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FOR E W0 R 0 

The present work consists of a summary of eiqht lectures 

delivered by Dr. Kenneth Iverson at Queen's University on March 
21 and 22, 1968, to an enth~ iastic audience of professors and 
High School teachers from Ontario and Quebec. His lively infor
mal lecturing style, his directness, his evident profound and 
comprehensive knowledge of computina and its applications greatly 

impressed all his hearers. 

I heard only one criticism. His lectures were not 
sufficiently philosophical; they contained no sweeoinq gener
alizations~ This criticism was conveyed to him during the course 
of his lectures but had essentially no effect~ I gained the 
impression that this avoidance of any of the many glowing glib 
assessments of computers and their possibilities, which are so 
common in popular literature, is a deliberate pedagogical device 
on the part of Dr. Iverson. Certainly he is enthusiastic about 
the computer and its possibilities for teaching. But if it is 
to prove of real use, and not orovide merely time-and-money
wasting gilt to the educational orocess, the computer must be 
approached with a down-to-earth, salty attitude. 

His aim of showing prec;~ what we can reasonably expect 
to accomplish in teaching with the computer dictated, Dr. Iversonls 
approach. So in what follows, the reader will find a series of 
concrete examples of what has been done, which, taken as a whole, 
define the immediate future potentialities of the computer in 
teaching as Dr. Iverson sees them at present. 



In order to present meaningful examples, some notation is 
needed. For this purpose, Dr. Iverson used the proqramming 
language, APL, which had its oriqin in his work at Harvard. 
APL is a simole, consistent variation and generalization of 
ordinary algebraic notation. Many of my colleagues regard APL 
as the simplest and a~ the same time the most powerful program
ming language suitable for conversational mode which is currently 
available. The footnote on p. 3 describes the development of the 
APL system. 

APL has been used extensively at several Canadian Univer
sities, including Queenls, with a group of faculty and honours 
students. The reader who reads the first few pages of this book 
attentively will quickly pick up this new language, as did most 
of Dr. Iverson's auditors, and then easily appreciate the sig
nificance of the examples which he uses to illustrate the four 
areas of teaching in which the computer can immediately be put 
to effective use. 

A. J. Coleman, 
Head, Department of Mathematics 
Queenls University 
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INTRODUCTION 

The computer is fast becoming an important tool in 
teaching at all l eve l s , It is important that teachers begin 
to learn its use, both to exploit its present possibilities 
and to explore and develop further uses. 

The immediate potential of computers in teaching is due 
to two rather recent developments. The first is 
11m~=~h2rlng, which permits a single central computer to 
serve a large number of relatively inexpensive typewriter 
terminals connected by ordinary phone lines. The second is 
the simplification of programming, which permits a teacher 
or student to make effective use of a computer without 
devoting time to the study of inessential details. 

The computer can serve many purposes in education, 
including the scheduling of classes and classrooms and the 
performance of other purely administrative record-keeping. 
The present discussion will be limited to those purposes 
directly related to teaching. The following aspects of 
computer use will be treated in turn: 1) exercises and 
experimentation, 2) examinations, 3) drill, 4) computer 
programs as the framework of a discipline. 

Mathematics appears as the most likely area for the 
application of computers, and indeed most of the examples in 
the present paper are drawn from algebra. However, other 
quantitative topics such as physics, chemistry, and 
statistics are equally amenable. In non-quantitative topics 
such as language and history, the immediate promise lies 
primarily in the categories of drill and examinations. 

Before proceeding to discuss anyone of the uses of 
computers in teaching, it will be necessary to consider the 
techniques of communicating with a computer. This topic is 
called Qcogrammlng. 
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A time-shared computer is used via a teLmlnal, which 
behaves like an ordinary typewriter except that each 
keystroke is transmitted (encoded as a set of tones) to the 
computer over telephone lines, and that responses from the 
computer are typed automatically. The following is a 
typical discourse via such a terminal: 

3.4+5.6
 
9
 

3. 4x 7 

X+3
 
Y+5
 
XxY 

15 
x+y 

8 
(x+Y)x(X-y) 

16 

IThe first line of the discourse is entered by the user. 
After he strikes the carriage return the computer sends its 

response 9 (which is then typed automatically), followed by 
a carriage return and five spaces. The spaces automatically 
indent the user's entry so as to distinguish entries from 
responses. The entries on lines 5 and 6 assign values to 
the names (commonly referred to as Yarlables) X and Y. The 
succeeding lines show how expressions involving such 
variables are evaluated, i.e., by substituting for each 
variable the value previously assigned to it. 

It is important that the communication with the 
computer be unambiguous, and for that reason the rules of 
discourse are more rigid than might be inferred from the 
preceding example. For example, entering 

3.4 PLUS 5 06 

will result in the typing of an eL~OL rnessa~e rather than 
the sum of 3.4 and 5.6. Both the basic operations 
permitted (such as +, x, f and *) and the rules for 
combining them (for example, (X+Y)x(X-Y» are limited in 
number and precisely defined. For this reason, the 
discourse is said to be formal and the "language" defined by 
these rules of discourse is called a fQLooal lan&ua&e. 
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There are hundreds of formal programming languages in 
existence, but there is only one well-established formal 
language which students must learn in any case, namely, the 
language embodied in algebraic notation. The present 
discussion will be couched in terms of a formal programming 
language* which is very similar to algebraic notation. Each 
of the examples used will show the actual discourse carried 
out on a terminal. 

In order to show the relation to algebraic notation and 
to clarify the reasons for departures therefrom, certain 
examples wi 11 first be stated in the familiar notation. 
Consider the following well-known method for computing the 
area of a triangle with sides of length A,B, and c: 
calculate the semi-perimeter, take the product of the 
semi-perimeter and the difference between it and each of the 
three sides, then raise this product to the one-half power 
(i.e., take its square root). 

In algebraic notation, the method is stated as follows: 

P=A+B+C 
S=P~2 

(S(S-A)(S-B)(S-C)1/2 

*The APL language was first defined by K. E. Iverson in A
 
Progratnming Language (Wiley, 1962) and was later developed
 
in collaboration with A. D. Falkoff. The APL Terminal System.
 
was designed with the additional collaboration of L. M. Breed,
 
who, with R. D. Moore, also designed the 8/360 implementation.
 
The system was programmed for 8/360 by Breed, Moore, and
 
R. H. Lathwell, with assistance from L. Woodrum. The present 
implementation also benefitted from experience with an earlier 
version, programmed for the IBM 7090 by Breed and P. S. Abram.s. 

Other relevant publications are:
 
Pakin, S., APL\360 Reference Manual, Sc i enc e Research
 
Associates, Chicago.
 
Iverson, K. E., Elem.entary Functions: an algorithITlic
 
treatment, Science Research Associates, Chicago, 1966.
 
Falkof!, A. D., and Iverson, K. E. J "The APL\360 Terminal 
System", in Interactive Systems for Experimental Applied 
Mathem.atics, Klerer and Reinfelds, eds. J Academic Press 
(to appear). 
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In order to state that the calculation is to be 
performed for a specific triangle <such as the one sketched 
on the right) one would write the following: 

A=3
 
B=4
 
C=5
 
P=A+B+C 
S=P+2
 
( S ( S - A ) ( S - B ) ( s -C) ) • 51
 

The actual form to be entered on the computer follows 
(the last line is the response): 

A+-3 
B+4
 
C+5
 
P+-A +B+ C
 
S+-Pf 2
 
(Sx(S-A)x(S-B)x(S-C) )*.51
 

Such a sequence of calculations is called a Q[Qgrgm. 

Three departures from conventional notation are to be 
no ted: J


1. The symbol +- replaces the equal sign in cases where 
it has the sense of "let X=3". This avoids ambiguity 
arising from other common uses of the equal sign (as 
in the statement of identities such as 

The expression S+-P+2 may be read as liS is specified by 
the value of P-;'2". 

2. The familiar omission of the multiplication sign 
is not permitted. This avoids the common confusion in 
X(X+2), which means X times X+2 and F(X+2), which 
frequently means not F times X+2 but the value of some 
function F applied to the argument X+2. It also 
permits the use of multi-character variable names
thus AREA can be used as a variable without danger of 
confusion with the product of the variables A, R, E 
and A. 

3. The QQ~~L function is denoted by the symbol *, 
whereas in conventional notation this function has no 
symbol but is denoted by the raised position of the 
second argument. This change is made for convenience 
in typing and for uniformity ~Y~L~ operator is 
assigned a symbol, and that symbol may never be 
elided. 
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ag~l~ fun~11Qn~. It is convenient to have, in addition to 
the arithmetic functions +, x, and * already introduced, a 
number of other simple basic functions such as divide, 
subtract, maximum, etc. Table 1 shows a number of these 
basic functions and the symbols employed for them. 

There are two points to note about the functions of 
Table 1: 

1. Each of the functions takes two arguments and, in 
the interest of uniformity, each symbol appears 
b~t~~~n its arguments in any expression, Just as do 
the familiar arithmetic symbols, e.g., 
x+Y, XxY, Xry, xsY. 

2. Each of the relational symbols is used as a 
DLQDQ~lllQD, rather than as an assertion. The 
difference is that a proposition may have one of two 
values, !L~~ or fgl~~. As is common in applied logic, 
the value !L~~ is represented by the number 1 and 
fgl~~ by the number O. Hence the expression 3~7 has a 
value (in this case 1), just as 3+7 has a value (10). 

