Tags 155

AV dim Evaluate expressions: dlm is the evaluated expres-
sion delimiter for the line. Expressions appearing be-
tween pairs of delimiters are evaluated and their
results replace the original expressions in the source.
Objects referenced within the delimiters must exist
either in the workspace or in a path specified by the
¢ compilation directive.

aAvo Nondiamondize: does not diamondize this line. Does
not merge it with the preceding or succeeding line.

avatext User-defined: these are used to include information

aVwrext in an object which is of interest to a user-defined (a
or z) directive. The compiler does not actively
process these tags.

Evaluation Environment

The environment in which names in a code tag or in delimited expressions in a line are
evaluated depends on how the tag is represented. The following general forms illustrate:

AVU name Takes name literally.

AVU name. Treats name, (any name that includes dot) as a
LOGOS path. This pathname can include limited
regular expressions. The effective list of names is
generated by extracting the terminal segment of
every path that matches the pathname. For example,
to create a reference to every name in the directory
titles with ¢, you would type:

AVU proj.source.rep.titles.t? x

AVU ¢name Fetches the object name which must be a character
variable in the active workspace. The value of the
variable is scanned for identifiers, to which the aVu
creates references.

AVU s#name. Fetches the object name. which must be a character
variable stored in LOGOS. The value of the variable
is scanned for identifiers, to which the aVU creates
references.

156 Code Tags

REGULAR EXPRESSIONS

About Regular EXPIESSIONS ..c..cveueercerrerreeriiiiceessreseneressescersesasaessassesresescssessseces 159
NOLALION ..ot st ssa sers ea s sasssbsbonsbesssrnes 159
Limited Regular EXPIESSIONScc.cvvvvermeecicrmeecnsecrernenesressecenscsussescensscsesceseses 159
Full Regular EXPressiOnsS.... oo cieevereseoreeresereesiearssesiessesessessessssessssessssssessessess 159

Regular Expressions 157

158 Regular Expressions

About Regular Expressions

Limited regular expressions are used in pathnames, and full regular expressions are
used to express search and replacement strings for commands such as locate and
replace.

Full regular expressions consist of two templates, a locator template and an action
template. The locator template is the pattern of strings for which you are searching. The
action template is a list of actions to take when a locator template finds a match of the

pattern.
Notation
rx Any regular expression
rrx Restricted regular expression: any regular expression not
containing a closure component
cp Any single-character pattern

Limited Regular Expressions

Limited regular expression characters are always recognized in pathnames. No braces
are required around them.

? Any character
cp* Zero or more occurrences (closure)
rx1 | rx2 Either of the regular expressions rx1 or rx2 (alternation)

Full Regular Expressions

Full regular expression characters must be marked using braces ({ }) or dieresis (") in
order for them to be recognized.

Escape mechanisms include:

{ Beginning of regular expression

' Ending of regular expression
” Reverse special or literal treatment of next character

Regular Expressions 159

Single-character components include:

C
?

[clc2c3]
[cl-c2]

[csl~cs2]

[~cs2]

The character specified by ¢

Any character except Carriage return (or statement end

if searching function text)

Any of the characters c1 ¢2 ¢3

Any letter of the alphabet or digit between and including c1 and
¢2 (character range)

All characters in set es1 which do not appear in set ¢s2 (csl1 and
¢s2 may include a character range)

All characters in the global character set which do not appear in
character set cs2

Alternation, grouping, elision, and closure include:

rx1[rx2
(rx)
cp-
(rx)-

cp*
(rrx)*
cp+
(rex)+

Either of the regular expressions rx1 or rx2 (alternation)
Groups the regular expression

Zero or one occurrences (elision)

Zero or one occurrences (elision)

Zero or more occurrences (closure)
Zero or more occurrences (closure)
One or more occurrences (positive closure)
One or more occurrences (positive closure)

Miscellaneous components include:

o]
~

o
w
crx>

Statement delimiter
Line delimiter
Context delimiter
Any identifier

Any number
Pattern tag

Action template components include:

—

cno

160 Regular Expressions

Carriage return

String matching pattern tag n in locator template

Evaluated string delimiter

Replace string with evaluated expression (recognized only when
appearing immediately after the first of a pair of V’s)

AUDIT SCRIPTS

AfACIPN ..ovenvireerevecrrreeeresseseseressessesssssssesaseesaersesasressantrasssans rassarsernssessastasssssarestsssrss 163
QIENVS c.vveeeveteeeesresarssssessensssessorsesasesanseressassessessasensastentasestessasessessmsessrssensrisassrsrsssssasens 165
GITISE cveoeeeseeeereeeeiarereecetraeersesaeassasressesasestsnsssaenessaasseros ssenseassesseensasessnnnneessensansesnnnsaree 166
APAIAS coonerrineiriice et srs s s e rassassssas setsesas ases et sose st st st s gt bt et enebrseents 168
GfTECS vt ecesstecesssseesieseresters sens ssesstes e sraaseesbasasstoseants st sssensassscesssaesrsesesssansesunnnne 170
AFSAATE connceeeeriverencraesenreseesesaseosereastssesssesssssansssaasssasossessnsssssssanessenssnssseessessesasaenes 172
AIWHETC vttt sre e tsre e srrs et e srasasssesassbesasentenaassenesasesreantessentnattareernsoraensansesss 173
QIXTES cevvneeetireeeertieaeerterascstecsasssesesasensesuessntsasssstesssesse s srassstasees stassstassarssssnbenssanssenssensess 175
PIACIOD] ...ttt eeee e et st st e ses st e e st et s e 177

Audit Scripts 161

162 Audit Scripts

Syntax

Audit Scripts: afdelpn

The afdelpn script removes a pathname reference from within an audit file. You can
remove a specific pathname reference either entirely or from a specific end
environment by using the +environments modifier.

afdelpn pathnames

pathnames

+audit=name

+environments
=envs

is mandatory and indicates the pathnames you want to remove from
the audit file.

Specifies the name of the audit file from which the report will be
produced. If you do not specify this modifier, the value in
environment audit is used.

Limits the search to a specific set of environments. The argument
contains up to three fields for type, name, and location, separated by
spaces. The first character can be a non-alphanumeric to allow
multiple entries. The type of environment is represented by one of the
following letters:

¢ Cluster

f File component
p Paging area

w Workspace

For more information on the types of end environments, see the
description of the afpaths script in this chapter, where they are
described in detail.

Audit Scripts: afdelpn 163

Examples

U build 10 vtom rcat cr If +audit=myaudit +file=myfile +workdir=.public.util

This builds a package containing vtom, rcat, If, and cr from .public.util into component
10 of myfile, and tracks this environment using the myaudit audit file.

You could then use afdelpn to remove the reference to .public.util.cr from the audit file:

U afdelpn public.util.cr +audit=myaudit +environment=f myfile 10
1 object removed from 1 environment within audit file <1234567 myaudit>

164 Audit Scripts: afdelpn

Audit Scripts: afenvs

The afenvs script returns the names of all of the environments tracked by an audit file.
The nodes within any paging area can also be listed.

Syntax afenvs audit
audit Is the audit file from which the environments are to be listed. If
elided, the setting of environment audit is used.
+headings Displays report headings.
+nodes Includes the node names within the paging areas.
Examples

U build <10> .public.util.cr | If +file=myfile +audit=myaudit +overwrite
2 clustered objects saved in component 10 of file 1234567 myfile

LOGOS builds a package into component 10 of myfile and tracks this environment in
the audit file myaudit.

You could then use afenvs in the following way:
U afenvs myaudit +headings

t name -loc-
f 1234567 myfile 10

This shows that the latest audit record in myfile is tracking 1 end environment of type f
called /234567 myfile in component 10.

Audit Scripts: afenvs 165

Audit Scripts: aflist

The aflist script lists pathname information from within an audit file.
Syntax aflist pathnames

pathnames is mandatory and indicates the names of the paths you want to
display. Like the list command, pathnames can either be rooted or
based on the current working directory set, and can contain limited
regular expressions. In addition, if an object name is prefixed by a T,
the audit file is searched for all paths with a terminal segment (or
object name) matching the specified name.

+audit=name Specifies the name of the audit file from which the report will be
produced. If you do not specify this modifier, the value in
environment audit is used.

+column Formats the table portion of the report into as many columns as will
fit on the display.

+extended Includes version number, type, and compilation directives for each
pathname displayed.
+symbols Includes each function’s symbol table in the report. Each symbol is

preceded by a character identifying the symbol’s relationship to the
function. See the following list.

Character Meaning

- Result
— Right argument
- Left argument
o Global
; Local
: Label
u aVUu
+version Includes version number and type for each pathname displayed.

166 Audit Scripts: aflist

Examples

U build 10 vtom rcat cr If +audit=myaudit +file=myfile +workdir=.public.util

This builds a package containing vtom, rcat, If, and cr from .public.util into component
10 of myfile, and tracks this environment using the audit file myaudit.

You could then use aflist to return all pathnames tracked by myaudit which have a
terminal segment name of vton:

U aflist Tvtom +audit=myaudit
public.util vtom

To include the version number and type as part of the pathname, use the +version
modifier:

U aflist Tvtom +audit=myaudit +version
public.util.vtom(f2]

To include extended object information (including version number, type, and
compilation directives) use the +extended modifier;

U aflist Tvtom +audit=myaudit +extended
public.utilvtom[f2] +compile=x

To include the function’s or script’s tree analysis symbol table, use the +symbols
modifier:

U aflist .public.util.vtom +audit=myaudit +extended +symbols +column
public.util vtom(f2] +compile=x
Ha ;b 3¢ Fdim <z

This indicates that z is the result, a is the right argument, dim is the left, and b and ¢ are
locals.

Audit Scripts: aflist 167

Audit Scripts: afpaths

afpaths returns the names of paths stored in one or more end environments or nodes
within paging areas.

Syntax afpaths environments

environments

+audit=name

+column

specifies the end environments and nodes for which you want to list
the contents. An end environment specification contains up to three
fields for type, name, and location, separated by spaces. The type of
environment is represented by one of the following letters:

Cluster

File component
Paging area
Workspace

=TT o

If the type is c, the name is a root LOGOS pathname. For example:
/c .myws.cmds

If the type is f, p, or w, the name is assumed to be a standard
workspace or file name (for example, if you omit the account number,
LOGOS assumes the account number of the alias). If the type is f or
p, the location indicates a component number within the file. If the
type is p, you can also specify one or more node names (if you omit
this, all nodes are assumed). For example:

/w 1234567 myws /f myfile 10
Specifies the name of the audit file from which the report will be
produced. If you do not specify this modifier, the setting of

environment audit is used.

