
IBM

The Use of APL in Teaching

This paper was originally published by Queen's

University, Kingston, Ontario, under the title "The Role

of Computers in Teaching". It appeared as No. 13 in

Queen's papers on Pure and Applied Mathematics.

The programming systems, APL/360 and APL/ll30 are

available from the program information department of IBM

through IBM representatives.

These programs and their documentation have been

contributed to the Program Information Department by an

IBM employee and are provided by the IBM Corporation as

part of its service to customers. The programs and their

documentation are essentially in the author's original

form and have not been subjected to any formal testing.

IBM makes no warranty expressed or implied as to the docu

mentation, function, or performance of these programs and

the user of the programs is expected to make the final

evaluation as to the usefulness of the programs in his own

environment. There is no committed maintenance for the

programs.

Questions concerning the use of the programs should

be directed to the author. Any changes to the programs will

be announced in the appropriate Catalog of Programs; how

ever, the changes will not be distributed automatically to

users. When such an announcement occurs, users should

order only the material (documentation, machine readable

or both) as indicated in the appropriate Catalog of Programs.

© Copyright International Business Machines Corporation, 1969

I

FOR E W0 R 0

The present work consists of a summary of eiqht lectures

delivered by Dr. Kenneth Iverson at Queen's University on March
21 and 22, 1968, to an enth~ iastic audience of professors and
High School teachers from Ontario and Quebec. His lively infor
mal lecturing style, his directness, his evident profound and
comprehensive knowledge of computina and its applications greatly

impressed all his hearers.

I heard only one criticism. His lectures were not
sufficiently philosophical; they contained no sweeoinq gener
alizations~ This criticism was conveyed to him during the course
of his lectures but had essentially no effect~ I gained the
impression that this avoidance of any of the many glowing glib
assessments of computers and their possibilities, which are so
common in popular literature, is a deliberate pedagogical device
on the part of Dr. Iverson. Certainly he is enthusiastic about
the computer and its possibilities for teaching. But if it is
to prove of real use, and not orovide merely time-and-money
wasting gilt to the educational orocess, the computer must be
approached with a down-to-earth, salty attitude.

His aim of showing prec;~ what we can reasonably expect
to accomplish in teaching with the computer dictated, Dr. Iversonls
approach. So in what follows, the reader will find a series of
concrete examples of what has been done, which, taken as a whole,
define the immediate future potentialities of the computer in
teaching as Dr. Iverson sees them at present.

In order to present meaningful examples, some notation is
needed. For this purpose, Dr. Iverson used the proqramming
language, APL, which had its oriqin in his work at Harvard.
APL is a simole, consistent variation and generalization of
ordinary algebraic notation. Many of my colleagues regard APL
as the simplest and a~ the same time the most powerful program
ming language suitable for conversational mode which is currently
available. The footnote on p. 3 describes the development of the
APL system.

APL has been used extensively at several Canadian Univer
sities, including Queenls, with a group of faculty and honours
students. The reader who reads the first few pages of this book
attentively will quickly pick up this new language, as did most
of Dr. Iverson's auditors, and then easily appreciate the sig
nificance of the examples which he uses to illustrate the four
areas of teaching in which the computer can immediately be put
to effective use.

A. J. Coleman,
Head, Department of Mathematics
Queenls University

TABLE OF CONTENTS

INTRODUCTION	 1

Fundamenta~s of Pr~~essinq

Conversing in APL 2

Basic Functions 5

Arrays 5

Table of Operations 6

Defininq Functions 8

Trace, Iteration 9

Order of Execution 12

Functions of two arQuments 13

Four Uses of Comouters, in Teaching

A.	 EXERCISES AND EXPERIMENTATION 14

- simnle experiments 15

- investiqatinq new functions 18

- theory 20

- composition of functions 22

- flowchartinq 26

- non-mathematical examnles 27

- heuristic functions 33

- differencing and slope 33

- advanced mathematical examnles 37

B.	 EXA~INATlnNS

- concrete problems 42

- locked functions 43

c.	 DRILL

- random function 44

- spellinq drill 45

- personalized drill 49

- complex drill 52

D.	 A DISCIPLINE AS A SET OF PROGRA~S 53

SUMMARY	 53

INTRODUCTION

The computer is fast becoming an important tool in
teaching at all l eve l s , It is important that teachers begin
to learn its use, both to exploit its present possibilities
and to explore and develop further uses.

The immediate potential of computers in teaching is due
to two rather recent developments. The first is
11m~=~h2rlng, which permits a single central computer to
serve a large number of relatively inexpensive typewriter
terminals connected by ordinary phone lines. The second is
the simplification of programming, which permits a teacher
or student to make effective use of a computer without
devoting time to the study of inessential details.

The computer can serve many purposes in education,
including the scheduling of classes and classrooms and the
performance of other purely administrative record-keeping.
The present discussion will be limited to those purposes
directly related to teaching. The following aspects of
computer use will be treated in turn: 1) exercises and
experimentation, 2) examinations, 3) drill, 4) computer
programs as the framework of a discipline.

Mathematics appears as the most likely area for the
application of computers, and indeed most of the examples in
the present paper are drawn from algebra. However, other
quantitative topics such as physics, chemistry, and
statistics are equally amenable. In non-quantitative topics
such as language and history, the immediate promise lies
primarily in the categories of drill and examinations.

Before proceeding to discuss anyone of the uses of
computers in teaching, it will be necessary to consider the
techniques of communicating with a computer. This topic is
called Qcogrammlng.

1

A time-shared computer is used via a teLmlnal, which
behaves like an ordinary typewriter except that each
keystroke is transmitted (encoded as a set of tones) to the
computer over telephone lines, and that responses from the
computer are typed automatically. The following is a
typical discourse via such a terminal:

3.4+5.6

9

3. 4x 7

X+3

Y+5

XxY

15
x+y

8
(x+Y)x(X-y)

16

IThe first line of the discourse is entered by the user.
After he strikes the carriage return the computer sends its

response 9 (which is then typed automatically), followed by
a carriage return and five spaces. The spaces automatically
indent the user's entry so as to distinguish entries from
responses. The entries on lines 5 and 6 assign values to
the names (commonly referred to as Yarlables) X and Y. The
succeeding lines show how expressions involving such
variables are evaluated, i.e., by substituting for each
variable the value previously assigned to it.

It is important that the communication with the
computer be unambiguous, and for that reason the rules of
discourse are more rigid than might be inferred from the
preceding example. For example, entering

3.4 PLUS 5 06

will result in the typing of an eL~OL rnessa~e rather than
the sum of 3.4 and 5.6. Both the basic operations
permitted (such as +, x, f and *) and the rules for
combining them (for example, (X+Y)x(X-Y» are limited in
number and precisely defined. For this reason, the
discourse is said to be formal and the "language" defined by
these rules of discourse is called a fQLooal lan&ua&e.

2

There are hundreds of formal programming languages in
existence, but there is only one well-established formal
language which students must learn in any case, namely, the
language embodied in algebraic notation. The present
discussion will be couched in terms of a formal programming
language* which is very similar to algebraic notation. Each
of the examples used will show the actual discourse carried
out on a terminal.

In order to show the relation to algebraic notation and
to clarify the reasons for departures therefrom, certain
examples wi 11 first be stated in the familiar notation.
Consider the following well-known method for computing the
area of a triangle with sides of length A,B, and c:
calculate the semi-perimeter, take the product of the
semi-perimeter and the difference between it and each of the
three sides, then raise this product to the one-half power
(i.e., take its square root).

In algebraic notation, the method is stated as follows:

P=A+B+C
S=P~2

(S(S-A)(S-B)(S-C)1/2

*The APL language was first defined by K. E. Iverson in A

Progratnming Language (Wiley, 1962) and was later developed

in collaboration with A. D. Falkoff. The APL Terminal System.

was designed with the additional collaboration of L. M. Breed,

who, with R. D. Moore, also designed the 8/360 implementation.

The system was programmed for 8/360 by Breed, Moore, and

R. H. Lathwell, with assistance from L. Woodrum. The present
implementation also benefitted from experience with an earlier
version, programmed for the IBM 7090 by Breed and P. S. Abram.s.

Other relevant publications are:

Pakin, S., APL\360 Reference Manual, Sc i enc e Research

Associates, Chicago.

Iverson, K. E., Elem.entary Functions: an algorithITlic

treatment, Science Research Associates, Chicago, 1966.

Falkof!, A. D., and Iverson, K. E. J "The APL\360 Terminal
System", in Interactive Systems for Experimental Applied
Mathem.atics, Klerer and Reinfelds, eds. J Academic Press
(to appear).

3

6

In order to state that the calculation is to be
performed for a specific triangle <such as the one sketched
on the right) one would write the following:

A=3

B=4

C=5

P=A+B+C
S=P+2

(S (S - A) (S - B) (s -C)) • 51

The actual form to be entered on the computer follows
(the last line is the response):

A+-3
B+4

C+5

P+-A +B+ C

S+-Pf 2

(Sx(S-A)x(S-B)x(S-C))*.51

Such a sequence of calculations is called a Q[Qgrgm.