The following examples show discourse employing somp of 
the functions of Table 1: 

X+3
 
Y+5
 
Xry 

5 
X~y 

o 
(XxY)~«XrY)*2) 

1 
«X+1)*2)=«X*2)+(2 xX)+1) 

1 

~ir2~2. The expression 

X+2 3 5 7 11 

assigns to X the set of five values indicated, and X is 
called a vector of dimension 5. A vector can be lD~~~~g to 
select any-of-lts elements~- For example: 

X[3] 
5 

X[4]-X[2J 
4 

X[1 2 3J 
235 

Vectors have many uses in elementary mathematics and 
are a particularly important aid to exposition. Moreover l 

when presented simply as a convenient way of treatin~ a 
f~mll~ of variables CX[1],X[2], etc.) and not burdened with 
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Definition or examole 
+ 

2+3.2 +-* 5.2Add+ 

2 - 3 • 2 00(-+ -1 • 2 Subtract 

2x3.2 +-+ 6.4x Multiply 

2';'3.2 ++ 0.0625Divide 

3f7 ++ 7Maximumr 
317 ++ 3MinimumL 

* Power 2*3 +~ 8 

~ Logarithm 10~20 +~ 1.3010299 ... 

I Re s i.due AlB -(-~ B-(IA)xLBfl ..4 if 
A~O, OIN +~ N for N~O 

318 +~ 2 31-8 +~ 1 
< Less Relations 

Result is 1 if the 
~ Not greater	 relation holds, 0 

if it does not: 
= Equal 3 ~7 +-+- 1 

7 ~3 +-)- 0 
~ Not less 5~7 +-+ 1 

> Greater 

~ Not equal 

A And A B AAB AvE A~BIA¥B 
00001 1 

v 01." 01011 0 
100 1 1 0 

Narid 111 1 0 0 

Iff Nor 

TABLE 1 
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notion-s like "d l r e c t l on" or "direction and magnitude" wh l cb 
arise in one of their many applications, vectors cause 
students no difficulty whatsoever. 

Each of the basIc operations is extended to vectors 
element-by-element. For example: 

X+2 3 5 7 11 
Y+2 0 2 0 1 
X+Y 

4 3 7 7 12 
Xxy 

4 a 10 0 11 
X*Y 

4 1 25 1 11 
2xX 

4 6 10 14 22 
2*X 

4 8 32 128 2048 
X*2 

4 9 25 49 121 
4rX 

4 4 5 7 11 
X>Y 

0 1 1 1 1 

Moreover, +/X denotes the sum of all components of x, and 
x/X denotes the product of all components, and so on. They 
are called ~~m=r~g~£!lQn of X and n!QQY£! r~£Y£!lQn of x, 
respectively. For example: 

+/X 
28 

x/X 
2310 

+/(XxY) 
25 

+/(X>Y) 
4 

The use of vectors can be illustrated by reconsidering 
the calculation of the area 
lengths 3, 4, and 5, using a 
the three lengths: 

of 
si

the trIangle with 
ngle vector L to 

sides of 
represent 

6 

L+3 4 5 
P++/L 
S+P+2 
(Sxx/S-L)*.5 

Note that the expression S-L is equivalent to 6 3 4 5 and 
hence yields the vector 3 2 1. Consequently, x/S-L has the 
value 6. 
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E~n£!lQn g~flnl!lQn. The program 

P++/L
 
S+P+2
 
(Sxx/S-L)*.5
 

used above to calculate the area of any triangle with sIdes 
of length L determines a function in the sense that for any 
legitimate set of values-assigned to the three-element 
vector L, the calculation produces a corresponding value of 
the area of the triangle. It is important to be able to 
define such a function, giving it a name (say AREA) and 
thereafter being able to use it as conveniently as the basic 
functions +. -. x. *. etc. Such a definition is made as 
follows: 

'iJR+AREA L 
[1J P++/L 
[2J S+P+2 
[3J R+(Sxx/S-L)*.5 
[4] \J 

The function AREA can now be used in the ways expected 
of any function. For example: I
 

Q+AREA 345
 
Q
 

6 
AREA 3 4 5 

6 
144xAREA 3 4 5 

864 
V+6 8 10 
AREA V 

24 
AREA 5 7 12 

a 
AREA 1 1 1 

0.4330127019 
AREA 5 12 13 

30 

The method of definition should be clear from a study 
of the foregoing example: the first line is a n~gg~[ that 
shows which variable in the program following is the ~~~~11 
(the one to the left of the arrow), which variable is the 
argument (that is, L) and what the ngm~ of the function is ( 
AREA). The first V (pronounced del) indicates that what 
follows is a definition, and the final v marks the end of 
the definition. 
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The variables occurrIng in a definItion are dummies in 
the following sense. In the execution of the statemenf-

Q+3 AREA 3 4 5 

the vector 3 4 5 is substituted for the argument (that is, 
L), the definIng program is executed, and the value of the 
result R is assigned to Q. The argument of the function 
AREA can, of course, be any expression. For example, 

T+l 2 3 
AREA 2 + T 

6 

Trace. In order to gain a clear understanding of any
defined function, it is helpful to be able to s e e the 
results produced by each line of the defining program as it 
is executed. This factl ity is provided hy the TRACE. The 
!r~£~ £2~~!21 ~~£!2! for a function AREA is denoted by 
T~AREA, and the values assigned to this vector determine 
which lines of the program are traced when the function is 
executed. For example: 

T6AREA+l 2 3 
Q+AREA 1 1 1 

AREA[l] 3 
AREA[2J 1.5 
AREA[3J 0.4330127019 

If the trace control is set to the value 2, then only 1 ine 2 
is traced: 

T~AREA+2 

Q+AREA 1 1 1 
AREA[2J 1.5 

Iteration. Repetition of some operation <called iteration> 
ls-an--lmportant notion in mathematics. For example, the 
power function X*N is defined as an iteration of 
multiplication extended to N factors each having the value 
x. 

Iteration Is used in the following function definition: 

'lZ+B N 
[lJ Z+1 
[2J D+O,Z 
[3J E+Z,O 
[4J Z+D+E 
[5J +2 
[6J g 
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Two points merit comment: 

1. The notation +2 occurlng on line 5 is read as
 
"branch to 2" and causes 1 ine 2 to be executed next in
 
sequence. Hence the sequence of 1 ines 2, 3, 4, and 5
 
will be executed repeatedly.
 

2. The comma denotes catenation. For example: 

X+l 2 3
 
Y+4 1
 
X,Y
 

1 2 341
 
Y,X 

4 1 123
 
o,X
 

012 3
 
0,1
 

a 1
 

The behavior of the function B should be apparent from 
the following trace: 

TAB+l 2 345
 
Q+B 3
 

B[l] 1
 J
B[2J a 1
 
B[3J 1 0
 
B[4] 1 1
 
B[sJ 2
 
B[2] 0 1 1
 
B[3J 1 1 a
 
B[4] 1 2 1
 
B[5J 2
 
B[2J 0 1 2 1
 
B[3J 1 2 1 0
 
B[4J 1 3 3 1
 
B[5J 2
 
B[2J 0 1 3 3 1
 
B[3] 1 3 3 1 0
 
B[4J 1 4 6 4 1
 
B[sJ 2
 
B[2J 0 1 4 6 4 1
 
B[3J 1 4 641 0
 
B[4J 1 5 10 10 5 1
 
B[sJ 2
 
B[2J 0 1 5 10 10 5 1
 
B[3J 1 5 10 10 5 1 0
 
B[4J 1 6 15 20 15 6 1
 

It is clear that the value of Z produced (on 1 ine 4) at the
 
Kth Iteration i 5 the vector of binomial coefficIents of
 
order K.
 

10
 



Because the branch to 1 ine 2 occurring on line 5 of the 
functionB is unconditional, the execution of the program
would continue-rndetrnrfery unless stopped (as it was in the 
foregoing example) by striking the attention key located at 
the upper right corner of the keVDoara~- A conditional 
branch can be made by replacing the 2 occurring rn-rrne-~lDy 
a suitable expression. 

The definition of the function B can be changed by 
re-opening the definition and introducing the new values of 
any revised lines as follows: 

VB 
[6J [5J 
[5J +2xN>Z[2J 
[6J 

The entire revised function may now be displayed: 

[OJ\7 
'V Z+B N 

[lJ Z+1 
[2J D+O,Z 
[3J E+Z,O 
[4J Z+D+E 
[5J +2xN>Z[2J 

V 

Execution of the revised function (with trace) will now 
illustrate the behavior of the conditional branch: 

TlJ.B+1 2 3 4 5 
Q+B 4
 

B[1] 1
 
B[2J a 1
 
B[3J 1 0
 
B[4] 1 1
 
B[S] 2 
B[2] 1° 1 
B[3] 1 1 0
 
B[4] 1 2 1
 
B[S] 2
 
B[2J 0 1 2 1
 
B[3] 1 2 1 0
 
B[4] 1 3 3 1
 
B[S] 2
 
B[2] 0 1 3 3 1
 
B[3] 1 3 3 1
 
B[4] 1 4 6 4 1°
 
B[5] a
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SInce the result of the function was assigned to Q (that Is, 
Q+B 4), the value of Q should be the last value assigned to 
the result z: 

Q 
14641 

It is clear from the trace of line 5 that the last branch is 
made to line 0 rather than to 2. SInce the function has no 
line 0, this causes termination of the execution. 