Formats the report in as many columns as will fit across the display.

+strip=pathname

168 Audit Scripts: afpaths

Specifies the directory names to omit from the pathnames in the result.

Examples

VU build <10> .public.utillf| cr +audit=myaudit +overwrite
2 clustered objects saved into component 10 of file 1234567 myfile

LOGOS builds a package into component 10 of myfile and tracks it using the myaudit
audit file. You could then use the afpaths script to display the pathnames used to
generate the above package:

v afpaths f myfile 10 +audit=myaudit
public.util.cr
public.utillf

You can also use the +strip modifier to remove a portion of the front of each pathname:

v afpaths f myfile 10 +audit=myaudit +strip=.public.util
cr

If

Audit Scripts: afpaths 169

Syntax

Examples

Audit Scripts: afrecs

The afrecs script returns a summary of the audit records stored in an audit file.
afrecs audit

audit is the audit file from which the audit records are to be listed. If elided,
the setting of environment audit is used.

+column Formats the report in as many columns as will fit on the display.

+headings Displays report headings.

U build <10> public.util.cr|lf +audit=myaudit +file=myfile

logos audit file created: 22jun89 17:38 by kih

appending 9 pad components to file <1234567 myfile> starting at component 1
2 clustered objects saved in component 10 of file 1234567 myfile

The build command generates a package containing two objects, If and cr, into
component 10 of 1234567 myfile. You could use the afrecs command to examine the
audit file’s records.

U afrecs myaudit +headings
-rec- -ver- ----saved---- -alias
1 1 22jun89 17:38 kih

In the following example, the same component is generated again, this time with three
objects:

U build <10> .public.util.cr | If| viom +audit=myfile +file=myfile
3 clustered objects saved in component 10 of file 1234567 myfile

170 Audit Scripts: afrecs

The afrecs script shows the following:
U afrecs myaudit +extended +headings
-rec- -ver- ----saved---- -ali -envs -nodes -dirs- -symbs

1 222jun89 17:43 kih 1 0 1 82

Notice the version number has changed from 1 to 2.

In the following example, the component is rebuilt with its original two objects and a
new audit record is requested:

U build <10> .public.util.cr | If +audit=myaudit +file=myfile +overwrite
2 clustered objects saved in component 10 of file 1234567 myfile

The afrecs script now shows the following:

afrecs myaudit +headings
-rec- -ver- ----saved---- -alias
1 222jun89 17:43 kih
2 122jun89 17:48 kih

Audit Scripts: afrecs 171

Audit Scripts: afshare

The afshare script controls the sharing of LOGOS audit files between accounts.

Syntax afshare user audit

user

+delete

+permission
=r|wlc

172 Audit Scripts: afshare

indicates for whom to extend or delete access. It is
mandatory and must be an account number. If you specify an
alias, the primary account number of the alias is assumed.
audit is the name of the audit file whose permission is to be
changed.

If you do not specify a modifier, this script simply returns a summary
of the current access settings. If you omit user by specifying ' ', the
summary contains all of the entries which currently have access to
share the audit file.

Deletes the account from the access matrix.

Specifies the permission level to be granted. These are:

r Read access
w Write access
c Control access

If control access is granted, the user also has read access without a
passnumber.

Syntax

Audit Scripts: afwhere

The afwhere script lists the environments where particular pathnames are used.

afwhere pathnames

pathnames

+audit=name

+column

+environments
=envs

+nodes

Specifies the pathnames for which you want to list the host
environments. It is a mandatory argument. Normally, the pathnames
argument is rooted. However, if you prefix the names with T, afwhere
searches for any path with a terminal segment matching the name that
follows the T,

Specifies the name of the audit file from which the report will be
produced. If you do not specify this modifier, the value in
environment audit is used.

Formats the report in as many columns as will fit across the display.

Limits the search to a specific set of environments. The argument
contains up to three fields for type, name, and location, separated by
spaces. The first character can be a non-alphanumeric delimiter to
allow multiple entries. The type of environment is represented by one
of the following letters:

¢ Cluster

f File component
P Paging area

w Workspace

For more information on the types of end environments, see the
description of the afpaths script in this chapter, where they are
described in detail.

Changes the result so that it retumns node names within paging areas.

Audit Scripts: afwhere 173

Examples

U build 10 .public.util vtom| rcat +audit myaudit +file=myfile

This builds a package containing vtom and rcat from the public.util directory into
component 10. You could then use afwhere to display the names of all environments
that contain an object whose terminal segment name is vtom:

U afwhere Tvtom +audit=myaudit
f 1234567 myfile 10

174 Audit Scripts: afwhere

Syntax

Audit Scripts: afxref

The afxref script is used to produce a cross reference of pathnames by end environment

and nodes.
afxref audit

audit

+clearout

+environments
=envs

+extended

+length=n

1s the audit file on which the cross reference is to be based. If elided,
the setting of environment audit is used.

Clears the outfile specified using +outfile of all components before
starting.

Limits the search to a specific set of environments. The argument
contains up to three fields for type, name, and location, separated by
spaces. The first character may be a non-alphanumeric delimiter to
allow for multiple entries.

The type of environment is represented by one of the following letters:

Cluster

File component
Paging area
Workspace

T~ o

For more information on the types of end environments, see the
description of the afpaths script in this chapter, where they are
descibed in detail.

Adds the user who saved the file and the save date to each
environment’s report.

Indicates page length (for pagination).

+outfile=filename

Indicates the output file name to which the report is appended.

+strip=pathname

+width=n

Specifies the directory names to omit from the pathnames in the result.

Indicates line width.

Audit Scripts: afxref 175

Examples

U build <10> .public.util.cr | If +audit=myaudit +file=myfile +overwrite
2 clustered object save to component 10 of file 1234567 myfile

You could then generate a cross reference for myaudir:

U afxref myaudit +extended +width=80

pathname cross reference by environment according to audit file <1234567 myaudit>
file: 1234567 myfile 10 (2 objects, last saved 30jun89 18:22 by klh)

public.util.cr public.util.lf

xref completed

In this example, the cross reference is displayed on the terminal using a width of 80. It
also includes the extended information for each environment.

You could also spool the output to a file using the +outfile modifier:

U afxref myaudit +clearout +extended +outfile=outfile
xref completed

Or you could trim .public.util from the beginning of pathames:

u afxref myaudit +extended +clearout +outfile=spoolfile +strip=.public.util

176 Audit Scripts: afxref

Audit Scripts: pfdelobj

The pfdelobj script removes objects from specific nodes within a paging area.
Syntax pfdelobj names

names is mandatory and indicates which objects are to be removed from the
specified nodes.

+area=name Specifics the name of the affected paging area. You must specify this
modifier.

+lock=number Specifies an optional paging area file passnumber.

+nodes=names Specifies the names of the nodes from which the objects are to be
removed. You must specify this modifier.

Examples

U build +depth=all +workdir=_public.util

U build vtom

U filesave 1234567 myfile

generating 1 node in to paging area 1234567 myfile, 20

1 node generated using 1 object

generation 1 of paging area 1234567 myfile, 20 saved 30jun89 14:28 by kih

This generates the vtom function into a node called viom within the paging area
1234567 myfile, 20.

You could then use pfdelobj with the +area and +node modifiers to remove the viom
object:

U pfdelobj viom +area=1234567 myfile 20 +node=vtom
1 object removed from 1 node

Audit Scripts: pfdelobj 177

178 Audit Scripts: pfdelobj

EDITOR COMMANDS

Bt e sere b e sttt sa b SS e RS Sb AR A e b nR SRR PR SO R Shs shessuesenReR e RS antobas 181
U et traeetes e s sre tete st anesre s ot et et et b s e sae s ere e s a b e aea bRt eaa sEea S eResena e seeueetare St baeseatrraraean 182
) ettt s e te s ettt a s as st s e e et e et e bee g seem e e s et anarae abeageat eatentet ety aeatautesennats 183
AAA eeaneeeeteeeererirereeceerestesrarsesesrssseesssssasansotassenasns seertese st ebasss sossneatsbebaans saneseaseresentabenis 184
ARAUN cceiniieoriiiireiii st e et e e sbes s sassssat s he e st sae e e saaa st et senssasasasantsan 186
AP aoeeeeeeeeereeeeterreseeessssesaessesessarsstesasasasseese s te e e s e e e era s et e e R e e Rt e s e asas rebeastare s saeneraseen 187
APDIW aeeveeeeeeeeeeetisseesrssersss e ressssrsassutesaessessassesstsatonssssasesssesseesesstasassasnsrsonenesreesassnssn 188
BDOHOM ..ot essasieseesee s st ses e e soms st sae s eme s aacesuessenatansanteseesessanssserens 189
BIOWSE c.cenneeveeeereveeeeeessesesiseeesieseessserasesseesnostassenatssesns sasesarosassnsssantessessesssensentansevecen 190
CHANGE oceoiciieeeeecreieravaeser e cee e e saeassae s e s e st et e sae s e onaesesrr s sae s esseessentarss sscnnerne 191
COPY aeurrreerenensessessnsensessssestessnsessessisnsessssen sssssenssssseensaresssesensssmssesssssessassssonsassnresrsssrnsssn 193
AEIBIE ..o siee et eseerreseest e s e essasete e sstesavssass b rat et rassanssareeses sressessanneresssenseensaress 195
IAMONA ..ot eeeeeeee et e e e sae s s ase e sasssestaasesoes saasseessseeentansernsaseseraaassareersesrnns 197
QEISPIAY oottt st are e et ea et e etr st et en s ane e rrn stk vse e vaes e saresaesraneaeins 198
AOWR ...ttt eee e et s e eateseebanesres st enstre st satssasmasases e st s e s e st enseacsaannensens 200
EAIL vveeeeevever et ieresesseesestesrre s e ee bt st e s aaas s e s s s eReaee s e baer e eResareabesreen e et e eent e nanreseranets 201
@I et eeteenenrenetesas e e s st aaese oas sas e tan e e st e e ba ettt e st esee 2t e rateraatanatr e enaeeanrens 203
JOTIMQLE ..oonvieie ettt sneen st s eeesesaeeesaeeressusssearssaseesnassene e sssstesansssnseansensen 204
BOL aereeererereesere e assteeses s b e sae s et e bt e R e st aaesreeaReRse S e seest e tes e aeese e teaa e nerraertstesreeaes 205
REAAETeveeeeeecreeer e sereesese et sesessesoessaes et tras srt et sssestensesase srrssaentmnenss sassstessasearses 207
REID oottt ettt ere et s e e er s e s b e stes et st et et s e st et s e e bRtk e s e bneRenbebesrers 209
REQRIIGAL ..o crenecvenveessesecsnssasseststasssase arsese ansstnessosasnssasssesassnssassssesestssanssans 210
RPUL oveeeneeieeeecerenteseeras s eeseeesbe st res e st eres s esaasasateseese st b asea st sa b aseerensentsenssessarnnbestaseasens 212
ENSEIT e ceenreeeereeneecnesaeeesnsaueasesaests shassasessneasts aeneessassesstntasecsnrseestansasscesessesnsensrsnes 213
JOITL ottt eere e vesstsre st e s et e saes st sanesesres stssseessrsassessssstassnssansesseessrnsassensesnsane 214
LASIINE caeeeeeevaeeesee sttt rte s s s st st sr e see s nsesseeseaes st seasnssvasseastassassesssesserseese srenn 215
JOCAIE .ot ccte et se et et see et s ee s re st aa et eassrns s sasbasssasasserssensasnressan 216
LOBOS ettt st e rraee ettt e et as et et sens bt sa et i aennens 217
THOVE ..eooeeeneeneantenecorreseauessecstnsnsass sesnesssereessenaerrtsessuasatesssssessessasssssnressnssennesasssessanssanessens 218
FUAITIES .oeeoeeeeeereevrrasesannseneesuns e s estesessassetasesuee anssant tasesbesnsansarsessesrrassnnsonssesesnsessansesses 220
TLEXE oveeeierectenntruesiseesteanrosatassosesasaesse e ssee sansssaasnesssraresssessrerases sotesaresasesaesesnarnesssevanes 221
DUL ettt ettt et et e it e et e e an et et e et et e b e ettt e be st ebenrenteresaessrrnane 222
DUIRIIT .ttt ittt et e ettt etse s et ss e st se st e bbb e sae st aae st nanresaassesaeseesensesen 223
QUIT ottt et et st et st et ste s s s st st s b s st a e eh st e a neee e b etttk b s g ese sennaenent 224
FERUML ..c.ovevirreerrireereciassressuessasessessestasssissesssnsssessessssansassesrsesssnsnssassssenssosssessassesasesnes 225
FEPIACEeeeveaierceerereeee et ettt ee et s s et e s e se s aae s s earars s sntensensassansesesbasecrssntassrnns 226
FESCQUEIICEeomieneceeaeeciiisesecreceaterae atas e cesesastsaan sete aeneeeetssres satessassatssues saesasnessnansens 227
SEDCHAY vttt et e e et esesace saes e s e e saneseesres st s s aasssaseantsaessanrareesns 229
SCIRAME .oeveeeireeeeeeeieeieeceuesereeitnssesssassesssersstssersseassassntonasossanansissrentanansenssnarsresssasnsntes 230
SCIEYPE «oeveeerevaeeareessesensnssaesasesessassaasasstassestessisntosassesrts sassarssessssssssnsssonsensessesnssssessene 232
SO otitrieitienieeessisaeessstones e sana e s hes st bt et et e ap e s b etk e et et ese e st sa e et e Renaeneerasavaces 234

Editor Commands 179

SUPEE aouvveeeuerveseneeesssssssassessssesscnsent et staastssestsnessassasassestasen st anesnsssssssstensens sisscasesaessensons 237
SWIICH oeeeieeeee e tstsstssesae et e s cess st st e sasesons sasssessstes e te st asanbentosaesssassesassssnssasarernannes 238
SYNUAX eveervrreeceneesrssracasaeessessnessesescesessesesnssssssesserasssssss srtessessessersssssessesssesssstansessensanses 239
FOD aoeeeeereeseectercsanrssssssesseessessssssssssesesessaesasesasesses saseassesnseassessesersssasessssessesnaesssesssesssaens 241
EPDE aereeeerecteesesnvesressssncescssessssstssssssoneasessesssssnesnssstestensmseasss snsoresseesassaseesns suenasssaasssees 242
LD eovevreeneeressnestesasassessrressessesassssestantat satessas s s ses e be et e testnsteseshesestesanabaseesessebterensaraanes 243
USE corevereessseeitesssasseeeeaassssssnssstessessnnsonsesanasseress sasssnessesst saesentessassstesatenssessansessoanasssens 244
VEFIfY oottt e s sn e st s st s e e st st et s semanan s e enns s s 245
VDUE wovitetinieeesteseresesesssestsseses et se s ereseassaeseseotabastassssesasenansessasasasartsseaesbeteneneteserterestaees 246
WITAOW <coverreeeeneneeneneeniee et treestes et stnecasesess st seaesasseestese st anensastensestsasesanasaseseneess sarsmesse 248
XFEL otteieetnsrece et eaee s sn st st st et et e et e et e et e et e be e as et et et bbb seemeeaneren e ebentenas 249

180 Editor Commands

Editor Commands: ¢

The £ command can be used in two ways:

« with an argument as an alternate form of the ap/ command. See the section on the
apl command for details.

+ without an argument as an alternate form of the aplw command. See the section on
the apiw command for details.

Editor Commands: ¢ 181

Editor Commands: V

The v command can be used in two ways:

» with an argument (an object name) as an alternate form of the edit command. See
the section on the edit command for details.

» without an argument, as an alternate form of the end command. See the section on
the end command for details.

182 Editor Commands: V

Editor Commands:)

The) command can be used in two ways:

» with an argument (a LOGOS command) as an altemate form of the logos com-
mand. See the section on the logos command for details.

» without an argument to redisplay the last editor command.

Editor Commands:) 183

Syntax

Usage

Examples

Editor Commands: add

The add command adds one or more lines to an object.

adld]) Cup] (integer] (string]

up Inserts the new lines above the reference line, as opposed to below.
integer Is the number of lines to insert.
string Is the string of text to insert on the lines added.

If you do not provide an argument, add inserts one line. If you provide the first argu-
ment, add inserts that number of lines. If you provide the first and second argument,
add puts the string of text on the added lines.

add 2

Inserts two empty lines following the reference line.

add 5 a

Adds five empty comment lines after the reference line.

addup 2

Adds two empty lines above the reference line.

184 Editor Commands: add

upadd 2

Adds two empty lines above the reference line.

Editor Commands: add 185

Editor Commands: again

The again command executes the last editor command entered.

Syntax algain] (integer|*]

integer Is the number of times to execute the command.

* Executes the command until it fails.
Usage If you do not enter an argument, again executes the last command once.
Examples

again *

If the last command invoked was locate, repeat locate until the argument string can no
longer be found.

The reference line becomes the last line containing the occurrence of the argument
string to locate.

186 Editor Commands: again

Editor Commands: apl

The ap! command allows you to execute APL expressions from within the editor.

Syntax apl expression
expression Is the expression to execute as an APL expression.
Result In full screen mode, the result of the expression displays in the editor message area.

That is the one-line field just above the command input field.

Editor Commands: apl 187

Editor Commands: aplw

The aplw command allows you to execute APL expressions from within the editor, and
then waits for you to press Enter before exiting the command.

Syntax aplw [expression]
expression Is the expression to execute as an APL expression.
Result When you are in full screen mode, you are returned temporarily to the standard screen

to view the result of the expression.

Usage After aplw executes the expression and returns the result, you must press Enter to ter-
minate the command.

If you do not supply an argument, ap/w invokes the [1 version of the command, and

issues a +[1 prompt. Here you can enter an expression. To terminate the command,
press the Space Bar, then Enter.

188 Editor Commands: aplw

Editor Commands: bottom

The bottom command moves the reference line to the last line of the object.

Syntax bLottom]

Editor Commands: bottom 189

Editor Commands: browse

The browse command allows you to place constraints on yourself so that you can
browse through an object, but you cannot save any changes, regardless of whether you
have write access or not.

Syntax brLowsel Lofflon|lockl
off Allows edited objects to be saved. This is the default setting.
on Inhibits you from saving changes made to the object.
lock Prevents you from turning browse mode off. The only way to

override this is to change the name of the object. setname will
automatically turn browse mode oft.

Result If you are editing in full screen mode, a message appears in the header of the screen to
remind you that you are editing an object but will not be able to save the changes.

Usage If you specify browse without an argument and browse mode is on, it is switched off. If
you specify browse without an argument and browse mode is off, it is switched on.

190 Editor Commands: browse

Syntax

Usage

Editor Commands: change

The change command locates occurrences of a specified string or pattern and replaces
them with another string or pattern.

cChangel Lupl [_1/stringl [/ [string2 [/integerl|* [integer2|*111]

up

stringl

string2

integerl| *

integer2 |

Reverses the direction in which the object is scarched.
Performs a syntactic rcplacement.

Is the string to change. Treals strings containing curly braces or the
dieresis character as a rcgular expression pattern.

Is the replacement string. Treats strings containing curly braces or the
dieresis character as a rcgular expression pattern.

Is the number of lincs to be scarched.

integerl Scarches that number of lines from the reference
linc down.

—integerl Searches that number of lines above the reference
line.

* Scarches all lines from the reference line to the end.

—% Searches all lines above the reference line.

Is the occurrence within a linc to change.

integer2 Changes that occurrence of the string, counting oc-
currences from the left end of the line.

~integer2 Changes that occurrence of the string, counting
from the right end of the line.

* Changes all occurrences on a line,

If stringl is empty, change treats it as a scarch argument and matches the empty strings
on either side of every character on a linc.

After the command is cxecuted, the last line on which a change was made becomes the

reference line.

Editor Commands: change 191

If string2 is empty, change removes occurrences of the stringl.

Examples

change/lead/ gold/* *

Replaces all occurrences of the string lead to the string gold.

change_/a/b

Changes all occurrences of a to b without affecting occurrences of a that are part of a
word (for example, alpha).

change//—

Replaces the empty strings on either side of every character of a line with —. For
example, the line abc would become —a-b—c-.

change/cat/dog/1 *

Changes all occurrences of cat to dog on the current line.

change//(/* |

Prefixes the reference line and every line after it with [.

top V change_/rcat/rowcat/* *

Changes every occurrence of the identifier rcat with the string rowcat.