Three departures from conventional notation are to be
no ted: J

1. The symbol +- replaces the equal sign in cases where
it has the sense of "let X=3". This avoids ambiguity
arising from other common uses of the equal sign (as
in the statement of identities such as

The expression S+-P+2 may be read as liS is specified by
the value of P-;'2".

2. The familiar omission of the multiplication sign
is not permitted. This avoids the common confusion in
X(X+2), which means X times X+2 and F(X+2), which
frequently means not F times X+2 but the value of some
function F applied to the argument X+2. It also
permits the use of multi-character variable names
thus AREA can be used as a variable without danger of
confusion with the product of the variables A, R, E
and A.

3. The QQ~~L function is denoted by the symbol *,
whereas in conventional notation this function has no
symbol but is denoted by the raised position of the
second argument. This change is made for convenience
in typing and for uniformity ~Y~L~ operator is
assigned a symbol, and that symbol may never be
elided.

4

ag~l~ fun~11Qn~. It is convenient to have, in addition to
the arithmetic functions +, x, and * already introduced, a
number of other simple basic functions such as divide,
subtract, maximum, etc. Table 1 shows a number of these
basic functions and the symbols employed for them.

There are two points to note about the functions of
Table 1:

1. Each of the functions takes two arguments and, in
the interest of uniformity, each symbol appears
b~t~~~n its arguments in any expression, Just as do
the familiar arithmetic symbols, e.g.,
x+Y, XxY, Xry, xsY.

2. Each of the relational symbols is used as a
DLQDQ~lllQD, rather than as an assertion. The
difference is that a proposition may have one of two
values, !L~~ or fgl~~. As is common in applied logic,
the value !L~~ is represented by the number 1 and
fgl~~ by the number O. Hence the expression 3~7 has a
value (in this case 1), just as 3+7 has a value (10).

The following examples show discourse employing somp of
the functions of Table 1:

X+3

Y+5

Xry

5
X~y

o
(XxY)~«XrY)*2)

1
«X+1)*2)=«X*2)+(2 xX)+1)

1

~ir2~2. The expression

X+2 3 5 7 11

assigns to X the set of five values indicated, and X is
called a vector of dimension 5. A vector can be lD~~~~g to
select any-of-lts elements~- For example:

X[3]
5

X[4]-X[2J
4

X[1 2 3J
235

Vectors have many uses in elementary mathematics and
are a particularly important aid to exposition. Moreover l

when presented simply as a convenient way of treatin~ a
f~mll~ of variables CX[1],X[2], etc.) and not burdened with

5

Definition or examole
+

2+3.2 +-* 5.2Add+

2 - 3 • 2 00(-+ -1 • 2 Subtract

2x3.2 +-+ 6.4x Multiply

2';'3.2 ++ 0.0625Divide

3f7 ++ 7Maximumr
317 ++ 3MinimumL

* Power 2*3 +~ 8

~ Logarithm 10~20 +~ 1.3010299 ...

I Re s i.due AlB -(-~ B-(IA)xLBfl ..4 if
A~O, OIN +~ N for N~O

318 +~ 2 31-8 +~ 1
< Less Relations

Result is 1 if the
~ Not greater	 relation holds, 0

if it does not:
= Equal 3 ~7 +-+- 1

7 ~3 +-)- 0
~ Not less 5~7 +-+ 1

> Greater

~ Not equal

A And A B AAB AvE A~BIA¥B
00001 1

v 01." 01011 0
100 1 1 0

Narid 111 1 0 0

Iff Nor

TABLE 1

6

notion-s like "d l r e c t l on" or "direction and magnitude" wh l cb
arise in one of their many applications, vectors cause
students no difficulty whatsoever.

Each of the basIc operations is extended to vectors
element-by-element. For example:

X+2 3 5 7 11
Y+2 0 2 0 1
X+Y

4 3 7 7 12
Xxy

4 a 10 0 11
X*Y

4 1 25 1 11
2xX

4 6 10 14 22
2*X

4 8 32 128 2048
X*2

4 9 25 49 121
4rX

4 4 5 7 11
X>Y

0 1 1 1 1

Moreover, +/X denotes the sum of all components of x, and
x/X denotes the product of all components, and so on. They
are called ~~m=r~g~£!lQn of X and n!QQY£! r~£Y£!lQn of x,
respectively. For example:

+/X
28

x/X
2310

+/(XxY)
25

+/(X>Y)
4

The use of vectors can be illustrated by reconsidering
the calculation of the area
lengths 3, 4, and 5, using a
the three lengths:

of
si

the trIangle with
ngle vector L to

sides of
represent

6

L+3 4 5
P++/L
S+P+2
(Sxx/S-L)*.5

Note that the expression S-L is equivalent to 6 3 4 5 and
hence yields the vector 3 2 1. Consequently, x/S-L has the
value 6.

7

E~n£!lQn g~flnl!lQn. The program

P++/L

S+P+2

(Sxx/S-L)*.5

used above to calculate the area of any triangle with sIdes
of length L determines a function in the sense that for any
legitimate set of values-assigned to the three-element
vector L, the calculation produces a corresponding value of
the area of the triangle. It is important to be able to
define such a function, giving it a name (say AREA) and
thereafter being able to use it as conveniently as the basic
functions +. -. x. *. etc. Such a definition is made as
follows:

'iJR+AREA L
[1J P++/L
[2J S+P+2
[3J R+(Sxx/S-L)*.5
[4] \J

The function AREA can now be used in the ways expected
of any function. For example: I

Q+AREA 345

Q

6
AREA 3 4 5

6
144xAREA 3 4 5

864
V+6 8 10
AREA V

24
AREA 5 7 12

a
AREA 1 1 1

0.4330127019
AREA 5 12 13

30

The method of definition should be clear from a study
of the foregoing example: the first line is a n~gg~[that
shows which variable in the program following is the ~~~~11
(the one to the left of the arrow), which variable is the
argument (that is, L) and what the ngm~ of the function is (
AREA). The first V (pronounced del) indicates that what
follows is a definition, and the final v marks the end of
the definition.

8

The variables occurrIng in a definItion are dummies in
the following sense. In the execution of the statemenf-

Q+3 AREA 3 4 5

the vector 3 4 5 is substituted for the argument (that is,
L), the definIng program is executed, and the value of the
result R is assigned to Q. The argument of the function
AREA can, of course, be any expression. For example,

T+l 2 3
AREA 2 + T

6

Trace. In order to gain a clear understanding of any
defined function, it is helpful to be able to s e e the
results produced by each line of the defining program as it
is executed. This factl ity is provided hy the TRACE. The
!r~£~ £2~~!21 ~~£!2! for a function AREA is denoted by
T~AREA, and the values assigned to this vector determine
which lines of the program are traced when the function is
executed. For example:

T6AREA+l 2 3
Q+AREA 1 1 1

AREA[l] 3
AREA[2J 1.5
AREA[3J 0.4330127019

If the trace control is set to the value 2, then only 1 ine 2
is traced:

T~AREA+2

Q+AREA 1 1 1
AREA[2J 1.5

Iteration. Repetition of some operation <called iteration>
ls-an--lmportant notion in mathematics. For example, the
power function X*N is defined as an iteration of
multiplication extended to N factors each having the value
x.

Iteration Is used in the following function definition:

'lZ+B N
[lJ Z+1
[2J D+O,Z
[3J E+Z,O
[4J Z+D+E
[5J +2
[6J g

9

Two points merit comment:

1. The notation +2 occurlng on line 5 is read as

"branch to 2" and causes 1 ine 2 to be executed next in

sequence. Hence the sequence of 1 ines 2, 3, 4, and 5

will be executed repeatedly.

2. The comma denotes catenation. For example:

X+l 2 3

Y+4 1

X,Y

1 2 341

Y,X

4 1 123

o,X

012 3

0,1

a 1

The behavior of the function B should be apparent from
the following trace:

TAB+l 2 345

Q+B 3

B[l] 1
 J
B[2J a 1

B[3J 1 0

B[4] 1 1

B[sJ 2

B[2] 0 1 1

B[3J 1 1 a

B[4] 1 2 1

B[5J 2

B[2J 0 1 2 1

B[3J 1 2 1 0

B[4J 1 3 3 1

B[5J 2

B[2J 0 1 3 3 1

B[3] 1 3 3 1 0

B[4J 1 4 6 4 1

B[sJ 2

B[2J 0 1 4 6 4 1

B[3J 1 4 641 0

B[4J 1 5 10 10 5 1

B[sJ 2

B[2J 0 1 5 10 10 5 1

B[3J 1 5 10 10 5 1 0

B[4J 1 6 15 20 15 6 1

It is clear that the value of Z produced (on 1 ine 4) at the

Kth Iteration i 5 the vector of binomial coefficIents of

order K.

10

Because the branch to 1 ine 2 occurring on line 5 of the
functionB is unconditional, the execution of the program
would continue-rndetrnrfery unless stopped (as it was in the
foregoing example) by striking the attention key located at
the upper right corner of the keVDoara~- A conditional
branch can be made by replacing the 2 occurring rn-rrne-~lDy
a suitable expression.