If the trace control is set to discontinue tracing, the 
function B can then be used to produce binomial coefficients 
without producing intermediate output: 

T~B+O 

Q+B 4
 
Q
 

1 4 641 
B 4 J1 4 641 
B 6 

1 6 15 20 15 6 1 
B 10 

1 10 45 120 210 252 210 120 45 10 1 

Order of execution. In the expression (x+y)x(X-Y), theparentheses-determine the order in which the functions are 
evaluated. In the present notation, parentheses are used 
for this purpose exactly as they are in familIar algebraic 
notation. 

In algebraic notation, there is a rather complex and 
ill-defined set of rules which determines the order of 
evaluation in the absence of parentheses. In the present 
notation there is one simple rule - every functIon takes as 
its right argument the entire expression to the right of It. 

For example, 

is equivalent to 
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This simple rule has four happy consequences: 

1. An expression is easy to read from left to right 
e.g., the above example is clearly 3 times something, 
that thing is the maximum of X and something, and so 
on. 

2. This analysis from left to right is famil iar in 
modern Romance languages. For example: "They objected 
to the rise in price of products from the farm" means 
"They objected to" something, that thing is "the rise 
in" something, and so on. 
3. An expression is also easy to read from right to 
left, since an equivalent statement of the rule 15 that 
the functions are evaluated in order from right to left. 

(See the parenthesized form of the example above.) 

4. With this rule of evaluation, the expression -IX 
yields the alternating sum of the elements of x, and 
~/x yields the alternating product. For example, if 
X+2 3 5 7 11, then -IX is equivalent to 2-3-5-7-11. 
With the present rule, this is equivalent to 
(2+5+11)-(3+7). 

Functions of two 2rg~m~n!~. Each of the functions definedthus--far take--a single argument. The definition of a 
function of two arguments will be illustrated by defining a 
function POL which takes a left argument C (a vector of 
coefficients) and a right argument X, and yields tbe value 
of the polynomial with coefficients C evaluated at the point 
X: 

'VZ+C POL X 
[1J Z++/CxX* - 1+tpC 
[2J 'V 

1 2 3 POL 2 
17 

1 2 3 POL 3 
34 

1 3 3 1 POL 4 

125 

Two symbols used in the definition require explanation. 
The function pQ yields the dimension of its argument, that 
is, pQ is the number of elements in the vector Q. For 
example: 

C+1 3 3 1 
pC
 

4
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The function 1 applied to the argument N yields the 
vector of the first N integers in order: 

1 3
 
1 2 3
 

14
 
1 2 3 4
 

1 oC
 
1 2 3 4
 

1+1PC
 
a 1 2 3
 

X+4
 
X* - 1+ 1 pC
 

1 4 16 64
 
C 

1 3 3 1 -CxX* 1+1 pC
 
1 12 48 64
 -+/CxX* 1+ 1 P C
 
125
 

The foregoing examples show that the expression 1+1PC 
yields the vector of exponents appropriate to the 
coefficients C, and X*-1+1PC is the vector of powers of x. 
Hence CXX*-1+1PC is the vector of terms of the polynomial, 
and +/CXX*-1+lPC is their sum. 

~Qn£l~~lQn. This concludes the introduction of the main 
features of the notation to be employed herein: the basic 
functions and the symbols used to denote them (Table 1); the 
use of vectors, including the element-by-element extens ion 
of the basic functions to vectors and the r~g~~11Qn of a 
vector by applying some function like + to all elements; the 
definition and naming of new functions; tracing the 
execution of a function; and the order of execution in 
unparenthesized expressionse A few further details of the 
notation will be introduced as needed in examples. 

EXERCISES AND EXPERIMENTATION 

In the physical sciences, experiments have long been 
accepted as an essential part of the educational process. 
Closely-directed experiments can serve to develop intuition, 

that is, to furnish the student with concrete models of 
abstract notionso Freer experimentation can be used to 
confront the student with an unfamiliar system and a 
challenge to learn its secrets through his own choice of 
experiments. Because of the human penchant for puzzles, the 
opportunity for this type of experimentation can provide a 
strong incentive to study, developing both the student's 
taste for, and techniques of, exploration. 
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Experimentation can play similar roles in other 
disciplines as well. In mathematics, for example, 
experiments in plotting quadratics with various coefficients 
can give a student a feeling for the behavior of parabolas. 

Other suggested experiments can lead students to the 
discovery of properties of mathematical objects; for 
example, the calculation of the direction of rays reflected 
from a parabolic mirror leads naturally to the interesting 
properties of the focal point. 

Such mathematical experiments have typically been 
performed by pencil-and-paper calculations, a method too 
tedious and time-consuming to admit the assignment of much 
non-trivial experimentation. The cornputer, however, now 
makes large-scale mathematical experimentation feasible and 
for the first time provides the student with a usable 
"me t hema t l cal laboratory". 

Even in the physical sciences, the computer can, 
through the use of rna th ema t l ca l models, provide an important 
supplement to experiments with physical equipment. The ease 
and rapidity of experiments on ma t hema t l ca l models can 
quickly give a student an intuitive feeling for the behavior 
of a system which could only be attained by long and tedious 
work with the corresponding physical experiments. 

Exercises can be used simply to enhance facility in 
some process already well-understood, as in drill exercises 
in multiplication. However, when used to elicit or 
elucidate new ideas, assigned exercises are essentially 
guided experimentation - a well-designed set of exercises 
guides the student through a sequence of experiments. 

The remainder of this section will be devoted to a set 
of exercises chosen to illustrate various facets of the use 
of the computer in experimentation. 

~Lm~L~ ~~~~LUn~Ut~. For beginning students, a good deal of 
motivation can be provided by simply leaving most of the 
basic functions as puzzles, the definition of each function 
to be determined by experimentation. For example, the 
student is first shown the sequence 

3.4+5.6
 
9
 

3. 4x 6 
20.4 

and Is then told that the symbols +-*rL<~=~>~ are also 
functions of two arguments to be used 1 ike the + and x. He 
is then invited to determine what these functions are by 
trying them on the computer with arguments of his own 
choice. 
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This can prove an interesting and (for younger 
students) challenging exercise. Observations of students in 
thIs simple exercise have led me to two conclusions: 

1. There Is commonly an Initial reluctance to 
experiment. Rather than plunge into trials, the 
student asks "What will happen If I ••• ", or "Is it 
all right jf I ••• '". This suggests that our treatment 
of students frequently succeeds in stif1 ing any urge 
to explore matters on their own. 

2. Students lack techniques of systematic 
exploration. For example, one student who quickly 
identified X*Y as the Yth power of X, spent a much 
longer time on the essentially simpler function r 
(maximum) and then wrongly concluded that the value of 
Xry was simply the value of the right argument Y. 
Although he had tried Quite a number of experiments, 
all had been of the form xry where Y was the larger. 
I would have chosen experiments in pairs of the form 

3rs 
8 

Sr3 
8 

and was surprised that he had not, until f realized 
that my choice of such a sequence was based on an 
appreciation of the importance of commutativity, an 
appreciation that he had not gained in spite of 
exposure to it for a year or more in classes. 

The following exercise can be used to help fix the 
concepts of associativity, commutativity, and 
dlstributivity: perform experiments to determine which of 
the functions +, x, r, L. and * are commutative, which are 
associative, and which of the functions distribute over 
which functions. The solution to the exercise is shown in 
Table 2. 

Subsequent examples employ the function 1. , whose 
behavior is recalled here: 

\3 
123 

.2x1.10 
0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 

Interest in the general izations of famil iar functions 
(such as the general ization of X*N to non-integer exponents 
N) can be sparked by first assigning suggestive experiments. 
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Commutativity As soclativity 

-t+ x r l x .. r l• * * 
1 0 1 0 1 1 0 1 0 1 0 1 1 0 

Distributivity 

x+ .. r l * 
+ 0 0 0 0 1 1 0 

0 0 0 0 0 0 0 

x 1 1 0 0 0 0 0 

f 0 0 0 0 0 0 0 

r 0 0 0 0 1 1 0 

l 0 0 0 0 1 1 0 

* 0 0 0 0 0 0 0 

Fundamental p rope r tt e s of some func tfons 

TABLE 2 
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For example, the student who is already famtl iar with the 
following behavior of the power function: 

X+1.4
 
X
 

1 234 
2*X 

2 4 8 16 

can then be urged to plot the results of experiments of the 
following form: 

X+.5 Xt6 

X 
0.5 1 1.5 2 2.5 3 

2*X 
1.414213562 2 2.828427125 4 5.656854249 8 

2*X+2 
1.189207115 1.414213562 1.681792831 2 2.37841423 2.82842712
 
3*%
 

1.732050808 3 5.196152423 9 15.58845727 27
 

Similar experiments can be used In the extension of the 
factorial function (denoted by :N): 

6 
! 5 

120 
~1 2 3 4 

1 2 6 24 120 
: t 5 

1 2 6 24 120 
: .5 x t 1 0 

0.8862269254 1 1.329340388 2 3.32335097 6 11.6317284 24 

Inyga!l&g!lQn Qf n~~ fYD£11QD§. A teacher can define any 
set of new functIons desired (in the manner Illustrated by 
the functions AREA and B defined earl ier) and can then save 
the entire set under some name (say PRODO) by typing th~ 

first line below: 

) SAVE PRODO 
PRODO SAVED 03/12/68 30.46.33 

Thereafter, anyone <student or teacher) who types the 
first line below: 

) LOAD FRODO 
FRODO SAVED 03/12/68 30.46.33 

will again have available the set of defined functions. 
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Suppose a teacher defines and saves the following 
function: 

'VZ+BIN N 
[lJ Z+1 
[2J Z+(O,Z)+Z,O 
[3J +2xN?pZ 
[4J V 

A student may then be asked to load the function and, 
without displaying its definition, determine what the 
function is. A few experiments like the following: 

BIN 1 
1 1 

BIN 2 
1 2 1 

BIN 5 
1 5 10 10 5 1 

should suffice to identify BIN as a function which produces 
the binomial coefficients of order K when applied to the 
argument K. 