192 Editor Commands: change

Syntax

Usage

Editor Commands: copy

The copy command copies a line or group of lines from one location to another.

colpylCup] Lintegerl|+] [integer2|*]

up

integerl| >

integer2 |
1

Reverses the direction of the command.

Is the number of lines to copy, including the reference line. The
default value is 1.

integerl

—integerl

—%

Copies the specified number of lines, counting from
the reference line forward.

Copies the specified number of lines, counting from
the reference line backwards.

Copies all lines from the reference line to the end of
the object.

Copies all lines from the reference line to the begin-
ning of the object.

Is the number of lines before or after the reference line to put the
copied block. The default value is 0, which puts the copied block
immediately after the reference line.

integer2

—integer2

—%

Puts the copied block the specified number of lines
after the refercnce line.

Puts the copied block the specified number of lines
before the reference line.

Puts the copied block at the end of the object.

Puts the copied block at the beginning of the object.

If you do not specify an argument, copy duplicates the reference line immediately

below itself.

Editor Commands: copy 193

Examples

copy

Duplicates the reference line immediately below itself.

copy 3 *

Appends a copy of the reference line and the two lines following it to the end of the
object.

copy 12

Places a copy of the reference line 2 lines below itself (skips 2 lines and inserts the
copy).

194 Editor Commands: copy

Editor Commands: delete

The delete command removes lines from an object.

Syntax delCete] Cup] Linteger|*]
up Reverses the direction of the command.
integer | * Is the number of lines to delete.
integer Deletes the specified number of lines starting at the
reference line and counting down.
—integer Deletes the specified number of lines starting at the
reference line and counting up.
* Deletes all lines from the reference line to the end.
—% Deletes all lines from the reference line to the top.
Usage If you do not specify an argument, a default value of 1 is assumed.
Examples
delete —3

Deletes the reference line and the two lines above it.

deleteup 3

Deletes the reference line and the two lines above it.

Editor Commands: delete 195

delete —%

Deletes the reference line and all lines above it.

deleteup *

Deletes the reference line and all lines below it.

196 Editor Commands: delete

Syntax

Usage

Editor Commands: diamond

The diamond command specifies a surrogate for the diamond character on an IBM
3XXX display station which avoids the need to use the overstrike character to create
the diamond.

diaUmond] [character] Lonloff]

character Is the surrogate character to be used. The default is the cap n
character.

on Enables the recognition and substitution of the diamond surrogate.

off Disables the recognition and substitution of the diamond surrogate.

diamond takes two optional arguments. The first (character) is the surrogate character
to be used. The default is the cap (n) character. The second argument is one of the
keywords on or off (the default is on). It enables or disables the recognition and substitu-
tion of the diamond surrogate.

Characters that are valid to use for surrogates are the same as those that may be used
for separator characters: non-alphanumeric, and not one of the reserved characters:

{YLICY/N.+teFVAA+'"?2«0_=

Editor Commands: diamond 197

Syntax

Resuit

Usage

Examples

Editor Commands: display

The display command displays objects in your workspace or any LOGOS path to which
you have read access.

display [[=1name]

C+nolines]
[=Iname Is the name of the object.
name Is an object in LOGOS.
=name Is a workspace resident object.
+nolines Omits opening and closing delta characters and bracketed line

numbers from the display if the object is a function or script.
If you are editing in full screen mode, the object displays in the editor output window.
If you do not provide an argument, display displays the contents of the editor clipboard.
If you enclose the argument in brackets, display treats it as a reference to the pathname

of the object currently being edited. For example, the argument (/] is equal to
pathnamel /] where pathname is the pathname of the current object.

display =mat

Displays the workspace-resident object mat.

display .public.util.vtom

Displays the vtom function in the public utility library.

198 Editor Commands: display

display [3:j]

Displays the journal for version 3 of the object currently being edited.

Editor Commands: display 199

Editor Commands: down

The down command moves the reference line pointer down a specified number of lines.
Syntax dCown] [integer|*]

integer | x Is the number of lines from the current reference line to make the new
reference line.

integer Makes the line the specified number of lines from
the current reference line the new reference.

* Makes the last line of the object the reference line
(equivalent of the bottom command).

Examples

down 3

Makes the line three lines below the current reference line the new reference line.

200 Editor Commands: down

Editor Commands: edit

The edit command opens objects for editing.

Syntax eldit] [=1name
[+browse[=off |onllock]]
[+disttask=task]
C+makedir]
C+override]
[+register]
[+task[=task]]

[=]name Is one or more object names to be opened for editing.
name Is an object in LOGOS.
=name Is a workspace-resident object.

+browse[=off | on|lock]
Allows the viewing and manipulation of an object without risk of
corrupting the source.

+browse Toggles browse mode from on to off, or from off to
on.

+browse=off Allows changes to objects to be saved.
+browse=on Does not allow changes to objects to be saved.
+browse=lock Does not allow browse mode to be turned off.
+disttask=task
Specifies the name of the auxiliary task to be used by the Application
Debugging Assistant to distribute changed objects to the active
workspace.
+makedir Allows the creation of intermediate directories specified in the
argument to the edir command. This is identical in function to the
+makedir modifier supported by the LOGOS save command.

+override Overrides existing registration (must be specified with +register).

+register Causes the editor to register out each of the objects named in the
argument before opening it for editing.

Editor Commands: edit 201

+task[=task]l Allows editing of objects in the workspace of an auxiliary task started
from within LOGOS. If +task is specified without an argument, the
default task name aux is assumed. If +task is omitted, the task named
in the environment task parameter, if any, is used.

Usage If you include the name in brackets, it is treated as a reference to the pathname of the
object being edited.

202 Editor Commands: edit

Editor Commands: end

The end command saves changes to an object, closes the object and leaves the editor.

Syntax end [name]
(+makedir]
C+override]
C+register]
name Is the pathname under which to save the current object.
+makedir Allows the creation of intemediate directories specified in the
argument. This is identical in function ot the +makedir modifier to the
LOGOS save command.
+override Overrides existing registration (must be specified with +register).
+register Registers in the object you are closing.
Usage If you specify the name argument, it must be a pathname whose terminal segment

matches the object’s current name. end name allows you to change the directory in
which the object is saved, but does not change the object’s name. Use setname if you
want to change the name.

end[0] will save the object but will not change the version.

If v is used instead of end to save an object, it does not support the name argument.

Editor Commands: end 203

Editor Commands: format

The format command places the object being edited in canonical format.
Syntax folrmat]

Result For functions and scripts, the visible effects of this are realignment of labels and com-
ments, removal of redundant blanks etc.

In character and numeric variables, format removes trailing blanks from lines of
character data and reformats numbers and aligns columns of numeric data.

format displays an error message if the object cannot be properly formatted (for
example, because of a damaged function header, invalid numeric data, etc.).

204 Editor Commands: format

Syntax

Usage

Editor Commands: get

The get command retrieves text from an object or the screen and inserts it in the current
object, either immediately after the reference line, or if you specify the up variant,
above it.

gelt1Lup] [name|* (integer]]
[+task(=task] 1]

up Reverses the direction of the command,
name | * Is the object from which to extract the text.
name Fetches text from the specified object in the

workspace, or if name contains a non-alphanumeric
pathname symbol (for example, a dot (.) or bracket
(D), from an object in LOGOS.

* Fetches text from the screen display.

integer When used with *, is the number of screen lines to copy from the
location of the cursor in the editor display to the object.

+task[=task] Fetches text from variables in the workspace of an S-task started from
within LOGOS. If +task is specified without an argument, the default
task name aux is assumed. If +rask is omitted, the task named in the
environment task parameter, if any, is used.

If you enclose name in brackets, it is treated as a reference to the pathname of the ob-
ject being edited. For example, the argument [13 is equal to pathname[/] where path-
name is the pathname of the current object. This makes if convenient to reference alter-
nate versions and attributes of an opened object.

If you copy text from the screen, the text to copy and the destination within the object
must be visible on the screen simultaneously. The copy can occur from the display
window or from one location in the object to another.

If you do not provide an argument, get fetches text from its own internal buffer. The

only way to write something to this buffer is to use the put command without a variable
name argument. This makes if convenient to use pur and ger together.

Editor Commands: get 205

Examples

get buf

Inserts the contents of the variable buf after the reference line.

fop VU delete * U get []

Discards all changes made to the currently open LOGOS object and restores the
original source.

getup * 3

Copies three lines of text from the cursor position on the screen to just before the
reference line.

206 Editor Commands: get

Syntax

Result

Editor Commands: header

The header command assists in the maintenance of function and script headers. It
identifies two suspicious categories of names:

« Global identifiers, which are assigned within the body of the object but do not ap-
pear in the header.

« Unreferenced identifiers, which are localized in the header but do not appear
anywhere in the body of the object.

Optionally, the header command can also take corrective action on based on the user’s
input.

healder] [glul [V]A]|_]

glu Restricts header to report only one class of names.
8 Identifies global identifiers.
u Identifies unreferenced identifiers.
vial_ Conditions header to ignore certain references.
v Ignores names if they correspond to functions

present in the active workspace.
A Ignores names beginning with A.

Ignores names beginning with a character in the
second alphabet.

header reports suspicious references in the form of a menu.

If you are editing in full screen mode, this is a full screen menu. Each name is followed
by an input field beside it and a single character (g or u).

If you are editing in line mode, suspicious references display one by one, and you are
prompted for input for each.

Editor Commands: header 207

Usage In full screen mode, place any character in the input field beside the identifier and cor-
rective action will be taken.

In line mode, enter y to take corrective action.
When you take corrective action, global identifiers are localized, and unreferenced

identifiers are removed from the header. In addition, the locals list is sorted
alphabetically.

208 Editor Commands: header

Syntax

Result

Usage

Editor Commands: help

The help command obtains information about another command.
hlelp] [command]

command Is the name of the command for which you want
more information.

If you omit the argument, a summary of all commands is displayed.

If you provide an argument, the command lists general, syntax, and usage information
about that command.

On an asynchronous terminal, the results will be printed at the terminal. On a 3X7X
device, the results will appear in the editor display window.