The definition of the function B can be changed by
re-opening the definition and introducing the new values of
any revised lines as follows:

VB
[6J [5J
[5J +2xN>Z[2J
[6J

The entire revised function may now be displayed:

[OJ\7
'V Z+B N

[lJ Z+1
[2J D+O,Z
[3J E+Z,O
[4J Z+D+E
[5J +2xN>Z[2J

V

Execution of the revised function (with trace) will now
illustrate the behavior of the conditional branch:

TlJ.B+1 2 3 4 5
Q+B 4

B[1] 1

B[2J a 1

B[3J 1 0

B[4] 1 1

B[S] 2
B[2] 1° 1
B[3] 1 1 0

B[4] 1 2 1

B[S] 2

B[2J 0 1 2 1

B[3] 1 2 1 0

B[4] 1 3 3 1

B[S] 2

B[2] 0 1 3 3 1

B[3] 1 3 3 1

B[4] 1 4 6 4 1°

B[5] a

11

SInce the result of the function was assigned to Q (that Is,
Q+B 4), the value of Q should be the last value assigned to
the result z:

Q
14641

It is clear from the trace of line 5 that the last branch is
made to line 0 rather than to 2. SInce the function has no
line 0, this causes termination of the execution.

If the trace control is set to discontinue tracing, the
function B can then be used to produce binomial coefficients
without producing intermediate output:

T~B+O

Q+B 4

Q

1 4 641
B 4 J1 4 641
B 6

1 6 15 20 15 6 1
B 10

1 10 45 120 210 252 210 120 45 10 1

Order of execution. In the expression (x+y)x(X-Y), theparentheses-determine the order in which the functions are
evaluated. In the present notation, parentheses are used
for this purpose exactly as they are in familIar algebraic
notation.

In algebraic notation, there is a rather complex and
ill-defined set of rules which determines the order of
evaluation in the absence of parentheses. In the present
notation there is one simple rule - every functIon takes as
its right argument the entire expression to the right of It.

For example,

is equivalent to

12

This simple rule has four happy consequences:

1. An expression is easy to read from left to right
e.g., the above example is clearly 3 times something,
that thing is the maximum of X and something, and so
on.

2. This analysis from left to right is famil iar in
modern Romance languages. For example: "They objected
to the rise in price of products from the farm" means
"They objected to" something, that thing is "the rise
in" something, and so on.
3. An expression is also easy to read from right to
left, since an equivalent statement of the rule 15 that
the functions are evaluated in order from right to left.

(See the parenthesized form of the example above.)

4. With this rule of evaluation, the expression -IX
yields the alternating sum of the elements of x, and
~/x yields the alternating product. For example, if
X+2 3 5 7 11, then -IX is equivalent to 2-3-5-7-11.
With the present rule, this is equivalent to
(2+5+11)-(3+7).

Functions of two 2rg~m~n!~. Each of the functions definedthus--far take--a single argument. The definition of a
function of two arguments will be illustrated by defining a
function POL which takes a left argument C (a vector of
coefficients) and a right argument X, and yields tbe value
of the polynomial with coefficients C evaluated at the point
X:

'VZ+C POL X
[1J Z++/CxX* - 1+tpC
[2J 'V

1 2 3 POL 2
17

1 2 3 POL 3
34

1 3 3 1 POL 4

125

Two symbols used in the definition require explanation.
The function pQ yields the dimension of its argument, that
is, pQ is the number of elements in the vector Q. For
example:

C+1 3 3 1
pC

4

13

The function 1 applied to the argument N yields the
vector of the first N integers in order:

1 3

1 2 3

14

1 2 3 4

1 oC

1 2 3 4

1+1PC

a 1 2 3

X+4

X* - 1+ 1 pC

1 4 16 64

C

1 3 3 1 -CxX* 1+1 pC

1 12 48 64
 -+/CxX* 1+ 1 P C

125

The foregoing examples show that the expression 1+1PC
yields the vector of exponents appropriate to the
coefficients C, and X*-1+1PC is the vector of powers of x.
Hence CXX*-1+1PC is the vector of terms of the polynomial,
and +/CXX*-1+lPC is their sum.

~Qn£l~~lQn. This concludes the introduction of the main
features of the notation to be employed herein: the basic
functions and the symbols used to denote them (Table 1); the
use of vectors, including the element-by-element extens ion
of the basic functions to vectors and the r~g~~11Qn of a
vector by applying some function like + to all elements; the
definition and naming of new functions; tracing the
execution of a function; and the order of execution in
unparenthesized expressionse A few further details of the
notation will be introduced as needed in examples.

EXERCISES AND EXPERIMENTATION

In the physical sciences, experiments have long been
accepted as an essential part of the educational process.
Closely-directed experiments can serve to develop intuition,

that is, to furnish the student with concrete models of
abstract notionso Freer experimentation can be used to
confront the student with an unfamiliar system and a
challenge to learn its secrets through his own choice of
experiments. Because of the human penchant for puzzles, the
opportunity for this type of experimentation can provide a
strong incentive to study, developing both the student's
taste for, and techniques of, exploration.

14

Experimentation can play similar roles in other
disciplines as well. In mathematics, for example,
experiments in plotting quadratics with various coefficients
can give a student a feeling for the behavior of parabolas.

Other suggested experiments can lead students to the
discovery of properties of mathematical objects; for
example, the calculation of the direction of rays reflected
from a parabolic mirror leads naturally to the interesting
properties of the focal point.

Such mathematical experiments have typically been
performed by pencil-and-paper calculations, a method too
tedious and time-consuming to admit the assignment of much
non-trivial experimentation. The cornputer, however, now
makes large-scale mathematical experimentation feasible and
for the first time provides the student with a usable
"me t hema t l cal laboratory".

Even in the physical sciences, the computer can,
through the use of rna th ema t l ca l models, provide an important
supplement to experiments with physical equipment. The ease
and rapidity of experiments on ma t hema t l ca l models can
quickly give a student an intuitive feeling for the behavior
of a system which could only be attained by long and tedious
work with the corresponding physical experiments.

Exercises can be used simply to enhance facility in
some process already well-understood, as in drill exercises
in multiplication. However, when used to elicit or
elucidate new ideas, assigned exercises are essentially
guided experimentation - a well-designed set of exercises
guides the student through a sequence of experiments.

The remainder of this section will be devoted to a set
of exercises chosen to illustrate various facets of the use
of the computer in experimentation.

~Lm~L~ ~~~~LUn~Ut~. For beginning students, a good deal of
motivation can be provided by simply leaving most of the
basic functions as puzzles, the definition of each function
to be determined by experimentation. For example, the
student is first shown the sequence

3.4+5.6

9

3. 4x 6
20.4

and Is then told that the symbols +-*rL<~=~>~ are also
functions of two arguments to be used 1 ike the + and x. He
is then invited to determine what these functions are by
trying them on the computer with arguments of his own
choice.

15

This can prove an interesting and (for younger
students) challenging exercise. Observations of students in
thIs simple exercise have led me to two conclusions:

1. There Is commonly an Initial reluctance to
experiment. Rather than plunge into trials, the
student asks "What will happen If I ••• ", or "Is it
all right jf I ••• '". This suggests that our treatment
of students frequently succeeds in stif1 ing any urge
to explore matters on their own.

2. Students lack techniques of systematic
exploration. For example, one student who quickly
identified X*Y as the Yth power of X, spent a much
longer time on the essentially simpler function r
(maximum) and then wrongly concluded that the value of
Xry was simply the value of the right argument Y.
Although he had tried Quite a number of experiments,
all had been of the form xry where Y was the larger.
I would have chosen experiments in pairs of the form

3rs
8

Sr3
8

and was surprised that he had not, until f realized
that my choice of such a sequence was based on an
appreciation of the importance of commutativity, an
appreciation that he had not gained in spite of
exposure to it for a year or more in classes.

The following exercise can be used to help fix the
concepts of associativity, commutativity, and
dlstributivity: perform experiments to determine which of
the functions +, x, r, L. and * are commutative, which are
associative, and which of the functions distribute over
which functions. The solution to the exercise is shown in
Table 2.

Subsequent examples employ the function 1. , whose
behavior is recalled here:

\3
123

.2x1.10
0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

Interest in the general izations of famil iar functions
(such as the general ization of X*N to non-integer exponents
N) can be sparked by first assigning suggestive experiments.