The student may now be asked to analyze the definition 
of the function BIN by displaying it. As an aid to the 
analysIs he might execute it with a trace applIed to 1 ine 2: 

Th.BIN+2 
Q+BIN 5 

BIN[2J 1 1 
BIN[2] 1 2 1 
BIN[2] 1 3 3 1 
BIN[2] 1 4 6 4 1 
BIN[2J 1 5 10 10 5 1 

From this the student should see the relation to 
Pascal's triangle. He could, however, get an even more 
detailed view by breaking line 2 into an equivalent sequence 
of three statements: 

D+O,Z
 
E+Z,O
 
Z+D+E
 

This change in the definition of BIN can be made as 
follows: 

VBIII 
[4J [1.1]D+O,Z 
[1.2J E+Z,O 
[1.3J [2JZ+D+E 
[3J 'V 
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A subsequent display of BIN would show its new 
defInItion: 

VBIN[OJV 
V Z+BIN N 

[1J Z+1 
[2J D+O,Z 
[3J E+Z,O 
[4J Z+D+E 
[5J +2xN~pZ 

~ 

ThIs is clearly equivalent to the definition of the function 
B already used in the introduction, and a trace of its 
execution (also shown in the IntroductIon) produces the 
desIred detailed view. 

A function definition is usually closed with the symbol 
V. If the symbol ~ is used instead, the function becomes 
locked in the following sense: (1) Its defInition cannot be 
reopened and hence it can be nerther modified or dIsplayed, 
and (2) a trace cannot be applIed to It. By locking Its 
definition, the teacher can therefore present a student with 
a function whose behavior can be studIed only by the means 
available for the basic functions cr, L, *. etc.), that Is, 
by experImentation. I

Ih§Qr~. The theory involved in elementary mathematics is 
largely concerned with establishing identities, that is, 
with proving that two different computational procedures 
applied to the same argument yield the same result for all 
possible values of the argument. Experiments on functions 
can lead the student to the discovery of such identities. 
Moreover, the structure of the program definIng a function 
frequently suggests general proofs of observed properties of 
the function. 

For example, experiments of the form 

81 
(BIN N)POL X 

81 

repeated for various integral values of N and X would 
suggest that the polynomial in X whose coeffIcients are the 
binomial coefficients of order N is equivalent to X+1 raised 
to the Nth power, that is, 

(X+l)*N ~ (BIN N)POL X (Eq. 1) 
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SImIlarly, experiments of the form 

+/BIN 1 
2 

+/BIN 2 
4

+/BIN 3 
8 

+/BIll 4 
16 

+/BIN 15 
32768 

2*15 
32768 

suggest the identity: 

(+/BIN N) +-+ 2*N 

The usual proof is based on considerIng EquatIon 1 for 
the case X=1. A more direct proof Is provided by the 
original definition of the function BIN, namely: 

VZ+BIN n 
[1J 2+1 
[2J Z+(O,Z)+Z,o 
[3J -+2xN~pZ 

[4] 'l 

It is clear that the effect of step 3 is to repeat the 
second step N times. Furthermore, it is clear that each 
execution of step 2 doubles the value of +/z <the sum of the 
coefficients), since the new value of Z is formed by adding 
Z to itself and to two zeros. 

Consider the function G defined and used as follows: 

'VR+M G N
 
[1J R+M
 
[2J M+MfN
 
[ 3] N+R 
[ 4 ] -+M~O
 

[5J 'V
 

40 G 48 
8 

120 G 84 
12 

84 G 120 
12 
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Further experiments can lead to the (correct) 
conjecture that G yields the greatest common divisor of its 
arguments. Its detailed execution can be seen in the 
following trace: 

TI1G+l 2 3 4 
Q+84 G 120 

G[l] 84 
G[2J 36 
G[3] 84 
G[ 4J 1 
G[l] 36 
G[2] 12 
G[3] 36 
G[ 4 J 1 
G[l] 12 
G[2] 0 
G[3] 12 
G[4] 0 

Q 

A study of this trace shows that the effect of each 
iteration is to replace the larger argument by the remainder 
obtained on dividing the larger by the smaller - in other 
words, the function definition is a concise statement of the 
well-known Euclidean algorithm. Experiments with G J
 
therefore suggest the theorem underlying the Euclidean 
algorithm, namely that the greatest common divisor of two 
arguments is the same as the greatest common divisor of one 
of them and their remainder. 

f~~L~la~~ In ~QmQQ~lng f~n~11Qn~. The composition of formal 
function definitions is called QLQgr§mmlng. In the 
exercises treated thus far the student was only required to 
use and study functions which had already been programmed 
for him. It is also important that the student learn to 
program. 

Functions to be formally defined can either be 
presented informally (e.g., "define a function to yield the 
vector of the first N primes tt ) or formally by presenting a 
function whose behavior is to be emulated. 

In this work the computer can be used to experiment 
with the function being developed so as to identify and 
correct deficiencies. The main lesson to be learned is 
precision in thought and expression. 

The following experience with a high school senior will 
illustrate the process of programming. The following 
problem was posed: define a function to determine the 
reduced form of a rational fraction, i.e., given two 
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integers A and B, determine integers M and N such that MfN 
equals A+B and that M and N have no common factor. When 
asked to state the method he used for such problems, the 
student said he would factor both integers, strike out the 
common factors, and then take the products of the remaini ng 
factors of each. 

However, when given the pair 28 and 70, he immediately 
answered 2 and 5, and when asked for his method replied "I 
saw that 7 was a factor of each so I divided it out and then 
recognized that 2 was a factor of the results and then 
divided it out" - the actual method used was not the one 
professed. When pressed on this discrepancy, the student 
decided the method he actually used was the better one. 
When presented with more difficult cases he soon developed a 
systematic procedure, trying to divide first by 2, then by 
3, and so on. 

The student was then asked to state the process in 
formal terms and proceeded (with the aid of occasional 
suggestions) to reason roughly as follows: Call the trial 
divisor T. It must first be set to some initial value. To 
s tartanew t ria 1, T will havet 0 b e inc rea sed, the 
remainder on dividing it into A will then be compared with 
zero to see if T is a factor of A. If it is not, then a new 
trial must be begun by repeating the step of incrementing ~ 
Thus: 

'IF 
[1 J T+1 
[2J T+T+l 
[3J -+2X10~TIA 

[4J 

(The effect of 1 ine 3 is to branch to 2 if T is not a factor 
of A, and to "fall through" to line 4 otherwise. This 
occurs because 11 yields the value 1, whereas 10 is an empty 
vector and no branch occurs in that case.) 

Following the test of A on 1 ine 3, a similar test on B 
is required. If both tests show divisibil ity, then both A 
and Bare respecified by dividing through by T, and the 
process is repeated on the new values of A and B. Thus: 

'IF 
[1 J T+1 
[2J T+T+l 
[3J +2 X10;tT!A 

[4J +2X10~TIB 

[5J A+AfT 
[6J B+BfT 
[ 7 ] --+3 
[8J '1 
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The following experiment - with complete trace - was then 
performed: 

T6F+1.7 
A+84 
B+360 
F 

F[1] 1 
F[2] 2 
F[3] 
F[4] 
F[S] 42 
F[6] 180 
P[7] 3 
F[3] 
F[4] 
F[S] 21 
F[6] 90 
F[7] 3 
F[3 ] 2 
F[2] 3 
F[3] 
F[4] 
F[S] 7 
F[6] 30 
P[?] 3 
P[3] 2 
F[2] 4 
P[3] 2 
F[2] 5 
F[3] 2 
F[2] 6 
F[ 3 ] 2 
F[2] 7 
F[3] 
F[4] 2 
F[2] 8 

(The attention key was used to interrupt execution as soon 
as it became apparent that the process would never 
terminate. The 
termination test and 
the minimum of A and 
of T on step 2. The 

student recognized the need for a 
decided to insert a comparison of T and 

B immediately after the incrementation 
final program appears below.) 
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V F 
[1J T+l 
[2J T+T+1 
[3J +Ox1.T>ALB 
[4J +2 x t O;tT IA 
[5J +2x1.0~TIB 

[6] A+A+T
 
[7J B+B+T
 
[8J +3
 

\J 

T~F+O 

A+84 
B+360 
F 
A 

7 
B 

30 

From the outset the student recognized the desirability 
of using only successive primes rather than successive 
integers for the successive values of T, but this refinement 
was suppressed in the interest of simplicity. He did, 
however, Initially make the mistake of branching to line 2 
rather than 3 from line 8. The effect was to miss repeated 
factors (e.g., dividing out a 3 must be followed by a test 
for further factors of 3 before proceeding to the next trial 
divisor). This mistake was quickly caught by 
experimentation and then rectified. 

Since the arguments A and B receive identical treatment 
in the process, it is clear that they might conveniently be 
treated as the two elements of a single vector p. When this 
was pointed out to the student, he designed the following 
process, which parallels the original in every particular: 

\JF2 
[1] T+1 
[2J T+T+1 
[3J +OX'lT>L/P 
[4J ~2x'lr/0~TIP 

[5J P+P+T 
[6J +3 
[7J V 

P+84 360 
F2 
P 

7 30 
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flQ~£hEr!lng. In planning any formal procedure (I.e., 
definIng a function), it is rather common p r a c t l c e to 
construct a flQ~~hsr!, consisting of Informal statements of 
the parts of the procedure together with arrows showIng the 
sequence in which the parts are to be executed. FIgure 1, 
for example, shows a flowchart whIch describes the followIng 
process: determine the maximum value of each paIr of 
corresponding elements of the vectors X and Y, and then 
determIne the minimum of the resulting set of maxIma. 