In addition, on a 3X7X device, you may use PF1 to display a menu of command names
and other topics. You may select individual items on which you want to reccive
detailed help information by tabbing to the desired item, typing any character in the
input field next to the item, then pressing the Enter key. Only one item can be selected
at a time.

You may also display help on any of the following topics by entering the topic name as
the argument to the help command:

Topic name Information provided

command summary List of all editor commands and a brief summary of their action.
pf keys PF key definitions.

keywords Summary of how to use keywords from within the editor.
separator characters Using separator characters in the command line.

utility interface Details on how to use the aledutil function.

Editor Commands: help 209

Editor Commands: highlight

The highlight command identifies all occurrences of a string or pattern within a
specified range.

Syntax hilghlight] Cup] [_1/string/attribute/ [integerl|* [integer2]]]

Performs a syntactic search.

string Is the string or pattern to be located. Patterns must be enclosed in
curly braces ({ }) or each metacharacter in the pattern must be
prefixed with a dieresis (7).

attribute Indicates how you want to highlight matching strings or patterns (for

example, colour, flashing, underlined, etc.) You can select one colour
attribute and one character attribute. They are:

Colour Attributes Character Attributes
b Blue d Default
d Default f Flash
g Green i inverse
p Pink u Underline
r Red
t Turquoise
w White
y Yellow
integerl | x Specifies the number of lines to search.
integerl Searches that number of lines from the reference
line down.
—integerl Searches that number of lines before the reference
line.
* Searches all lines from the reference line to the end.
—% Searches all lines before the reference line to the top.

210 Editor Commands: highlight

Result

Usage

Examples

integer2 | x Specifies the number of occurrences on a line to highlight.

integer2 Highlights the specified occurrence counting from
the left end of the line.

~integer2 Highlights the specified occurrence counting from
the right end of the line.

* Highlights all occurrences on a line.

If you are editing in full screen mode, highlight alters the screen attributes of these oc-
currences.

If you are editing in line mode, highlight displays the lines containing occurrences.

If you do not provide the range of text to be searched (integer1 and integer2), all occur-
rences within the object, both before and after the reference line, are highlighted.

highlight/if the/p/1

Makes all occurrences of the string if the on the reference line appear pink.

highlight_/tmp/rf

Makes all references to the variable tmp anywhere in the object flash red.

highlight /

Tumns off all highlighting.

Editor Commands: highlight 211

Editor Commands: input

The input command allows entry of multiple lines into an object.
Syntax inpCut] string

string is a string to be placed on a new line immediately below the reference line.

Resuit After placing the string on a new line, the editor then goes into input mode, where it
awaits input.
Usage If you do not supply an argument, the editor inserts a blank line directly below the refer-

ence line and goes into input mode.

In input mode, you can enter more text. To add another line, press Enter. To terminate
input mode, press Enter twice.

212 Editor Commands: input

Editor Commands: insert

The insert command allows you to insert text into an object.

Syntax in(sert] Cup] string

up Reverses the direction of the command.

string Is the string to be added.
Result insert adds the new line after the reference line, or if you use the up variant, above it.
Usage If you do not specify an argument, the editor goes into input mode where you can enter

text. To terminate input mode, press Enter twice.

Editor Commands: insert 213

Editor Commands: join

The join command merges two lines of an object into a single line.
Syntax JjCoinlCupl [/string(/1]
up Reverses the direction of the command.
/string([/] Is a string to be inserted between the merging lines. You must specify
a delimiter character at the beginning of the string. To enter an
argument containing trailing blanks, specify a delimiter character at

the end of the string as well.

Result The reference line joins to the line beneath it, or if you specify the up variant, to the
line above it.

Examples

join/©

Joins the reference line to the line following it with a diamond between the merged
lines.

214 Editor Commands: join

Editor Commands: lastline

The lastline command recalls the last command entered and allows its re-execution.
Syntax last[line] [string]

string is a string to be inserted before the recalled command, and can contain several
commands delimited by the separator character.

Result The recalled command appears on the command line.
Usage If string is specified, that text will be inserted in front of the recalled command, and
the entire command line will be immediately executed. If string has not been specified,

press Enter to execute the recalled command.

You can also use the short forms // or). You cannot provide an argument when you
specify), or the editor interprets it as a LOGOS command.

Editor Commands: lastline 215

Editor Commands: locate

The locate command searches the object for a string or pattern and moves the reference
line to the next occurrence of that string or pattern,

Syntax {Locate] Lup] [_1L/Ustringl[/incl]]

up Reverses the direction of the search.
Causes the command to perform a syntactic search. For example, the
command locate_/and will not recognize a match in the string

command because the substring is part of a word.

string Is the string to search for. If this string contains curly braces or
dieresis characters, it is treated as a regular expression pattern.

inc Includes the reference line in the search.
Usage If you do not specify a string argument, the last /ocate command is repeated.

After you use the locate command once, you can abbreviate it to / to find the next
occurrence of the string.

Examples

locate_/t

Moves the reference line pointer to the next line containing a reference to the variable .

/

Locates the next occurrence of the last string secarched for.

216 Editor Commands: locate

Editor Commands: logos

The logos command allows execution of LOGOS commands from within the editor.
Syntax logLos] command
command is the LOGOS command to be executed.

Result If you are editing in full screen mode, the output of the logos command displays in the
editor display window.

Usage You can also abbreviate the logos command to).
You cannot invoke the LOGOS edit or exit commands from within the editor.

Examples

Yist

Invokes the LOGOS list command from within the editor.

Editor Commands: logos 217

Editor Commands: move

The move command moves a line or group of lines from one location to another,

Syntax mCovel Cup] [integerl|* Cinteger2| 1]
up Reverses the direction of the command.
integerl| > Specifies the number of lines to move.
integerl Moves lines from the reference line forward.
—integerl Moves lines from the reference line backward.
* Moves the reference and all lines forwards from it.
—% Moves the reference line and all lines backwards
from it.
integer2 | x Specifies the destination of the lines relative to the reference line.
integer2 Puts the moved block the specified number of lines

after the reference line.

—integer2 Puts the moved block the specified number of lines
before the reference line.

* Puts the moved block at the end of the object.
—% Puts the moved block at the beginning of the object.
Usage If you do not specify integerl, the default value 1 is used. This moves one line below

the reference line.

If you do not specify integer2, the default value O is used. This moves the block
immediately below, or if you use the up variant, above itself.

218 Editor Commands: move

Examples

move 3 *

Moves the reference ling and the two lines following it to the end of the object.

move

Swaps the reference line and the line immediately below it.

Editor Commands: move 219

Editor Commands: names

The names command reports the names of all objects open for editing.

Syntax nalmes] [def|window]
def Displays the list of keywords. On a 3XXX device, this is displayed in
the editor message line.
window Displays names in a scrollable window area if you are editing in full
screen mode.
Result If you are editing in full screen mode, the names display in the message area.
Usage When you are editing in full screen mode and there are more names than will fit in the
message area, you can use the window keyword 1o display them in a scrollable window
area.

220 Editor Commands: names

Editor Commands: next

The next command moves the reference line pointer.
Syntax nlext] integer|+
integer | * Specifies the number of lines to move the reference line.

integer Moves the reference line forward the specified num-
ber of lines.

—integer Moves the reference line back the specified number
of lines.

* Moves the reference line to the last line of the ob-
ject.

—% Moves the reference line to the first line of the ob-
ject.

Editor Commands: next 221

Editor Commands: put

The put command extracts text from the object being edited and places it in an APL
variable or the editor buffer.

Syntax pulr] Linteger | * variable]
[+task[=task]]

integer | * Indicates the number of lines to extract, including the reference line.
integer Extracts the specified number of lines.
* Extracts all lines.

variable Is the name of the variable to contain the extracted text.

+task[=task] Allows the user to put text into a variable in the workspace of an
s-task which was started from within LOGOS. If +zask is specified
without an argument, the default task name aux is assumed. If +ask
is omitted, the task named in the environment task parameter, if any,
is used.

Usage If you do not specify the first argument, the default value of 1 is used.

If you do not specify the second argument, the text is placed into the editor’s internal
buffer. The only way to read this buffer is to use the ger command without an argument.

Examples

top Y put * mat

Puts every line of text in the object being edited into the character matrix mat.

top Y put 3 U bottom V get

Puts a copy of the first three lines of the object at the end of the object.

222 Editor Commands: put

Editor Commands: putnum

The putnum command extracts the line numbers from an object an writes them to a

variable.
Syntax putnLum] [integer|* variable]
[+task(—task]]
integer | * Specifies the number of line numbers to extract.
integer Extracts the specified number of line numbers start-
ing with the reference line.
* Extracts all line numbers from the reference line to
the end of the object.
—% Extracts all line numbers above the reference line to
the top of the object.
variable Is the name of the variable to contain the line numbers.

+task[=task] Allows the user to put the line numbers into a variable in the
workspace of an s-task which was started from within LOGOS. If
+task is specified without an argument, the default task name aux is
assumed. If +rask is omitted, the task named in the environment task
parameter, if any, is used.

Result The variable specified will contain the line numbers in floating point format.
Usage If you do not specify the first argument, the default value of 1 is used.

If you do not specify the second argument, the text is placed into the editor’s internal
buffer. The only way to read this buffer is to use the ger command without an argument.

Editor Commands: putnum 223

Editor Commands: quit

The quit command terminates the editing of one or all objects without saving any

changes.
Syntax qLuit] Limm|all]
imm Closes the current object open for editing without saving any changes.
all Closes all objects opened for editing without saving any changes.
Usage The only way you can use quit without an argument is if you have not made any chan-

ges to the object. If you have modified the object in any way, the editor insists that you
provide an argument to the quit command (all or imm) before closing it.

224 Editor Commands: quit

Editor Commands: renum

The renum command renumbers the lines of an object.

Syntax ren[um] [integerl [integer2]]
integerl Specifies the first line number to appear in the new series.
integer2 Specifies the increment between line numbers.
Usage The default value for both arguments is 1. If you do not specify the first argument and

the object is a function or a variable with an index origin of 1, renwm uses a value of 0.

Editor Commands: renum 225

Editor Commands: replace

The replace command deletes the reference line and substitutes a new line in its place.
Syntax rCeplace] [string]
string is the string to use as the new line.

Usage If you do not provide an argument, the editor goes into input mode. To terminate input
mode, press Enter twice.