16

Commutativity As soclativity

-t+ x r l x .. r l• * *
1 0 1 0 1 1 0 1 0 1 0 1 1 0

Distributivity

x+ .. r l *
+ 0 0 0 0 1 1 0

0 0 0 0 0 0 0

x 1 1 0 0 0 0 0

f 0 0 0 0 0 0 0

r 0 0 0 0 1 1 0

l 0 0 0 0 1 1 0

* 0 0 0 0 0 0 0

Fundamental p rope r tt e s of some func tfons

TABLE 2

17

For example, the student who is already famtl iar with the
following behavior of the power function:

X+1.4

X

1 234
2*X

2 4 8 16

can then be urged to plot the results of experiments of the
following form:

X+.5 Xt6

X
0.5 1 1.5 2 2.5 3

2*X
1.414213562 2 2.828427125 4 5.656854249 8

2*X+2
1.189207115 1.414213562 1.681792831 2 2.37841423 2.82842712

3*%

1.732050808 3 5.196152423 9 15.58845727 27

Similar experiments can be used In the extension of the
factorial function (denoted by :N):

6
! 5

120
~1 2 3 4

1 2 6 24 120
: t 5

1 2 6 24 120
: .5 x t 1 0

0.8862269254 1 1.329340388 2 3.32335097 6 11.6317284 24

Inyga!l&g!lQn Qf n~~ fYD£11QD§. A teacher can define any
set of new functIons desired (in the manner Illustrated by
the functions AREA and B defined earl ier) and can then save
the entire set under some name (say PRODO) by typing th~

first line below:

) SAVE PRODO
PRODO SAVED 03/12/68 30.46.33

Thereafter, anyone <student or teacher) who types the
first line below:

) LOAD FRODO
FRODO SAVED 03/12/68 30.46.33

will again have available the set of defined functions.

18

Suppose a teacher defines and saves the following
function:

'VZ+BIN N
[lJ Z+1
[2J Z+(O,Z)+Z,O
[3J +2xN?pZ
[4J V

A student may then be asked to load the function and,
without displaying its definition, determine what the
function is. A few experiments like the following:

BIN 1
1 1

BIN 2
1 2 1

BIN 5
1 5 10 10 5 1

should suffice to identify BIN as a function which produces
the binomial coefficients of order K when applied to the
argument K.

The student may now be asked to analyze the definition
of the function BIN by displaying it. As an aid to the
analysIs he might execute it with a trace applIed to 1 ine 2:

Th.BIN+2
Q+BIN 5

BIN[2J 1 1
BIN[2] 1 2 1
BIN[2] 1 3 3 1
BIN[2] 1 4 6 4 1
BIN[2J 1 5 10 10 5 1

From this the student should see the relation to
Pascal's triangle. He could, however, get an even more
detailed view by breaking line 2 into an equivalent sequence
of three statements:

D+O,Z

E+Z,O

Z+D+E

This change in the definition of BIN can be made as
follows:

VBIII
[4J [1.1]D+O,Z
[1.2J E+Z,O
[1.3J [2JZ+D+E
[3J 'V

19

A subsequent display of BIN would show its new
defInItion:

VBIN[OJV
V Z+BIN N

[1J Z+1
[2J D+O,Z
[3J E+Z,O
[4J Z+D+E
[5J +2xN~pZ

~

ThIs is clearly equivalent to the definition of the function
B already used in the introduction, and a trace of its
execution (also shown in the IntroductIon) produces the
desIred detailed view.

A function definition is usually closed with the symbol
V. If the symbol ~ is used instead, the function becomes
locked in the following sense: (1) Its defInition cannot be
reopened and hence it can be nerther modified or dIsplayed,
and (2) a trace cannot be applIed to It. By locking Its
definition, the teacher can therefore present a student with
a function whose behavior can be studIed only by the means
available for the basic functions cr, L, *. etc.), that Is,
by experImentation. I

Ih§Qr~. The theory involved in elementary mathematics is
largely concerned with establishing identities, that is,
with proving that two different computational procedures
applied to the same argument yield the same result for all
possible values of the argument. Experiments on functions
can lead the student to the discovery of such identities.
Moreover, the structure of the program definIng a function
frequently suggests general proofs of observed properties of
the function.

For example, experiments of the form

81
(BIN N)POL X

81

repeated for various integral values of N and X would
suggest that the polynomial in X whose coeffIcients are the
binomial coefficients of order N is equivalent to X+1 raised
to the Nth power, that is,

(X+l)*N ~ (BIN N)POL X (Eq. 1)

20

SImIlarly, experiments of the form

+/BIN 1
2

+/BIN 2
4

+/BIN 3
8

+/BIll 4
16

+/BIN 15
32768

2*15
32768

suggest the identity:

(+/BIN N) +-+ 2*N

The usual proof is based on considerIng EquatIon 1 for
the case X=1. A more direct proof Is provided by the
original definition of the function BIN, namely:

VZ+BIN n
[1J 2+1
[2J Z+(O,Z)+Z,o
[3J -+2xN~pZ

[4] 'l

It is clear that the effect of step 3 is to repeat the
second step N times. Furthermore, it is clear that each
execution of step 2 doubles the value of +/z <the sum of the
coefficients), since the new value of Z is formed by adding
Z to itself and to two zeros.

Consider the function G defined and used as follows:

'VR+M G N

[1J R+M

[2J M+MfN

[3] N+R
[4] -+M~O

[5J 'V

40 G 48
8

120 G 84
12

84 G 120
12

21

12

Further experiments can lead to the (correct)
conjecture that G yields the greatest common divisor of its
arguments. Its detailed execution can be seen in the
following trace:

TI1G+l 2 3 4
Q+84 G 120

G[l] 84
G[2J 36
G[3] 84
G[4J 1
G[l] 36
G[2] 12
G[3] 36
G[4 J 1
G[l] 12
G[2] 0
G[3] 12
G[4] 0

Q

A study of this trace shows that the effect of each
iteration is to replace the larger argument by the remainder
obtained on dividing the larger by the smaller - in other
words, the function definition is a concise statement of the
well-known Euclidean algorithm. Experiments with G J

therefore suggest the theorem underlying the Euclidean
algorithm, namely that the greatest common divisor of two
arguments is the same as the greatest common divisor of one
of them and their remainder.

f~~L~la~~ In ~QmQQ~lng f~n~11Qn~. The composition of formal
function definitions is called QLQgr§mmlng. In the
exercises treated thus far the student was only required to
use and study functions which had already been programmed
for him. It is also important that the student learn to
program.

Functions to be formally defined can either be
presented informally (e.g., "define a function to yield the
vector of the first N primes tt) or formally by presenting a
function whose behavior is to be emulated.

In this work the computer can be used to experiment
with the function being developed so as to identify and
correct deficiencies. The main lesson to be learned is
precision in thought and expression.

The following experience with a high school senior will
illustrate the process of programming. The following
problem was posed: define a function to determine the
reduced form of a rational fraction, i.e., given two

22

integers A and B, determine integers M and N such that MfN
equals A+B and that M and N have no common factor. When
asked to state the method he used for such problems, the
student said he would factor both integers, strike out the
common factors, and then take the products of the remaini ng
factors of each.

However, when given the pair 28 and 70, he immediately
answered 2 and 5, and when asked for his method replied "I
saw that 7 was a factor of each so I divided it out and then
recognized that 2 was a factor of the results and then
divided it out" - the actual method used was not the one
professed. When pressed on this discrepancy, the student
decided the method he actually used was the better one.
When presented with more difficult cases he soon developed a
systematic procedure, trying to divide first by 2, then by
3, and so on.

The student was then asked to state the process in
formal terms and proceeded (with the aid of occasional
suggestions) to reason roughly as follows: Call the trial
divisor T. It must first be set to some initial value. To
s tartanew t ria 1, T will havet 0 b e inc rea sed, the
remainder on dividing it into A will then be compared with
zero to see if T is a factor of A. If it is not, then a new
trial must be begun by repeating the step of incrementing ~
Thus:

'IF
[1 J T+1
[2J T+T+l
[3J -+2X10~TIA

[4J

(The effect of 1 ine 3 is to branch to 2 if T is not a factor
of A, and to "fall through" to line 4 otherwise. This
occurs because 11 yields the value 1, whereas 10 is an empty
vector and no branch occurs in that case.)

Following the test of A on 1 ine 3, a similar test on B
is required. If both tests show divisibil ity, then both A
and Bare respecified by dividing through by T, and the
process is repeated on the new values of A and B. Thus:

'IF
[1 J T+1
[2J T+T+l
[3J +2 X10;tT!A

[4J +2X10~TIB

[5J A+AfT
[6J B+BfT
[7] --+3
[8J '1

23

The following experiment - with complete trace - was then
performed:

T6F+1.7
A+84
B+360
F

F[1] 1
F[2] 2
F[3]
F[4]
F[S] 42
F[6] 180
P[7] 3
F[3]
F[4]
F[S] 21
F[6] 90
F[7] 3
F[3] 2
F[2] 3
F[3]
F[4]
F[S] 7
F[6] 30
P[?] 3
P[3] 2
F[2] 4
P[3] 2
F[2] 5
F[3] 2
F[2] 6
F[3] 2
F[2] 7
F[3]
F[4] 2
F[2] 8

(The attention key was used to interrupt execution as soon
as it became apparent that the process would never
terminate. The
termination test and
the minimum of A and
of T on step 2. The

student recognized the need for a
decided to insert a comparison of T and

B immediately after the incrementation
final program appears below.)