The main disadvantage of the flowchart Is that It Is an 
Informal (or at best a poorly-specIfied formal) language, 
and its use does not provide the disciplIne and precision 
of a formal language. It also tends to be more dIffuse and 
less perspicuous - compare, for example l the flowchart of 
Figure 1 with the equivalent APL statement, L/xry. 

The flowchart does embody two useful notions: 

1. The use of arrows to give a graphic pIcture of the 
sequence of execution in a program. 

2. The ability to name and use a process In the 
overall planning of a procedure before the process 
itself Is defined in detail. 

However, both of these notions can be employed withIn the 
confines of a formal language. The Informal use of branch 
arrows in addition to the formal expression of branches Is 
helpful in any formal language and should be encouraged. 
The abil ity to name and use functions before defining them 
Is al ready inherent in any formal language whIch 
Incorporates ~ethods for defining new functions, and the use 
of thIs abilIty is also to be encouraged. 

In sum, flowcharting shows no advantage over a 
well-desIgned formal language. 

Flowchart of l/xry 

Figure 1 
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Non-mathematical work. Non-mathematIcal work amenable to
the-appTTcatTon-of--a-computer covers a wIde range of areas 
Including sorting, plotting, text analysis, and the 
description of the internal operation of the computer 
Itself. Only the first three will be Illustrated here. 

The following bits of new notation wIll be employed In 
subsequent examples: 

1. Any string of characters enclosed In quotes 
denotes a vector whose successive elements are the 
successive characters in the strIng: 

W+' CAT'
 
W[2]
 

A
 
W[2 1 3J
 

ACT
 

2. If u is a logical vector Ccornp r l s l ng elements of 
zeros and ones only), then U!X denotes a selectIon of 
those elements of X corresponding to the ones in u. 
The operation is called ~QmQrg§§lQn: 

1 a 1 o 1/2 3 5 7 11
 
2 5 11
 

1 o 1 0 l/'ABCDE'
 
ACE
 

X+5 3 9 3 14 6
 
(x=L/X)/X
 

3 3 
(X;tL/X)/X 

5 9 14 6 

3. If B is a vector, then B1X denotes the index of X 
in B: 

B+2 3 5 7 11
 
Bt5
 

3 
B,S 2 7
 

314
 
A+'ABCDEFGHIJKLMNOPQRSTUVWXYZ' 
At 'CAT' 

3 1 20
 
A[3 1 20J
 

CAT 

(It should be noted that the symbol 1 has already been 
used for a function of one argument (e.g., ,3 
is 1 23) and is here used as a functIon of two 
arguments. ThIs is similar to the familIar double 
usage of the minus sign to denote both subtraction 
(X-Y) and negation (-y) and does not Introduce an 
ambiguity,) 
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The need to sort a list of numbers Into ascendIng order 
arIses frequently Tn a variety of areas (e.g., sorting 
account numbers into order for postIng to ledgers). There 
exIsts a large varIety of methods for sorting. One of the 
simplest (but inefficient) methods may be stated as follows: 
locate the smallest Item remainIng to be sorted, append It 

to the list of sorted items and remove It from the lIst of 
Items remaining to be sorted. A formal statement follows: 

v Z+S X 
[1J Z+tO 
[2 ] Z+Z,(X=L/X)/X 
[3J X+(X;J:L/X)/X 
[4J +2 xO;J:pX 

V 

The followIng complete trace should clarIfy the 
process: 

T~S+1.4 

S 5 3 2 16 3 8 
S[1J 
8[2J 2 
8[3J 5 3 16 3 8 
8[4J 2 
8[2J 2 3 3 
8[3J 5 16 8 
8[4J 2 
8[2J 233 5 
8[3J 16 8 
8[4J 2 
8[2J 2 3 3 5 8 
8[3J 16 
8[4J 2 
8[2J 2 3 3 5 8 16 
S[3] 
S[4J a 
233 5 8 16 

The problem of sortIng non-numeric data wIll be 
Illustrated by sortIng the following text vector: 

T+' OLAF ( UPON WHAT ONCE WERE KNEES) DOES ALMOST 
CEASELESSLY REPEAT' 

It Is first necessary to specify the order of the alphabet 
assumed (although the ordering of the letters is well 
established, the orderIng of the space, hyphen, punctuation 
marks, and special symbols is not): 

A+t ABCDEFGHIJKLMNOPQRSTUVWXYZ- ( ) *, .; : 
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The operation A1.T can now be used to determine for each 
element of T its posItIon In the alphabet: 

J+A1T
 
J
 

15 12 1 6 28 29 21 16 15 14 28 23 8 1 20 
28 15 14 3 5 28 23 5 18 5 28 11 14 
5 5 19 30 28 4 15 5 19 28 1 12 13 
15 19 20 28 3 5 1 19 5 12 5 19 19 
12 25 28 18 5 16 5 1 20 

The function S can now be applied to sort the numer i c 
vector J: 

K+S J
 
J
 

1 1 1 1 1 3 3 4 5 5 5 5 5 5 5 5 5 5 
5 6 8 11 12 12 12 12 13 14 14 14 15 
15 15 15 15 16 16 18 18 19 19 19 19 
19 19 20 20 20 21 23 23 25 28 28 28 
28 28 28 28 28 28 29 30 

The final sorted output ( i n terms of the original 
alphabet) can now be obtained as follows: 

Q+A[K] 
Q 

AAAAACCDEEEEEEEEEEEFHKLLLLMNNNOOOOOPPRRSSSSSSTTTUWWY 

The entire process can be seen more clearly In the 
followIng single statement: 

Q+A[S A1TJ 

A sorted list of the letters occurring In the text T 
(wIthout repetition) can be obtaIned by modifyIng the 
sorting program S so that only one occurence of the mInImum 
is appended to the result at each excution of lIne 2: 

\78[20J 
[2J z+Z,(X=L/X)/X 
[2J Z+Z,l/X 
[3J [DJ~ 

V Z+S X 
[1J Z+\O 
[2J Z+z,L/X 
[3J X+(X~L/X)/x 

[4J +2XO~pX 

'V 
S A\T 

1 3 4 5 6 8 11 12 13 14 15 16 18 19 20 
21 23 25 28 29 30 
A[S A1TJ 

ACDEFHKLMNOPRSTUWY () 
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The problem of plottIng wIll be Illustrated by 
producIng a hIstogram of the vector V , that t s, the height 
of the ordInate at the Kth po i nt on the abscIssa I 5 to be 
V[X]. For example, i f 

V+l 235 8 13 11 9 7 5 5 8 10 12 842 1 1 1 

then the lInes of the plot for the ordInate values of 7, 6, 
and 5, can be obtained as 

7SV 
a 0 0 0 1 1 1 1 1 0 0 1 1 1 1 0 a 0 0 a 

6SV 
0 0 0 0 1 1 1 1 1 0 0 1 1 1 1 0 0 0 0 0 

ssv 
0 a 0 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 

where the ones denote points to be plotted, and the zeros 
denote spaces. The following i s a formal statement of the 
process: 

VPLOT X 
[1J I+r/X 
[2J I~X 

[3J I+I-l 
[4J +2xO<I 
[5J 'V 

For example: 

PLOT V 

0 0 a 0 0 1 a a 0 0 0 0 0 a 0 a 0 a 0 0 
0 0 0 0 0 1 0 a a 0 0 0 a 1 0 0 a 0 0 0 
0 0 0 0 0 1 1 0 a 0 0 a 0 1 0 a a 0 0 0 
0 a 0 0 0 1 1 0 0 0 a 0 1 1 a 0 0 0 a 0 
0 0 0 0 0 1 1 1 0 0 a 0 1 1 0 0 0 0 0 a 
0 0 0 a 1 1 1 1 0 0 a 1 1 1 1 0 0 0 0 0 
0 0 a 0 1 1 1 1 1 a 0 1 1 1 1 0 0 0 0 0 
0 0 a 0 1 1 1 1 1 0 0 1 1 1 1 a 0 0 a 0 
a 0 0 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 
0 a a 1 1 1 1 1 1 1 1 1 1 1 1 1 a 0 a 0 
0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 a 0 a 0 
0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
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A neater plot can be obtaIned by changing lIne 2 of the 
program as follows: 

VPLOT[2] , ~'[1+ISXJV 

The effect Is to substitute a space for each 0 and a base 
symbol for each 1: 

VPLOT[OJv 
V PLOT X 

[1J .r-r IX 
[2J '~'[l+ISKJ 
[3J I~I-1 

[4J -"2xO<I 

PLOT V 
..L 
~ l. 

1..1 ~ 

J.~ ~..L 

1.1..1 ~l. 

~J.J.1. ~l.l.~ 

..L~J.l.~ .1.11.1. 
1.1.1.1.1. 1.1.1.1. 

l.1.J.J.l.1..Ll.l.J.1.l. 
.Ll.l.1..lJ.J.J.J...Ll.J...L 

1.J...LJ.J.l.J.l.l.1.J.l.J.J. 
1.1.J.J.J...LJ..Ll..L.LJ..Ll.l.J. 