226 Editor Commands: replace

Syntax

Usage

Editor Commands: resequence

The resequence command is useful when editing functions or scripts which use a name
followed by a number for labels (for example, /7). resequence provides a simple means
of putting labels back in numeric order when you have introduced additional labels into
the object during an editing session.

res{equence] Cintegerl [integer2]]

C+prefix=label]
integerl Is the number to use as the suffix of the first label.
integer2 Is the increment between labels.

+prefix=label Specifies the prefix string searched for when looking for labels to
renumber. If omitted, the default label / is used.

If you do not specify integerl, the default value of O is used. If you do not specify in-
teger2, the default value of 1 is used.

resequence only affects labels which fit the pattern of a name followed by a number.
Both the labels and references to them will change.

resequence does not examine the contents of quoted strings, such as arguments to
execute (2) or assignments to Otrap. If resequence is used on a function with references
to labels in quoted strings, the function may be modified incorrectly. To prevent this,
avoid using labels which fit the pattem of a name followed by a number in these
contexts, or change them so the referencc to a line label occurs outside of quotation
marks. For example:

Otrap«'Vi e »I7!

could be rewritten as:

Oirap«1V1 e »' ,%]7

Editor Commands: resequence 227

Examples

resequence 1 5 +prefix=error

Resequences all labels of the form errorQ, errorl, so that the first label is errorl, the
next is error5 and so on.

228 Editor Commands: resequence

Syntax

Examples

Editor Commands: sepchar

The sepchar command defines the editor command separator character and enables or
disables its recognition.

sepLcharacter] [character] [on|off|imm]

character

on

off

imm

Is the character to be used as the command separator. This character
must not be alphabetic, numeric, or reserved:

{}LIC)/N. .ty ea¥VAA+" _?2+«0=
Enables the recognition of the command separator character.
Disables the recognition of the command separator character.

Causes all commands, including those with deferred separation, to
recognize the separator character.

sep imm U apl v«10 30p Y *o(' U get v Y sep on

Makes the apl command recognize the U as a separator character.

Editor Commands: sepchar 229

Editor Commands: seftname

The setname command allows you to change the name of the object you are editing.

Syntax setnLame] [=1name
[+task[=task]]

name Is the new pathname for the object.

=name Treats the name as a reference to an object in the
workspace and conditions the editor to save the ob-
ject in the workspace, not back in the LOGOS
hierarchy.

+task[=task] Allows the user to specify that an object is to become ws-resident in
the workspace of an S-task which was started from within LOGOS.
This is valid only with a workspace resident object, or one that you
want to make resident in the workspace by using setname=name. If
+task is specified without a value, the default task name aux is
assumed. If this modifier is omitted, the task named in the
environment task parameter is used, if any.

Note: If the object was originally opened from the workspace of an
suiliary task, setname=name without +task will result in the changed
object being saved back in the task from which it was opened,
regardless of the environment task setting. In this case, to alter the
workspace which receives the changed object, you must specify the
+task modifier with the appropriate value.

Result If the object is a function or an object, the header is adjusted to reflect the new name.

Usage If you enclose name in brackets, it is treated as a reference to the pathname of the ob-
ject currently being edited.

230 Editor Commands: setname

Examples

setname scan

Changes the name of the opened object to scan.

setnamel :d]

Changes the name of the current object so that it becomes the documentation attribute
of the object.

Editor Commands: setname 231

Editor Commands: settype

The setrype command allows the user to change the data type of the object being edited.
Syntax settCypel [flslvelvnl [011]2]

[flslvclvn] Specifies the type of argument. Types of arguments are:

f Function
s Script
cv Character variable
ny Numeric variable
ot1121 Indicates the rank of the type (must be provided if you specify a type
of cv or nv).
Usage If you do not specify an argument, settype reports the object’s current type using the fol-
lowing codes:
f Function

s Script
cvin Character variable of rank n
nvn Numeric variable of rank n

n represents rank.

Invalid type conversions (for example, setting a numeric variable to a function) are
reported when you try to save the object.

232 Editor Commands: settype

Examples

settype f

Converts the object into a function.

settype vc 2

Converts the object to a character vector.

Editor Commands: seffype 233

Editor Commands: sort

The sort command sorts the list of local identifiers in the header of a function or script.
This makes it easier to locate a given identifier within the list.

Syntax solrt]
C+lexographic]

+lexographic Sorts names using their length as a primary key and their alphabetic
ranking as a secondary key.

Result Sorts names in strict alphabetical order unless you use +lexographic.

If a name appears more than once, sort removes redundant entries.

234 Editor Commands: sort

Editor Commands: split

The split command breaks a line into two separate lines.

Syntax splLit]1 Cup] * | /string [/integer]
up Reverses the direction of the command.
* If you are editing in full screen mode, the line splits at the cursor
position.
/string Splits the reference line before the specified string.
/integer Specifies at which occurrence of string to split the line.
integer Counts from the beginning of the line.
—integer Counts from the end of the line.
Result The first part of the line remains the reference line, unless you use the up variant, caus-

ing the second part of the line to become the reference line.

Examples

split *

Splits the line at the cursor. This is equivalent to F10.

split/ hold

Splits the line at the first occurrence of the string Aold.

Editor Commands: split 235

split/hold/-1

Splits the line at the last occurrence of the string hold.

236 Editor Commands: split

Editor Commands: super

The super command allows you to edit a line in a manner similar to the IBM APL/SV
vV editor’s ‘superedit’ form of dot-and-comma editing.

Syntax sCuper] Linteger]
integer Indicates the number of the character at which to place the cursor.
Result If you are editing in full screen mode, the reference line is placed into the input area

with the cursor over the specified character.

If you are editing in line mode, the line displays and the keyboard unlocks for
dot/comma editing, similar to the [n(dm] command.

Editor Commands: super 237

Editor Commands: switch

The switch command puts the current object aside temporarily and moves the editor to
another object previously opened for editing.

Syntax swlirch]

238 Editor Commands: switch

Syntax

Editor Commands: syntax

The syntax command computes a report describing static errors within a program. It

tests the following conditions:

e illegal characters

« symbol juxtaposition problems

« mismatched parentheses, brackets, or quotes

« suspicious use of names (optional)

sylntax] Cattributes)

[+all]

C+display]

[+lines]

[+quotes]
L+show]

attributes

+all

+display

+lines

+quotes

+show

Is a screen attribute (one character) or a pair of screen attributes (two
characters) to be used to highlight errors. For a list of attributes, see
the highlight comannd.

Computes all errors, including suspicious name references which may
not be erroneous.

Displays the entire line on which errors occurred.

Displays the line numbers on which errors occurred, followed by a
symbol denoting the type of error (See below for a list of symbols).

Causes quoted strings logically appearing after executes within the
program to be examined as if they were unquoted.

Displays the entire line on which errors occurred, with a symbol
pointing to each error. The symbol denotes the type of error at that
location. Because errors relating to parentheses, brackets, and quotes
are obvious, the caret (A) is substituted as the pointer.

Editor Commands: syntax 239

Symbols indicating errors are:

A Generic syntax error. These include most incorrect uses of symbols. For example:

a dyadic symbol used monadically

an improper outer product

an improperly labelled line

use of branch not as the root function of a statement
redundant use of diamond

(Parenthesis arror.

C Bracket error.

! Quote error.

+ Domain error. These arise from apparent use of a character argument where a numeric

one was expected. As the syntax command does not execute the program, only a limited
number of these are detected.

. Constant error. These refer to illegal formation of numeric constants. For example, 4..1
and 8je4 are illegal constants, while 4.1 and 8/8e4 are legal ones.

? Suspicious reference. These denote use of names which are unusual but may or may not
be erroneous in the running application. For example, a local variable which is not
assigned a value, or a name which is used to define a line-label more than once, is
considered suspicious.

Result If you are editing in full screen mode, errors are highlighted with the attributes
specified. If no attributes were specified, but one of +display, +lines or +show were in-
cluded, the report appears in the editor output window.

Usage The syntax command does not actually execute the program. This command should be
used to supplement but not replace careful program and system testing.

If syntax is used without arguments or modifiers, the pathname of the object is returned
if any errors are detected. If no errors are detected, the result is empty.

NOTE: This command has the effect of using the format command on the function, so the
modified flag is set to on even if no changes have been made.

240 Editor Commands: syntax

Editor Commands: top

The top command moves the reference line pointer to the first line of the object.

Syntax tolpl

Editor Commands: top 241

Editor Commands: #ype

The type command displays a range of object lines on line mode terminals.

Syntax tLypel Linteger|]
integer | x Is the number of lines to display, including the reference line.
integer Displays the specified number of lines, including
the reference line.
* Displays all lines from the reference line to the end
of the object.
Usage If integer is not specified, it defaults to 1.

242 Editor Commands: fype

Editor Commands: up

The up command moves the reference line up the specified number of lines.

Syntax ulp] Cinteger|*]
integer | * Specifies the number of lines to move the reference line.
integer Moves the reference line the specified number of
lines.
* Moves the reference line to the first line of the ob-

ject (equivalent to the fop command).

Editor Commands: up 243

Syntax

Usage

Examples

Editor Commands: use

The use command allows the user to build a series of editor commands into a variable
and then interpolate that variable into the editor command line. This command provides
a rudimentary macro capability in the editor.

uslel [variable]

variable Is the name of the variable.

If you do not provide an argument, the internal editor buffer is used (see the ger and put
command for more information on the buffer).

The function alcomments takes the canonical representation of a function as its
argument and returns as a result the canonical representation with all comments aligned.
If you define the variable align to contain the string:

Y1op Y put * temp VU delete * U sep imm VU temp<alcomments temp Y get temp*

you can invoke the comment alignment function with the command:

use align

244 Editor Commands: use

Editor Commands: verify

The verify command sets or clears editor state parameters.

Syntax vlerifyd Lonloffd Lnum|nonum] Ulog|nologl [prompt|noprompt]
onloff Control verification mode.
on Displays the new reference line after commands

which change it. Default for line mode terminals.

off Suppresses the display of the new reference line
after commands which change it. Default for 3X7X
type terminals.

num | nonum Controls the display of line numbers.
num Displays line numbers to the left of each line.
nonum Suppresses the display of line numbers to the left of
each line.
log | nolog Controls the logging of LOGOS command output to the standard

screen during sessions in full screen mode.

log Writes output and commands entered to the standard
session log, providing an audit trail of LOGOS com-
mands executed during an editor session.

nolog Display command output in the editor window (in
full screen mode) but does not enter it in the session
log.

prompt | noprompt
Controls whether the editor prompts for command input.

prompt Prompts for input.
noprompt Does not prompt for input.
Usage verify with no arguments returns the current sctting for each option.