24

V F
[1J T+l
[2J T+T+1
[3J +Ox1.T>ALB
[4J +2 x t O;tT IA
[5J +2x1.0~TIB

[6] A+A+T

[7J B+B+T

[8J +3

\J

T~F+O

A+84
B+360
F
A

7
B

30

From the outset the student recognized the desirability
of using only successive primes rather than successive
integers for the successive values of T, but this refinement
was suppressed in the interest of simplicity. He did,
however, Initially make the mistake of branching to line 2
rather than 3 from line 8. The effect was to miss repeated
factors (e.g., dividing out a 3 must be followed by a test
for further factors of 3 before proceeding to the next trial
divisor). This mistake was quickly caught by
experimentation and then rectified.

Since the arguments A and B receive identical treatment
in the process, it is clear that they might conveniently be
treated as the two elements of a single vector p. When this
was pointed out to the student, he designed the following
process, which parallels the original in every particular:

\JF2
[1] T+1
[2J T+T+1
[3J +OX'lT>L/P
[4J ~2x'lr/0~TIP

[5J P+P+T
[6J +3
[7J V

P+84 360
F2
P

7 30

25

flQ~£hEr!lng. In planning any formal procedure (I.e.,
definIng a function), it is rather common p r a c t l c e to
construct a flQ~~hsr!, consisting of Informal statements of
the parts of the procedure together with arrows showIng the
sequence in which the parts are to be executed. FIgure 1,
for example, shows a flowchart whIch describes the followIng
process: determine the maximum value of each paIr of
corresponding elements of the vectors X and Y, and then
determIne the minimum of the resulting set of maxIma.

The main disadvantage of the flowchart Is that It Is an
Informal (or at best a poorly-specIfied formal) language,
and its use does not provide the disciplIne and precision
of a formal language. It also tends to be more dIffuse and
less perspicuous - compare, for example l the flowchart of
Figure 1 with the equivalent APL statement, L/xry.

The flowchart does embody two useful notions:

1. The use of arrows to give a graphic pIcture of the
sequence of execution in a program.

2. The ability to name and use a process In the
overall planning of a procedure before the process
itself Is defined in detail.

However, both of these notions can be employed withIn the
confines of a formal language. The Informal use of branch
arrows in addition to the formal expression of branches Is
helpful in any formal language and should be encouraged.
The abil ity to name and use functions before defining them
Is al ready inherent in any formal language whIch
Incorporates ~ethods for defining new functions, and the use
of thIs abilIty is also to be encouraged.

In sum, flowcharting shows no advantage over a
well-desIgned formal language.

Flowchart of l/xry

Figure 1

26

Non-mathematical work. Non-mathematIcal work amenable to
the-appTTcatTon-of--a-computer covers a wIde range of areas
Including sorting, plotting, text analysis, and the
description of the internal operation of the computer
Itself. Only the first three will be Illustrated here.

The following bits of new notation wIll be employed In
subsequent examples:

1. Any string of characters enclosed In quotes
denotes a vector whose successive elements are the
successive characters in the strIng:

W+' CAT'

W[2]

A

W[2 1 3J

ACT

2. If u is a logical vector Ccornp r l s l ng elements of
zeros and ones only), then U!X denotes a selectIon of
those elements of X corresponding to the ones in u.
The operation is called ~QmQrg§§lQn:

1 a 1 o 1/2 3 5 7 11

2 5 11

1 o 1 0 l/'ABCDE'

ACE

X+5 3 9 3 14 6

(x=L/X)/X

3 3
(X;tL/X)/X

5 9 14 6

3. If B is a vector, then B1X denotes the index of X
in B:

B+2 3 5 7 11

Bt5

3
B,S 2 7

314

A+'ABCDEFGHIJKLMNOPQRSTUVWXYZ'
At 'CAT'

3 1 20

A[3 1 20J

CAT

(It should be noted that the symbol 1 has already been
used for a function of one argument (e.g., ,3
is 1 23) and is here used as a functIon of two
arguments. ThIs is similar to the familIar double
usage of the minus sign to denote both subtraction
(X-Y) and negation (-y) and does not Introduce an
ambiguity,)

27

The need to sort a list of numbers Into ascendIng order
arIses frequently Tn a variety of areas (e.g., sorting
account numbers into order for postIng to ledgers). There
exIsts a large varIety of methods for sorting. One of the
simplest (but inefficient) methods may be stated as follows:
locate the smallest Item remainIng to be sorted, append It

to the list of sorted items and remove It from the lIst of
Items remaining to be sorted. A formal statement follows:

v Z+S X
[1J Z+tO
[2] Z+Z,(X=L/X)/X
[3J X+(X;J:L/X)/X
[4J +2 xO;J:pX

V

The followIng complete trace should clarIfy the
process:

T~S+1.4

S 5 3 2 16 3 8
S[1J
8[2J 2
8[3J 5 3 16 3 8
8[4J 2
8[2J 2 3 3
8[3J 5 16 8
8[4J 2
8[2J 233 5
8[3J 16 8
8[4J 2
8[2J 2 3 3 5 8
8[3J 16
8[4J 2
8[2J 2 3 3 5 8 16
S[3]
S[4J a
233 5 8 16

The problem of sortIng non-numeric data wIll be
Illustrated by sortIng the following text vector:

T+' OLAF (UPON WHAT ONCE WERE KNEES) DOES ALMOST
CEASELESSLY REPEAT'

It Is first necessary to specify the order of the alphabet
assumed (although the ordering of the letters is well
established, the orderIng of the space, hyphen, punctuation
marks, and special symbols is not):

A+t ABCDEFGHIJKLMNOPQRSTUVWXYZ- () *, .; :

28

The operation A1.T can now be used to determine for each
element of T its posItIon In the alphabet:

J+A1T

J

15 12 1 6 28 29 21 16 15 14 28 23 8 1 20
28 15 14 3 5 28 23 5 18 5 28 11 14
5 5 19 30 28 4 15 5 19 28 1 12 13
15 19 20 28 3 5 1 19 5 12 5 19 19
12 25 28 18 5 16 5 1 20

The function S can now be applied to sort the numer i c
vector J:

K+S J

J

1 1 1 1 1 3 3 4 5 5 5 5 5 5 5 5 5 5
5 6 8 11 12 12 12 12 13 14 14 14 15
15 15 15 15 16 16 18 18 19 19 19 19
19 19 20 20 20 21 23 23 25 28 28 28
28 28 28 28 28 28 29 30

The final sorted output (i n terms of the original
alphabet) can now be obtained as follows:

Q+A[K]
Q

AAAAACCDEEEEEEEEEEEFHKLLLLMNNNOOOOOPPRRSSSSSSTTTUWWY

The entire process can be seen more clearly In the
followIng single statement:

Q+A[S A1TJ

A sorted list of the letters occurring In the text T
(wIthout repetition) can be obtaIned by modifyIng the
sorting program S so that only one occurence of the mInImum
is appended to the result at each excution of lIne 2:

\78[20J
[2J z+Z,(X=L/X)/X
[2J Z+Z,l/X
[3J [DJ~

V Z+S X
[1J Z+\O
[2J Z+z,L/X
[3J X+(X~L/X)/x

[4J +2XO~pX

'V
S A\T

1 3 4 5 6 8 11 12 13 14 15 16 18 19 20
21 23 25 28 29 30
A[S A1TJ

ACDEFHKLMNOPRSTUWY ()

29

The problem of plottIng wIll be Illustrated by
producIng a hIstogram of the vector V , that t s, the height
of the ordInate at the Kth po i nt on the abscIssa I 5 to be
V[X]. For example, i f

V+l 235 8 13 11 9 7 5 5 8 10 12 842 1 1 1

then the lInes of the plot for the ordInate values of 7, 6,
and 5, can be obtained as

7SV
a 0 0 0 1 1 1 1 1 0 0 1 1 1 1 0 a 0 0 a

6SV
0 0 0 0 1 1 1 1 1 0 0 1 1 1 1 0 0 0 0 0

ssv
0 a 0 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0

where the ones denote points to be plotted, and the zeros
denote spaces. The following i s a formal statement of the
process:

VPLOT X
[1J I+r/X
[2J I~X

[3J I+I-l
[4J +2xO<I
[5J 'V

For example:

PLOT V

0 0 a 0 0 1 a a 0 0 0 0 0 a 0 a 0 a 0 0
0 0 0 0 0 1 0 a a 0 0 0 a 1 0 0 a 0 0 0
0 0 0 0 0 1 1 0 a 0 0 a 0 1 0 a a 0 0 0
0 a 0 0 0 1 1 0 0 0 a 0 1 1 a 0 0 0 a 0
0 0 0 0 0 1 1 1 0 0 a 0 1 1 0 0 0 0 0 a
0 0 0 a 1 1 1 1 0 0 a 1 1 1 1 0 0 0 0 0
0 0 a 0 1 1 1 1 1 a 0 1 1 1 1 0 0 0 0 0
0 0 a 0 1 1 1 1 1 0 0 1 1 1 1 a 0 0 a 0
a 0 0 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0
0 a a 1 1 1 1 1 1 1 1 1 1 1 1 1 a 0 a 0
0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 a 0 a 0
0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0
1

30

A neater plot can be obtaIned by changing lIne 2 of the
program as follows:

VPLOT[2] , ~'[1+ISXJV

The effect Is to substitute a space for each 0 and a base
symbol for each 1:

VPLOT[OJv
V PLOT X

[1J .r-r IX
[2J '~'[l+ISKJ
[3J I~I-1

[4J -"2xO<I

PLOT V
..L
~ l.