J.l.l...LJ..LJ...L.Ll.J.1.J.J..L.Ll..L.1J. 

The problems of text analysIs will be illustrated by 
counting the number of occurrences of each letter in the 
text vector T used In the discussion of sorting: 

T 
OLAF (	 UPON WHAT ONCE WERE KNEES) DOES ALMOST 

CEASELESSLY REPEAT 
T='Et 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 1 0 0 1 0 1 0 0 0 1 1 0 a 0 0 
0 1 0 a 0 0 a 0 0 0 0 0 1 0 0 1 
0 1 0 0 0 0 0 a 1 a 1 0 0 

+IT='E' 

The vector result above clearly has a one for each 
occurrence of the letter E in the text T. The final result 
(lD Is the sum of these ones and Is therefore the number of 
E's In T. 
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A simIlar count · for each letter (or symbol) in the 
alphabet A can clearly be obtained hy writing a program to 
treat each element A[IJ of the alphabet in turn. It can be 
done more conveniently with the aid of the QH!~r 2[QQy£!. 

Observe the following example of the outer product of 
two vectors X and y: 

X+2 3 4 
Y+3 7 5 3 2 
x«, xY 

6 14 10 6 4 
9 21 15 9 6 

12 28 20 12 8 

The result i s a [!J5!!rl.2S, the element i n the Ith row and 
Jth column has the value XCI] x Y[JJ. More generally, any 
other operator can be substituted for the x. For example: 

Xo.~'y 

1 1	 1 1 1 
1 1	 1 1 a 
0 1	 1 0 a 

'ABCDEFG'o.='CABBAGE' 

a 1 0 0 1 a a 
0 a 1 1 a 0 a 
1 0 0 a 0 a a 
0 0 0 a a 0 0 
0 0 a 0 a a 1 
0 0 0 0 0 0 0 
0 0 0 0 0 1 a 

The first row shows the occurrences of the letter A, the 
second shows the occurences of B, etc. Since the summation 
+/M applied to a matrix M sums the rows of M, the 
expression: 

+/'ABCDEFG'o.='CABBAGE' 
2 2	 1 0 101 

yields the counts of A,B,C, etc. in the word CABBAGE. 

Returning now to the text T and alphabet A, the letter 

counts in T can clearly be obtained as follows: 
+/Ao.=T 

5 0	 2 1 11 1 0 1 a a 1 4 1 3 5 2 0 2 
6 3 1 a 2 0 1 a 0 9 1 1 0 0 0 0 a 
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Heuristic functions. Certain functions prove particularlyeffective Tn--iiTeading to discovery". Some such functions 
are useful only in exploring a particular phenomenon, 
whereas others apply to a rather wide class. Examples of 
both types will be treated. 

The factor by which the principal amount of a loan is 
increased when loaned at interest I compounded yearly for Y 
years is clearly given by the expression (l+I)*Y. If 
interest is compounded N times per year, the corresponding 
expression becomes (1+I+N)*NxY. Exploration of the limiting 
value of this expression for large values of N (and for Y=l) 
leads to the exponential function of the argument I. 

Considering first the simple case for I=1 and Y=1, the 
expression becomes (1+1+N)*N. Experiments could now be 
performed for various values of N, but tedium can be avoided 
by defining the following function: 

'lZ+E N 
[lJ Z+(1+1fN)*N 
[2J 'l 

Experiments can now be performed conveniently: 

E 1 
2 

1 0 

2 • 

2.

E 10 
5 9 3 7 4 2 4 6 

E 100 
710481 382 9 

E 1000 
716923932 

M

2 

2 

oreover, vector arguments can be used: 
E 1 10 100 1000 

2.59374246 2.704813829 2 0716923932 

E 10*0,16 
2.59374246 2.704813829 2.716923932 

2.718268237 2.718280469 
2 0718145927 

~lff~r~n~lng is a generally useful method of studying a 
function - it consists of calculating a vector of values of 
the function for a set of equally spaced arguments and then 
determining the differences between successive values of the 
function. This can be done conveniently with the aid of the 
following function: 

'V Z+DF Y 
[lJ Z+Y[1+1-1+pYJ-Y[1-1+pY] 
[ 2 ] 'l 

The result of this function is clearly a vector of dimension 
one less than its argument Y whose Ith component has the 
value Y[I+1J-Y[IJ. 
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Consider the application of DF to the vector of values 
V obtained by applying the "square" function to the vector X 
of integers 1 to 100: 

X+l10
 
V+-X* 2
 
V 

1 4 9 16 25 36 49 64 81 100 
DF V 

3 5 7 9 11 13 15 17 19 

The obvious pattern in the last result suggests an 
easily proved theorem. The pattern for the "cubes" function 
is not so evident: 

V+X*3 
DF V 

7 19 37 61 91 127 169 217 271 

However, the second difference {obtained by applying DF to 
the first difference)-shows-a-marked pattern: 

DF DF V 
12 18 24 30 36 42 48 54 

or DF DF V 
6 6 6 6 6 6 6 

DF DF DF DF V 
o 0 a 0 a a 

These results suggest theorems about the cube, and also 
suggest experiments on further functions such as the higher 
powers, the general polymonial, and the triangular numbers. 

The slope of the tangent to a curve (i .e., the 
derivative of the function represented by the curve) is also 
important in the study of a function. The tangent slope at 
the point (X, F X) is approximated by the slope of the 
secant through the points eX, F X) and «X+S), F X+S) which 
(as seen from the accompanying sketch) is given by the 
expression «F X+S)-F X)~S. Hence the following function 
yields the secant slope: 

\JZ+-S SL X 
[1J Z+«F X+S)-F X)~S (F XtS)
[2J 'V 

~ F )( 

x 
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For example, If F Is defined as the square function: 

'VZ+F X 
[1J Z+X*2 
[ 2] 'V 

then the secant slope at points with abscIssae 2 and 2+.5 
is: 

.5 8L 2 
4.5 

Moreover: 

8+10*-0,1.5 
S 

1 O. 1 0.01 0.001 0.0001 1E -5 
S SL 2 

5 4.1 4.01 4.001 4.0001 4.00001 

The last vector gives the secant slopes for the 
successive spacings 1, 0.1, 0.01, etc., and suggests that 
the limiting value (i.e., the tangent slope) is 4. 

Once the notion of this limiting slope is accepted, the 
student may experiment with a fixed small spacing (say 
10*-6) and with a vector of values of the argument X so as 
to see the slope at various points on the curve. Thus the 
experiment 

8+10* 6 

X+1. 8
 
X
 

12345 6 7 8 
S SL X 

2.000000997 4.000000999 6.000000997 8.000000946 
10.000001 12.00000099 14.00000099 16.00000098 
2xX 

2 4 6 8 10 12 14 16 

suggests (correctly) that the slope of the tangent to the 
function X*2 at any point p is 2xP. 

To experiment with other functions it is only necessary 
to change the definition of F. For example: 
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makes F the cube functIon. Hence: 
.000001 SL t8 

3.000002991 12.00000598 27.00000897 48.00001193 

3 12 

75.00001487 
3xX*2 
27 48 75 

108.0000179 

108 147 192 

147.0000208 192.0000238 

suggests 
function. 

a theorem concerning the slope of the cube 

The polynomial function POL defined in the introductIon 
can be used for general experiments with power series. Its 
definition will first be recalled: 

\7POL[OJv 
V Z+C POL X 

[1J Z++/CxX*-1+tpC 
'V 

1 3 3	 1 POL 2 
27 

(The left argument determines the vector of coefficients and 
the right argument determines the point at which the 
polynomial is eva l ue t ed , ) 

If the coefficients C are defined as follows: 

R+O,t7 
R 

0 1 2 3 4 5 6 7 
!R 

1 1	 2 6 24 120 720 5040 
C+1f!R 
C 

1	 1 0.5 0.1666666667 0.04166666667 0.008333333333 
0.001388888889 0.0001984126984 

then 

C POL	 1 
2.718253968 

C POL 1 
0.3678571429 

( C POL 1) xC POL 1 
0.9999291383 

C POL	 2 
7.380952381 

and the polymontal is clearly an approximation to the 
exponential function. 

The use of the computer for plotting functions is 
helpful in all experiments with functions. It is however, 
desirable to compose a slightly more complicated plotting 
function which will perform automatic seal tng as required. 
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~qL~ ~~~~Q~~q math~mgtL~al ~~~mQle~. The examples thus far 
have all addressed an elementary level of mathematics. The 
computer is equally useful for experiments in more advanced 
topics. This section will present a few brief examples of 
such use. 