Editor Commands: verify 245

Editor Commands: vput

The vput command extracts selected text from the edited object and places it in an APL
variable or the editor buffer. This is similar to the put command. However, vput creates
character vector variables, where put writes data in character matrix format.

Syntax vpLut] Cinteger|*] [variable]
[+task[=task]]

integer | x Indicates the number of lincs to extract, including the rcference line.
integer Extracts the specified number of lines.
* Extracts all lincs from the reference line to the end

of the object.

—% Extracts all lines from the reference line to the
beginning of the object.

variable Is the name of the variable to which the extracted text is to be
assigned.

+task{=task] Allows editing of objects in the workspace of an auxiliary task started
from within LOGOS. If +task is specified without an argument, the
default task name aqux is assumed. If +task is omitted, the task named
in the environment task parameter, if any, is used.

Usage If you do not specify the first argument, a default value of 1 is used.

If you do not specify the second argument, the text is placed into the editor’s internal
buffer. The only way to read this buffer is to use the ger command without an argument.

246 Editor Commands: vput

Examples

top Y vput * vec

Puts every line of text in the edited object in the character vector vec.

top Y vput 3 Y bottom Y get

Places a copy of the first three lines of the object at the end of the object.

Editor Commands: vput 247

Editor Commands: window

The window command configures and manipulates the editor’s output window.
Windows are created only during full screen editing session.

Syntax wilndow] [Lup] [integer | +integer | —integer | /string]

up Reverses the direction of the command.

integer Sets the maximum number of lines in a window.

+integer Scrolls the window forward that number of lines.

—integer Scrolls the window backwards that number of lines.

/string Puts the line containing the string on the first line of the window.
Result When a command creates output, the window displays that output. For example, if the

window is set to 12 lines and the xref command creates 20 lines of output, the window
displays 12 lines of output. On the other hand, if the command creates 10 lines of out-
put, the window is 10 lines.

Usage If you specify a string, window searches forwards from the first line currently displayed,
unless you specify the up variant, in which case window searches backwards from the

first line currently displayed.

The largest window size you can set is 12 less than the number of lines the terminal
displays. On a 24 line screen, a window of 12 lines is the largest size you can set.

248 Editor Commands: window

Syntax

Result

Editor Commands: xref

The xref command produces a cross-reference listing of the function or script being
edited.

xrief]
[+quotes]
[+symbols=symbols]

+quotes Examines quoted strings logically appearing after executes within the
function or script as if they were unquoted.

+symbols=symbols
Cross-references arbitrary, additional APL symbols along with
ordinary APL identifiers. If this is omitted, the symbols - ¢ : O [are
cross-referenced by default.

For each identifier located within a program, xref computes the identifier’s local type,
and an indication of whether or not the name occurs suspiciously (for example, a local
variable which is not assigned a value, or a name which is used to define a line-label
more than once, is considered suspicious). The identifiers are:

la left argument

Il line label

lv local variable

af quad (system) function
ra right argument

rs result

* indeterminate

xref marks suspicious identifiers with a query (?) after its type.

For each identifier reference within a function or script, xref computes the line number
of the reference, and its type. The reference type can be:

(blank) simple reference

- simple assignment
C indexed reference

[« Indexed assignment
: Line-label definition

In full screen mode, the listing displays in the editor window.

Editor Commands: xref 249

Examples

xref +s=+++p

Produces a cross reference of objects and includes any use of the symbols +, -+, «, and
P.

xref +q +s=0a4

Produces a cross reference listing that includes references to objects inside quoted
strings. The result also includes uses of the symbols 0, a, and +.

250 Editor Commands: xref

EDITOR FUNCTION KEY SUMMARY

Function Key Description

F1 Help.

F2 Toggle the line number protection on and off.

F3 End (save the object), or close the display window.

F4 Enter input mode on the line after the cursor.

F5 Switch to the next object on the edit stack.

F6 If the cursor is in the edit area, make the line the cursor is on

the reference line.

If the cursor is in the command area, move the cursor to the
end of the reference line.

F7 Scroll backward.

F8 Scroll forward.

F9 Recall the last command line.

F10 Split the line the cursor is on at the cursor location.
F11 Move the cursor to the end of the line it is currently

positioned on.

F12 Switch to journal, documentation, or source attribute.

Editor Function Key Summary 251

252 Editor Function Key Summary

THE EDITOR UTILITY INTERFACE

About the Editor Utility INerface.......ccouvveevrereeeceeeierneeeeeteceereieaseesesesenseneenes 255
Summary of Right ATGUMENLSccveeeiieeieececeiccrinrrseaeseenereseeeeesrenseeesesnens 255
Detailed Command DESCIPLONS.........ouevevemerenerseneremecscseeeermeeeenreresessesesssessenes 256
USING AIEAUIL oo ceeriritcicceetiie ettt s s s sese e sass e sesnsanas 259

The Editor Utility Interface 253

254 The Editor Utility Interface

About the Editor Utility Interface

The function Aledutil provides an interface between the editor and scripts invoked from
within the editor. This makes it possible to extend the editor by writing scripts that use
Aledutil to manipulate the editor buffer, execute editor commands under program

control, etc.

Summary of Right Arguments

The right argument to Aledutil is a character vector command name. The following

table summarizes the commands and what they do:

Command
cmd
readbuf
writebuf
readref
writeref
readnos
writenos
readhi
writehi
readwin
writewin
readwref
writewref
writemsg

status

Description

execute editor command in left argument
read edit buffer

write left argument to edit buffer

read location of reference line

set refernce line to index in left argument
read line numbers

set line numbers to left argument

read highlighting information

write highlighting information in left argument
read window contents

write left argument to window

read window reference line position

set window reference line position

write left argument to message area

read object status

The Editor Utility Interface

255

Detailed Command Descriptions

cmd: execute editor command
The left argument is passed to the editor for evaluation as a command line. The result is
a return code from the command. Currently, this is always 0. Future versions of the
interface will retumn other values.

readbuf: read edit buffer
The contents of the edit buffer are read and returned as the function result. This result
will always be a character vector, regardless of the type of the object being edited.
Every line, including the last one, will be terminated with a carriage return.

writebuf: write edit buffer

The left argument (which must be a character vector) is written to the edit buffer,
replacing the previous contents.

readref: read location of reference line

The result is the index of the reference line within the edit buffer. This index is
Oio-relative.

writeref: set reference line

The reference line is set to the line whose index appears in the integer left argument.
The value of this argument is (io-sensative.

readnos: read line numbers
The result is an integer vector of line numbers. The numbers returned are generated by
multiplying the line numbers displayed by the editor by 10,000, guaranteeing an integer
result.

writenos: set linenumbers
The line numbers displayed by the editor are replaced by those in the integer vector left

argument. The values in the left argument must be 10,000 times the values you expect
the editor to display.

256 The Editor Utility Interface

readhi: read highlighting Information

The result returned is a two-element vector of enclosures representing the current
highlighting attributes. The first element is an nx2 character matrix of attributes (e.g.
’pi’ for “pink’ and “inverse’). See the description of the editor highlight command for a
complete list of attributes. The second element is an enclosed nxm boolean matrix.
Each row corresponds to a row of the attribute descriptions in the first enclosed
element. Each column corresponds to a position in the edit buffer. If an element is 1,
then the corresponding position in the edit buffer has the indicated attributes set.

writehi: write highlighting information

The left argument must conform to the structure rcturned by the ‘readhi’ operation. This
command writes the attributes indicated to the screen.

readwin: read window contents

The current contents of the window are returned as a character vector.

writewin: write to window

The character vector left argument is written to the editor window. Optionally, a two
element vector of enclosed character vectors may be passed as the left argument. The
first enclosed vector is written to the ’title line’ of the window. The second is wrilten to
the window proper.

readwref: read window reference line position

The result is the index of the window reference line within the window buffer. This
index is Oio-relative. If no window exists, 7 is retumed.

writewref: set window reference line position

The window reference line is set to the line whose index appears in the integer left
argument. The value of this argument is Oio-sensitive.

writemsg: write message

The character vector lelt argument is written (o the editor message area.

The Editor Utility Interface 257

status: return status information

The result of this operation is a two element vector of enclosures:

L0] — nxm+2 matrix of typelattribute/pathname information

;0] £;1] 02w
object attribute pathname
type

[1] — nx6 matrix of integers:

[;0] C;1] [;2]
version number variable type variable rank
0 = char
1 = num
[;4] £;5]
browse state registration
0 = read/write 0 = not registered
access out
1 = browse 1 = registered out
2 = browse lock
3 = read-only
access

258 The Editor Utility Interface

;3]

modified flag

1 = modified;

0 = not modified

Using aledutil

The Aledutil function must be used from within a script that is called during your editor
session. For example, suppose you have created a script with the following definition
that uses Aledutil.

(1] copyit +Start= +Count= +Dest=,x;lines; .public logos.util. Aledutil;tmp Qtrap
(2] Qtrap «'V 0 ¢ »e2!

(3] lines+<0.0001xAledutil * readnos’'

(4] »(~(00fi Dest) €lines) /el

(5] xe>(,Start, ']

(6] x«x, 'oput ' ,Count,' tmp !

(7] x«x,'2[",Dest, ']

(8] x«x, '>get tmp"

[9] —x Aledutil *cmd' ¢ -0

[10] el: 'invalid destination' Aledutil *writemsg' © -0
[11] e2:('script error * ,Oer[Oio; 1} Aledutil ' writemsg!