1..1 ~

J.~ ~..L

1.1..1 ~l.

~J.J.1. ~l.l.~

..L~J.l.~ .1.11.1.
1.1.1.1.1. 1.1.1.1.

l.1.J.J.l.1..Ll.l.J.1.l.
.Ll.l.1..lJ.J.J.J...Ll.J...L

1.J...LJ.J.l.J.l.l.1.J.l.J.J.
1.1.J.J.J...LJ..Ll..L.LJ..Ll.l.J.

J.l.l...LJ..LJ...L.Ll.J.1.J.J..L.Ll..L.1J.

The problems of text analysIs will be illustrated by
counting the number of occurrences of each letter in the
text vector T used In the discussion of sorting:

T
OLAF (UPON WHAT ONCE WERE KNEES) DOES ALMOST

CEASELESSLY REPEAT
T='Et

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 1 0 1 0 0 0 1 1 0 a 0 0
0 1 0 a 0 0 a 0 0 0 0 0 1 0 0 1
0 1 0 0 0 0 0 a 1 a 1 0 0

+IT='E'

The vector result above clearly has a one for each
occurrence of the letter E in the text T. The final result
(lD Is the sum of these ones and Is therefore the number of
E's In T.

31

11

A simIlar count · for each letter (or symbol) in the
alphabet A can clearly be obtained hy writing a program to
treat each element A[IJ of the alphabet in turn. It can be
done more conveniently with the aid of the QH!~r 2[QQy£!.

Observe the following example of the outer product of
two vectors X and y:

X+2 3 4
Y+3 7 5 3 2
x«, xY

6 14 10 6 4
9 21 15 9 6

12 28 20 12 8

The result i s a [!J5!!rl.2S, the element i n the Ith row and
Jth column has the value XCI] x Y[JJ. More generally, any
other operator can be substituted for the x. For example:

Xo.~'y

1 1	 1 1 1
1 1	 1 1 a
0 1	 1 0 a

'ABCDEFG'o.='CABBAGE'

a 1 0 0 1 a a
0 a 1 1 a 0 a
1 0 0 a 0 a a
0 0 0 a a 0 0
0 0 a 0 a a 1
0 0 0 0 0 0 0
0 0 0 0 0 1 a

The first row shows the occurrences of the letter A, the
second shows the occurences of B, etc. Since the summation
+/M applied to a matrix M sums the rows of M, the
expression:

+/'ABCDEFG'o.='CABBAGE'
2 2	 1 0 101

yields the counts of A,B,C, etc. in the word CABBAGE.

Returning now to the text T and alphabet A, the letter

counts in T can clearly be obtained as follows:
+/Ao.=T

5 0	 2 1 11 1 0 1 a a 1 4 1 3 5 2 0 2
6 3 1 a 2 0 1 a 0 9 1 1 0 0 0 0 a

32

Heuristic functions. Certain functions prove particularlyeffective Tn--iiTeading to discovery". Some such functions
are useful only in exploring a particular phenomenon,
whereas others apply to a rather wide class. Examples of
both types will be treated.

The factor by which the principal amount of a loan is
increased when loaned at interest I compounded yearly for Y
years is clearly given by the expression (l+I)*Y. If
interest is compounded N times per year, the corresponding
expression becomes (1+I+N)*NxY. Exploration of the limiting
value of this expression for large values of N (and for Y=l)
leads to the exponential function of the argument I.

Considering first the simple case for I=1 and Y=1, the
expression becomes (1+1+N)*N. Experiments could now be
performed for various values of N, but tedium can be avoided
by defining the following function:

'lZ+E N
[lJ Z+(1+1fN)*N
[2J 'l

Experiments can now be performed conveniently:

E 1
2

1 0

2 •

2.

E 10
5 9 3 7 4 2 4 6

E 100
710481 382 9

E 1000
716923932

M

2

2

oreover, vector arguments can be used:
E 1 10 100 1000

2.59374246 2.704813829 2 0716923932

E 10*0,16
2.59374246 2.704813829 2.716923932

2.718268237 2.718280469
2 0718145927

~lff~r~n~lng is a generally useful method of studying a
function - it consists of calculating a vector of values of
the function for a set of equally spaced arguments and then
determining the differences between successive values of the
function. This can be done conveniently with the aid of the
following function:

'V Z+DF Y
[lJ Z+Y[1+1-1+pYJ-Y[1-1+pY]
[2] 'l

The result of this function is clearly a vector of dimension
one less than its argument Y whose Ith component has the
value Y[I+1J-Y[IJ.

33

Consider the application of DF to the vector of values
V obtained by applying the "square" function to the vector X
of integers 1 to 100:

X+l10

V+-X* 2

V

1 4 9 16 25 36 49 64 81 100
DF V

3 5 7 9 11 13 15 17 19

The obvious pattern in the last result suggests an
easily proved theorem. The pattern for the "cubes" function
is not so evident:

V+X*3
DF V

7 19 37 61 91 127 169 217 271

However, the second difference {obtained by applying DF to
the first difference)-shows-a-marked pattern:

DF DF V
12 18 24 30 36 42 48 54

or DF DF V
6 6 6 6 6 6 6

DF DF DF DF V
o 0 a 0 a a

These results suggest theorems about the cube, and also
suggest experiments on further functions such as the higher
powers, the general polymonial, and the triangular numbers.

The slope of the tangent to a curve (i .e., the
derivative of the function represented by the curve) is also
important in the study of a function. The tangent slope at
the point (X, F X) is approximated by the slope of the
secant through the points eX, F X) and «X+S), F X+S) which
(as seen from the accompanying sketch) is given by the
expression «F X+S)-F X)~S. Hence the following function
yields the secant slope:

\JZ+-S SL X
[1J Z+«F X+S)-F X)~S (F XtS)
[2J 'V

~ F)(

x
34

For example, If F Is defined as the square function:

'VZ+F X
[1J Z+X*2
[2] 'V

then the secant slope at points with abscIssae 2 and 2+.5
is:

.5 8L 2
4.5

Moreover:

8+10*-0,1.5
S

1 O. 1 0.01 0.001 0.0001 1E -5
S SL 2

5 4.1 4.01 4.001 4.0001 4.00001

The last vector gives the secant slopes for the
successive spacings 1, 0.1, 0.01, etc., and suggests that
the limiting value (i.e., the tangent slope) is 4.

Once the notion of this limiting slope is accepted, the
student may experiment with a fixed small spacing (say
10*-6) and with a vector of values of the argument X so as
to see the slope at various points on the curve. Thus the
experiment

8+10* 6

X+1. 8

X

12345 6 7 8
S SL X

2.000000997 4.000000999 6.000000997 8.000000946
10.000001 12.00000099 14.00000099 16.00000098
2xX

2 4 6 8 10 12 14 16

suggests (correctly) that the slope of the tangent to the
function X*2 at any point p is 2xP.

To experiment with other functions it is only necessary
to change the definition of F. For example:

35

makes F the cube functIon. Hence:
.000001 SL t8

3.000002991 12.00000598 27.00000897 48.00001193

3 12

75.00001487
3xX*2
27 48 75

108.0000179

108 147 192

147.0000208 192.0000238

suggests
function.

a theorem concerning the slope of the cube

The polynomial function POL defined in the introductIon
can be used for general experiments with power series. Its
definition will first be recalled:

\7POL[OJv
V Z+C POL X

[1J Z++/CxX*-1+tpC
'V

1 3 3	 1 POL 2
27

(The left argument determines the vector of coefficients and
the right argument determines the point at which the
polynomial is eva l ue t ed ,)

If the coefficients C are defined as follows:

R+O,t7
R

0 1 2 3 4 5 6 7
!R

1 1	 2 6 24 120 720 5040
C+1f!R
C

1	 1 0.5 0.1666666667 0.04166666667 0.008333333333
0.001388888889 0.0001984126984

then

C POL	 1
2.718253968

C POL 1
0.3678571429

(C POL 1) xC POL 1
0.9999291383

C POL	 2
7.380952381

and the polymontal is clearly an approximation to the
exponential function.

The use of the computer for plotting functions is
helpful in all experiments with functions. It is however,
desirable to compose a slightly more complicated plotting
function which will perform automatic seal tng as required.

36

~qL~ ~~~~Q~~q math~mgtL~al ~~~mQle~. The examples thus far
have all addressed an elementary level of mathematics. The
computer is equally useful for experiments in more advanced
topics. This section will present a few brief examples of
such use.