In this work, the following bits of matrix notation 
will be required: 

1. The expression DpX yields a matrix of dimension D 
whose elements (in row-by-row order) are the e 1ernen ts 
of the vecto r X: 

D+-3 4
 
X+-l 12
 
X 

1 2 3 4 5 6 7 8 9 10 11 12 
M+-DpX 
M 

1 2 3 4
 
5 6 7 8
 
9 10 11 12
 

pX 
12 

pM 
3 4 

2. The expression M[3;4] selects the element in the 
third row and fourth column of M. More generally, 
M[I;J] selects the row(s) determined by the elements of 
the vector I and the column(s) selected by the vector 
J • For e x amp 1e : 

M[2;3] 
7 

M[l 3;1 3 4J
 
134
 
9 11 12
 

If the index J is omitted, then the entire row (or 
rows) is (are) taken; if the index I is omitted, entire 
columns are taken. For example: 

M[ 2; ]
 
5 6 7 8
 

M[; 2 3J 
2 3
 
6 7
 

10 11
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3. The expressions ~M and ~M and eM each transpose the 
argument about the axis indicated by the straight lIne 
in the symbol. For example: 

N+~M 

N 

1 5 9 
2 6 10 
3 7 11 
4 8 12 

<PM 

4 3 2 1 
8 7 6 5 

12 11 10 9 
eM 

9 10 11 12 
5 6 7 8 
1 2 3 4 

4. The expression M+.xN denotes the ordinary matrix 
product of M and N. For example: 

M+. xN 

30 70 110 
70 174 278 

110 278 446 

More generally, any pair of operators can replace the 
operators + and x in the foregoing expression. If 

R+Ma 0 wIN (where ex and w stand fo r any pa i r of 
operators), then R[I;J] is equal to a./M[I;]wN[;JJ. For 
example: 

M+ 0 =N 

400 
040 
004 

Mr •LIN 

444 
488 
4 8 12 
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The first example is from symbolic logic. For this it 
will be necessary to introduce the symbols for three logical 
functions: A for gOg, v for QL, and ~ for llQt, and the 
symbol L for lnl~gg~ Qg[! of a number. Consider the 
following experiments: 

£+1 0 1 1 0 1 
AIL 

o 

o 

Similar experiments for further values of the logical 
vector L suggest the theorem that AIL is equivalent to 
~v/~L, a result known as Qg MQrggD~~ bg~. 

De Morgan's Law can easily be validated for all cases 
occuring for a specified number of arguments, that is, for a 
specified value of pL. The function 

'lM+TR N 
•[ 1 ] M+ 1 =2 I L( -1 + 1. 2 *N ) 0 7-/2 *N - 1. N 

\J 

produces a 2*N by N matrix whose rows represent all possible 
logical vectors of dimension N. For example: 

T+TR 3
 
T
 

000 
001 
010 
all 
100 
101 
110 
111 

A/T 
o 0 0 0 0 a 0 1 

~v/~T 

o 0 a 0 0 0 a 1 
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A similar result (t.e., De Morgan's Law) holds for 
certaIn matrix products: 

o 0 001 1 1 1 
001 1 a all 
o 1 0 1 0 1 a 1 

000 000 a 1 
000 0 a all 
000 0 0 1 0 1 
o 0 001 1 1 1 
o 001 a 001 
001 1 001 1 
o 1 0 1 0 1 a 1 
1 1 111 111 

00000 001 
o 000 001 1 
o 000 0 1 0 1 
o a 001 111 
o 0 a 1 0 a 0 1 
0011001 1 
01010101 
111 1 1 1 1 1 

SImilar experiments can be used to suggest a host of 
useful l den t l t l e s , For example: 

I.The V.A matrix product Is (lIke the ordinary matrix 
product) associative. 

2. The V.A matrix product dIstrIbutes over v. 

3. The expression ~/L (exclusIve-or over the vector L) 
is equIvalent to the -expressTon- 21+/L (the parity 
check on L). 

4. The pair ~/L and ~=/~L show a duality of the type 
exemplIfIed by De Morgan's law. 
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A vector such as P+1 4 2 3 which contains all of Its 
IndIces as elements is called a 2gr~~12!lQn vector. If X Is 
any vector of the same dimension as P, then X[pJ Is a 
permutatIon of the components of X. For example: 

X+'ABCD' 
X[PJ 

ADBC 

If X Is also a permutation , then X[PJ Is a 
permutation: 

X+-3 1 4 2
 
X[PJ
 

321 '+ 
P[X] 

2 1 3 '+ 

(It Is clear that permutations do not commute.> 

All permutations generated by a permutation X can be 
produced as follows: 

Q+tpX 

Q 
1 2 3 4 

Q+Q[X] 
Q 

3 1 4 2 
Q+Q[X] 
Q 

4 3 2 1 
Q+Q[X]
 
Q
 

2 4 1 3 
Q+Q[X] 
Q 

1 2 3 4 

Such experIments can be used to lead to such questions as 
cycles, parity, and groups of permutations. 

Another approach to elementary group theory can be made 
through concrete examples of sImple fInite groups. 
ConsIder, for example, the matrix M: 
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M+2 2 p t o *oe ' 
M 

0* 

The operations~,~, and e, applied to M produce certain 
transformations which clearly belong to the a-element group 
of rotations of the square (Including operations which take 
it out of the plane): 

eo 

oe 
0* 

Further experiments can be suggested to establish 
whether these three operations generate the entire group, 
whether all three are required to generate the group, what 
succession of operations generate the gO-degree rotation In 
the plane, and so forth. More complex groups can also be 
modelled conveniently. 

EXAMINATIONS 

The use of a computer terminal for examInations has 
much in common with the use of a terminal for exercises. 
There are, however, a few points which warrant separate 
discussion. 

~Qn£rg!~ QrQQ1~m~. Giving the student a terminal to use In 
an examination makes it practicable to pose more concrete 
problems. For example, rather than ask for the method or 
methods to be used in finding the roots of a polynomial, one 
can ask the student to find the actual roots of specifIed 
polynomIals. 

This has the advantage of making it easy to grade the 
results of an examination without retreating to 
multiple-choice questions. More importantly, it removes the 
distinction between "having the right method" and "getting 
the right answer", an unhealthy distinction whIch arises 
from the desire to avoid judging the student on hIs 
performance of tedious detail. 
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ProvIsion Qf lQQ!§. Certain problems involve several
dlstlnct- aspects, each of comparable difficulty. In the 
exposition of anyone aspect, it Is usually desIrable to 
treat the other aspects as solved or solvable so as to 
concentrate on the question at hand. Likewise, in an 
examinatIon one may concentrate on one aspect of a problem 
by giving the student the tools for the other aspects. This 
can be done by savIng appropriate functions and instructing 
the student to load them for his own use. 

Suppose, for example, the problem is to fInd the zeros 
of some empirical function for which a dozen or so values 
have been determined by physical experiments. One approach 
is to fit a polynomial to the established points and then 
find the zeros of this polynomial. In order to concentrate 
on the problem of fitting a polynomial, one would provide a 
zero-finding program as a tool. The curve fitting problem 
may itself be broken into distinct parts: 1) generating a 
matrix of coefficients for the implied set of linear 
equations, 2) inverting the matrix, and 3) multiplying the 
vector of function values by the Inverse matrix. Anyone of 
these aspects can be singled out for attention by providing 
tools for the others. 

Locked functions. The formal definition of any function isnormally-closed-by typing a del If one types instead(V). 
the symbol~, then the function is Er2!~f!~9 and cannot be 
further modified or displayed in any way. Such a function 
becomes a "black box" whose behaviour can be determined only 
by experimentation. 

Locked functions can be used to pose interesting 
examination questions. A single locked function can serve 
as the basis for a series of questions of increasing 
difficulty: 

1. What are the fundamental characteristics of a 
function, e.g., is its commutative or associative (for 
a function of two arguments) or Is it even or odd (for 
a function of one argument). 

2. Identify the function as some known function. 

3. Define an equivalent function. 
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DRILL 

In administering drill, the computer has two Important 
advantages - it is tireless and vIrtually infallible. The 
complexity of drIll can range from sImple checking and 
correctIon of responses, through the compIlatIon of 
statistics on the timing and correctness of responses, to 
the use of such statistics to dIagnose conceptual 
difficultIes indicated by the responses. 

Consider, for example, spelling drill adminIstered as 
follows: a computer-controlled tape recorder speaks 
successive words chosen by the computer program, and the 
student responds by typing each word on a computer termInal. 

The following cases Indicate the potentIal range of 
sophistication: 

1. For each mIsspelled word, the correct spellIng is 
typed by the computer, perhaps after invItIng a second 
try. 

2. Statistics are kept on the student's performance, 
and the drill is concentrated on those words most 
frequently misspelled. 

3. More detailed analysis of the misspelled words may 
be used to isolate, and advise the student of, any 
general concepts (such as the rules governing "I 
before eft) of which he appears to be Ignorant. 

The methods of composing drfll programs are fortunately 
sImple enough to be mastered by both students and teachers, 
and do not differ significantly from the methods applicable 
to other- problems. They will be Illustrated by simple 
drills in spelling, multiplication, and a foreign language 
glossary. These examples require the use of two further 
pIeces of notation: 

1. The rsQQQm function? applied to the integer 
argument N produces a random Integer In the range 1 to 
N. The function extends to vector arguments In the 
usual way. Thus 76 represents the roll of a die, and 
76 6 yields a two-element result representing the 
roll of two independent dice. For example: 

76 

76 6 
2 1 

?3 4 5 7 
3 3 1 7 
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The r an dom funct ion i s usefu 1 in me king random 
selections among a set of questIons to be presented to 
a student. 

2. Execution of the expression X+~ causes the 
keyboard to unlock and await input. The actual strIng 
of characters typed is then substituted for the ~ (and 
is in this case then assIgned to the varIable X). For 
example: 

X+[!] 
ACE 

x 
ACE 

X+X,[!] 
TYLENE 

X 
ACETYLENE 

The ~ (called gYQ!~=gY2g) Is useful for requesting and 
accepting student responses in a drill program. 