During your editor session, you could use your script instead of the editor’s copy
command to copy the 5 lines starting at line 8 and inserting them after line 20 of the

object in the editor:

VU dcopyit 85 20

The Editor Utility Interface 259

260 The Editor Utility Interface

LOGOS COMMAND CROSS REFERENCE

Cross Reference Of ATZUIMENLS........ccoveverireeirerereeereeeeseneeereesreeseve e sesesnesesesssasees 263
Cross Reference Of MOGIIETS.........oceeeeenirereeeeeessesenreeneecsneesnreseeraseesssessesassesseses 265

LOGOS Command Cross Reference 261

262 LOGOS Command Cross Reference

Cross Reference of Arguments

Argument Command
[=INAMESconirrvirrrrirrirctrmiinec s esiers e sseas V edit

IR OULTONL Off woveeeverevrenecercerenncereeesintsesesanas register
LAlIAST ..ttt emeacaasneeaas alias enroll group
AlASES ..o snsateee st s share
AFGUIMENLES ..o sesaens with
Cecommand]cocoeeiinieirecerecnicereeeeeecnaeeeenes ? 22 help
COURL ottt e essaenes retain
[definition]cccccomvveecreeveeeeeiee et keyword
Cdestination]ccccoereeninorececeeeene e build shell
[eXPression]cccooirneveevcncenenecnirirenennens ¢ exit
EXPreSSIONocooviciiemiceircrce et ¥ with
[filename]cccvreeeereceeereerreeneere e eeeenes filesave
B ettt sre st e e eeas whois
[HNET et seen s e send
Cnamelist]ccoovoveereiieeee et eve e snap
DAMENIST ..ot naeaae transfer
(1817111 170 oS PUOO USRS PPPRRTRt keyword
newpathname ... link
Cnewpathname]cccovvneriiinnnnnnene. import
NEWSETINE ..ooceviiiiereer e ses e s replace
Coldpathname]ccoeeieeeeercvereeseenrenncnerens import

LOGOS Command Cross Reference 263

Cross Reference of Arguments, continued
Argument

oldpathname

OMASEIING ...t ecereeecteissannnne
[parameter]oocomrrerccciecinnnrnacnne e
[PASSWOrd]ccocceirrnenecrerceeccecesnernerseceeesene

Cpathnames]..........cccoomirererenenreeresscrsersnnsnene

pathnamescccoocoveeeiinniiiinnnicneccecenes

PAthname ..o
PrimAariescinnncnccnenniceceenenens

[secondaries]c.coooeeiieenemrerreeeeneeeisneennnns

Cusernumber | alias[:password]]
Cvalue] ...t

CWSIA D coeneeeeeeeeetrereececee e ereereer e sareevesennnenes

Command
link
replace
environment
alias

build cmddir list locate references
workdir

calls copy delete display disiribute
export get register replace retain save
share summarize syntax wstofile xref

filemaint import

compare

locate

talk 1asks

ouiput
enroll

signon

environment

wssave

264 LOGOS Command Cross Reference

Cross Reference of Modifiers

Modifier Commands

+alias=aliascccovrevinverriirineireeeneerene enroll group

FALL oottt et syntax whois

+asynch ... send

tattributes=c|d 11 nl1 e, wstofile

+attributesC=cld | jln]s11] eeeearreene compare

+audit=filenameccocoovviiiniiiicinninnnn build distribute filesave shell snap
wssave

FAUAIT oot references

FOFCAK et send

+browseL=off | on|1ock] .oeeeeeeveenevereenne V edit

+cmddir=pathnamesccccveveevrnirnnieenns enroll

FCOTUMNL oeeieiiei ettt siea et e e list

+command=commandc.occceomneninennen. v edit

FCOMMCRES et e eine e e aene e summarize

Feompile=cdcccoovevevoniiiiiniirinee e build calls get shell

+eompile[=CA] ..o compare display distribute

FCOMPILSS eoeeerevcniereecsreeansneenecneseeneeneeeee. fHlCTIAINE

FCONIIONAlooeveeiieeee e register

FCORFITMT oottt delete snap

Fdatal=pntype,.. 0 i list

FAelete[ZYCST e enroll group

LOGOS Command Cross Reference

265

Cross Reference of Modifiers, continued
Modifier

FACICIE .ottt ssss s sesenns
+depthU=all | D] c.coovrirecereereeeeceneseenerens
FAESIACK oottt
FAISPIAY oo essists s snesenes

+disttASk=1aSKcccccevureerrrrrrrrrrirrrreceeeeseseseenns

FEITOF ...covimiriciriiiienenieenseesressens e sssesenesenseas
+exclude=namescccomirniniininiinenceeneene
+exclude=[,|/Inamesccoovceevinvvininecne.
FEXPANA ...eviiveveceeeeeecs e e ceeneeeseseaasnenan s
FEXIENACAovvnviniiniiniininiiniiiitinte e
+file=filenamec.cccererveevimrvencenesrensrennnns
HAAGSTZD 18T coeereererereerreeree st csee e evnsenns
+flags=cllInlo|qglslx e
HAAS= L, 1170 1€ v eecveneene
+Hlags=0, 1 1plIsIm e

+HromE=task]coovevviriirie e,

Commands
references share

build calls

calls snap

build shell

summarize

compare filemaint list whois
build shell wstofile

compare

locate replace

transfer

list summarize

266 LOGOS Command Cross Reference

Cross Reference of Modifiers, continued

Modifier Commands
+groups=0,1/IEroupsccovcevvrvvreververrene enroll

+header=,] /MAMESc.ccevevereinrcrrreenrerenas shell

FREAAINGS e.eooevveaeeneivireeeeeseeseecenrie e list references summarize tasks
FIMMEX cieeeiienerseeccnesi st tsas e sese e seesnesae ves send

+Hinference=yes | No ..eeeeeececeeeerernerereanen build

HIRfOrMALIONccoemmirecriirineiiicacecnnsrenernenens wssave

FINIEFIEAVE .o csee st s s compare

FIM ettt st e bt bbb saene copy save

FREEPINTI ..ottt build

FHRES vttt s compare locate replace syntax
FLIOCK=T ittt build filesave shell
FLONG vttt list

FMAKEAITeooevenireiernireieiirereecnie e copy export save snap
FIUALCH coeecviceiiceere et cis et e compare
+mentor=aliascccomnennrinnrneeneereenenns group

FIMESSAGE c.ovvivnvnniirentieereeeneerreaeecaesssssonssssessissness output

FUIPIE ..o, locate replace
FRAME=NAMEcooiiiiiivirirmienrerecaersassarasaneas enroll group shell
FHAME o.eeenirvitrciircnninnesnetnenese e sesasessssanarens whois
+newpassL=password]cccoveevenennennnnne alias

FHONCUITENL auevveeaaceeererereenseeesssscessnessrnassenns delete

LOGOS Command Cross Reference 267

Cross Reference of Modifiers, continued

Modifier Commands

FROPALARAME .ooonneevvernerinrirceosiiecsacnssnns R display

FHOIEZLEXL ...ttt filesave

FHOIOUNocaoeaeeenrrcecccacennrenrsnascsasscernaeaes calls

FOVETREAAooneeeeeeeeeencrevrereereeseee e scesvssennes list

FOVEITIAE ..coenoreeevveenrnenrenceacrrnneecsrenssossnanesnas V copy delete distribute edit export

register replace save

FOVEIWIIIE ..ottt eaees snap wssave
+overwrite [=audit| , | buffer| , ldest] build filesave
+password=passwordcccccceevrrenrnrnnnn. enroll
FPAIRAAMESoeiivvineenvesieiisiis s nensnas calls wstofile
FPAIANAME ...n.eeeeeeiriiistines s sesaeaaeee references
+permission=c| W r|X .oeeiecceccrrerresnnen share
FPIOSTIE it environment
Fprompi=promptc.ccoveiriminnieiiinnene talk

FPPOLECE vttt it e eeesaeses build copy export get save transfer
+GIX=@XPTESSIONccvererrrrrrecrrroeraerrnerrnnanens shell
FQUAAPIIME ncoeoeeiiiriireeecieectee s see e easscoeas output
FGUOLES .ottt syntax xref

268 LOGOS Command Cross Reference

Cross Reference of Modifiers, continued
Modifier Commands
+recursivel=1121all]...eeveaernrcraraaereans build compare get list locate refer-

ences register replace retain share
summarize syntax wstofile

FICQISIEL oevrreerreeseeiveesrersreenreseeessasssasrassssnurassocss V edit

+replacement=pathnamesc....... B distribute

FIESCITYCS crvervrsreeseerrrnrmsiessesessssssasssssnessesssassnssns enroll

FFESOL cnrerrrresreeiieercsenisseesasssrerrssrcsssessossseeasiaes cmddir environment exit workdir

FPESUIL eevnviitiiecereeeeeectctirsetne et e output

+retractL=on | Off J cccccvecvenemerie e send

FPEIPACE anneeeeeeeeeecrvereesrsesserennessaeiasassrennessasnes signon

+script=pathnamec.ccoccecveiiinnenrnennnnene snap

FIHOW et compare distribute locate replace syn-
tax

FSIZETM ceierineeerecieereerenereeeese e e s e sae s enesennaee s build filesave

+skeleton=pathnameccccoemmmnrnccaccs shell

FSIACK unvcviriniiiriiiisinintiis st environment

+state=pathnamecocoeevveceenececnvnnnens wstofile

FSIALUSZEEXL ...ononiinirvvrceeceereiennrenreotresaenaenae Vv edit

FSIATUS ettt eve e eneneseenes output

FSUNINQALY conooeeeevrreseressenirsesrnsressssssesnsssesssrssanes list whois

FSUPPLESS oviviviireeceriiriiitistisiee e sneesissesesssenas send transfer

+surrogate=charactercooerveeeuens with

LOGOS Command Cross Reference 269

Cross Reference of Modifiers, continued
Maodifier

+surrogatesC=b|clillnT e
+5ymbols=SymbolSccecvrieiiriinriniiincnne

HASKL=tASK] ..ot

FUNTEIEreNCedcueeeneeeceeerreeeeeeeerenseeessenssannes

FUNUSEA .nneeeeeveveecerreenverrreesrareessssrecssssnesssssassess

FUSETSTUSCES o.evvecerreneereirrsssessssessessssesssssssessens
+value=[a1valueeeeeeieeererernneenn.
+variant=al el r1S1 oiieieeineeecenes

HVErSIONSE=MNT oerereeeeeecccreierree s eeersrrsrer s

+workdir=pathnamesccccoccecenvennns
+workdir=pathnamecccecvvevunervcnncnne

FWSIA=WSIA ooeeveereerecreeteeecee s

Commands

V build distribute edit get save send
shell signon wssave

transfer

references
delete
build filesave

enroll wssave

270 LOGOS Command Cross Reference