In this work, the following bits of matrix notation
will be required:

1. The expression DpX yields a matrix of dimension D
whose elements (in row-by-row order) are the e 1ernen ts
of the vecto r X:

D+-3 4

X+-l 12

X

1 2 3 4 5 6 7 8 9 10 11 12
M+-DpX
M

1 2 3 4

5 6 7 8

9 10 11 12

pX
12

pM
3 4

2. The expression M[3;4] selects the element in the
third row and fourth column of M. More generally,
M[I;J] selects the row(s) determined by the elements of
the vector I and the column(s) selected by the vector
J • For e x amp 1e :

M[2;3]
7

M[l 3;1 3 4J

134

9 11 12

If the index J is omitted, then the entire row (or
rows) is (are) taken; if the index I is omitted, entire
columns are taken. For example:

M[2;]

5 6 7 8

M[; 2 3J
2 3

6 7

10 11

37

3. The expressions ~M and ~M and eM each transpose the
argument about the axis indicated by the straight lIne
in the symbol. For example:

N+~M

N

1 5 9
2 6 10
3 7 11
4 8 12

<PM

4 3 2 1
8 7 6 5

12 11 10 9
eM

9 10 11 12
5 6 7 8
1 2 3 4

4. The expression M+.xN denotes the ordinary matrix
product of M and N. For example:

M+. xN

30 70 110
70 174 278

110 278 446

More generally, any pair of operators can replace the
operators + and x in the foregoing expression. If

R+Ma 0 wIN (where ex and w stand fo r any pa i r of
operators), then R[I;J] is equal to a./M[I;]wN[;JJ. For
example:

M+ 0 =N

400
040
004

Mr •LIN

444
488
4 8 12

38

The first example is from symbolic logic. For this it
will be necessary to introduce the symbols for three logical
functions: A for gOg, v for QL, and ~ for llQt, and the
symbol L for lnl~gg~ Qg[! of a number. Consider the
following experiments:

£+1 0 1 1 0 1
AIL

o

o

Similar experiments for further values of the logical
vector L suggest the theorem that AIL is equivalent to
~v/~L, a result known as Qg MQrggD~~ bg~.

De Morgan's Law can easily be validated for all cases
occuring for a specified number of arguments, that is, for a
specified value of pL. The function

'lM+TR N
•[1] M+ 1 =2 I L(-1 + 1. 2 *N) 0 7-/2 *N - 1. N

\J

produces a 2*N by N matrix whose rows represent all possible
logical vectors of dimension N. For example:

T+TR 3

T

000
001
010
all
100
101
110
111

A/T
o 0 0 0 0 a 0 1

~v/~T

o 0 a 0 0 0 a 1

39

A similar result (t.e., De Morgan's Law) holds for
certaIn matrix products:

o 0 001 1 1 1
001 1 a all
o 1 0 1 0 1 a 1

000 000 a 1
000 0 a all
000 0 0 1 0 1
o 0 001 1 1 1
o 001 a 001
001 1 001 1
o 1 0 1 0 1 a 1
1 1 111 111

00000 001
o 000 001 1
o 000 0 1 0 1
o a 001 111
o 0 a 1 0 a 0 1
0011001 1
01010101
111 1 1 1 1 1

SImilar experiments can be used to suggest a host of
useful l den t l t l e s , For example:

I.The V.A matrix product Is (lIke the ordinary matrix
product) associative.

2. The V.A matrix product dIstrIbutes over v.

3. The expression ~/L (exclusIve-or over the vector L)
is equIvalent to the -expressTon- 21+/L (the parity
check on L).

4. The pair ~/L and ~=/~L show a duality of the type
exemplIfIed by De Morgan's law.

40

A vector such as P+1 4 2 3 which contains all of Its
IndIces as elements is called a 2gr~~12!lQn vector. If X Is
any vector of the same dimension as P, then X[pJ Is a
permutatIon of the components of X. For example:

X+'ABCD'
X[PJ

ADBC

If X Is also a permutation , then X[PJ Is a
permutation:

X+-3 1 4 2

X[PJ

321 '+
P[X]

2 1 3 '+

(It Is clear that permutations do not commute.>

All permutations generated by a permutation X can be
produced as follows:

Q+tpX

Q
1 2 3 4

Q+Q[X]
Q

3 1 4 2
Q+Q[X]
Q

4 3 2 1
Q+Q[X]

Q

2 4 1 3
Q+Q[X]
Q

1 2 3 4

Such experIments can be used to lead to such questions as
cycles, parity, and groups of permutations.

Another approach to elementary group theory can be made
through concrete examples of sImple fInite groups.
ConsIder, for example, the matrix M:

41

M+2 2 p t o *oe '
M

0*

The operations~,~, and e, applied to M produce certain
transformations which clearly belong to the a-element group
of rotations of the square (Including operations which take
it out of the plane):

eo

oe
0*

Further experiments can be suggested to establish
whether these three operations generate the entire group,
whether all three are required to generate the group, what
succession of operations generate the gO-degree rotation In
the plane, and so forth. More complex groups can also be
modelled conveniently.

EXAMINATIONS

The use of a computer terminal for examInations has
much in common with the use of a terminal for exercises.
There are, however, a few points which warrant separate
discussion.

~Qn£rg!~ QrQQ1~m~. Giving the student a terminal to use In
an examination makes it practicable to pose more concrete
problems. For example, rather than ask for the method or
methods to be used in finding the roots of a polynomial, one
can ask the student to find the actual roots of specifIed
polynomIals.

This has the advantage of making it easy to grade the
results of an examination without retreating to
multiple-choice questions. More importantly, it removes the
distinction between "having the right method" and "getting
the right answer", an unhealthy distinction whIch arises
from the desire to avoid judging the student on hIs
performance of tedious detail.

42

ProvIsion Qf lQQ!§. Certain problems involve several
dlstlnct- aspects, each of comparable difficulty. In the
exposition of anyone aspect, it Is usually desIrable to
treat the other aspects as solved or solvable so as to
concentrate on the question at hand. Likewise, in an
examinatIon one may concentrate on one aspect of a problem
by giving the student the tools for the other aspects. This
can be done by savIng appropriate functions and instructing
the student to load them for his own use.

Suppose, for example, the problem is to fInd the zeros
of some empirical function for which a dozen or so values
have been determined by physical experiments. One approach
is to fit a polynomial to the established points and then
find the zeros of this polynomial. In order to concentrate
on the problem of fitting a polynomial, one would provide a
zero-finding program as a tool. The curve fitting problem
may itself be broken into distinct parts: 1) generating a
matrix of coefficients for the implied set of linear
equations, 2) inverting the matrix, and 3) multiplying the
vector of function values by the Inverse matrix. Anyone of
these aspects can be singled out for attention by providing
tools for the others.

Locked functions. The formal definition of any function isnormally-closed-by typing a del If one types instead(V).
the symbol~, then the function is Er2!~f!~9 and cannot be
further modified or displayed in any way. Such a function
becomes a "black box" whose behaviour can be determined only
by experimentation.

Locked functions can be used to pose interesting
examination questions. A single locked function can serve
as the basis for a series of questions of increasing
difficulty:

1. What are the fundamental characteristics of a
function, e.g., is its commutative or associative (for
a function of two arguments) or Is it even or odd (for
a function of one argument).

2. Identify the function as some known function.

3. Define an equivalent function.

43

DRILL

In administering drill, the computer has two Important
advantages - it is tireless and vIrtually infallible. The
complexity of drIll can range from sImple checking and
correctIon of responses, through the compIlatIon of
statistics on the timing and correctness of responses, to
the use of such statistics to dIagnose conceptual
difficultIes indicated by the responses.

Consider, for example, spelling drill adminIstered as
follows: a computer-controlled tape recorder speaks
successive words chosen by the computer program, and the
student responds by typing each word on a computer termInal.

The following cases Indicate the potentIal range of
sophistication:

1. For each mIsspelled word, the correct spellIng is
typed by the computer, perhaps after invItIng a second
try.

2. Statistics are kept on the student's performance,
and the drill is concentrated on those words most
frequently misspelled.

3. More detailed analysis of the misspelled words may
be used to isolate, and advise the student of, any
general concepts (such as the rules governing "I
before eft) of which he appears to be Ignorant.

The methods of composing drfll programs are fortunately
sImple enough to be mastered by both students and teachers,
and do not differ significantly from the methods applicable
to other- problems. They will be Illustrated by simple
drills in spelling, multiplication, and a foreign language
glossary. These examples require the use of two further
pIeces of notation:

1. The rsQQQm function? applied to the integer
argument N produces a random Integer In the range 1 to
N. The function extends to vector arguments In the
usual way. Thus 76 represents the roll of a die, and
76 6 yields a two-element result representing the
roll of two independent dice. For example:

76

76 6
2 1

?3 4 5 7
3 3 1 7

44

4

The r an dom funct ion i s usefu 1 in me king random
selections among a set of questIons to be presented to
a student.

2. Execution of the expression X+~ causes the
keyboard to unlock and await input. The actual strIng
of characters typed is then substituted for the ~ (and
is in this case then assIgned to the varIable X). For
example:

X+[!]
ACE

x
ACE

X+X,[!]
TYLENE

X
ACETYLENE

The ~ (called gYQ!~=gY2g) Is useful for requesting and
accepting student responses in a drill program.