S.Qglllng ~r..lli. Although spelling drill will in general 
require the use of an audible presentation of the questions, 
drill in any set of words for which there exists a 
convenient alternative representation (such as the 
representations 1, 2, 3, etc., for the integers) can be done 
with the typewriter alone. Consider, for example, the 
following sequences: 

W+l0 5p'ONE TWO THREEFOUR FIVE SIX SEVENEIGHT' 
pW 

10 5 
W 

ONE 
TWO 
THREE 
FOUR 
FIVE 
SIX 
SEVEN 
EIGHT 

\JSPELL 
[1J Y+?8 
[2J Y 
[ 3 J X+[!] 
[4J +lL/W[Y;J=5pX,' 
[5J 'THE CORRECT SPELLING IS' 
[6J W[Y;] 
[ 7] +1 
[8J 'V 
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SPELL 
2 
TWO 
8 
EIGT 
THE CORRECT SPELLING IS 
EIGHT 
5 
FIVE 
6 
SIX 

The first lines show the construction and display of a 
matrix whose successive rows are the spellings of the 
successive integers 1 through 8. The function SPELL is a 
drill; line 2 types the integer to be spelled, line 3 
accepts the student's response, line 4 compares the response 
(with additional spaces appended if necessary to make a 
five-character word) with the spelling of the integer and 
branches to line 1 to continue if the response is correct, 
and lines 5 and and 6 type the appropriate message in case 
of error. The last section shows use of the drill. 

The foregoing drill program is defective in that it 
never terminates. The following revision produces a program 
which terminates after any empty response (i.e., a carriage 
return alone): 

\JSPELL 
[8J 
[ 3 • 1 J 
[302J 

[301J 
+0 x 1 0 =p X 
\J 

The revised program now appears as follows: 

[1J 
[2 J 
[3J 
[ 4 J 
[5J 
[6J 
[7J 
[ 8 ] 

\J 

'V 

\JSPELL[OJV' 
SPELL 
Y+?8 
Y 
X+(!J 
-+0 x 1 0 =p X 
-+lL/W[Y;J=5pX,' 
'THE CORRECT SPELLING 
W[Y;] 
-+1 

IS' 

It is clear that the branch 
the number of characters in 

on 
any 

line 4 causes 
response is 

termination 
zero. 

if 
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M~1!lQll~2!lQn Qrlll. Numeric input from the terminal is 
requested by the symbol 0 (quad). Execution of the 
expression typed at this point is substituted for the 0 in 
the expression (and is in this case then assigned to the 
va riab 1eX) • For e xam p1e : 

X+D 
0: 

4 
X 

4 
Y+DxX 

0: 
3 
Y 

12 

The following sequence shows the definition and use of 
a simple multiplication drill in which the range of the 
factors presented to the student is determined by the value 
of the argument supplied to the drill program. 

\l DRILL N
 
[1J Y+?N
 
[2 J Y
 
[3] X+D
 
[4J +OxlL/X='STOP'
 
[5J +lX=X/Y
 
[6J 'WRONG, LOOK AT IT THIS WAY AND TRY AGAIN:'
 
[7J Yp'D'
 
[8J +lD=x/Y
 
[9J 'THE CORRECT ANSWER IS:'
 
[10J x/Y
 
[ 11 ] +1 

\l 
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DRILL 10 10
 
1 7
 
0: 

7
 
9 3
 
0:
 

27
 
5 8 
0: 

50 
WRONG, LOOK AT IT THIS WAY AND TRY AGAIN: 

00000000
 
DODO DODD
 
00000000
 
DDDDDDDD
 
00000000
 
0: 

40
 
5 3
 
0: 

17 
WRONG, LOOK AT IT THIS WAY AYD TRY AGAIN: 
ODD 
DOD 
DOD 
DOD 
DOD 
0: 

18 
THE CORRECT ANSWER IS: 
15 
3 4 
0: 

12
 
2 5
 
0: 

'STOP' 

The first six lines of the program are similar to the 
first six lines of the SPELL program; line 7 displays a 
rectangle whose dimensions are the two factors presented 
(and the student may therefore count its elements to 
determine the correct answer); lines 9 and 10 type out the 
correct answer if the second try proves incorrect. 

The same program provides drill in the multiplication 
of three or more factors; one need only specify the range 
for three values in invoking the drill: 
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DRILL 5 6 9 
561 
0: 

30
 
5 4 5
 
0: 

100
 
2 6 5
 
0: 

50 
WRONG, LOOK AT IT THIS WAY AND TRY AGAIN: 

DDDDD 
00000 
00000 
00000 
00000 
00000 

00000 
00000 
00000 
00000 
DDDDD 
00000 
0: 

60 
219 
0: 

'STOP' 

f~r~Qn§ll~~g Qrlil. Given a set of one or more general
drill programs, a teacher can easily define drills 
specialized for individual students. The following shows 
the definition and use of three individualized drills based 
on the multiplication drill: 

VJOHN 
[lJ DRILL 6 6 
[2J \l 

'JMARY 
[lJ DRILL 4 12 12 
[2J \I 

\/SUSAN 
[ 1 ] DRILL 50 50 
[2J '1 
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JOHN 
1 4 
0: 

4 
3 2 
0: 

6 
6 4 
0: 

'STOP' 

SUSAN 
24 48 
0: 

1152 
3 39 
0: 

, STOP' 

~lq~~~L~ qLLll. Consider 
ENTER, and DRILL: 

the following programs called 

'V ENTER 
[1] F+,F 
[2] E+,E 
[ 3 ] N+[!J 
[4J -+10Xl0=pN 
[5] F+F,15pN,15p" 
[ 6 ] N+[!] 
[7J E+E,15pN,15p" 
[ 8 ] , , 

[ 9 J -+3 
[10J F+«(pF)f15),1S)pF 
[11J E+«(pE)f15),15)pE 

'V 

'V DRILL 
[1] I+?(pF)[1] 
[2J F[I;] 
[ 3] N+[!] 
[4J -+OXt O=p,N 
[5] -+A/E[I;]=15pN,15p" 
[6J 'WRONG' 
[ 7 ] N+[!] 
[8J -+5X10~p,N 

[ 9 J 'CORRECT ANSWER IS " E[I; ] 
[ 10] -+1 

~ 
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The program ENTER accepts pairs of literal entries from 
the keyboard, places the first of each pair in successive 
rows of the matrix F and the second of each pair in the 
corresponding row of the matrix E. The following sequence 
shows the 5 ett i ng of the rna tr ices E and F to "empty", the 
use of the ENTER function, and the display of the resulting 
values of E and F: 

E+' , 
F+' , 
ENTER 

MORT 
DEAD 

MENER 
TO LEAD 

HAUT 
HIGH, LOUD 

QUITTER 
TO LEAVE 

E 

DEAD 
TO LEAD 
HIGH, LOUD 
TO LEA VE 

F 

MORT 
MENER 
HAUT 
QUITTER 

The DRILL program simply selects a row of F at random, 
accepts input from the terminal, compares the input with the 
corresponding row of E, and responds with another selection 
if the answer is correct, with 'WRONG' if the first try is 
incorrect, and with 'WRONG' followed by the correct answe'r 
if the second try is incorrect: 
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DRILL 
MORT 
DEAD 
QUITTER 
LEAVE 
WRONG 
TO LEA VE 
MORT 
BITE 
WRONG 
HIGH 
WRONG 

CORRECT ANSWER IS DEAD 
HAUT 
HIGH, LOUD 
MENER 

CQmQl~~ ULlll. Although the foregoing examples are simple, 
they illustrate the essential techniques of drill; the use 
of arrays of questions and expected responses, of random 
selection of questions, of comparisons to direct program 
branches to the part of the program appropriate to various 
conditions, and of control parameters which permit a single 
general drill to be specialized to a variety of particular 
uses. Complex drills embody the same techniques, although 
the arrays may be larger and more varied, the selection and 
comparison procedures more complicated, and the set of 
control parameters more elaborate. 

Drill can be very effective in the teaching of basic 
skills such as typing, spelling and addition and 
multiplication tables. The potential rate of drill in the 
teaching of more abstract concepts is less clear, and much 
experimentation is needed. Convenience in experimentation 
requires flexbility and power in the programming tools 
emp 1oved , 
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SYSTEM OF PROGRAMS AS FRAMEWORK OF A DISCIPLINE 

If the student is encouraged to establish a library of 
functions by saving each of the functions he develops to 
solve successive exercises assigned in a course, he will 
find that he is in fact developing a set of tools which are 
applicable in the solution of later excercises. For 
example, in the treatment of polynomials in a course in 
algebra, the student might be lead to develop functions to 
evaluate a polynomial, to determine the zeros of a 
polynomial, to determine the coefficients of a product 
polynomial in terms of the coefficients of the factors, and 
to perform synthetic division. In later work, this same set 
of tools would be extended by functions to determine the 
coefficients of a polynomial to fit a given set of points, 
to determine the coefficients of a polynomial which yields 
the slope of a given polynomial, and to approximate certain 
functions (such as the elementary functions) by polynomials 
of indefinite degree. 

The mark of a well developed discipline is, in fact, 
the existence of a well-established set of functions for use 
as tools. In the study of linear systems, for example, the 
set i ncl udes matr i x product, matr i x inverse, and 
determinant. In statistics the set includes moments and 
correlations, as well as the set already mentioned for 
1 i near s vs terns. 

SUMMARY 

Programming is the key to computer use, and since the 
required notation is a simple extension of algebra, 
programming ability is easily acquired. The main 
applications of the computer are two - expermentation, and 
drill. 

Drills adequate for the teaching of basic skills appear 
to be relatively easy to construct. Effective drills for 
the teaching of abstract concepts are much more difficult to 
construct, and results in this area have been generally 
disappointing. 

Student use of the computer for experimentation can be 
immediately effective, even with the use of established 
texts. A re-working of texts from an algorithmic viewpoint 
would, however, be desirable. 
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