S.Qglllng ~r..lli. Although spelling drill will in general
require the use of an audible presentation of the questions,
drill in any set of words for which there exists a
convenient alternative representation (such as the
representations 1, 2, 3, etc., for the integers) can be done
with the typewriter alone. Consider, for example, the
following sequences:

W+l0 5p'ONE TWO THREEFOUR FIVE SIX SEVENEIGHT'
pW

10 5
W

ONE
TWO
THREE
FOUR
FIVE
SIX
SEVEN
EIGHT

\JSPELL
[1J Y+?8
[2J Y
[3 J X+[!]
[4J +lL/W[Y;J=5pX,'
[5J 'THE CORRECT SPELLING IS'
[6J W[Y;]
[7] +1
[8J 'V

45

SPELL
2
TWO
8
EIGT
THE CORRECT SPELLING IS
EIGHT
5
FIVE
6
SIX

The first lines show the construction and display of a
matrix whose successive rows are the spellings of the
successive integers 1 through 8. The function SPELL is a
drill; line 2 types the integer to be spelled, line 3
accepts the student's response, line 4 compares the response
(with additional spaces appended if necessary to make a
five-character word) with the spelling of the integer and
branches to line 1 to continue if the response is correct,
and lines 5 and and 6 type the appropriate message in case
of error. The last section shows use of the drill.

The foregoing drill program is defective in that it
never terminates. The following revision produces a program
which terminates after any empty response (i.e., a carriage
return alone):

\JSPELL
[8J
[3 • 1 J
[302J

[301J
+0 x 1 0 =p X
\J

The revised program now appears as follows:

[1J
[2 J
[3J
[4 J
[5J
[6J
[7J
[8]

\J

'V

\JSPELL[OJV'
SPELL
Y+?8
Y
X+(!J
-+0 x 1 0 =p X
-+lL/W[Y;J=5pX,'
'THE CORRECT SPELLING
W[Y;]
-+1

IS'

It is clear that the branch
the number of characters in

on
any

line 4 causes
response is

termination
zero.

if

46

M~1!lQll~2!lQn Qrlll. Numeric input from the terminal is
requested by the symbol 0 (quad). Execution of the
expression typed at this point is substituted for the 0 in
the expression (and is in this case then assigned to the
va riab 1eX) • For e xam p1e :

X+D
0:

4
X

4
Y+DxX

0:
3
Y

12

The following sequence shows the definition and use of
a simple multiplication drill in which the range of the
factors presented to the student is determined by the value
of the argument supplied to the drill program.

\l DRILL N

[1J Y+?N

[2 J Y

[3] X+D

[4J +OxlL/X='STOP'

[5J +lX=X/Y

[6J 'WRONG, LOOK AT IT THIS WAY AND TRY AGAIN:'

[7J Yp'D'

[8J +lD=x/Y

[9J 'THE CORRECT ANSWER IS:'

[10J x/Y

[11] +1

\l

47

DRILL 10 10

1 7

0:

7

9 3

0:

27

5 8
0:

50
WRONG, LOOK AT IT THIS WAY AND TRY AGAIN:

00000000

DODO DODD

00000000

DDDDDDDD

00000000

0:

40

5 3

0:

17
WRONG, LOOK AT IT THIS WAY AYD TRY AGAIN:
ODD
DOD
DOD
DOD
DOD
0:

18
THE CORRECT ANSWER IS:
15
3 4
0:

12

2 5

0:

'STOP'

The first six lines of the program are similar to the
first six lines of the SPELL program; line 7 displays a
rectangle whose dimensions are the two factors presented
(and the student may therefore count its elements to
determine the correct answer); lines 9 and 10 type out the
correct answer if the second try proves incorrect.

The same program provides drill in the multiplication
of three or more factors; one need only specify the range
for three values in invoking the drill:

48

DRILL 5 6 9
561
0:

30

5 4 5

0:

100

2 6 5

0:

50
WRONG, LOOK AT IT THIS WAY AND TRY AGAIN:

DDDDD
00000
00000
00000
00000
00000

00000
00000
00000
00000
DDDDD
00000
0:

60
219
0:

'STOP'

f~r~Qn§ll~~g Qrlil. Given a set of one or more general
drill programs, a teacher can easily define drills
specialized for individual students. The following shows
the definition and use of three individualized drills based
on the multiplication drill:

VJOHN
[lJ DRILL 6 6
[2J \l

'JMARY
[lJ DRILL 4 12 12
[2J \I

\/SUSAN
[1] DRILL 50 50
[2J '1

49

JOHN
1 4
0:

4
3 2
0:

6
6 4
0:

'STOP'

SUSAN
24 48
0:

1152
3 39
0:

, STOP'

~lq~~~L~ qLLll. Consider
ENTER, and DRILL:

the following programs called

'V ENTER
[1] F+,F
[2] E+,E
[3] N+[!J
[4J -+10Xl0=pN
[5] F+F,15pN,15p"
[6] N+[!]
[7J E+E,15pN,15p"
[8] , ,

[9 J -+3
[10J F+«(pF)f15),1S)pF
[11J E+«(pE)f15),15)pE

'V

'V DRILL
[1] I+?(pF)[1]
[2J F[I;]
[3] N+[!]
[4J -+OXt O=p,N
[5] -+A/E[I;]=15pN,15p"
[6J 'WRONG'
[7] N+[!]
[8J -+5X10~p,N

[9 J 'CORRECT ANSWER IS " E[I;]
[10] -+1

~

50

The program ENTER accepts pairs of literal entries from
the keyboard, places the first of each pair in successive
rows of the matrix F and the second of each pair in the
corresponding row of the matrix E. The following sequence
shows the 5 ett i ng of the rna tr ices E and F to "empty", the
use of the ENTER function, and the display of the resulting
values of E and F:

E+' ,
F+' ,
ENTER

MORT
DEAD

MENER
TO LEAD

HAUT
HIGH, LOUD

QUITTER
TO LEAVE

E

DEAD
TO LEAD
HIGH, LOUD
TO LEA VE

F

MORT
MENER
HAUT
QUITTER

The DRILL program simply selects a row of F at random,
accepts input from the terminal, compares the input with the
corresponding row of E, and responds with another selection
if the answer is correct, with 'WRONG' if the first try is
incorrect, and with 'WRONG' followed by the correct answe'r
if the second try is incorrect:

51

DRILL
MORT
DEAD
QUITTER
LEAVE
WRONG
TO LEA VE
MORT
BITE
WRONG
HIGH
WRONG

CORRECT ANSWER IS DEAD
HAUT
HIGH, LOUD
MENER

CQmQl~~ ULlll. Although the foregoing examples are simple,
they illustrate the essential techniques of drill; the use
of arrays of questions and expected responses, of random
selection of questions, of comparisons to direct program
branches to the part of the program appropriate to various
conditions, and of control parameters which permit a single
general drill to be specialized to a variety of particular
uses. Complex drills embody the same techniques, although
the arrays may be larger and more varied, the selection and
comparison procedures more complicated, and the set of
control parameters more elaborate.

Drill can be very effective in the teaching of basic
skills such as typing, spelling and addition and
multiplication tables. The potential rate of drill in the
teaching of more abstract concepts is less clear, and much
experimentation is needed. Convenience in experimentation
requires flexbility and power in the programming tools
emp 1oved ,

52

SYSTEM OF PROGRAMS AS FRAMEWORK OF A DISCIPLINE

If the student is encouraged to establish a library of
functions by saving each of the functions he develops to
solve successive exercises assigned in a course, he will
find that he is in fact developing a set of tools which are
applicable in the solution of later excercises. For
example, in the treatment of polynomials in a course in
algebra, the student might be lead to develop functions to
evaluate a polynomial, to determine the zeros of a
polynomial, to determine the coefficients of a product
polynomial in terms of the coefficients of the factors, and
to perform synthetic division. In later work, this same set
of tools would be extended by functions to determine the
coefficients of a polynomial to fit a given set of points,
to determine the coefficients of a polynomial which yields
the slope of a given polynomial, and to approximate certain
functions (such as the elementary functions) by polynomials
of indefinite degree.

The mark of a well developed discipline is, in fact,
the existence of a well-established set of functions for use
as tools. In the study of linear systems, for example, the
set i ncl udes matr i x product, matr i x inverse, and
determinant. In statistics the set includes moments and
correlations, as well as the set already mentioned for
1 i near s vs terns.

SUMMARY

Programming is the key to computer use, and since the
required notation is a simple extension of algebra,
programming ability is easily acquired. The main
applications of the computer are two - expermentation, and
drill.

Drills adequate for the teaching of basic skills appear
to be relatively easy to construct. Effective drills for
the teaching of abstract concepts are much more difficult to
construct, and results in this area have been generally
disappointing.

Student use of the computer for experimentation can be
immediately effective, even with the use of established
texts. A re-working of texts from an algorithmic viewpoint
would, however, be desirable.

53

320·0996-0

llrnllir
e

International Business Machines Corporation
Data Processing Division
112 East Post Road, White Plains, N. Y. 10601
(USA Only)

IBM World Trade Corporation
821 United Nations Plaza, New York, New York 10017
(International)

